
PipeRoute: A Pipelining-Aware Router for FPGAs
Akshay Sharma

Electrical Engineering
University of Washington

Seattle, WA

akshay@ee.washington.edu

Carl Ebeling
Computer Science & Engineering

University of Washington
Seattle, WA

ebeling@cs.washington.edu

Scott Hauck
Electrical Engineering

University of Washington
Seattle, WA

hauck@ee.washington.edu

ABSTRACT
We present a pipelining-aware router for FPGAs. The problem of
routing pipelined signals is different from the conventional FPGA
routing problem. For example, the two terminal N-Delay
pipelined routing problem is to find the lowest cost route between
a source and sink that goes through at least N (N > 1) distinct
pipelining resources. In the case of a multi-terminal pipelined
signal, the problem is to find a Minimum Spanning Tree that
contains sufficient pipelining resources such that the delay
constraint at each sink is satisfied. We begin this work by proving
that the two terminal N-Delay problem is NP-Complete. We then
propose an optimal algorithm for finding a lowest cost 1-Delay
route. Next, the optimal 1-Delay router is used as the building
block for a greedy two terminal N-Delay router. Finally, a multi-
terminal routing algorithm (PipeRoute) that effectively leverages
the 1-Delay and N-Delay routers is proposed. PipeRoute’s
performance is evaluated by routing a set of retimed benchmarks
on the RaPiD [2] architecture. Our results show that the
architecture overhead incurred in routing retimed netlists on
RaPiD is less than a factor of two. Further, the results indicate a
possible trend between the architecture overhead and the
percentage of pipelined signals in a netlist.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids – placement and
routing.

General Terms
Algorithms, Design.

Keywords
Pipelined circuits, pipelining, routing, BFS, retimed circuits,
retiming, Minimum Spanning Tree, PipeRoute.

1. INTRODUCTION
It is well established that FPGAs are a convenient marriage
between the flexibility of software, and performance levels
achievable in hardware. Reconfigurable logic units, coupled with

a rich programmable interconnect structure, can be used to
implement a variety of applications. However, while FPGAs
remain extremely attractive for their hardware flexibility, the
minimum clock period that is achievable in present-day FPGAs
leaves a lot to be desired.

In the world of microprocessors and custom design, pipelining is
widely used to reduce the critical path delay of a circuit. Powerful
sequential retiming heuristics have contributed to reducing the
clock period of circuits even further [4,5]. Thus, designers of
reconfigurable architectures are now paying serious attention to
providing pipelining resources in the logic units and routing fabric
that constitute reconfigurable architectures.

A number of research groups have proposed pipelined FPGA
architectures. HSRA [13] is an example of an FPGA architecture
that has a hierarchical, pipelined interconnect structure. A fraction
of the switchboxes is populated with registered switches to meet a
target clock period. Also, instead of having a single register on the
output of a LUT (which is generally the case in existing FPGA
architectures), a bank of registers is connected to each input of the
LUT. This helps balance path delays introduced by the pipelined
interconnect. User applications are mapped to HSRA by
integrating data retiming with a conventional FPGA CAD flow.

A second example of a pipelined FPGA architecture is proposed
in Singh et al [10]. The routing architecture is hierarchical, and
the higher-level routing consists of horizontal and vertical long
lines that surround logic blocks. Each long line is pipelined using
a bank of registered switch-points, and every switch-point can be
used to delay a long line from 0 – 4 clock cycles. DSP designs
mapped to this architecture were able to achieve throughputs of
up to 600 MHz.

RaPiD [2,3] is a coarse-grained one-dimensional (1-D)
architecture that has pipelined datapath and interconnect
structures. The datapath consists of 16-bit ALUs, multipliers,
SRAMs and registers. The registers comprise a significant
fraction of the datapath, thus providing pipelining resources. The
interconnect is composed of short tracks that are used to achieve
local communication between logic units, and long tracks that
enable relatively long distance communication along the datapath.
The long tracks traverse multiple switch-points, whereas the short
tracks do not traverse any switch-points. The outputs of every
logic unit, as well as all switch-points, can optionally be
registered. Due to the 1-D nature of the interconnect, switchpoints

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA ’03, February 23-25, 2003, Monterey, California, USA
Copyright 2000 ACM 1-58113-651-X/03/0002…$5.00.

have 2 terminals, and are bidirectional. Like the architecture
proposed in [10], the RaPiD architecture is targeted at regular,
compute intensive applications that are amenable to deep
pipelining.

The aforementioned architectural examples indicate that good
progress is being made in the design of pipelined architectures.
The challenge now is to develop CAD tools that can map user
applications to pipelined FPGA architectures. In [12], the authors
investigate the benefits of integrating placement and retiming by
proposing retiming aware placement algorithms. The same
authors present a retiming aware router in [11]. This router
attempts to place long signals on tracks that have registered
switches, so that a subsequent retiming step can take advantage of
the assignment to pipeline the long signals. In [11], the goal is to
reduce interconnect delay by pipelining long signals. Placement
and logic retiming are closely coupled to give the retiming step an
estimate of routing delay in [12].

The subject of this paper is the development of an algorithm
called PipeRoute that routes retimed application netlists on
pipelined FPGA architectures. In retimed netlists, all pipelining
registers are explicitly enumerated, and it is therefore possible to
calculate the number of clock cycles that separate the signal’s
source from each of its sinks. A pipelined FPGA architecture is
one that has pipelining resources in the interconnect structure.
These pipelining resources supplement the registers that are
already provided in FPGA logic blocks. PipeRoute takes a
retimed netlist and a pipelined FPGA architecture as inputs, and
produces an assignment of signals to routing resources as the
output. To the best of our knowledge, PipeRoute is the first
routing algorithm that is capable of routing retimed netlists on
pipelined FPGA architectures. Furthermore, the strength of the
PipeRoute algorithm lies in the fact that it is architecture-
independent. The algorithm is capable of routing pipelined signals
on any FPGA architecture that can be abstractly represented as a
graph consisting of routing- and pipelining-nodes.

2. PROBLEM BACKGROUND
The FPGA routing problem is to determine an assignment of
signals to limited routing resources while trying to achieve the
best possible delay characteristics. Pathfinder [6] is one of the
most widely used FPGA routing algorithms. It is an iterative
algorithm, and consists of two parts. The signal router routes
individual signals based on Prim’s algorithm, which is used to
build a Minimum Spanning Tree (MST) on an undirected graph.
The global router adjusts the cost of each routing resource at the
end of an iteration based on the demands placed on that routing
resource during the iteration. During the first routing iteration,
signals are free to share as many routing resources as they like.
However, the cost of using a shared routing resource is gradually
increased during later iterations, and this increase in cost is
proportional to the number of signals that share that resource.
Thus, this scheme forces signals to negotiate for routing
resources. A signal can use a high cost resource if all remaining
resource options are in even higher demand. On the other hand, a
signal that can take an alternative, lower cost route is forced to do
so because of competition for shared resources. Circuits routed

using Pathfinder’s congestion resolution scheme converge
quickly, and exhibit good delay characteristics.

sig
S

K1

K2

K3

sig
S

K1

K2

K3

 Fig. 1: A multi-terminal pipelined signal

In the case of retimed netlists, the routing problem is different
from the conventional FPGA routing problem. This is because a
significant fraction of the signals in a netlist are deeply pipelined,
and merely building an MST for a pipelined signal is not enough.
For example, consider the pipelined signal sig in Fig. 1 that has a
source S and sinks K1, K2 and K3. The signal is pipelined in such
a way that sink K1 must be delayed 3 clock cycles relative to S,
sink K2 must be 4 clock cycles away, and sink K3 must be 5
clock cycles away. A route for sig is valid only if it contains
enough pipelining resources to satisfy the delay constraints at
every sink. Due to the fact that there are a fixed number of sites in
the interconnect where a signal can be delayed by a clock cycle
(hereafter referred to as “delay sites”), it can be easily seen that a
route that is found for sig by a conventional, pipelining-unaware
FPGA router may not contain enough delay sites to satisfy the
delay constraint at every sink. Thus, the routing problem for
pipelined signals is different from that for unpipelined signals. For
a two-terminal pipelined signal, the routing problem is stated as:

Two-terminal N-Delay Problem: Let G=(V,E) be an undirected
graph, with the cost of each node v in the graph being wv >= 1.
The graph consists of two types of nodes; D-nodes and R-nodes.
Let S,K∈V be two R-nodes. Find a path PG(S,K) that connects
nodes S and K, and contains at least N (N ≥ 1) distinct D-nodes,
such that w(PG(S,K)) is minimum, where

w(PG(S,K)) = Σ wv
Further, impose the restriction that the path cannot use the same
edge to both enter and exit any D-node.

We call a route that contains at least ‘N’ distinct D-nodes an “N-
Delay” route. R-nodes represent wires and IO pins of logic units
in a pipelined architecture, whereas D-nodes represent registered
switch-points. A registered switch-point can be used to pick up 1
clock cycle delay, or no delay at all. Every node is assigned a
cost, and an edge between two nodes represents a physical
connection between them in the architecture. The cost of a node is
a function of congestion, and is identical to the cost function
developed for Pathfinder’s NC algorithm [6]. Under this
framework, an abstraction of the routing problem for a simpler
two-terminal signal is to find the lowest cost route between source
and sink that goes through at least N (N ≥ 1) distinct D-nodes (N
is the number of clock cycles that separates the source from the
sink). Note that a lowest cost route can be self-intersecting i.e. R-
nodes can be shared in the lowest cost route. We have shown that
the two-terminal N-Delay problem is NP-Complete [9]. In the
more complex case of a multi-terminal signal, the problem is to
find an MST that contains enough D-nodes such that each sink is
the correct number of clock cycles away from the source.

A simple solution to the pipelined routing problem would be to
address pipelining in the placement phase. The pipelining
registers in a netlist could be mapped to registered switch-points
in the architecture, and a simulated annealing placement
algorithm could determine an optimal placement of the pipelining
registers. After the placement phase, a conventional FPGA router
could be used to route the signals in the netlist. However, a
placement of a netlist that maps pipelining registers to registered
switch-points eliminates portions of the routing graph. This is
because a registered switch-point that is occupied by a particular
pipelining register cannot be used by signals other than the signals
that connect to that pipelining register. As a consequence, the
search space of a conventional FPGA router is severely limited,
and this results in solutions of poor quality. It is therefore clear
that a pipelining-aware placement phase is not sufficient to
successfully route pipelined signals.

In sections 3, 4 and 5, we present a greedy heuristic search
algorithm for routing signals on pipelined FPGA architectures,
and an explanation of how we use Pathfinder’s Negotiated
Congestion (NC) algorithm [6] in conjunction with our heuristic
to resolve congestion. Section 6 describes the target architecture
that we used in our experiments, while Section 7 describes the
placement algorithm we developed to enable our routing
approach. We describe our experimental setup and test strategy in
Section 8, followed by results in Section 9. Finally, in Section 10,
we discuss some of many directions for future efforts, and
conclude this work.

3. ONE-DELAY ROUTER
In the previous section, we pointed out that the problem of finding
the lowest cost route between a source and sink that goes through
at least N distinct D-nodes is NP-Complete. However, we now
show that a lowest cost route between a source and sink that goes
through at least 1 D-node can be found in polynomial time. In a
weighted, undirected graph, the Breadth First Search (BFS)
algorithm is widely used to find the lowest cost route between a
source and sink. The remainder of this section evaluates several
modifications of conventional BFS that can be used to find a
lowest cost 1-Delay route. Our first modification is Redundant-
Phased-BFS. In this algorithm, a phase 0 wavefront is launched at
the source. When the phase 0 exploration hits a D-node, it is
locally terminated there (i.e. the phase 0 exploration is not
allowed to continue through the D-node, although the phase 0
exploration can continue through other R-nodes), and an
independent phase 1 wavefront is begun instead. When
commencing a phase 1 wavefront at a D-node, we impose a
restriction that disallows the phase 1 wavefront from exiting the
D-node along the same edge that was used to explore it at phase
0. This is based on the assumption that it is architecturally
infeasible for the D-node that originates the phase 1 wavefront to
explore the very node that is used to discover it at phase 0. When
a phase 1 wavefront explores a D-node, the D-node is treated like
an R-node, and the phase 1 wavefront propagates through the D-
node.

If the number of D-nodes that can be explored at phase 0 from the
source is ‘F’, up to F independent phase 1 wavefronts can co-exist
during Redundant-Phased-BFS. The search space of the phase 1

wavefronts can overlap considerably due to the fact that each R-
node in the graph can be potentially explored by up to F
independent phase 1 wavefronts. Consequently, the worst-case
run-time of Redundant-Phased-BFS is F times that of
conventional BFS. Since F could potentially equal the number of
registers in the FPGA, the worst-case run-time of Redundant-
Phased-BFS could get prohibitive.

An alternative to Redundant-Phased-BFS that can be used to find
a lowest cost 1-Delay route between a source and sink is
Combined-Phased-BFS. This algorithm attempts to reduce run-
time by combining the search space of all the D-nodes that can be
explored at phase 0 from the source. The only difference between
Redundant-Phased-BFS and Combined-Phased-BFS is that the
latter algorithm allows each R-node to be visited only once by a
phase 1 wavefront. As a consequence, the run-time of Combined-
Phased-BFS is only double that of conventional BFS. In addition,
an important effect of the dichotomy that we have created due to
phase 0 and phase 1 wavefronts is that R-nodes that constitute the
phase 0 segment of a 1-Delay route can be reused in the phase 1
segment of the same 1-Delay route. We rely on Pathfinder’s [6]
congestion resolution scheme to adjust the history cost of such R-
nodes, so that in a later iteration a 1-Delay route with no node
reuse between phase 0 and phase 1 segments can be found.

A step-by-step illustration of how Combined-Phased-BFS works
is shown in Figs. 2A through 2E. For the sake of simplicity,
assume all nodes in the example graph have unit cost. The source
S is explored at phase 0 at the start of the phased BFS. The
number 0 next to S in Fig. 2A indicates that S has been explored
by a phase 0 wavefront. In Fig. 2B, the neighbors of S are
explored by the phase 0 wavefront initiated at S. The 2nd-level
neighbors of S are explored by phase 0 in Fig. 2C, one of which is
D-node D1. Note that we make a special note of D1’s phase 0
predecessor here, so that we do not explore this predecessor by
means of the phase 1 wavefront that is commenced at D1. In Fig.
2D, the neighbors of D1 (excluding R1) are explored at phase 1.
The phase 0 exploration also continues simultaneously, and note
how nodes R4 and R7 have been explored by both phase 0 and
phase 1 wavefronts. Finally, in Fig. 2E, the sink K is explored by
the phase 1 wavefront initiated at D1. The route found by
Combined-Phased-BFS is shown in boldface in Fig. 2E, and is in
fact an optimal route between S and K.

S K

R1

R2 R4

R3 R5

R6

R7

R8

D1

D2

0

Fig. 2A: Phase 0 exploration commences at node S.

S K

R1

R2 R4

R3 R5

R6

R7

R8

D1

D2

0

0

0

0

Fig. 2B: The neighbors of S are explored at phase 0.

S K

R1

R2 R4

R3 R5

R6

R7

R8

D1

D2

0

0

0

0

0
prevR1

0

0

Fig. 2C: 2nd-level neighbors of S are explored at phase 0,
and in the process D-node D1 is discovered.

S K

R1

R2 R4

R3 R5

R6

R7

R8

D1

D2

0

0

0

0

0
prevR1

0

0

0

0

0
prevR5

1

1

0

Fig. 2D: D1 starts a phase 1 exploration. The phase 0
exploration continues simultaneously, and D2 is
discovered.

S K

R1

R2 R4

R3 R5

R6

R7

R8

D1

D2

0

0

0

0

0
prevR1

0

0

0

0

0
prevR5

1

1

0

1

1

1

1

1

Fig. 2E: K is explored by phase 1 wavefront commenced
at D1.

Unfortunately, Combined-Phased-BFS fails to find a lowest cost
route on some graph topologies. An example of a failure case is
shown in Fig. 3. Here the node S is both the source and sink of a
signal, and each node is unit cost. Combined-Phased-BFS will fail
to return to S at phase 1 because R-nodes on each possible route
back to S have already been explored by the phase 1 wavefront. In
effect, Combined-Phased-BFS isolates nodes S, R1, R2, D1 and D2
from the rest of the graph, thus precluding the discovery of any
route back to S at all.

The reason for the failure of Combined-Phased-BFS is that a node
on the phase 1 segment of the lowest cost route is instead explored
by a phase 1 wavefront commenced at another delay site. For
example, in Fig. 3 we consider the route S-R1-D1-R3-R5-R4-D2-
R2-S to be lowest cost. Node R4 is explored by the phase 1
wavefront commenced at D2, thus precluding node R4 from being
explored by the phase 1 wavefront started at D1. However, if we
slightly relax Combined-Phased-BFS to allow each node in the
graph to be explored by at most two phase 1 wavefronts that are
independently started at different D-nodes, then the phase 1
wavefronts started at D1 and D2 will now be able to overlap, thus
allowing the lowest cost route to be found.

S

R1

R2

R3D1

0

D2 R4

R5

0

0

0

0

1

1

1

Fig. 3: A case for which phased BFS fails. Observe how
the phase 1 exploration has got isolated from the phase 0
exploration

An important consequence of the nature of the transition from
phase 0 to phase 1 at a D-node is shown in Fig. 4. In this case, S
is the source of the signal, and K is the sink. Observe that a phase
0 exploration explores D1 from R1. Consequently, the phase 0
exploration is precluded from exploring D1 from R4. This
prevents the optimal 1-Delay route to K from being found. To
address this problem, we allow any D-node to be explored at most
two times at phase 0. In Fig. 4, D1 can be explored at phase 0
from R1 and R4, thus allowing the optimal 1-Delay path S-R2-
R3-R4-D1-R1-K to be found.

S

R2

R1 D1

R3

R4

K

0

0

0

0 0

0

S

R2

R1 D1

R3

R4

K

0

0

0

0 0

0

Fig. 4: D1 is explored at phase 0 from R1, thus precluding
the discovery of the 1-Delay path to the sink K.

The following rules summarize 2Combined-Phased-BFS:

• An R-node can be explored at most once at phase 0.

• A D-node can be explored at most twice at phase 0.

• An R-node can be explored by at most two distinct phase 1
explorations. The cases in which two phase 1 explorations
are distinct are:

o The two phase 1 explorations are initiated by two
different D-nodes, OR

o The two phase 1 explorations are initiated by the
same D-node, but the R-nodes that were used to
explore the D-node at phase 0 are different.

• A D-node can be explored by at most two distinct phase 1
explorations. This rule is identical to the way R-nodes are
explored at phase 1.

We have proven that 2Combined-Phased-BFS finds an optimal 1-
Delay route between a source and sink on an undirected graph
consisting of R-nodes and D-nodes [9].

4. N-DELAY ROUTER
In this section, we present a heuristic that uses the optimal 1-
Delay router to build a route for a two terminal N-Delay signal.
This heuristic greedily accumulates delay at the sink by using 1-
Delay routes as building blocks. In general, an N-Delay route is
recursively built from an (N-1)-Delay route by successively
replacing each segment of the (N-1)-Delay route by a 1-Delay
route and then selecting the lowest cost N-Delay route. Fig. 5 is
an abstract illustration of how a 3-Delay route between S and K is
found. In the first step, we find a 1-Delay route between S and K,
with D11 being the D-node where we pick up delay. At this point,
we increment the sharing cost of all nodes that constitute the route
S-D11-K. In the second step, we find two 1-Delay routes,
between S and D11, and D11 and K. The sequence of sub-steps in
this operation is as follows:

• Decrement sharing cost of segment S-D11.

• Find 1-Delay route between S and D11 (S-D21-D11). Store
cost of route S-D21-D11-K in CostS-D21-D11-K.

• Restore segment S-D11 by incrementing the sharing cost of
segment S-D11.

• Decrement sharing cost of segment D11-K.

• Find 1-Delay route between D11 and K (D11-D22-K). Store
cost of route S-D11-D22-K in CostS-D11-D22-K.

• Restore segment D11-K by incrementing the sharing cost of
segment D11-K.

• Select the lowest cost route, either S-D21-D11-K and S-D11-
D22-K.

Suppose the lowest cost 2-Delay route is S-D11-D22-K. We rip
up and decrement sharing due to the segment D11-K in the
original route S-D11-K, and replace it with segment D11-D22-K.
Finally, we increment sharing of the segment D11-D22-K. The
partial route now is S-D11-D22-K. The sequence of sub-steps in
step three is similar. Segments S-D11, D11-D22 and D22-K are
successively ripped up, replaced with individual 1-Delay
segments, and for each case the cost of the entire 3-Delay route
between S and K is stored. The lowest cost route is then selected.
In Fig. 5, the 3-Delay route that is found is shown in dark lines,
and is S-D11-D31-D22-K.

The number of 1-Delay BFS’ launched for the 3-Delay route that
we just discussed is 1 + 2 + 3 = 6. For the general N-Delay case,
the number of 1-Delay BFS’ launched is 1 + 2 + ... + N = N(N-
1)/2. A bound on the number of 1-Delay BFS’ launched for an N-
Delay route is N2.

S K

D11

D21

D22
D31

D32

Fig. 5: Building a 3-Delay route from 1-Delay routes

5. MULTI-TERMINAL ROUTER
The previous section described a heuristic that uses optimal 1-
Delay routes to build a two-terminal N-Delay route. The most
general type of pipelined signal is a multi-terminal pipelined
signal. A multi-terminal pipelined signal has more than one sink,
and the number of delays separating the source from each sink
could differ across the set of sinks. A simple example of a multi-
terminal pipelined signal sig was shown in Fig. 1. The sinks K1,
K2 and K3 must be separated from the source S by 3, 4 and 5
delays respectively. We will now demonstrate how a route for a
multi-terminal signal can be found by taking advantage of the 1-
Delay and N-Delay routers that were discussed in Sections 3 and
4.

The routing tree for a multi-terminal pipelined signal is built one
sink at a time. The entire list of sinks is stored in a pre-sorted list,
and each sink is considered in non-decreasing order of delay
separation from the source of the signal. Hence, the multi-
terminal router starts by finding a route to a sink that is the least
number of delays away from the source. Since finding a route to
the first sink is a two-terminal case, we use the two-terminal N-
Delay router to establish a route between the source and first sink.
The remainder of this section examines the task of expanding the
route between the source and the first sink to include all other
sinks.

We explain the multi-terminal router via a simple example.
Assume a hypothetical signal that has a source S and sinks K3
and K4. K3 must be separated from S by 3 delays, whereas K4
must be separated by 4 delays. Sink K3 is considered first, and the
N-Delay router is used to find a 3-Delay route between S and K3.
In Fig. 6A, the route S-D1-D2-D3-K3 represents the 3-Delay
route between S and K3, and constitutes the partial_routing_tree
of the signal. In general, the partial_routing_tree of a multi-
terminal pipelined signal can be defined as the tree that connects
the source to all sinks that have already been routed.

After a route to K3 is found, the router considers sink K4. As was
the case in the N-Delay router, we accumulate delay at K4 one
delay at a time. Thus, we start by finding a 1-Delay route to K4,
then a 2-Delay route, a 3-Delay route, and finally a 4-Delay route
to K4. It can be seen that a 1-Delay route to K4 can be found
either from the 0-Delay segment S-D1 by going through another
D-node, or from the 1-Delay segment D1-D2 directly. However,
it is not necessary to launch independent wavefronts from

segments S-D1 and D1-D2. This is because both wavefronts can
be combined into a single 1-Delay BFS in which segment S-D1
constitutes the starting component of the phase 0 wavefront, and
segment D1-D2 constitutes the starting component of the phase 1
wavefront. Setting up the 1-Delay BFS in such a way could find a
1-Delay path from S-D1 or a 0-delay path from D1-D2,
depending on which is of lower cost. Assume that the route to K4
that is found is the gray segment P-K4 in Fig. 6B. Once the
segment P-K4 is found, the sharing cost of the nodes that
constitute P-K4 is incremented. The segment P-K4 is called the
surviving_candidate_tree. The surviving_candidate_tree can be
defined as the tree that connects the sink (K4 in this case) under
consideration to some node in the partial_routing_tree every time
an N-Delay route (1≤N≤4 in this case) to the sink is found. Thus,
a distinct surviving_candidate_tree results immediately after
finding the 1-Delay, 2-Delay, 3-Delay and 4-Delay routes to K4.

S

D1 D2 D3

K3

K4

Fig. 6A: 3-Delay route to K3 using the two-terminal N-
Delay router. S-D1-D2-D3 is the partial_routing_tree.

Next, we attempt to find a 2-Delay route to K4. Before explaining
specifics, it is important to point out here that while finding an N-
Delay route to a sink in general we try two options. The first is to
use the N-Delay and (N-1)-Delay segments in the
partial_routing_tree together to start a 1-Delay BFS. The other
option is to alter the surviving_candidate_tree to include an
additional D-node as was done in the two terminal N-Delay
router. The lower cost option is chosen, and this option becomes
the new surviving_candidate_tree.

S

D1 D2 D3

K3

K4

P

Fig. 6B: 1-Delay route to K4. P-K4 is found by launching
a 1-Delay BFS that starts with segment S-D1 at phase 0
and segment D1-D2 at phase 1. P-K4 is the
surviving_candidate_tree.

Thus, for finding a 2-Delay route to K4, we first launch a 1-Delay
BFS using segments D1-D2 and D2-D3 and store the cost of the
route that is found. Then, we rip up segment P-K4 (Fig. 6B) and
replace it with a 1-Delay route between segment D1-D2 and K4,

and store the cost of the 1-Delay route. The lower cost route is
selected, and the sharing cost of the nodes that constitute this
route is incremented. This selected route becomes the new
surviving_candidate_tree. In Fig. 6C, assume that the lower cost
route that is selected is the segment P1-Da-K4 shown in gray.

S

D1 D2 D3

K3

K4

Da

P1

Fig. 6C: 2-Delay route to K4. P1-Da-K4 is now the
surviving_candidate_tree.

A similar reasoning can be applied to finding a 3-Delay route to
K4. A 1-Delay BFS using segments D2-D3 and D3-K3 (which are
shown at delay 2 and 3 respectively in Fig. 6D) is launched, and
the cost of the resulting route is stored. Then, the
surviving_candidate_tree P1-Da-K4 (Fig. 6C) is modified to add
another D-node much in the same manner that a two-terminal 2-
Delay route is built from an already established 1-Delay route
(Section 4). The cost of the modified surviving_candidate_tree is
also stored. The lower cost route is selected, and the sharing cost
of relevant nodes incremented. In Fig. 6D, assume that the lower
cost route that is selected is P1-Da-Db-K4. This route now
becomes the surviving_candidate_tree.

S

D1 D2 D3

K3

K4

Da

Db

P1

Fig. 6D: 3-Delay route to K4. P1-Da-Db-K4 is the
resulting surviving_candidate_tree.

Finally, in Fig. 6E, the cost of finding a 1-Delay route to K4 from
the segment D3-K3 (which is at delay 3) proves to be less than the
cost of the route that modifies the surviving_candidate_tree P1-
Da-Db-K4 (Fig. 6D). The segment P1-Da-Db-K4 is ripped up,
and the segment P3-D4-K4 is joined to the partial_routing_tree to
complete the routing to K4.

S

D1 D2 D3

K3

K4

D4

P3

Fig. 6E: 4-Delay route to K4. P3-D4-K4 is the final
surviving_candidate_tree, and this tree is joined to the
partial_routing_tree to complete routing to K4.

6. TARGET ARCHITECTURE
In this section, we briefly describe the features of a simplified
RaPiD [2] architecture. The reasons that influenced us to use
simplified RaPiD as the target architecture for our experiments
are:

• RaPiD has a pipelined datapath structure. More importantly,
it provides bi-directional pipelining sites in the interconnect.

• We have easy access to the in-house RaPiD compiler and
retimer. Thus, we have been able to generate a representative
set of benchmark applications for our experiments.

The 1-Dimensional (1-D) RaPiD datapath (Fig. 7) consists of
coarse-grained logic units that include ALUs, multipliers, small
SRAM blocks, and registers. Each logic unit is 16-bit wide. The
interconnect consists of 1-D routing tracks that are also 16-bit
wide. There are two types of routing tracks; short tracks and long
tracks. Short tracks are used to achieve local connectivity between
logic units, whereas long tracks traverse longer distances along
the datapath. In Fig. 7, the uppermost 5 tracks are short tracks,
while the remaining tracks are long tracks. Each input of a logic
unit can be driven by any routing track by means of a multiplexer.
Similarly, the outputs of a logic unit can be configured to drive
any routing track. An output can drive multiple routing tracks.

The long tracks in the RaPiD interconnect are segmented by
means of Bus-Connectors (shown as empty boxes in Fig. 7 and
abbreviated BCs), which are essentially bi-directional delay sites.
In the simplified version of RaPiD that we used in our
experiments, each BC can be used to pick up either 0 or 1 clock
cycle delay. Thus, a BC can be used in transparent (0 clock cycle
delay) or registered (1 clock cycle delay) mode. Another aspect of
RaPiD is that datapath registers can be used to switch tracks. At
the end of the placement phase, all unoccupied datapath registers
are included in the routing graph as unregistered switch-points.
The ability to switch tracks provides an important degree of
flexibility while attempting to route netlists on RaPiD.

Fig. 7: An example of a RaPiD [2] architecture cell.
Several RaPiD cells can be tiled together to create a
representative architecture.

7. PLACEMENT
The two inputs to the placement program are descriptions of a
retimed RaPiD netlist and the target RaPiD architecture. The
RaPiD compiler generates application netlists in an internal
format, and the architecture is represented as an annotated
structural Verilog file. For the sake of nomenclature, the logical
components that constitute the netlist will be referred to as
“instances” from this point onwards. The final placement of the
netlist is determined using a Simulated Annealing [7] algorithm.
A good cooling schedule is essential to obtain high-quality
solutions in a reasonable computation time with simulated
annealing. For our placement program, we used the cooling
schedule developed for the VPR tool-suite [1].

The development of a representative cost-function for the
placement program is an interesting problem. Since the number of
routing tracks in the interconnect fabric of the RaPiD architecture
is fixed, we capture the quality of the placement by means of a
cutsize metric. The cutsize at a vertical partition of the
architecture is defined as the number of signals that need to be
routed across that partition for a given placement of the netlist.
The max_cutsize is defined as the maximum cutsize that occurs at
any vertical partition of the architecture. The total_cutsize is
defined as:
 j=Y

total_cutsize = Σ (cut_size)j

 j=1
where Y is the total number of logic resources that constitute the
architecture. The avg_cutsize is then defined as:

avg_cutsize = total_cutsize/Y

Both max_cutsize and avg_cutsize are important estimates of the
routability of a netlist. Since the RaPiD architecture provides a
fixed number of tracks for routing signals, it is necessary to
formulate a placement cost function that favorably recognizes a
move that decreases max_cutsize. At the same time, it is clear that
a simple cost function that attempts to reduce only max_cutsize
will be inadequate. A cost function that is determined only by
max_cutsize will not be able recognize changes in avg_cutsize.
This means that the annealer will accept moves that increase
avg_cutsize, but do not change max_cutsize. Such zero-cost
moves may cumulatively increase the overall congestion in the
datapath considerably, thus making it harder for the annealer to
find the sequence of moves that will reduce max_cutsize. It can
thus be concluded that avg-cutsize should also contribute to the
cost of a placement. Reducing avg_cutsize not only reduces
overall congestion in the datapath, but also lowers the total wire-
length. The cost function is therefore formulated as follows:
 cost = w*max_cutsize + (1-w)*avg_cutsize

where 0≤w≤1. The value of w was empirically determined to be
0.3. A detailed discussion of how the value of w was determined
can be found in [8].

The development of the placement approach so far has focused
only on the reduction of track count and wirelength, and this

approach works well in conjunction with a pipelining-unaware
router that attempts only connectivity routing [8]. As a next step,
we need to include pipelining information in our placement cost
function so that the router can find pipelined routes in an effective
manner. Recall from Section 1 that a retimed RaPiD netlist
explicitly enumerates all pipelining registers. At the same time,
the architecture file contains information about the location and
connectivity of every delay site (BCs) in the architecture. Since
we have prior knowledge of the location and track connectivity of
the BCs that are provided by the architecture, we simply map
each pipelining register in the netlist to a unique physical BC in
the architecture. The placement program’s move function is
modified to include pipelining registers during simulated
annealing. Our high-level objective in mapping pipelining
registers to BCs is to place netlist instances such that the router is
able to find sufficient delay resources while routing pipelined
signals.

The calculation of cutsize contributions due to pipelining registers
is markedly different from the calculation of cutsize contributions
due to other types of netlist instances. This is because of an
important difference between the connectivity of BCs and the
connectivity of datapath logic resources. Both terminals of a BC
directly connect to adjacent segments of the same routing track
(Fig. 7), whereas the input and output terminals of all datapath
logic resources can connect to any routing track. Thus, if two
instances are mapped to ALU positions X1 and X2 in the
architecture, the cutsize contribution due to a two-terminal signal
that connects the two instances is simply |X1-X2|. However, the
same reasoning cannot be directly extended to pipelining registers
that are mapped to BCs. For example, consider a two-terminal
signal sig that connects pipelining registers mapped to D1 and D2
in Fig. 8. Since D1 and D2 are on separate tracks, the router
would have to switch tracks to route sig. If the nearest available
switch-point in the datapath is at position Xsw (Xsw > X2), then
the cutsize contribution due to sig is (Xsw – X1) + (Xsw-X2), and
not merely (X2-X1). Thus, the cutsize contributions due to signals
that connect to pipelining registers are very sensitive to the
placement of the pipelining registers, especially if the pipelining
registers are mapped to BCs on different tracks. The cutsize
contributions due to pipelining registers are estimated and
included in our annealer’s cost function.

D1

D2

SW

X1

X2

XSW

Fig. 8: Calculating the cost of a two-terminal signal that
connects D1 and D2. To route this signal, the router
would have to switch tracks in the datapath. The cutsize
contribution due to thus signal is (Xsw-X1) + (Xsw-X2)

8. TESTING SETUP
The individual placement and routing algorithms that we
implemented are as follows:

• SimplePlace – This placement algorithm is pipelining
unaware i.e. it attempts to reduce track count and
wirelength without taking pipelining into account [8].

• PipePlace – This placement algorithm is derived from
SimplePlace and is pipelining aware. It attempts to
place netlist instances such that the router is able to find
enough delay resources while routing pipelined signals.

• Pathfinder – This routing algorithm is pipelining
unaware i.e. it attempts only connectivity routing
without considering pipelining information [6].

• PipeRoute – This is the pipelining aware routing
algorithm that we presented in Sections 3, 4 and 5.

We measure the quality of combined place-and-route approaches
in terms of:

• The size of the architecture needed to route a netlist.
The size of an architecture is measured in terms of
number of RaPiD cells (Fig. 7).

• The minimum number of routing tracks that we need to
route a netlist on a given architecture.

The pipelining-unaware place and route algorithms are included
to give us a lower-bound on the size of the architecture and the
minimum number of routing tracks needed to place and route
retimed netlists.

Test architectures are generated using software provided by
Northwestern University graduate student Katherine Compton.
This software is capable of generating RaPiD architectures that
have a user-specified number of RaPiD cells. Further, it is
possible to specify the number of short tracks per cell, long tracks
per cell, and bus-connectors per long track per cell. In all test
architectures, approximately 2/7th of the tracks are short tracks,
and 5/7th of the tracks are long tracks. Each short track consists of
4 segments per cell, and each long track has 3 BCs per cell.

We use retimed benchmark netlists generated by the RaPiD
compiler. The benchmark set consists of three different FIR filter
implementations, two implementations of sorting, a 16-point FFT,
a matrix multiplier, two different digital camera filters, and a
netlist that calculates logarithms using a series expansion. The
composition of each benchmark netlist is shown in Table 1.
Columns 2 – 6 show the number of 16-bit ALUs, 16x16
multipliers, 256x16 SRAMs, 16-bit data registers, and 16-bit
pipelining registers respectively. Column 7 shows the percentage
of signals in the netlist that are pipelined.

Table 1: Benchmark composition

Netlist
16-bit
ALUs

16x16
Mults

256x16
SRAMs

Data
Regs

Pipe
Regs

%
Pipe

fft16_2nd 24 12 12 29 29 7%

Img_filt 47 17 13 85 29 8%

Mux_corr 3 6 6 16 6 13%

cascade 8 8 8 24 29 21%

Matmult 8 4 12 10 22 23%

FirTM 31 16 32 90 149 23%

firsymeven 31 16 0 47 184 36%

SortG 29 0 16 60 175 47%

log8 56 48 0 66 635 47%

sort2DRB 22 0 8 46 128 60%

Med_filt 45 1 4 39 241 84%

9. RESULTS
We present the results of our experiments in this section. We
acquired data by running the entire set of benchmarks through
two place-and-route approaches. The first approach uses
SimplePlace to place the netlist, and then uses Pathfinder to do
connectivity routing. This approach treats the benchmarks as if
they were unpipelined, and is used as a lower bound. The second
approach places netlists using PipePlace, and uses PipeRoute to
do pipelined routing. For both approaches, we recorded the size of
the smallest RaPiD architecture on which each netlist successfully
routed, and the minimum number of routing tracks that were
required to route the netlist. We then defined the following result
metrics:

• NSIM – The minimum number of RaPiD cells required to
route a netlist using pipelining-unaware placement and
routing algorithms (SimplePlace and Pathfinder
respectively).

• NPIPE – The minimum number of RaPiD cells required to
route a netlist using pipelining-aware placement and routing
algorithms (PipePlace and PipeRoute).

• TSIM – The minimum number of routing tracks required to
route a netlist on an architecture of size NSIM using a
pipelining-unaware router (Pathfinder).

• TPIPE – The minimum number of routing tracks required to
route a netlist on an architecture of size NPIPE using a
pipelining-aware router (PipeRoute).

• AXP – The ratio of NPIPE to NSIM.
• TXP – The ratio of TPIPE to TSIM.
• PIPE-COST – The multiplication of AXP and TXP. This is a

quantitative measure of the overhead we incur in trying to
place and route retimed netlists on RaPiD architectures.

Table 2 shows the results we obtained. The netlists that constitute
the benchmark set are in column 1. Column 2 contains the NSIM
value for each netlist. Note that for each netlist in the benchmark
set, NSIM was found to be equal to the minimum number of RaPiD
cells required to implement the logic of the netlist irrespective of

routing requirements. The table is sorted in non-decreasing order
of NSIM. Column 3 shows the percentage of signals in each netlist
that are pipelined. This percentage is a measure of the pipelining
difficulty of a netlist. Column 4 shows the value of AXP for each
netlist, while column 5 shows the value of TXP. The PIPE-COST
for each netlist is presented in column 6.

From Table 2, we see that the mean architecture expansion
overhead due to pipelined routing is 20%, while the mean track
expansion overhead is 45%. Overall, the cost of routing retimed
netlists is slightly less than double that of routing the same netlists
without taking pipelining into account. Fig. 9 is a scatter diagram
that plots the PIPE-COST of each netlist in the benchmark set vs.
the minimum number of RaPiD cells that were required to fit that
netlist. There is evidently no correlation between the size of a
netlist and its PIPE-COST. However, a potential trend can be
observed in Fig. 10, which plots the PIPE-COST of each netlist
vs. the percentage of signals that are pipelined in that netlist. It
can be seen that an increase in the percentage of pipelined signals
in a netlist tends to result in an increase in the PIPE-COST of that
netlist. This is a promising trend, since it gives us the ability to
make a rough estimate of the PIPE-COST of a netlist based on the
fraction of pipelined signals in that netlist.

Table 2: Variation in PIPE-COST across benchmark set

Netlist NSIM % Pipe AXP TXP
PIPE-
COST

Matmult 4 23% 1 1.5 1.5

mux_corr 6 13% 1 1.2 1.2

Cascade 8 21% 1 1 1

sort2DRB 8 60% 1.75 1.33 2.33

fft16_2nd 12 7% 1 1.3 1.3

SortG 12 47% 1.67 1.67 2.77

FirTM 16 23% 1.25 1.8 2.25

firsymeven 16 36% 1 1.6 1.6

med_filt 16 84% 1.63 1.44 2.35

img_filt 18 8% 1 1.4 1.4

log8 48 47% 1.25 2 2.5

Geometric

Mean 1.2 1.45 1.74

PIPE-COST vs SIZE

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

SIZE (num RaPiD cells)

PI
PE

-C
O

ST

Fig. 9: Variation in PIPE-COST w.r.t size across the
benchmark set

PIPE-COST vs % PIPELINED SIGNALS

0

0.5

1

1.5

2

2.5

3

0% 10% 20% 30% 40% 50% 60% 70%

% PIPELINED SIGNALS

PI
PE

-C
O

ST

Fig. 10: Variation in PIPE-COST with % pipelined
signals across the benchmark set

10. CONCLUSIONS & FUTURE WORK
The main focus of this work was the development of an algorithm
that routes logically retimed circuits on pipelined FPGA
architectures. We developed an optimal 1-Delay router, and used
it in formulating an efficient heuristic to route two-terminal N-
Delay pipelined signals. The algorithm for routing general multi-
terminal pipelined signals borrowed from both the 1-Delay and N-
Delay routers. Congestion resolution while routing pipelined
signals was achieved using Pathfinder. Our results showed that
the architecture overhead (PIPE-COST) of routing logically
retimed netlists on the RaPiD architecture was 1.74, and that there
is a correlation between the PIPE-COST of a netlist and the
percentage of pipelined signals in that netlist.

The formulation of the pipelined routing problem, and the
development of the PipeRoute algorithm, proceeded
independently of specific FPGA architectures. In the quest for
providing programmable, high-throughput architectures, we feel
that the FPGA community is going to push towards heavily
retimed application netlists and pipelined architectures. When
pipelined architectures do become commonplace, PipeRoute
would be a good candidate for routing retimed netlists on such
architectures.

Future work could include the development of more sophisticated
pipelining-aware placement algorithms. A second direction for
future work lies in the development of pipelined routing
algorithms optimized for run-time. Finally, PipeRoute could be
used in architecture exploration to determine the number and
locations of registered switch-points in FPGA interconnect
structures.

11. ACKNOWLEDGMENTS
Thanks to the RaPiD group at the University of Washington for
providing the RaPiD compiler and to Katherine Compton at
Northwestern University for providing the architecture generation
program. This work was supported by grants from the National
Science Foundation (NSF). Scott Hauck was supported in part by
an NSF Career Award and an Alfred P. Sloan Fellowship.

12. REFERENCES
[1] V. Betz and J. Rose, “VPR: A New Packing, Placement and

Routing Tool for FPGA Research,” Seventh International
Workshop on Field-Programmable Logic and Applications,
pp 213-222, 1997.

[2] D. Cronquist, P. Franklin, C. Fisher, M. Figueroa, and C.
Ebeling, “Architecture Design of Reconfigurable Pipelined
Datapaths,” Twentieth Anniversary Conference on Advanced
Research in VLSI, pp 23-40, 1999.

[3] C. Ebeling, D. Cronquist, P. Franklin, “RaPiD -
Reconfigurable Pipelined Datapath”, 6th International
Workshop on Field-Programmable Logic and Applications,
pp 126-135, 1996.

[4] C. Leiserson, F. Rose, and J. Saxe, “Optimizing Synchronous
Circuitry”, Journal of VLSI and Computer Systems, pp 41-
67, 1983.

[5] C. Leiserson, and J. Saxe, “Retiming Synchronous Circuitry”,
Algorithmica, 6(1):5-35, 1991.

[6] L. McMurchie and C. Ebeling, "PathFinder: A Negotiation-
Based Performance-Driven Router for FPGAs", ACM Third
International Symposium on Field-Programmable Gate
Arrays, pp 111-117, 1995.

[7] C. Sechen, VLSI Placement and Global Routing Using
Simulated Annealing, Kluwer Academic Publishers, Boston,
MA: 1988.

[8] A. Sharma, “Development of a Place and Route Tool for the
RaPiD Architecture”, Master’s Project, University of
Washington, December 2001.

[9] A. Sharma, C. Ebeling, S. Hauck, “PipeRoute: A Pipelining-
Aware Router for FPGAs”, University of Washington, Dept.
of EE Technical Report UWEETR-0018, 2002

[10] A. Singh, A. Mukherjee, M. Marek-Sadowska, “Interconnect
Pipelining in a Throughput-Intensive FPGA Architecture”,

ACM/SIGDA Ninth International Symposium on Field-
Programmable Gate Arrays, pp 153-160, 2001.

[11] D. Singh, S. Brown, “The Case for Registered Routing
Switches in Field Programmable Gate Arrays”, ACM/SIGDA
Ninth International Symposium on Field-Programmable
Gate Arrays, pp 161-169, 2001.

[12] D. Singh, S. Brown, “Integrated Retiming and Placement for
Field Programmable Gate Arrays”, Tenth ACM International
Symposium on Field-Programmable Gate Arrays, pp 67-76,
2002.

[13] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung,
O. Rowhani, V. George, J. Wawrzynek and A. DeHon,
“HSRA: High-Speed, Hierarchical Synchronous
Reconfigurable Array”, ACM Seventh International
Symposium on Field-Programmable Gate Arrays, 1999.

