
 1

Development of a Place and Route Tool for the RaPiD
Architecture

Master’s Project
Autumn Quarter, 2001

Akshay Sharma

University of Washington

As submitted to
Department of Electrical Engineering

University of Washington
Seattle, WA-98195

Advisor
Scott A. Hauck

Department of Electrical Engineering
University of Washington

 2

1. Introduction

In recent years, designers have begun to migrate to the System-on-a-Chip (SOC)

paradigm from traditional board-level design methods. New fabrication technologies

have enabled the production of integrated circuits that have hundreds of millions of

transistors. This capability has motivated the VLSI design community to investigate the

possibility of integrating the sub-systems that comprise a traditional board-level design

on a single piece of silicon.

There are several important reasons for moving to SOC. Significant factors include

increased inter-device communication bandwidth, reduced power consumption, and

overall area improvement. However, there are challenges that need to be addressed.

SOCs typically have a very large design space, thus complicating existing tool-flows.

Interfacing the individual sub-systems on the chip is another major issue. There is also a

considerable increase in prototyping costs due to the size of the final design. Finally,

there is a lack of post-fabrication flexibility. This is because designers can easily remove

and replace components in board designs, a feature that is noticeably absent in present

day SOC.

Designing an SOC targeted to a single application could prove extremely expensive if the

hardware requirements of the application vary with time. It is therefore clear that a

reconfigurable sub-system would be useful in SOC. This reconfigurable sub-system

would provide the desired hardware flexibility to SOC designs.

The immediate solution to lack of post-fabrication flexibility of SOC designs is to include

a Field Programmable Gate Array (FPGA) core designed by a major commercial vendor.

However, current FPGA architectures fall considerably short of the levels of performance

that can be expected from Application Specific Integrated Circuit (ASIC)

implementations. This is because FPGAs aim to provide a great deal of flexibility in

hardware, resulting in a performance trade-off.

 3

Domain-specific reconfigurable architectures attempt to bridge the wide gap in

performance that exists between ASICs and FPGAs. Such architectures are targeted to

specific application domains (Digital Signal Processing (DSP), for example), and contain

customized computational elements that are optimized to perform functions that fall

within that domain. RaPiD[4,6] and PipeRench[7] are examples of domain-specific

reconfigurable architectures. The computational elements in these architectures can be

configured to execute a variety of DSP applications. Thus, if an SOC were to be designed

for a pre-determined domain of applications, the corresponding domain-specific

architecture would form the reconfigurable core. In this way, near-ASIC performance

levels could be achieved, while providing hardware flexibility attributed to commercial

FPGAs.

While domain-specific architectures are an attractive compromise between the flexibility

of FPGAs and the performance of ASICs, it should also be noted that the creation of

custom reconfigurable architectures for each separate domain is a labor-intensive process.

Redesigning the reconfigurable core for a new domain would result in increased time-to-

market, and significant design costs. In view of these considerations, we are actively

investigating the automatic generation of custom reconfigurable architectures. At the

highest level, the domain of applications and a set of constraints specified by the user will

be used to generate a suitable architecture. This architecture could lie anywhere in the

space between ASICs and FPGAs, depending upon the competing demands for

performance and programmability required by the domain.

We will now describe the organization of the rest of this paper. Section 2 provides a brief

background on the reconfigurable computing paradigm. Section 3 describes the approach

that was adopted to place and route to an existing domain-specific architecture. In Section

4, the experimental setup and procedure have been described in detail. The results from

the experiments are presented in Section 5, and our conclusions in Section 6. Section 7

discusses potential future work in mapping designs to custom reconfigurable

architectures, and Section 8 lists acknowledgments.

 4

2. Background

General-purpose microprocessors are the most common form of conventional computing

today. This is because they are extremely flexible, and can be used to execute any

application that can be converted to a sequence of software instructions. It is important to

observe here that the flexibility of microprocessors lies in software. The microprocessor

hardware simply executes instructions that are determined by overlying software like a

compiler. Hence microprocessors can suffer a performance penalty, since they do not

provide hardware resources that are optimized for a specific application.

Applications that require the highest performance are implemented as ASICs. An ASIC is

specifically designed to perform a given computation, and is thus optimized for speed,

power and/or area. However, in their quest for better performance, ASICs typically

completely sacrifice flexibility, and cannot be used to execute any computation other than

the one they were designed for. Thus, if the ASIC needs to be modified after fabrication,

re-design and re-fabrication are necessary. This could prove extremely expensive,

especially in an environment where the application changes with time.

Reconfigurable computing attempts to provide hardware resources that achieve better

performance than general-purpose microprocessors, while providing greater flexibility

than ASIC implementations. Reconfigurable devices contain arrays of logic and

arithmetic units that can be programmed electrically to perform different functions.

Programmable routing resources are also provided, and these can be combined with the

logic resources to execute a variety of applications. A common example of

reconfigurable computing is an FPGA. FPGAs have been shown to accelerate

applications in domains like DSP and Cryptography, among others.

2.1 FPGA

An FPGA is a programmable logic device that can be configured to execute applications

in hardware. Unlike one-time programmable devices, SRAM based FPGAs can be

 5

reconfigured at run-time to execute different applications. Every application is associated

with a unique configuration, which conceptually represents the current state of the

hardware and routing resources. Whenever a new application is to be executed, a new

configuration replaces the previous one, thereby changing the functionality of the logic

resources and the routing topology.

An island-style FPGA is shown in Fig 2-1. This kind of FPGA architecture was first

proposed by Xilinx in 1984, and is widely used.

Fig 2-1: Xilinx style FPGA architecture contains an array of CLBs, switchboxes, and
vertical and horizontal routing channels [11]

The computational element in the FPGA shown in Fig 2-1 is called a Configurable Logic

Block (CLB). Fixed routing resources that run both vertically and horizontally surround

the CLBs, and this sea of routing resources enables efficient communication among

CLBs. The architecture also provides switchboxes, sites where routing resources can

change direction.

 6

The configuration of an FPGA is held in Static Random Access Memory (SRAM) cells.

These cells are distributed throughout the chip, and connect to the configuration points in

the FPGA. Turning the configuration points on or off can modify CLB functionality and

the routing topology. An example of how routing can be configured is shown in Fig 2-2.

Fig 2-2: A programming bit for SRAM based FPGAs, and how it can be used to configure routing
resources [3]

Here the programming bit P can be used to turn a pass-gate on/off, thus

connecting/disconnecting Routing Resource #1 and Routing Resource #2. An FPGA can

have several million programming sites like these, and a rich routing fabric can be

constructed.

2.2 RaPiD

Reconfigurable hardware is generally constructed as an array of computational units.

These computational units vary in complexity from a simple three input function to

possibly a 4-bit Arithmetic Logic Unit (ALU). The size and complexity of the

computational unit in a reconfigurable device is termed its granularity. Commercial

FPGA architectures are generally fine- to medium-grained in nature. Fine-grained

architectures are suited to bit level calculations, and can be used to implement

computation structures of arbitrary bit-widths. However, such architectures perform

poorly when they are used to implement datapath circuits that operate upon multiple-bit

words. Logic blocks in medium-grained FPGAs like the one proposed in [8] operate on

4-bit words, thus improving upon the performance obtainable from fine-grained FPGA

architectures. Even so, a considerable performance gap exists between fine-/medium-

grained FPGAs and equivalent ASIC implementations.

READ OR WRITE

DATA

Q

Q’

P

Routing Resource 1 Routing Resource 2

READ OR WRITE

DATA

Q

Q’

P

Routing Resource 1 Routing Resource 2

 7

The RaPiD [4,6] architecture was proposed a few years ago in attempt to narrow the

performance gap between ASICs and FPGAs for certain application domains. RaPiD is a

coarse-grained, field-programmable architecture that can be used to construct deep

computational pipelines. The primary objective of RaPiD is to provide a flexible, yet

efficient means of running regular, computationally intensive tasks such as those found in

DSP, scientific computing and graphics.

Fig 2-3: A block diagram of a RaPiD cell. Multiple cells can be tiled horizontally to create a RaPiD
architecture [2]

Typically, a RaPiD datapath consists of hundreds of Functional Units (FUs) arranged in a

linear, 1-D fashion (Fig 2-3). A number of FUs are presently supported by the RaPiD

architecture. These include ALUs, multipliers, Random Access Memory (RAM) blocks

and registers. It should be emphasized here that FUs are word-based, i.e. they operate on

16-bit wide words. This aspect of RaPiD is fundamentally different from most FPGA

architectures, which are targeted at bit-oriented computations. The throughput of word-

based compute-intensive applications that are mapped to the RaPiD datapath can be

significantly higher than corresponding FPGA implementations. The reason for this

acceleration is coarse-grained custom-built datapath FUs that are targeted to

computationally intensive tasks.

 8

The interconnect topology of RaPiD is 1-D in nature (Fig 2-3), and consists of segmented

tracks. Each track is 16-bit wide because of the word-based FUs that comprise the

datapath. A data-input of an FU can be driven by any one of the segmented tracks that

constitute the interconnect. Similarly, the data-output of an FU can drive an arbitrary

number of tracks. The majority of these tracks are connected by Bus Connectors (BCs),

which are buffered, bi-directional switches. A BC can be used to drive left, drive right, or

disconnect the two segments that connect to it. Further, a BC can be used to pipeline a

signal, since it provides variable delay between 0-3.

2.3 Totem

As mentioned in Section 1, designing an architecture for every new domain could prove

expensive in terms of design cost and time to market. In view of this observation, we are

developing the Totem project. The primary objective of the Totem project is to

automatically generate domain-specific reconfigurable architectures. In doing so, we will

provide designers a tool-flow that would minimize human design effort for new domain-

specific reconfigurable architectures.

The high-level tool-flow of the Totem project is shown in Fig 2-4. There are four main

components of this tool-flow, which will eventually work in tandem to produce an

optimized layout of the automatically generated reconfigurable architecture.

The Architecture Generator [2] inputs a description of the domain, and a set of

constraints. Based on these inputs, it automatically generates a computational structure

and an interconnect topology that it considers most suitable for the domain. The

computational structure consists primarily of coarse-grained datapath elements like

ALUs, RAMs, multipliers and registers, whereas the interconnect topology is a 1-D set of

segmented buses. Note that the generated architecture is similar to the RaPiD

architecture, and is described in structural Verilog.

 9

Fig 2-4: The Totem Project tool-flow. Together, the tools will generate the domain-specific architecture
and its layout, and map applications to the architecture

We are using the latest release of the RaPiD compiler to synthesize logical netlists from a

high-level description of an application. The Hardware Design Language (HDL) that is

used to describe an application is a C-like language called RaPiD-C. The RaPiD compiler

synthesizes a netlist file (.rn file) from a RaPiD-C program. This netlist file is a re-timed

description of the application in terms of instances, and signals that interconnect these

instances.

The main task of the Layout Generator [11] is to produce efficient layouts of the

generated architecture that do not sacrifice any area or performance gains that the

Architecture Generator is able to achieve over standard FPGAs. The Layout Generator

also needs to be flexible enough to adapt to smaller device sizes as process technology

scales down. Finally, the Layout Generator is responsible for evolving a bit-stream

format that will be used by the place & route tool to generate a bitstream. This bitstream

will be used to configure the architecture layout to execute a particular application.

Architecture
Generator

domain
description

architecture
description

(verilog)

VLSI
Layout

Generator

P & R Tool

fab-ready
layout

placed
and

routed
designs

Compiler logical netlist
(.rn file)

application
description

constraints

Architecture
Generator

domain
description

architecture
description

(verilog)

VLSI
Layout

Generator

P & R Tool

fab-ready
layout

placed
and

routed
designs

Compiler logical netlist
(.rn file)

application
description

constraints

 10

The subject of this paper is the design and implementation of the Place & Route tool for

mapping netlists to the RaPiD architecture. We have chosen the RaPiD architecture

because it is very similar to an architecture that would be produced by Totem’s

Architecture Generator for signal processing applications. In addition, a mature compiler,

and a benchmark set have already been developed for RaPiD. Thus, the testing

environment for the Place & Route tool is already in place.

The Place & Route tool maps user applications to the RaPiD architecture. Specifically,

the placement program attempts to determine the position that each datapath element will

occupy in the architecture (hereafter, “datapath element” will be collectively referred to

as an “instance”). The goal of the placement program is to ensure that the router is able to

find enough routing resources to establish all necessary interconnections with minimum

effort. Once the placement program creates a final placement of instances, the router uses

an iterative, shortest-path algorithm to assign signals to the limited routing resources

provided in the architecture. At the time of this writing, we have been able to accomplish

connectivity routing successfully. There are several issues that still need to be addressed,

and will be discussed in detail in later sections of the paper.

3. Approach

An important component of the design-flow for reconfigurable architectures is automated

mapping software. This software converts a high-level description of the application to a

bit-stream that configures the device to execute the user application. The first component

of mapping software is a technology-mapping tool. This tool maps the user application to

the logic elements that are provided in the reconfigurable architecture. The next

component is the placement tool, which determines a physical assignment of logic

elements to hardware resources. Finally, the routing tool is responsible for assigning

signals to routing resources in order to successfully route all signals while meeting

performance requirements.

 11

Place & Route for FPGAs (and reconfigurable devices in general) is a challenging

problem. This is because the resources that are available for doing logic and routing are

fixed at the time of fabrication. Unlike standard-cell designs in which a successful routing

can always be found by increasing channel widths, FPGA routers often fail to route all

the signals in a design due to scarcity of routing resources. The role of the placement

phase is thus extremely important, because a poorly placed design can result in routing

failure. In addition, a poor placement can result in long, circuitous routes that adversely

affect the delay characteristics of the design.

Several research-groups have studied the problems associated with place & route for

FPGAs. [1,10] describe placement strategies for FPGAs, while [9] proposes a routing

approach. [1,4] discuss complete tool-flows that have been developed for mapping

applications to FPGAs. In the two following sub-sections, we will describe the approach

we used to place and route netlists on the RaPiD architecture.

3.1 Placement

The two inputs to the placement program are descriptions of the RaPiD netlist (.rn file)

and the architecture. The placement of the instances is determined using a Simulated

Annealing [12] algorithm. This algorithm operates by taking a random initial placement

of physical elements, and repeatedly moving the location of a randomly selected element.

The move is accepted if it improves the overall cost of the placement. In order to avoid

getting trapped in local minima, non-improving moves are also sometimes accepted. The

temperature of the annealing algorithm governs the probability of accepting a “bad”

move at that point. The temperature is initially high, causing a large number of bad

moves to be accepted, and is gradually decreased until no bad moves will be accepted. A

large number of moves are attempted at each temperature.

A good cooling schedule is essential to obtain high-quality solutions in a reasonable

computation time with simulated annealing. For our placement program, we used the

 12

cooling schedule developed for the VPR tool-suite [1] at the University of Toronto. The

various parameters that define the placement algorithm are determined as follows:

Initial Temperature: Let N be the number of instances in the application. A random

initial placement is first created, following which N random moves are made. The

standard deviation of the cost of the placement after each move is calculated, and the

initial temperature T is set to twenty times the standard deviation.

Cooling Schedule: The temperature after each iteration is computed as Tnew = α * Told.

The value of α depends on the fraction of attempted moves that are accepted (R) at Told.

The variation of α with respect to R is as under:

Fraction of moves accepted R α
--
 R > 0.96 0.5
 0.8 < R ≤ 0.96 0.9
 0.15 < R ≤ 0.8 0.95
 R ≤ 0.15 0.8

It has been shown that it is desirable to keep R near 0.44 for as long as possible [1]. This

is achieved by using a range limiter that imposes an upper bound D on the number of

positions that an instance can be moved across at a given temperature. D is updated at

every temperature based on the following relationship:

Dnew = Dold * (1 – 0.44 + R)

A prolonged quenching step that greedily seeks lower-cost placements is undertaken at

the end of the anneal.

Number of moves at each temperature: This quantity directly affects the quality and run-

time of the placement program. As advocated by VPR, we make 10 * N1.33 moves at

every temperature. This number results in good placements in a reasonable run-time.

The development of a representative cost-function for the placement program is an

interesting problem. Since the number of routing tracks in the interconnect fabric of the

RaPiD architecture is fixed, we capture the quality of the placement by means of a cutsize

metric. The cutsize at a vertical partition of the datapath is defined as the number of

signals that need to be routed across that partition for a given placement of datapath

 13

elements. The max_cutsize is defined as the maximum cutsize that occurs at any vertical

partition of the datapath. The total_cutsize is defined as

j=Y
 total_cutsize = Σ (cut_size)j
 j=1
where Y is the number of datapath elements that are placed on the architecture. The

avg_cutsize is then defined as

 avg_cutsize = total_cutsize/Y

Both max_cutsize and avg_cutsize are important estimates of the routability of a circuit.

Since the RaPiD architecture provides a fixed number of tracks for routing signals, it is

necessary to formulate a placement cost function that favorably recognizes a move that

decreases max_cutsize. At the same time, it is clear that a simple cost function that

attempts to reduce only max_cutsize will be inadequate. A cost function that is

determined only by max_cutsize will not be able recognize changes in avg_cutsize. This

means that the annealer will accept moves that increase avg_cutsize, but do not change

max_cutsize. Such zero-cost moves may cumulatively increase the overall congestion in

the datapath considerably, thus making it harder for the annealer to find the sequence of

moves that will bring down max_cutsize. It can thus be concluded that avg-cutsize should

also contribute to the cost of a placement. Reducing avg_cutsize not only reduces overall

congestion in the datapath, but also brings down the total wire-length. The cost function

can be mathematically formulated as follows

 cost = w*max_cutsize + (1-w)*avg_cutsize

where 0 ≤ w ≤ 1. The choice for the exact value of the weighting parameter w is

presented in Section 4 of this paper.

3.2 Routing

We use the Pathfinder [9] algorithm to route signals in RaPiD netlists after completion of

the placement phase. Our adaptation is an iterative scheme, and consists of two parts. The

signal router routes individual signals based on Prim’s algorithm, which is used to find a

minimum spanning tree (MST) over an undirected graph. The global router adjusts the

 14

cost of each resource at the end of a routing iteration depending on the demands placed

by signals on that routing resource. During the first routing iteration, signals are free to

share as many routing resources as they need. However, the cost of using a shared routing

resource is gradually increased during later iterations, and this increase in cost is

proportional to the number of signals that share that resource. Thus, this scheme forces

signals to negotiate for routing resources. A signal can use a high-cost resource if all

remaining resource options are in even higher demand. On the other hand, a signal that

can take an alternative, lower-cost route is forced to do so because of competitive

negotiation for shared resources.

The routing resources in the RaPiD architecture are represented as a graph, with the

track-segments constituting the nodes of the graph. The cost of using a node n in a route

during a given iteration is determined using the following relationship:

 Cn = (Bn + Hn) * Pn

where Bn is the base cost of using the node n, Hn is a cost term related to the number of

times that n was shared in earlier iterations, and Pn represents the number of other signals

that are sharing n during that iteration. During the first iteration of the global router, the

Pn value for every node is assigned a value of one, whereas Hn is set to zero. This allows

multiple signals to share routing nodes without incurring any penalty. However, the Pn

value for a node is slowly increased in later iterations of the global router depending on

the extent to which that node is shared. At the same time, the Hn factor for a node is

increased slightly at the end of every iteration during which that node is shared. A

detailed explanation of how Pn and Hn resolve congested nodes appears in the paper [9]

that proposed the Pathfinder algorithm.

Fig 3-1 presents the step-by-step details of the Negotiated Congestion (NC) scheme of

the Pathfinder algorithm. The signal router commences at step 2. The existing routing

tree RTi of signal i is ripped up and initialized to the signal’s source. A loop over all

sinks of the signal is started at step 5. Steps 7 – 12 outline a breadth-first search for the

sink tij closest to the source si. After a sink is found, a backtrace from the sink to the

source is initiated, and the Cn value of every node in the backtraced path is updated.

 15

Also, all nodes on the backtraced path are added to the current routing tree. Thus, every

time a sink is found, all nodes in the newly updated partial routing tree of the signal are

used as potential sources for routes to the remaining sinks.

Fig 3-1: Negotiated Congestion (NC) algorithm used to eliminate congestion [9]

4. Experimental Setup
There were two inputs to the place and route tool (Fig 2-4). The first was a netlist file (in

the .rn format) generated by the RaPiD compiler. The second input was a description of

the RaPiD architecture expressed in structural Verilog. The two input files were read in

by the place and route tool using lexical-analyzer (lex) & yet-another-compiler-compiler

(yacc). The remainder of the tool was implemented in C++.

We determined that the most appropriate metric for testing the functionality of our tool

would be the minimum number of routing tracks that were required to successfully route

each netlist in a set of benchmark applications. The set of benchmark netlists was

obtained from the RaPiD group, and consisted of DSP applications like FIR filters, FFTs,

sorting, matrix multipliers and image filters. Table 4-1 lists statistics of the benchmarks

that we used in our experiments.

While shared resources exist (global router) [1]
Loop over all signals i (signal router) [2]

Rip up routing tree RTi [3]
RTi <- Si [4]
Loop until all sinks tij have been found [5]

Initialize priority queue PQ to RTi to cost 0 [6]
Loop until new tij is found [7]

Remove lowest cost node m from PQ [8]
Loop over fanouts n of node m [9]

Add n to PQ at cost Cn + Pim [10]
End [11]

End [12]
Loop over nodes n in path tij to Si (backtrace) [13]

Update Cn [14]
Add n to RTi [15]

End [16]
End [17]

End [18]

 16

NETLIST DESCRIPTION NUM INSTANCES NUM SIGNALS
decNsR.rn decimation stage for

radar app
14 10

psd.rn PSD stage for radar
app

26 14

limited.rn limited matrix
multiply

42 57

matmult_bit.rn generic matrix
multiply

37 60

firTM_2nd.rn time-muxed 4-stage
FIR

35 50

firsm.rn 16-stage FIR 64 63
firsymeven.rn symmetric 16-stage

FIR
96 95

sort_G.rn 1D sorting 118 119
sort_2D_RB.rn 2D sorting 84 76

fft16.rn 16-point FFT 64 74
fft64.rn 64-point FFT 240 246

img_filt.rn image filter 142 148
med_filt.rn 5 x 5 median filter 101 57

sync.rn synchronization
stage for OFDM

318 306

Table 4-1: statistics of benchmark netlists

For purposes of nomenclature, we defined two types of segmented routing tracks. In Fig

2-3, a sequence of tracks that lay in the same horizontal line and did not connect to a BC

was collectively referred to as a “short” track. On the other hand, a sequence of tracks

that lay in the same horizontal line and DID connect to a BC was collectively termed a

“long” track. The only exception was the short track (top-most track in Fig 2-3) that

consisted of segments that feed back the output of an instance to its input. This track was

not considered either a short track or a long track. Thus, there were 4 short tracks, 10

long tracks, and 14 (10 + 4) tracks in total in Fig 2-3.

Test architectures for our tool were generated using software provided by Northwestern

University graduate student Katherine Compton. This software was capable of generating

RaPiD architectures that had a user-specified number of short tracks per cell, long tracks

per cell, and bus-connectors per long track per cell. We used the architecture generation

 17

software to create RaPiD architectures that had between 5 – 35 tracks. Approximately

2/7th of the tracks in every architecture were short tracks, and 5/7th of the tracks were long

tracks. Each short track consisted of 4 segments per cell, and each long track had 1 BC

per cell. We picked these ratios to be consistent with the ratios proposed for the RaPiD

cell in previous work [4].

5. Results

5.1 Effect of weighting parameter w
The cost function that we used to determine the cost of a placement is reproduced from

Section 3 as under:

cost = w*max_cutsize + (1-w)*avg_cutsize

As a first step, we empirically determined the value of the weighting parameter w. We

used only a sub-set of the available benchmarks for our experiments, so that we could

detect trends in performance in a reasonable run-time. Table 5-1 shows the minimum

number of tracks required to successfully route each netlist across a range of values for

the weighting parameter w. There were two important observations that we made from

this data. First, the minimum number of tracks required to route a benchmark did not vary

appreciably for w ≤ 0.9. The other observation was that there was a substantial increase in

the minimum number of tracks required when w = 1.0. A value of w = 1.0 represented the

case in which our cost function was determined purely by max_cutsize.

NETLIST W = 0.0 W = 0.1 W = 0.3 W = 0.5 W = 0.7 W = 0.9 W = 1.0
limited.rn 7 7 7 7 7 7 9

psd.rn 7 7 7 7 7 7 7
firTM_2nd.rn 9 9 8 9 9 9 11
matmult_bit.rn 9 9 8 8 9 9 11
firsymeven.rn 9 9 10 10 10 9 21

cascade.rn 10 10 10 10 10 10 12
fft16.rn 12 12 12 12 12 12 16

img_filt.rn 15 15 15 15 15 15 32
Geometric

Mean 9.46 9.46 9.31 9.44 9.58 9.46 13.30

Table 5-1: minimum number of tracks required to route a netlist for different values of w

 18

The trends in Table 5-1 were consistent with our claim in Section 3.1 that the cost of a

placement should be determined by max_cutsize and avg_cutsize together, rather than by

max_cutsize alone. This is because a cost function that was solely determined by the

maximum cutsize would not be able to detect changes in the average cutsize across the

datapath. Consequently, the annealer could allow the average congestion in the datapath

to get dangerously high, thus preventing it from finding the sequence of moves that

would have decreased the maximum cutsize.

Fig 5-1: Post-placement cut profile for the benchmark limited.rn for w=0.0 and w=1.0

This effect was particularly pronounced in netlists in which the maximum cutsize

occurred in several regions of the datapath simultaneously, and can be seen in Fig 5-1

which shows the post-placement cut profile of the netlist limited.rn for values of w=0.0

(blue profile) and w=1.0 (brown profile). The average congestion when w=1.0 was

extremely high, and there were several regions in the datapath that were at maximum

cutsize.

Post-placement cut profile for limited.rn

0
1
2
3
4
5
6
7
8

1 40 79 11
8

15
7

19
6

23
5

27
4

31
3

35
2

39
1

43
0

46
9

50
8

54
7

Architecture position

Cu
ts

iz
e

w = 0.0
w = 1.0

 19

5.2 General Performance

We present the performance of our place & route tool in this section. We used a value of

w=0.3 for our experiments, since this value of w produced the geometrically minimum

number of routing tracks required to route a sub-set of the benchmark-suite (Table 5-1).

Table 5-2 shows the comparison between the maximum cutsize of the final placement

and the minimum number of routing tracks that were required to successfully route a

netlist.

NETLIST

MAX CUTSIZE
AFTER PLACEMENT

(MAX_CUT)

MIN NUMBER
ROUTING TRACKS

REQD
(MIN_TRACKS)

MIN_TRACKS/MAX_CUT

psd.rn 4 7 1.75
firsm.rn 5 7 1.4

decNsR.rn 5 7 1.4
limited.rn 5 7 1.4

matmult_bit.rn 6 8 1.33
firTM_2nd.rn 6 8 1.33
firsymeven.rn 6 10 1.66

sort_2D_RB.rn 7 12 1.72
sort_G.rn 8 12 1.5
fft16.rn 8 12 1.5

med_filt.rn 8 13 1.62
img_filt.rn 10 15 1.5

sync.rn 14 19 1.36
fft64.rn 15 24 1.6

Table 5-2: Minimum number of routing tracks required to route each netlist in the benchmark-set

Fig 5-2: Variations in MAX_CUT and MIN_TRACKS across the benchmark set

0

5

10

15

20

25

30

ps
d.r

n

firs
m.rn

de
cN

sR
.rn

lim
ite

d.r
n

matm
ult

_b
it.r

n

firT
M_2

nd
.rn

firs
ym

eve
n.r

n

so
rt_

2D
_R

B.rn

so
rt_

G.rn

fft1
6.r

n

med
_fi

lt.r
n

im
g_

filt
.rn

sy
nc

.rn

fft6
4.r

n

netlist

cu
ts

iz
e

MAX_CUT
MIN_TRACKS

 20

The trend in the MIN_TRACKS/MAX_CUT ratio in Table 5-2 suggested that our

placement tool modeled routing constraints reasonably well. This can be seen from the

fact that MIN_TRACKS was approximately a fixed multiplicative factor off from

MAX_CUT for each netlist. Further, Fig 5-2 shows that the variations in MAX_CUT and

MIN_TRACKS across the benchmark set were smooth and consistent.

Fig 5-3: An example of Signal Spillover

5.3 Signal Spillover

As a next step, we tried to determine why MIN_TRACKS differed from MAX_CUT by a

multiplicative factor at all. Fig 5-3 illustrates an explanation for part of this difference,

and shows an instance mapped to RaPiD. For the sake of simplicity, only long tracks

have been shown. Consider a case in which 6 signals occupied long tracks to the left of

the instance, and that 2 of the 6 signals terminated at inst. Our placement tool calculated a

cutsize of 6 on the left of inst, and this value matched the actual number of occupied

routing tracks. However, the placement tool calculated a cutsize of 5 on the right of inst,

when the number of occupied tracks was actually 7. This was because the placement tool

did not recognize that the 2 routing tracks that were occupied by the terminating signals

in1 and in2 were actually not available for routing signal out, and that this would force

the router to seek a 7th track for routing out. Thus, we concluded that we needed to alter

our placement model to account for this phenomenon that we called “Signal Spillover”.

Actual cutsize=6
Calculated cutsize=6

Actual cutsize=7
Calculated cutsize=5

in1

in2

out

BC

BC

inst

Actual cutsize=6
Calculated cutsize=6

Actual cutsize=7
Calculated cutsize=5

in1

in2

out

BC

BC

inst

 21

Since there was no way of knowing the actual assignment of signals to specific routing

tracks during the placement phase, we attempted to evolve a probabilistic model for

Signal Spillover. Fig 5-4 shows an instance mapped to a RaPiD architecture that has 5

long tracks.

Fig 5-4: Probabilistic model for Signal Spillover

We assumed that in1could eventually occupy any of the 5 long tracks shown in Fig 5-4

with equal probability. Under this assumption, the likelihood of incrementing the cutsize

between inst and BC1 was 1, between inst and BC2 was 4/5, between inst and BC3 was

3/5, and so on. Note that this analysis held true irrespective of track permutation.

For experimental purposes, we modeled Signal Spillover by means of a linear decay

shown in red in the graph of Fig 5-4. We thought that a linear decay would appropriately

approximate the multiple step-profiles that would result because of the variation in the

actual distance between inst and BC1. Table 5-3 shows the minimum number of tracks

required to successfully route a sub-set of the benchmark suite with the new cost model

in place. The FullD column shows the minimum number of required tracks when cutsizes

were incremented based on a linear decay that spanned a length FullD as shown in Fig 5-

4. The HalfD column shows the minimum number of required tracks when cutsizes were

1
4/5

3/5
2/5

1/5

Y-axis: probability that th is signal w ill resu lt in a unit increase in cutsize
X-axis: position a long datapath

BC1

BC2

BC3

BC4

BC5

BC

instin1

TRACK1

TRACK2

TRACK3

TRACK4

TRACK5

FullD

H alfD

1
4/5

3/5
2/5

1/5

Y-axis: probability that th is signal w ill resu lt in a unit increase in cutsize
X-axis: position a long datapath

BC1

BC2

BC3

BC4

BC5

BC

instin1

TRACK1

TRACK2

TRACK3

TRACK4

TRACK5

1
4/5

3/5
2/5

1/5

Y-axis: probability that th is signal w ill resu lt in a unit increase in cutsize
X-axis: position a long datapath

BC1

BC2

BC3

BC4

BC5

BC

instin1

TRACK1

TRACK2

TRACK3

TRACK4

TRACK5

FullD

H alfD

FullD

H alfD

 22

incremented based on a linear decay that spanned a length FullD/2. Finally, the Basic

column shows the minimum number of required tracks when we used our original cost

function.

Netlist FullD HalfD Basic
psd.rn 7 7 7

limited.rn 7 7 7
firsymeven.rn 9 9 10
matmult_bit.rn 8 8 8
firTM_2nd.rn 9 8 8

sort_2D_RB.rn 11 11 12
fft16.rn 12 11 12

med_filt.rn 12 12 13
img_filt.rn 16 15 15

Normalized
Geometric Mean

0.99 0.96 1.0

Table 5-3: Performance changes with Signal Spillover placement cost model

It can be seen from Table 5-3 that a cost model that took Signal Spillover in to account

did in fact result in an improvement over the original cost model for firsymeven.rn,

sort_2D_RB.rn and med_filt.rn. Table 5-2 shows that these 3 netlists exhibited a

significant difference between MAX_CUT and MIN_TRACKS, indicating pronounced

Signal Spillover effects in these netlists. At the same time, the FullD model produced

worse results for firTM_2nd.rn and img_filt.rn. Recall here that the FullD model was

based on the assumption that a long signal could be routed on any long track with equal

probability. This was probably not an accurate model of the router, because if given the

choice, the router would negotiate a signal like in1(Fig 5-4) on to a track that terminated

at an earlier BC. The HalfD model may have reflected this bias better than the FullD

model, and thus produced better overall results.

 23

5.4 Short Track utilization

Fig 5-5: Instance B can go anywhere between A and C.

Fig 5-5 shows three instances A, B and C at positions xA, xB and xC respectively. The 3

instances are interconnected by signals sig1 and sig2, and xA < xB < xC. Further, define

short_length to be the length of a short segment. In such a case, our placement tool would

increment the cutsize between positions xA and xC by 1, regardless of xB (subject to the

condition that xA < xB < xC). However, note that the value of xB would in fact influence

the router in assigning signals sig1 and sig2 to routing tracks. Fig 5-6 shows a placement

of instance B right next to instance A such that xB – xC > short_length.

Fig 5-6: Instance B is adjacent to A. sig1 is routed on a short track, and sig2 on a long track

In this case, the router would assign sig1 to a short track, and sig2 to a long track. Fig 5-7

shows the situation in which xA-xB < short_length and xB-xC < short_length. In such a

situation, the router would assign both sig1 and sig2 to short tracks, thus freeing up the

long track that it would have used for the placement shown in Fig 5-6. In its original

form, our placement tool was incapable of recognizing that the placement in Fig 5-7 was

potentially better than the placement in Fig 5-6.

A B C

sig1 sig2

xA xB xC

A B C

sig1 sig2

A B C

sig1 sig2

xA xB xC

A B C

sig1 sig2

xA xB xC

> short_lengthA B C

sig1 sig2

xA xB xC

> short_length

 24

Fig 5-7: A placement for which both sig1 and sig2 are routed on short tracks

The approach that we adopted to improve short track utilization was to make short signals

(signals that spanned < short_length positions) partially “free” during the placement cost

computation. For the purposes of calculating max_cutsize, we considered the contribution

of all long signals and those short signals that lay in regions of the datapath in which the

number of short signals exceeded the number of short tracks available. Thus, for every

vertical partition of the datapath, if the number of short signals spanning the partition

exceeded the number of available short tracks, we incremented the cutsize by the

difference between the number of short signals and the number of short tracks. On the

other hand, if the number of short signals spanning the partition was no greater than the

number of available short tracks, we left the cutsize unchanged. Essentially, this meant

that we attempted to model only the demands that were placed on the long tracks

provided in the architecture. In the absence of short signal congestion, this scheme would

increment the cutsizes between xB and xC in Fig 5-6, and leave the cutsizes between xB

and xC unchanged in Fig 5-7.

The avg_cutsize computation remained the same as that for our original cost function.

Contributions due to all long and short signals were considered while calculating

avg_cutsize. We observed that calculating avg_cutsize from contributions due to long

signals and excess short signals was not an accurate way of representing the overall

congestion in the datapath. This was because such a cost model would fail to recognize

moves that did not affect cutsize, but did in fact change the span of short signals. Thus,

moves that would have increased short signal wirelength without affecting the cutsize

would be accepted, and this would adversely impact the routability of short signals.

A B C

sig1 sig2

xA xB xC

< short_length < short_length
A B C

sig1 sig2

xA xB xC

< short_length < short_length

 25

Table 5-4 shows the minimum number of routing tracks required to successfully route a

set of benchmarks. The FreeShort column shows the minimum number of required

routing tracks when short signals were considered free, whereas the Basic column shows

the minimum number of required routing tracks when we used our basic placement cost

function.

Netlist FreeShort Basic
limited.rn 7 7

firTM_2nd.rn 9 8
matmult_bit.rn 8 8
firsymeven.rn 9 10

fft16.rn 12 12
sort_2D_RB.rn 11 12

img_filt.rn 15 15
Normalized Geometric Mean 0.99 1.00

Table 5-4: Minimum number of routing tracks required when short signals were considered free

Table 5-4 shows that making short signals free resulted in improvements in firsymeven.rn

and sort_2D_RB.rn. However, results for firTM_2nd.rn deteriorated. Consider the case

shown in Fig 5-8, in which two instances GPR1 and ALU1 were placed at the extremities

of the short track shown in blue. We observed that only 1 two-terminal short signal that

had its terminals at GPR1 and ALU1 could actually be routed on a short track. All other

two-terminal short signals that had terminals at GPR1 and ALU1 would have to

necessarily be routed on long tracks. In such a case, our placement tool may have

underestimated the cutsize between GPR1 and ALU1, because it considered multiple

short signals between GPR1 and ALU1 to be free during cutsize calculations.

 26

Fig 5-8: The RaPiD architecture has staggered short segments

6. Conclusions

In conclusion, we believe that we successfully evolved an approach for the placement of

benchmark netlists on the RaPiD architecture. Further, we used the Pathfinder [9]

algorithm to route each netlist. Table 5-2 and Fig 5-2 show that the minimum number of

required routing tracks (MIN_TRACKS) scaled well with the maximum cutsize

(MAX_CUT) after placement, and that MIN_TRACKS differed from MAX_CUT by a

multiplicative factor. We proceeded to explain this difference in terms of Signal

Spillover, and evolved a probabilistic placement cost model to take this phenomenon in

to account. We also developed a placement cost model that attempted to reduce the

number of short signals that could have potentially occupied long tracks.

G
PR

1

A
L U

1

 27

7. Future Work

7.1 Pipelined Signals
The RaPiD architecture has a pipelined interconnect topology, and most target

applications are deeply pipelined. Fig 7-1 illustrates an example of a pipelined signal sig.

Fig 7-1: An example of a pipelined signal

The objective of the router when routing pipelined signals is to find a minimal route for a

signal while meeting all pipelining constraints. For example, in Fig 7-1 the signal sig has

to be delayed by 1 clock cycle before reaching sink1, and by 2 clock cycles before

reaching sink2. Thus, for every pipelined signal, the router needs to find the shortest route

that goes through a necessary number of delay elements. Note that it may be possible to

find a shorter route that establishes the necessary connectivity between the source and

sinks of a signal, but does not provide sufficient delay resources between terminals.

However, such a route would result in a timing violation, and consequent functionality

failure.

The present version of our place & route tool does not take pipelining considerations in to

account, and only achieves connectivity routing. At the same time, Table 7-1 shows that

the present interconnect topology of the RaPiD architecture does not provide enough

delay resources to be able to satisfy the pipelining constraints imposed by signals in

img_filt.rn and med_filt.rn. Consequently, we may need to change our placement cost

model, and develop a new routing algorithm so that we can successfully route pipelined

signals.

source

sink1

sink2

D D D

source

sink1

sink2

D D D
sig

 28

NETLIST NUM SIGNALS NUM PIPELINED
SIGNALS

NUM VIOLATIONS

decNsR.rn 10 0 0
psd.rn 14 0 0

limited.rn 57 7 0
matmult_bit.rn 60 3 0
firTM_2nd.rn 50 6 0

firsm.rn 63 15 0
firsymeven.rn 95 16 0

sort_G.rn 119 0 0
sort_2D_RB.rn 76 0 0

fft16.rn 74 0 0
fft64.rn 246 0 0

img_filt.rn 148 13 3
med_filt.rn 57 5 5

Table 7-1: Pipelined signal violations

7.2 Architecture Exploration

Another area that we will actively investigate in the future is the interconnect structure

provided in the RaPiD architecture (Fig 2-3). Specifically, we are going to study how the

ratio between short tracks and long tracks affects the minimum number of routing tracks

required to route each benchmark netlist. We also intend to determine whether the length

of short segments affects the minimum number of routing tracks required.

The number of BCs per long track per cell could play a major role in determining the

overall performance of placed & routed netlists. Firstly, increasing the number of BCs

per track per cell could reduce the effect of Signal Spillover. This could result in an

improvement in the minimum number of tracks required to route a netlist. Another reason

for increasing the number of BCs per track per cell could be pipelining constraints. It

would be interesting to study the extent to which the number of BCs per track per cell

needs to be increased for a simple routing algorithm to find shortest routes while meeting

pipelining constraints.

 29

8. Acknowledgments

We would first like to thank Carl Ebeling and the RaPiD group at the University of

Washington (UW) Computer Science and Engineering (CSE) department for providing

the set of benchmark applications, and Katherine Compton at Northwestern University

for giving us a copy of the architecture generation software that we used to generate

different RaPiD architectures. We would also like to thank Carl Ebeling (UW CSE)

again, and Mike Scott (Quicksilver Technologies) for answering queries about the RaPiD

architecture. Further, we thank UW graduate students Chandra Mulpuri and Ken Eguro

for their advice on programming CAD applications in general. Lastly, the author would

personally like to thank his parents and Mary Ann Krug for the firm pillars of support

that they have always been!

This research was funded by a grant from the National Science Foundation (NSF).

 30

References:
[1] V. Betz and J. Rose, ``VPR: A New Packing, Placement and Routing Tool for

FPGA Research,'' Seventh International Workshop on Field-Programmable Logic
and Applications, pp 213-222, 1997

[2] K. Compton, S. Hauck, "Totem: Custom Reconfigurable Array Generation",

IEEE Symposium on FPGAs for Custom Computing Machines, 2001

[3] K. Compton, S. Hauck, "Reconfigurable Computing: A Survey of Systems and

Software" (PDF), submitted to ACM Computing Surveys, 2000

[4] Darren C. Cronquist, Paul Franklin, Chris Fisher, Miguel Figueroa, and Carl

Ebeling. "Architecture Design of Reconfigurable Pipelined Datapaths," Twentieth
Anniversary Conference on Advanced Research in VLSI, pp 23-40, 1999

[5] Darren C. Cronquist and Larry McMurchie. "Emerald - An Architecture-Driven

Tool Compiler for FPGAs", ACM/SIGDA Fourth International Symposium on
Field-Programmable Gate Arrays, pp 144-150, 1996

[6] Carl Ebeling, Darren C. Cronquist, Paul Franklin. "RaPiD - Reconfigurable

Pipelined Datapath", 6th International Workshop on Field-Programmable Logic
and Applications, pp 126-135, 1996

[7] Seth Copen Goldstein, Herman Schmit, Mihai Budiu, Srihari Cadambi, Matt Moe,
and Reed Taylor "PipeRench: A Reconfigurable Architecture and Compiler" in
IEEE Computer, Vol.33, No. 4, pp 70-77, April 2000.

[8] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, B. Hutchings, “A

Reconfigurable Arithmetic Array for Multimedia Applications”, ACM/SIGDA
Seventh International Symposium on FPGAs, pp 135-143, 1999.

[9] Larry McMurchie and Carl Ebeling, "PathFinder: A Negotiation-Based

Performance-Driven Router for FPGAs", ACM Third International Symposium on
Field-Programmable Gate Arrays, pp 111-117, 1995

[10] C. Mulpuri and S. Hauck, "Runtime and Quality Tradeoffs in FPGA Placement

and Routing", ACM/SIGDA Ninth International Symposium on Field
Programmable Gate Arrays, pp 29-36, 2001

 31

[11] Shawn Phillips, "Automatic Layout of Domain Specific Reconfigurable
Subsystems for System-on-a-Chip (SOC)", Master's Thesis, Northwestern
University, July 2001

[12] C. Sechen, VLSI Placement and Global Routing Using Simulated Annealing,

Kluwer Academic Publishers, Boston, MA: 1988

 32

Appendix A: Cut Profiles

firsymeven.rn

0

1

2

3

4

5

6

7

1 54 10
7

16
0

21
3

26
6

31
9

37
2

42
5

47
8

53
1

58
4

63
7

69
0

74
3

79
6

84
9

90
2

95
5

10
08

10
61

architecture position

cu
ts

iz
e

fft16.rn

0
1
2
3
4
5
6
7
8
9

1 44 87 13
0

17
3

21
6

25
9

30
2

34
5

38
8

43
1

47
4

51
7

56
0

60
3

64
6

68
9

73
2

77
5

81
8

architecture position

cu
ts

iz
e

 33

img_filt.rn

0

2

4

6

8

10

12
1 70 13
9

20
8

27
7

34
6

41
5

48
4

55
3

62
2

69
1

76
0

82
9

89
8

96
7

10
36

11
05

11
74

12
43

13
12

architecture position

cu
ts

iz
e

sync.rn

0

2

4

6

8

10

12

14

16

1

22
4

44
7

67
0

89
3

11
16

13
39

15
62

17
85

20
08

22
31

24
54

26
77

29
00

31
23

33
46

35
69

37
92

40
15

42
38

architecture position

cu
ts

iz
e

