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1. Introduction 
 
In recent years, designers have begun to migrate to the System-on-a-Chip (SOC) 

paradigm from traditional board-level design methods. New fabrication technologies 

have enabled the production of integrated circuits that have hundreds of millions of 

transistors. This capability has motivated the VLSI design community to investigate the 

possibility of integrating the sub-systems that comprise a traditional board-level design 

on a single piece of silicon. 

 

There are several important reasons for moving to SOC. Significant factors include 

increased inter-device communication bandwidth, reduced power consumption, and 

overall area improvement. However, there are challenges that need to be addressed. 

SOCs typically have a very large design space, thus complicating existing tool-flows. 

Interfacing the individual sub-systems on the chip is another major issue. There is also a 

considerable increase in prototyping costs due to the size of the final design. Finally, 

there is a lack of post-fabrication flexibility. This is because designers can easily remove 

and replace components in board designs, a feature that is noticeably absent in present 

day SOC.   

 

Designing an SOC targeted to a single application could prove extremely expensive if the 

hardware requirements of the application vary with time. It is therefore clear that a 

reconfigurable sub-system would be useful in SOC. This reconfigurable sub-system 

would provide the desired hardware flexibility to SOC designs. 

 

The immediate solution to lack of post-fabrication flexibility of SOC designs is to include 

a Field Programmable Gate Array (FPGA) core designed by a major commercial vendor. 

However, current FPGA architectures fall considerably short of the levels of performance 

that can be expected from Application Specific Integrated Circuit (ASIC) 

implementations. This is because FPGAs aim to provide a great deal of flexibility in 

hardware, resulting in a performance trade-off. 
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Domain-specific reconfigurable architectures attempt to bridge the wide gap in 

performance that exists between ASICs and FPGAs. Such architectures are targeted to 

specific application domains (Digital Signal Processing (DSP), for example), and contain 

customized computational elements that are optimized to perform functions that fall 

within that domain. RaPiD[4,6] and PipeRench[7] are examples of domain-specific 

reconfigurable architectures. The computational elements in these architectures can be 

configured to execute a variety of DSP applications. Thus, if an SOC were to be designed 

for a pre-determined domain of applications, the corresponding domain-specific 

architecture would form the reconfigurable core. In this way, near-ASIC performance 

levels could be achieved, while providing hardware flexibility attributed to commercial 

FPGAs. 

 

While domain-specific architectures are an attractive compromise between the flexibility 

of FPGAs and the performance of ASICs, it should also be noted that the creation of 

custom reconfigurable architectures for each separate domain is a labor-intensive process. 

Redesigning the reconfigurable core for a new domain would result in increased time-to-

market, and significant design costs. In view of these considerations, we are actively 

investigating the automatic generation of custom reconfigurable architectures. At the 

highest level, the domain of applications and a set of constraints specified by the user will 

be used to generate a suitable architecture. This architecture could lie anywhere in the 

space between ASICs and FPGAs, depending upon the competing demands for 

performance and programmability required by the domain. 

 

We will now describe the organization of the rest of this paper. Section 2 provides a brief 

background on the reconfigurable computing paradigm. Section 3 describes the approach 

that was adopted to place and route to an existing domain-specific architecture. In Section 

4, the experimental setup and procedure have been described in detail. The results from 

the experiments are presented in Section 5, and our conclusions in Section 6. Section 7 

discusses potential future work in mapping designs to custom reconfigurable 

architectures, and Section 8 lists acknowledgments.  
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2. Background 
 

General-purpose microprocessors are the most common form of conventional computing 

today. This is because they are extremely flexible, and can be used to execute any 

application that can be converted to a sequence of software instructions. It is important to 

observe here that the flexibility of microprocessors lies in software. The microprocessor 

hardware simply executes instructions that are determined by overlying software like a 

compiler. Hence microprocessors can suffer a performance penalty, since they do not 

provide hardware resources that are optimized for a specific application. 

 

Applications that require the highest performance are implemented as ASICs. An ASIC is 

specifically designed to perform a given computation, and is thus optimized for speed, 

power and/or area. However, in their quest for better performance, ASICs typically 

completely sacrifice flexibility, and cannot be used to execute any computation other than 

the one they were designed for. Thus, if the ASIC needs to be modified after fabrication, 

re-design and re-fabrication are necessary. This could prove extremely expensive, 

especially in an environment where the application changes with time. 

 

Reconfigurable computing attempts to provide hardware resources that achieve better 

performance than general-purpose microprocessors, while providing greater flexibility 

than ASIC implementations. Reconfigurable devices contain arrays of logic and 

arithmetic units that can be programmed electrically to perform different functions. 

Programmable routing resources are also provided, and these can be combined with the 

logic resources to execute a variety of applications. A common example of 

reconfigurable computing is an FPGA. FPGAs have been shown to accelerate 

applications in domains like DSP and Cryptography, among others. 

 

2.1 FPGA 

An FPGA is a programmable logic device that can be configured to execute applications 

in hardware. Unlike one-time programmable devices, SRAM based FPGAs can be 
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reconfigured at run-time to execute different applications. Every application is associated 

with a unique configuration, which conceptually represents the current state of the 

hardware and routing resources. Whenever a new application is to be executed, a new 

configuration replaces the previous one, thereby changing the functionality of the logic 

resources and the routing topology.  

 

An island-style FPGA is shown in Fig 2-1. This kind of FPGA architecture was first 

proposed by Xilinx in 1984, and is widely used. 

 

                  

Fig 2-1:  Xilinx style FPGA architecture contains an array of CLBs, switchboxes, and 
vertical and horizontal routing channels [11] 

 

The computational element in the FPGA shown in Fig 2-1 is called a Configurable Logic 

Block (CLB). Fixed routing resources that run both vertically and horizontally surround 

the CLBs, and this sea of routing resources enables efficient communication among 

CLBs. The architecture also provides switchboxes, sites where routing resources can 

change direction.  
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The configuration of an FPGA is held in Static Random Access Memory (SRAM) cells. 

These cells are distributed throughout the chip, and connect to the configuration points in 

the FPGA. Turning the configuration points on or off can modify CLB functionality and 

the routing topology. An example of how routing can be configured is shown in Fig 2-2.  

            

Fig 2-2: A programming bit for SRAM based FPGAs, and how it can be used to configure routing 
resources [3] 

 

Here the programming bit P can be used to turn a pass-gate on/off, thus 

connecting/disconnecting Routing Resource #1 and Routing Resource #2. An FPGA can 

have several million programming sites like these, and a rich routing fabric can be 

constructed. 

 

2.2 RaPiD 

Reconfigurable hardware is generally constructed as an array of computational units. 

These computational units vary in complexity from a simple three input function to 

possibly a 4-bit Arithmetic Logic Unit (ALU). The size and complexity of the 

computational unit in a reconfigurable device is termed its granularity. Commercial 

FPGA architectures are generally fine- to medium-grained in nature. Fine-grained 

architectures are suited to bit level calculations, and can be used to implement 

computation structures of arbitrary bit-widths. However, such architectures perform 

poorly when they are used to implement datapath circuits that operate upon multiple-bit 

words. Logic blocks in medium-grained FPGAs like the one proposed in [8] operate on 

4-bit words, thus improving upon the performance obtainable from fine-grained FPGA 

architectures. Even so, a considerable performance gap exists between fine-/medium-

grained FPGAs and equivalent ASIC implementations.               
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The RaPiD [4,6] architecture was proposed a few years ago in attempt to narrow the 

performance gap between ASICs and FPGAs for certain application domains. RaPiD is a 

coarse-grained, field-programmable architecture that can be used to construct deep 

computational pipelines. The primary objective of RaPiD is to provide a flexible, yet 

efficient means of running regular, computationally intensive tasks such as those found in 

DSP, scientific computing and graphics. 

 

Fig 2-3: A block diagram of a RaPiD cell. Multiple cells can be tiled horizontally to create a RaPiD 
architecture [2] 

 

Typically, a RaPiD datapath consists of hundreds of Functional Units (FUs) arranged in a 

linear, 1-D fashion (Fig 2-3). A number of FUs are presently supported by the RaPiD 

architecture. These include ALUs, multipliers, Random Access Memory (RAM) blocks 

and registers. It should be emphasized here that FUs are word-based, i.e. they operate on 

16-bit wide words. This aspect of RaPiD is fundamentally different from most FPGA 

architectures, which are targeted at bit-oriented computations. The throughput of word-

based compute-intensive applications that are mapped to the RaPiD datapath can be 

significantly higher than corresponding FPGA implementations. The reason for this 

acceleration is coarse-grained custom-built datapath FUs that are targeted to 

computationally intensive tasks.   
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The interconnect topology of RaPiD is 1-D in nature (Fig 2-3), and consists of segmented 

tracks. Each track is 16-bit wide because of the word-based FUs that comprise the 

datapath. A data-input of an FU can be driven by any one of the segmented tracks that 

constitute the interconnect. Similarly, the data-output of an FU can drive an arbitrary 

number of tracks. The majority of these tracks are connected by Bus Connectors (BCs), 

which are buffered, bi-directional switches. A BC can be used to drive left, drive right, or 

disconnect the two segments that connect to it. Further, a BC can be used to pipeline a 

signal, since it provides variable delay between 0-3.                

 

2.3 Totem 

As mentioned in Section 1, designing an architecture for every new domain could prove 

expensive in terms of design cost and time to market. In view of this observation, we are 

developing the Totem project. The primary objective of the Totem project is to 

automatically generate domain-specific reconfigurable architectures. In doing so, we will 

provide designers a tool-flow that would minimize human design effort for new domain-

specific reconfigurable architectures. 

 

The high-level tool-flow of the Totem project is shown in Fig 2-4. There are four main 

components of this tool-flow, which will eventually work in tandem to produce an 

optimized layout of the automatically generated reconfigurable architecture. 

 

The Architecture Generator [2] inputs a description of the domain, and a set of 

constraints. Based on these inputs, it automatically generates a computational structure 

and an interconnect topology that it considers most suitable for the domain. The 

computational structure consists primarily of coarse-grained datapath elements like 

ALUs, RAMs, multipliers and registers, whereas the interconnect topology is a 1-D set of 

segmented buses. Note that the generated architecture is similar to the RaPiD 

architecture, and is described in structural Verilog.  
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Fig 2-4: The Totem Project tool-flow. Together, the tools will generate the domain-specific architecture 
and its layout, and map applications to the architecture 

 

We are using the latest release of the RaPiD compiler to synthesize logical netlists from a 

high-level description of an application. The Hardware Design Language (HDL) that is 

used to describe an application is a C-like language called RaPiD-C. The RaPiD compiler 

synthesizes a netlist file (.rn file) from a RaPiD-C program. This netlist file is a re-timed 

description of the application in terms of instances, and signals that interconnect these 

instances.  

 

The main task of the Layout Generator [11] is to produce efficient layouts of the 

generated architecture that do not sacrifice any area or performance gains that the 

Architecture Generator is able to achieve over standard FPGAs. The Layout Generator 

also needs to be flexible enough to adapt to smaller device sizes as process technology 

scales down. Finally, the Layout Generator is responsible for evolving a bit-stream 

format that will be used by the place & route tool to generate a bitstream. This bitstream 

will be used to configure the architecture layout to execute a particular application. 
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The subject of this paper is the design and implementation of the Place & Route tool for 

mapping netlists to the RaPiD architecture. We have chosen the RaPiD architecture 

because it is very similar to an architecture that would be produced by Totem’s 

Architecture Generator for signal processing applications. In addition, a mature compiler, 

and a benchmark set have already been developed for RaPiD. Thus, the testing 

environment for the Place & Route tool is already in place.   

 

The Place & Route tool maps user applications to the RaPiD architecture. Specifically, 

the placement program attempts to determine the position that each datapath element will 

occupy in the architecture (hereafter, “datapath element” will be collectively referred to 

as an “instance”). The goal of the placement program is to ensure that the router is able to 

find enough routing resources to establish all necessary interconnections with minimum 

effort. Once the placement program creates a final placement of instances, the router uses 

an iterative, shortest-path algorithm to assign signals to the limited routing resources 

provided in the architecture. At the time of this writing, we have been able to accomplish 

connectivity routing successfully. There are several issues that still need to be addressed, 

and will be discussed in detail in later sections of the paper.  

 

3. Approach 
 
An important component of the design-flow for reconfigurable architectures is automated 

mapping software. This software converts a high-level description of the application to a 

bit-stream that configures the device to execute the user application. The first component 

of mapping software is a technology-mapping tool. This tool maps the user application to 

the logic elements that are provided in the reconfigurable architecture. The next 

component is the placement tool, which determines a physical assignment of logic 

elements to hardware resources. Finally, the routing tool is responsible for assigning 

signals to routing resources in order to successfully route all signals while meeting 

performance requirements.             
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Place & Route for FPGAs (and reconfigurable devices in general) is a challenging 

problem. This is because the resources that are available for doing logic and routing are 

fixed at the time of fabrication. Unlike standard-cell designs in which a successful routing 

can always be found by increasing channel widths, FPGA routers often fail to route all 

the signals in a design due to scarcity of routing resources. The role of the placement 

phase is thus extremely important, because a poorly placed design can result in routing 

failure. In addition, a poor placement can result in long, circuitous routes that adversely 

affect the delay characteristics of the design. 

 

Several research-groups have studied the problems associated with place & route for 

FPGAs. [1,10] describe placement strategies for FPGAs, while [9] proposes a routing 

approach. [1,4] discuss complete tool-flows that have been developed for mapping 

applications to FPGAs. In the two following sub-sections, we will describe the approach 

we used to place and route netlists on the RaPiD architecture.  

 

3.1 Placement 

The two inputs to the placement program are descriptions of the RaPiD netlist (.rn file) 

and the architecture. The placement of the instances is determined using a Simulated 

Annealing [12] algorithm. This algorithm operates by taking a random initial placement 

of physical elements, and repeatedly moving the location of a randomly selected element. 

The move is accepted if it improves the overall cost of the placement. In order to avoid 

getting trapped in local minima, non-improving moves are also sometimes accepted. The 

temperature of the annealing algorithm governs the probability of accepting a “bad” 

move at that point. The temperature is initially high, causing a large number of bad 

moves to be accepted, and is gradually decreased until no bad moves will be accepted. A 

large number of moves are attempted at each temperature. 

 

A good cooling schedule is essential to obtain high-quality solutions in a reasonable 

computation time with simulated annealing. For our placement program, we used the 
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cooling schedule developed for the VPR tool-suite [1] at the University of Toronto. The 

various parameters that define the placement algorithm are determined as follows: 

Initial Temperature: Let N be the number of instances in the application. A random 

initial placement is first created, following which N random moves are made. The 

standard deviation of the cost of the placement after each move is calculated, and the 

initial temperature T is set to twenty times the standard deviation. 

Cooling Schedule: The temperature after each iteration is computed as Tnew = α * Told. 

The value of α depends on the fraction of attempted moves that are accepted (R) at Told. 

The variation of α with respect to R is as under: 

Fraction of moves accepted R   α 
-------------------------------------------------------------------------- 
   R > 0.96    0.5 
        0.8 < R ≤ 0.96    0.9 
        0.15 < R ≤ 0.8    0.95 
  R ≤ 0.15    0.8 

 
It has been shown that it is desirable to keep R near 0.44 for as long as possible [1]. This 

is achieved by using a range limiter that imposes an upper bound D on the number of 

positions that an instance can be moved across at a given temperature. D is updated at 

every temperature based on the following relationship: 

Dnew = Dold * (1 – 0.44 + R) 

A prolonged quenching step that greedily seeks lower-cost placements is undertaken at 

the end of the anneal. 

Number of moves at each temperature: This quantity directly affects the quality and run-

time of the placement program. As advocated by VPR, we make 10 * N1.33 moves at 

every temperature. This number results in good placements in a reasonable run-time.       

 

The development of a representative cost-function for the placement program is an 

interesting problem. Since the number of routing tracks in the interconnect fabric of the 

RaPiD architecture is fixed, we capture the quality of the placement by means of a cutsize 

metric. The cutsize at a vertical partition of the datapath is defined as the number of 

signals that need to be routed across that partition for a given placement of datapath 



 13

elements. The max_cutsize is defined as the maximum cutsize that occurs at any vertical 

partition of the datapath. The total_cutsize is defined as    

j=Y 
    total_cutsize = Σ (cut_size)j                            
      j=1 
where Y is the number of datapath elements that are placed on the architecture. The 

avg_cutsize is then defined as 

    avg_cutsize = total_cutsize/Y 

 

Both max_cutsize and avg_cutsize are important estimates of the routability of a circuit. 

Since the RaPiD architecture provides a fixed number of tracks for routing signals, it is 

necessary to formulate a placement cost function that favorably recognizes a move that 

decreases max_cutsize. At the same time, it is clear that a simple cost function that 

attempts to reduce only max_cutsize will be inadequate. A cost function that is 

determined only by max_cutsize will not be able recognize changes in avg_cutsize. This 

means that the annealer will accept moves that increase avg_cutsize, but do not change 

max_cutsize. Such zero-cost moves may cumulatively increase the overall congestion in 

the datapath considerably, thus making it harder for the annealer to find the sequence of 

moves that will bring down max_cutsize. It can thus be concluded that avg-cutsize should 

also contribute to the cost of a placement. Reducing avg_cutsize not only reduces overall 

congestion in the datapath, but also brings down the total wire-length. The cost function 

can be mathematically formulated as follows                

        cost = w*max_cutsize + (1-w)*avg_cutsize 

where 0 ≤ w ≤ 1. The choice for the exact value of the weighting parameter w is 

presented in Section 4 of this paper.                

 

3.2 Routing 

We use the Pathfinder [9] algorithm to route signals in RaPiD netlists after completion of 

the placement phase. Our adaptation is an iterative scheme, and consists of two parts. The 

signal router routes individual signals based on Prim’s algorithm, which is used to find a 

minimum spanning tree (MST) over an undirected graph. The global router adjusts the 



 14

cost of each resource at the end of a routing iteration depending on the demands placed 

by signals on that routing resource. During the first routing iteration, signals are free to 

share as many routing resources as they need. However, the cost of using a shared routing 

resource is gradually increased during later iterations, and this increase in cost is 

proportional to the number of signals that share that resource. Thus, this scheme forces 

signals to negotiate for routing resources. A signal can use a high-cost resource if all 

remaining resource options are in even higher demand. On the other hand, a signal that 

can take an alternative, lower-cost route is forced to do so because of competitive 

negotiation for shared resources. 

 

The routing resources in the RaPiD architecture are represented as a graph, with the 

track-segments constituting the nodes of the graph. The cost of using a node n in a route 

during a given iteration is determined using the following relationship: 

    Cn = (Bn + Hn) * Pn 

where Bn is the base cost of using the node n, Hn is a cost term related to the number of 

times that n was shared in earlier iterations, and Pn represents the number of other signals 

that are sharing n during that iteration. During the first iteration of the global router, the 

Pn value for every node is assigned a value of one, whereas Hn is set to zero. This allows 

multiple signals to share routing nodes without incurring any penalty. However, the Pn 

value for a node is slowly increased in later iterations of the global router depending on 

the extent to which that node is shared. At the same time, the Hn factor for a node is 

increased slightly at the end of every iteration during which that node is shared. A 

detailed explanation of how Pn and Hn resolve congested nodes appears in the paper [9] 

that proposed the Pathfinder algorithm. 

 

Fig 3-1 presents the step-by-step details of the Negotiated Congestion (NC) scheme of 

the Pathfinder algorithm. The signal router commences at step 2. The existing routing 

tree RTi of signal i is ripped up and initialized to the signal’s source. A loop over all 

sinks of the signal is started at step 5. Steps 7 – 12 outline a breadth-first search for the 

sink tij closest to the source si. After a sink is found, a backtrace from the sink to the 

source is initiated, and the Cn value of every node in the backtraced path is updated. 
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Also, all nodes on the backtraced path are added to the current routing tree. Thus, every 

time a sink is found, all nodes in the newly updated partial routing tree of the signal are 

used as potential sources for routes to the remaining sinks. 

Fig 3-1: Negotiated Congestion (NC) algorithm used to eliminate congestion [9] 

 

4. Experimental Setup 
There were two inputs to the place and route tool (Fig 2-4). The first was a netlist file (in 

the .rn format) generated by the RaPiD compiler. The second input was a description of 

the RaPiD architecture expressed in structural Verilog. The two input files were read in 

by the place and route tool using lexical-analyzer (lex) & yet-another-compiler-compiler 

(yacc). The remainder of the tool was implemented in C++.          

 

We determined that the most appropriate metric for testing the functionality of our tool 

would be the minimum number of routing tracks that were required to successfully route 

each netlist in a set of benchmark applications. The set of benchmark netlists was 

obtained from the RaPiD group, and consisted of DSP applications like FIR filters, FFTs, 

sorting, matrix multipliers and image filters. Table 4-1 lists statistics of the benchmarks 

that we used in our experiments.   

 

While shared resources exist (global router) [1]
Loop over all signals i (signal router) [2]

Rip up routing tree RTi [3]
RTi <- Si [4]
Loop until all sinks tij have been found [5]

Initialize priority queue PQ to RTi to cost 0 [6]
Loop until new tij is found [7]

Remove lowest cost node m from PQ [8]
Loop over fanouts n of node m [9]

Add n to PQ at cost Cn + Pim [10]
End [11]

End [12]
Loop over nodes n in path tij to Si (backtrace) [13]

Update Cn [14]
Add n to RTi [15]

End [16]
End [17]

End [18]
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NETLIST DESCRIPTION NUM INSTANCES NUM SIGNALS 
decNsR.rn decimation stage for 

radar app 
14 10 

psd.rn PSD stage for radar 
app 

26 14 

limited.rn limited matrix 
multiply 

42 57 

matmult_bit.rn generic matrix 
multiply 

37 60 

firTM_2nd.rn time-muxed 4-stage 
FIR 

35 50 

firsm.rn 16-stage FIR 64 63 
firsymeven.rn symmetric 16-stage 

FIR 
96 95 

sort_G.rn 1D sorting 118 119 
sort_2D_RB.rn 2D sorting  84 76 

fft16.rn 16-point FFT 64 74 
fft64.rn 64-point FFT 240 246 

img_filt.rn image filter 142 148 
med_filt.rn 5 x 5 median filter 101 57 

sync.rn synchronization 
stage for OFDM 

318 306 

Table 4-1: statistics of benchmark netlists 

 

For purposes of nomenclature, we defined two types of segmented routing tracks. In Fig 

2-3, a sequence of tracks that lay in the same horizontal line and did not connect to a BC 

was collectively referred to as a “short” track. On the other hand, a sequence of tracks 

that lay in the same horizontal line and DID connect to a BC was collectively termed a 

“long” track. The only exception was the short track (top-most track in Fig 2-3) that 

consisted of segments that feed back the output of an instance to its input. This track was 

not considered either a short track or a long track.  Thus, there were 4 short tracks, 10 

long tracks, and 14 (10 + 4) tracks in total in Fig 2-3.         

 

Test architectures for our tool were generated using software provided by Northwestern 

University graduate student Katherine Compton. This software was capable of generating 

RaPiD architectures that had a user-specified number of short tracks per cell, long tracks 

per cell, and bus-connectors per long track per cell. We used the architecture generation 
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software to create RaPiD architectures that had between 5 – 35 tracks. Approximately 

2/7th of the tracks in every architecture were short tracks, and 5/7th of the tracks were long 

tracks. Each short track consisted of 4 segments per cell, and each long track had 1 BC 

per cell. We picked these ratios to be consistent with the ratios proposed for the RaPiD 

cell in previous work [4]. 

5. Results 

5.1 Effect of weighting parameter w 
The cost function that we used to determine the cost of a placement is reproduced from 

Section 3 as under: 

cost = w*max_cutsize + (1-w)*avg_cutsize 

As a first step, we empirically determined the value of the weighting parameter w. We 

used only a sub-set of the available benchmarks for our experiments, so that we could 

detect trends in performance in a reasonable run-time. Table 5-1 shows the minimum 

number of tracks required to successfully route each netlist across a range of values for 

the weighting parameter w. There were two important observations that we made from 

this data. First, the minimum number of tracks required to route a benchmark did not vary 

appreciably for w ≤ 0.9. The other observation was that there was a substantial increase in 

the minimum number of tracks required when w = 1.0. A value of w = 1.0 represented the 

case in which our cost function was determined purely by max_cutsize. 

 

NETLIST W = 0.0 W = 0.1 W = 0.3 W = 0.5 W = 0.7 W = 0.9 W = 1.0 
limited.rn 7 7 7 7 7 7 9 

psd.rn 7 7 7 7 7 7 7 
firTM_2nd.rn 9 9 8 9 9 9 11 
matmult_bit.rn 9 9 8 8 9 9 11 
firsymeven.rn 9 9 10 10 10 9 21 

cascade.rn 10 10 10 10 10 10 12 
fft16.rn 12 12 12 12 12 12 16 

img_filt.rn 15 15 15 15 15 15 32 
Geometric 

Mean 9.46 9.46 9.31 9.44 9.58 9.46 13.30 

Table 5-1: minimum number of tracks required to route a netlist for different values of w 
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The trends in Table 5-1 were consistent with our claim in Section 3.1 that the cost of a 

placement should be determined by max_cutsize and avg_cutsize together, rather than by 

max_cutsize alone. This is because a cost function that was solely determined by the 

maximum cutsize would not be able to detect changes in the average cutsize across the 

datapath. Consequently, the annealer could allow the average congestion in the datapath 

to get dangerously high, thus preventing it from finding the sequence of moves that 

would have decreased the maximum cutsize.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5-1: Post-placement cut profile for the benchmark limited.rn for w=0.0 and w=1.0 

 

This effect was particularly pronounced in netlists in which the maximum cutsize 

occurred in several regions of the datapath simultaneously, and can be seen in Fig 5-1 

which shows the post-placement cut profile of the netlist limited.rn for values of w=0.0 

(blue profile) and w=1.0 (brown profile). The average congestion when w=1.0 was 

extremely high, and there were several regions in the datapath that were at maximum 

cutsize. 

 

Post-placement cut profile for limited.rn

0
1
2
3
4
5
6
7
8

1 40 79 11
8

15
7

19
6

23
5

27
4

31
3

35
2

39
1

43
0

46
9

50
8

54
7

Architecture position

Cu
ts

iz
e

w = 0.0
w = 1.0



 19

5.2 General Performance 

We present the performance of our place & route tool in this section. We used a value of 

w=0.3 for our experiments, since this value of w produced the geometrically minimum 

number of routing tracks required to route a sub-set of the benchmark-suite (Table 5-1). 

Table 5-2 shows the comparison between the maximum cutsize of the final placement 

and the minimum number of routing tracks that were required to successfully route a 

netlist.  

 
NETLIST 

MAX CUTSIZE 
AFTER PLACEMENT 

(MAX_CUT) 

MIN NUMBER 
ROUTING TRACKS 

REQD 
(MIN_TRACKS) 

 
MIN_TRACKS/MAX_CUT 

psd.rn 4 7 1.75 
firsm.rn 5 7 1.4 

decNsR.rn 5 7 1.4 
limited.rn 5 7 1.4 

matmult_bit.rn 6 8 1.33 
firTM_2nd.rn 6 8 1.33 
firsymeven.rn 6 10 1.66 

sort_2D_RB.rn 7 12 1.72 
sort_G.rn 8 12 1.5 
fft16.rn 8 12 1.5 

med_filt.rn 8 13 1.62 
img_filt.rn 10 15 1.5 

sync.rn 14 19 1.36 
fft64.rn 15 24 1.6 

Table 5-2: Minimum number of routing tracks required to route each netlist in the benchmark-set 

 

 

 

 

 

 

 

 

 

 

 

Fig 5-2: Variations in MAX_CUT and MIN_TRACKS across the benchmark set 
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The trend in the MIN_TRACKS/MAX_CUT ratio in Table 5-2 suggested that our 

placement tool modeled routing constraints reasonably well. This can be seen from the 

fact that MIN_TRACKS was approximately a fixed multiplicative factor off from 

MAX_CUT for each netlist. Further, Fig 5-2 shows that the variations in MAX_CUT and 

MIN_TRACKS across the benchmark set were smooth and consistent.  

Fig 5-3: An example of Signal Spillover 

5.3 Signal Spillover 

As a next step, we tried to determine why MIN_TRACKS differed from MAX_CUT by a 

multiplicative factor at all. Fig 5-3 illustrates an explanation for part of this difference, 

and shows an instance mapped to RaPiD. For the sake of simplicity, only long tracks 

have been shown. Consider a case in which 6 signals occupied long tracks to the left of 

the instance, and that 2 of the 6 signals terminated at inst. Our placement tool calculated a 

cutsize of 6 on the left of inst, and this value matched the actual number of occupied 

routing tracks. However, the placement tool calculated a cutsize of 5 on the right of inst, 

when the number of occupied tracks was actually 7. This was because the placement tool 

did not recognize that the 2 routing tracks that were occupied by the terminating signals 

in1 and in2 were actually not available for routing signal out, and that this would force 

the router to seek a 7th track for routing out. Thus, we concluded that we needed to alter 

our placement model to account for this phenomenon that we called “Signal Spillover”.                       
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Since there was no way of knowing the actual assignment of signals to specific routing 

tracks during the placement phase, we attempted to evolve a probabilistic model for 

Signal Spillover. Fig 5-4 shows an instance mapped to a RaPiD architecture that has 5 

long tracks. 
    

Fig 5-4: Probabilistic model for Signal Spillover 

 

We assumed that in1could eventually occupy any of the 5 long tracks shown in Fig 5-4 

with equal probability. Under this assumption, the likelihood of incrementing the cutsize 

between inst and BC1 was 1, between inst and BC2 was 4/5, between inst and BC3 was 

3/5, and so on. Note that this analysis held true irrespective of track permutation. 

 

For experimental purposes, we modeled Signal Spillover by means of a linear decay 

shown in red in the graph of Fig 5-4. We thought that a linear decay would appropriately 

approximate the multiple step-profiles that would result because of the variation in the 

actual distance between inst and BC1. Table 5-3 shows the minimum number of tracks 

required to successfully route a sub-set of the benchmark suite with the new cost model 

in place. The FullD column shows the minimum number of required tracks when cutsizes 

were incremented based on a linear decay that spanned a length FullD as shown in Fig 5-

4. The HalfD column shows the minimum number of required tracks when cutsizes were 
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incremented based on a linear decay that spanned a length FullD/2. Finally, the Basic 

column shows the minimum number of required tracks when we used our original cost 

function. 

 

Netlist FullD HalfD Basic 
psd.rn 7 7 7 

limited.rn 7 7 7 
firsymeven.rn 9 9 10 
matmult_bit.rn 8 8 8 
firTM_2nd.rn 9 8 8 

sort_2D_RB.rn 11 11 12 
fft16.rn 12 11 12 

med_filt.rn 12 12 13 
img_filt.rn 16 15 15 

Normalized 
Geometric Mean 

0.99 0.96 1.0 

Table 5-3: Performance changes with Signal Spillover placement cost model 

 

It can be seen from Table 5-3 that a cost model that took Signal Spillover in to account 

did in fact result in an improvement over the original cost model for firsymeven.rn, 

sort_2D_RB.rn and med_filt.rn. Table 5-2 shows that these 3 netlists exhibited a 

significant difference between MAX_CUT and MIN_TRACKS, indicating pronounced 

Signal Spillover effects in these netlists. At the same time, the FullD model produced 

worse results for firTM_2nd.rn and img_filt.rn. Recall here that the FullD model was 

based on the assumption that a long signal could be routed on any long track with equal 

probability. This was probably not an accurate model of the router, because if given the 

choice, the router would negotiate a signal like in1(Fig 5-4) on to a track that terminated 

at an earlier BC. The HalfD model may have reflected this bias better than the FullD 

model, and thus produced better overall results.        
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5.4 Short Track utilization 

 

Fig 5-5: Instance B can go anywhere between A and C. 

 

Fig 5-5 shows three instances A, B and C at positions xA, xB and xC respectively. The 3 

instances are interconnected by signals sig1 and sig2, and xA < xB < xC. Further, define 

short_length to be the length of a short segment. In such a case, our placement tool would 

increment the cutsize between positions xA and xC by 1, regardless of xB (subject to the 

condition that xA < xB < xC). However, note that the value of xB would in fact influence 

the router in assigning signals sig1 and sig2 to routing tracks. Fig 5-6 shows a placement 

of instance B right next to instance A such that xB – xC > short_length.  

 

 

Fig 5-6:  Instance B is adjacent to A. sig1 is routed on a short track, and sig2 on a long track 

 

In this case, the router would assign sig1 to a short track, and sig2 to a long track. Fig 5-7 

shows the situation in which xA-xB < short_length and xB-xC < short_length. In such a 

situation, the router would assign both sig1 and sig2 to short tracks, thus freeing up the 

long track that it would have used for the placement shown in Fig 5-6. In its original 

form, our placement tool was incapable of recognizing that the placement in Fig 5-7 was 

potentially better than the placement in Fig 5-6.     
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Fig 5-7: A placement for which both sig1 and sig2 are routed on short tracks 

 

The approach that we adopted to improve short track utilization was to make short signals 

(signals that spanned < short_length positions) partially “free” during the placement cost 

computation. For the purposes of calculating max_cutsize, we considered the contribution 

of all long signals and those short signals that lay in regions of the datapath in which the 

number of short signals exceeded the number of short tracks available. Thus, for every 

vertical partition of the datapath, if the number of short signals spanning the partition 

exceeded the number of available short tracks, we incremented the cutsize by the 

difference between the number of short signals and the number of short tracks. On the 

other hand, if the number of short signals spanning the partition was no greater than the 

number of available short tracks, we left the cutsize unchanged. Essentially, this meant 

that we attempted to model only the demands that were placed on the long tracks 

provided in the architecture. In the absence of short signal congestion, this scheme would 

increment the cutsizes between xB and xC in Fig 5-6, and leave the cutsizes between xB 

and xC unchanged in Fig 5-7. 

 

The avg_cutsize computation remained the same as that for our original cost function. 

Contributions due to all long and short signals were considered while calculating 

avg_cutsize. We observed that calculating avg_cutsize from contributions due to long 

signals and excess short signals was not an accurate way of representing the overall 

congestion in the datapath. This was because such a cost model would fail to recognize 

moves that did not affect cutsize, but did in fact change the span of short signals. Thus, 

moves that would have increased short signal wirelength without affecting the cutsize 

would be accepted, and this would adversely impact the routability of short signals.       
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Table 5-4 shows the minimum number of routing tracks required to successfully route a 

set of benchmarks. The FreeShort column shows the minimum number of required 

routing tracks when short signals were considered free, whereas the Basic column shows 

the minimum number of required routing tracks when we used our basic placement cost 

function. 

 

Netlist FreeShort Basic 
limited.rn 7 7 

firTM_2nd.rn 9 8 
matmult_bit.rn 8 8 
firsymeven.rn 9 10 

fft16.rn 12 12 
sort_2D_RB.rn 11 12 

img_filt.rn 15 15 
Normalized Geometric Mean 0.99 1.00 

Table 5-4: Minimum number of routing tracks required when short signals were considered free 

 

Table 5-4 shows that making short signals free resulted in improvements in firsymeven.rn 

and sort_2D_RB.rn. However, results for firTM_2nd.rn deteriorated. Consider the case 

shown in Fig 5-8, in which two instances GPR1 and ALU1 were placed at the extremities 

of the short track shown in blue. We observed that only 1 two-terminal short signal that 

had its terminals at GPR1 and ALU1 could actually be routed on a short track. All other 

two-terminal short signals that had terminals at GPR1 and ALU1 would have to 

necessarily be routed on long tracks. In such a case, our placement tool may have 

underestimated the cutsize between GPR1 and ALU1, because it considered multiple 

short signals between GPR1 and ALU1 to be free during cutsize calculations.             
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Fig 5-8: The RaPiD architecture has staggered short segments 

     

6. Conclusions 
 
In conclusion, we believe that we successfully evolved an approach for the placement of 

benchmark netlists on the RaPiD architecture. Further, we used the Pathfinder [9] 

algorithm to route each netlist. Table 5-2 and Fig 5-2 show that the minimum number of 

required routing tracks (MIN_TRACKS) scaled well with the maximum cutsize 

(MAX_CUT) after placement, and that MIN_TRACKS differed from MAX_CUT by a 

multiplicative factor. We proceeded to explain this difference in terms of Signal 

Spillover, and evolved a probabilistic placement cost model to take this phenomenon in 

to account. We also developed a placement cost model that attempted to reduce the 

number of short signals that could have potentially occupied long tracks.      
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7.  Future Work 

7.1 Pipelined Signals 
The RaPiD architecture has a pipelined interconnect topology, and most target 

applications are deeply pipelined. Fig 7-1 illustrates an example of a pipelined signal sig.   

 

Fig 7-1: An example of a pipelined signal 

 

The objective of the router when routing pipelined signals is to find a minimal route for a 

signal while meeting all pipelining constraints. For example, in Fig 7-1 the signal sig has 

to be delayed by 1 clock cycle before reaching sink1, and by 2 clock cycles before 

reaching sink2. Thus, for every pipelined signal, the router needs to find the shortest route 

that goes through a necessary number of delay elements. Note that it may be possible to 

find a shorter route that establishes the necessary connectivity between the source and 

sinks of a signal, but does not provide sufficient delay resources between terminals. 

However, such a route would result in a timing violation, and consequent functionality 

failure.   

 

The present version of our place & route tool does not take pipelining considerations in to 

account, and only achieves connectivity routing. At the same time, Table 7-1 shows that 

the present interconnect topology of the RaPiD architecture does not provide enough 

delay resources to be able to satisfy the pipelining constraints imposed by signals in 

img_filt.rn and med_filt.rn. Consequently, we may need to change our placement cost 

model, and develop a new routing algorithm so that we can successfully route pipelined 

signals.                 

source
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NETLIST NUM SIGNALS NUM PIPELINED 
SIGNALS 

NUM VIOLATIONS 

decNsR.rn 10 0 0 
psd.rn 14 0 0 

limited.rn 57 7 0 
matmult_bit.rn 60 3 0 
firTM_2nd.rn 50 6 0 

firsm.rn 63 15 0 
firsymeven.rn 95 16 0 

sort_G.rn 119 0 0 
sort_2D_RB.rn 76 0 0 

fft16.rn 74 0 0 
fft64.rn 246 0 0 

img_filt.rn 148 13 3 
med_filt.rn 57 5 5 

Table 7-1: Pipelined signal violations 

 

7.2 Architecture Exploration 

Another area that we will actively investigate in the future is the interconnect structure 

provided in the RaPiD architecture (Fig 2-3). Specifically, we are going to study how the 

ratio between short tracks and long tracks affects the minimum number of routing tracks 

required to route each benchmark netlist. We also intend to determine whether the length 

of short segments affects the minimum number of routing tracks required.   

 

The number of BCs per long track per cell could play a major role in determining the 

overall performance of placed & routed netlists. Firstly, increasing the number of BCs 

per track per cell could reduce the effect of Signal Spillover. This could result in an 

improvement in the minimum number of tracks required to route a netlist. Another reason 

for increasing the number of BCs per track per cell could be pipelining constraints. It 

would be interesting to study the extent to which the number of BCs per track per cell 

needs to be increased for a simple routing algorithm to find shortest routes while meeting 

pipelining constraints.   
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Appendix A: Cut Profiles  
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