
1

Configuration Prefetching Techniques for Partial
Reconfigurable Coprocessor with Relocation and

Defragmentation
Zhiyuan Li

Department of Electrical and Computer Engineering
Northwestern University

Evanston, IL 60208-3118 USA
zl@ee.washington.edu

Scott Hauck
Department of Electrical Engineering

University of Washington
Seattle, WA 98195 USA

hauck@ee.washington.edu

Abstract
One of the major overheads for reconfigurable computing is the
time it takes to reconfigure the devices in the system. This
overhead limits the speedup possible in this paradigm. In this
paper we explore configuration prefetching techniques for
reducing this overhead. By overlapping the configuration
loadings with the computation on the host processor the
reconfiguration overhead can be reduced. Our prefetching
techniques target to the reconfigurable systems containing a
Partial Reconfigurable FPGA with Relocation + Defragmentation
(R+D model) since the R+D FPGA showed high hardware
utilization. We have investigated various techniques including
static configuration prefetching, dynamic configuration
prefetching, and hybrid prefetching. We have developed
prefetching algorithms that significantly reduce the
reconfiguration overhead.

1. INTRODUCTION
In recent years, reconfigurable computing systems such as Garp
[Hauser97], OneChip [Wittig96], PipeRench [Schmit97], and
Chimaera [Hauck97] have attracted a lot of attention because of
their promise to deliver the high performance provided by
reconfigurable hardware along with the flexibility of general
purpose processors. In such systems, portions of an application
with repetitive logic and arithmetic computation are mapped to
the reconfigurable hardware, while the general-purpose processor
handles other portions of computation. For many applications the
systems need to be reconfigured frequently during run-time.
Reconfiguration overhead becomes a major concern because the
systems must sit idle during reconfiguration. By reducing the
overall reconfiguration overhead, the performance of the system
can be improved. Therefore, many studies have involved
investigating techniques to reduce the configuration overhead.
Some of these techniques include configuration caching [Li00]
and configuration compression [Li99, Li01, Dandilas01].

Another interesting technique that effectively reduces this
overhead is configuration prefetching [Hauck98]. The
basic idea of configuration prefetching, similar to that of
prefetching in general purpose computer system, is to
overlap the configuration loading with computation.
Targeted at the Single Context FPGA model, [Hauck98]
described an algorithm that can reduce the reconfiguration
overhead by a factor of 2.

As technology moves forward more advanced devices and
systems, such as Xilinx Virtex families, Xilinx XC6200 families,
Garp [Hauser 97], and Chimaera [Hauck97], can be partially
reconfigured at run time. For a system containing a Partial Run-
Time Reconfigurable device, a configuration can be loaded into
part of the device while the rest of the system continues
computing. Compared with the Single Context FPGA, the Partial
Run-Time Reconfigurable devices provide greater flexibility and
higher hardware utilization. Based on the Partial Run-Time
Reconfigurable model, a new model called Relocation +
Defragmentation [Compton00] is built to further improve the
hardware utilization. The relocation allows the final placement
of a configuration within the FPGA to be determined at run-time,
while defragmentation provides a method to consolidate unused
area within an FPGA during run-time without unloading useful
configurations. The configuration caching techniques [Li00]
applied on the Relocation + Defragmentation model (Partial
R+D) have demonstrated a significant reduction in
reconfiguration overhead. Note that this overhead reduction was
based on the demand fetch of configurations, meaning that
effective prefetching approaches will further reduce this
overhead.

2. PARTIAL R+D FPGA
Similarly to the partially reconfigurable FPGA, the memory array
of the Partial R+D FPGA is composed of an array of SRAM bits.
These bits are read/write enabled by the decoded row address for
the programming data. However, instead of using a column
decoder, a SRAM buffer called a “staging area” is built. This
buffer is essentially a set of memory cells equal in number to one
row of programming bits in the FPGA memory array at the row
location indicated by the row address. To configure the chip
every row of a configuration is loaded into the staging area and
then transferred to the array. By providing the run-time-
determined row address to the row decoder rows of a
configuration can be relocated to locations specified by the
system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

FPGA’02, February 24-26, 2002, Monterey, California, USA.

Copyright 2002 ACM 1-58113-452-5/02/0002…$5.00.

2

Incoming configuration:

(a) (b) (c) (d)

Figure 1. An example of configuration Relocation. The incoming configuration contains 2 rows. The first row is loaded
into staging area (a) and then transferred to the desired location that is determined at run-time (b). Then the second row
of the incoming configuration is loaded to the staging area (c) and transferred to the array (d).

Figure 2. An example of Defragmentation. By moving the rows in a top-down fashion into the staging area and then
moving upwards into the array, the smaller fragments were collected.

Figure 1 shows the steps of relocating a configuration into the
array. Defragmentation operation is slightly more complicated
than a simple relocation operation. In order to collect the
fragments within that array each row of a particular
configuration is read back into the staging area and then moved
to a new location in the array. Figure 2 demonstrates the steps
of a defragmentation operation. It has been demonstrated in
[Compton00] that with a very minor area increase over standard
architectures the Relocation + Defragmentation model has a
considerably lower reconfiguration overhead than the Partial
Run-Time Reconfigurable model.

3. PREFETCHING OVERVIEW
As demonstrated in [Li00], an FPGA can be viewed as a cache
of configurations. Prefetching configurations on an FPGA,
which is similar to prefetching in a general memory system,
overlaps the reconfigurations with computation to hide the
reconfiguration latency. Before we will discuss the details for
the configuration prefetching, we first reexamine the factors
very important to the effectiveness of the prefetching for a
general purpose system:

1) Accuracy. This is the ratio of the executed prefetched
instructions or data to the overall prefetched instructions or
data.

2) Coverage. This is the fraction of cache misses eliminated
by the effectiveness of a prefetching technique. An
accurate prefetch technique will not significantly reduce the
latency without a high coverage.

3) Pollution. One side-effect of prefetching techniques
produce is the cache lines that would have been used in the
future will be replaced by some prefetched instructions or
data that may not be used. This is known as cache
pollution.

These issues are even more critical to the performance of
configuration prefetching. In general purpose systems the
atomic data transfer unit is cache block. Cache studies
consistently showed that the average access time will likely to
drop when the block size increases until it reaches a certain
value (usually fewer than 128 bytes), then the access time will
increases as the block size continue to increase since a very
large block will result an enormous penalty for every cache

3

miss. The atomic data transfer unit in the configuration caching
or configuration prefetching domain, rather than a block, is the
configuration itself, which normally is significantly larger than a
block. Therefore the system suffers severely if a demanded
configuration is not present on chip. In order for a system to
minimize this huge latency accurate prediction of the next
required configurations is highly desired.

As bad as it could be in general memory systems, cache
pollution plays a much more malicious role in the configuration
prefetchng domain. As demonstrated in [Li00], due to the large
configuration size and relatively small on-chip memory, very
few configurations can be stored on chip. As the result, a wrong
prefech will be very likely to cause a required configuration to
be replaced and a significant overhead will be generated when
the required configuration is brought back later. Thus, rather
than reducing the overall configuration overhead a poor
prefetching approach can actually significantly increase
this overhead.

In general, prefetching algorithms can be divided into 3
categories: static prefetching, dynamic prefetching and hybrid
prefetching. A compiler-controlled approach, static prefetching
inserts prefetch instructions after performing control flow or
data flow analysis based on profile information and data access
patterns. One major advantage of static prefetching is that it
requires no additional hardware. However, since a significant
amount of access information is unknown at compile time, the
static approach is limited by the lack of run-time data access
information. Dynamic prefetching determines and dispatches
prefetches at run-time without compiler intervention. With the
help of the extra hardware, dynamic prefetching uses more data
access information to make accurate predictions. Hybrid
prefetching tries to combine the strong points of both
approaches—it utilizes both compile-time and run-time
information to become a more accurate and efficient approach.

4. PREFETCHING FACTORS
In order to better discuss the factors that will affect the
prefeching performance, we first make following definitions.

Lk: The latency of loading a configuration k.
Sk: The size of the configuration k.
Dik: The distance between an operation i (can be either a
normal instruction or a prefetch operation) and the execution of
the configuration k.
Pik: The probability of i to reach the configuration k.
C: The capacity of the chip.

The probability factor could have a significant impact on the
prefetching accuracy. The combination of Sk and C determines
whether there is enough space on the chip to load the
configuration k. The combination of Lk and Dik determines that
the amount of the latency of the configuration k can be hidden if
it is prefetched at i. It is obvious that there will not be a
significant reduction if the Dik is too short because most of the
latency of the configuration k cannot be eliminated if it is
prefetched at i.

In addition, the non-uniform configuration latency will affect the
order of the prefetches that need to be performed. Specifically,
we might want to perform out-of-order prefetch (prefetch
configuration j before configuration k even if k is required

earlier than j) for some situations. For example, suppose we
have 3 configurations 1, 2, and 3 to be executed in that order.
Given that S3 >> S1 >> S2, S1 + S3 < C < S1 + S2 + S3, and D12
>> L3 >> L2 >D23, prefetching the configration 3 before the
configuration 2 when 1 is executed results in a penalty of L2 at
most. This is because the latency of the configuration 3 can be
completely hidden and the configuration 2 can be either
demanded fetched (penalty of L2) or prefetched once the
execution of the configuration 1 completes. However, if the in-
order prefetches are performed the overall penalty is calculated
as L3 -D23, which is much larger than L2.

5. CONFIGURATION PREFETCHING
Most current reconfigurable computing architectures consist of a
FPGA connected, either loosely or tightly, to a host
microprocessor. In these systems the microprocessor will act as
controller for the computation, and will perform computations
which are more efficiently handled outside the FPGA logic. The
FPGA will perform multiple, regular operations (contained in
FPGA configurations) during the execution of the computation.
In normal operation the processor executes until a call to the
reconfigurable coprocessor is found. These calls (RFUOPs)
contain the ID of the configuration required to compute the
desired function. In this work, we target systems containing
Partial R+D FPGAs. In this work we seek to find efficient
prefetching techniques for such systems. We have developed
algorithms applying the different configuration prefetching
techniques. Based on the available access information and the
additional hardware required, our configuration caching
algorithms can be divided into 3 categories: Static Configuration
Prefetching, Dynamic Configuration Prefetching, and Hybrid
Configuration Prefetching. Before presenting the details of the
algorithms, we first discuss the experimental setup.

5.1. Experimental Setup
In order to evaluate the different configuration prefetching
algorithms we must perform the following steps. First, some
method must be developed to choose which portions of the
software algorithms should be mapped to the reconfigurable
coprocessor. In this work, we apply the approach presented in
[Hauck98] (these mappings of the portions of the source code
will be referred to as RFUOPs). Second, a simulator of the
reconfigurable system must be employed to measure the
performance of the prefetching algorithms. Our simulator is
developed from SHADE [Cmelik93]. It allows us to track the
cycle-by-cycle operation of the system, and get exact cycle
counts. We will compare the performance of the prefetching
algorithms as well as the performance assuming no prefetch
occurs at all.

5.2. Static Configuration Prefetching
Similar to the prefetching approach used in [Hauck98], a
program running on this reconfigurable system can insert
prefetch operations into the code executed on the host processor.
However, the system described in [Hauck98] contains a Single
Context FPGA rather than a Partial R+D FPGA. The prefetch
instructions for systems containing a Single Context FPGA are
executed just like any other instructions, occupying a single slot
in the processor’s pipeline. The prefetch instruction specifies
the ID of a specific configuration that should be loaded into the
coprocessor. If the desired configuration is already loaded, or is

4

in the process of being loaded by some other prefetch
instruction, this prefetch instruction becomes a NO-OP. Since a
Single Context FPGA can only hold one configuration, at any
given point only one configuration needs to be prefetched. This
greatly simplifies prefetches in these systems.

Unlike the Single Context FPGA a Partial R+D FPGA can hold
more than one configuration, and at a given point multiple
RFUOPs may need to be prefetched. Thus, the method to
effectively specify the IDs of the RFUOPs to prefetch becomes
an issue. One intuitive approach is to pack the IDs into one
single instruction. However, since the number of IDs need to be
specified could be different for each prefetch instruction, it is
not possible to generate prefetch instructions with equal length.
Another option is to use a sequence of prefetch instructions
when multiple prefetching operations need to be performed.
However, to make it an effective approach a method that can
terminate previously issued prefetches is required. This is
because during the execution certain previous unfinished
prefetch instructions may become obsolete and these unwanted
prefetching operations will significantly harm performance. In
Figure 3 for example, 1, 2, 3, and 4 are RFUOPs and P1, P2, P3,
and P4 are prefetching instructions. It is obvious that when P1
is executed, configurations 3 and 4 will not be reached, therefore
the prefetches of 3 and 4 are wasted. This waste may be
negligible for a general purpose system since the load latency of
an instruction or a data block is very small. However, because
of the large configuration latency in reconfigurable systems, it is
likely the prefetch of configuration 3 has not completed or even
not started when P1 is reached. As a consequence, if we use the
same approach used in general purpose systems, letting the
prefetches of P3 and P4 complete before prefetching P1 and P2,
the effectiveness of the prefetches of P1 and P2 will be severely
damaged since they cannot completely or mostly hide the load
latencies of configurations 1 and 2. Therefore, we must find a
way to terminate previously issued prefetches if they become
unwanted.

1 2

3
P2

P3

P1
4

P4

Figure 3. Example of prefetching operation control.

A simple approach we used in this work to solve this problem is
to insert termination instructions when necessary. The format of
a termination instruction is just like any other instructions,
consuming a single slot in the processor’s pipeline. Once a
termination instruction is encountered the processor will
terminate all previously issued prefeches so the new prefetches
can start immediately. For the example in Figure 3, a

termination instruction will be inserted immediately before P1 to
eliminate the unwanted prefetches of P4 and P3.

Now we have demonstrated the way to handle the prefetches,
the remaining problem is to determine where the prefetch
instructions will be placed given the RFUOPs and the control
flow graph of the application. Since the algorithm used in
[Hauck98] demonstrates good-quality results for the Single
Context reconfigurable systems, we will extend it for systems
containing a Partial R+D.

The algorithm we used to determine the prefetches contains 3
stages:

1) Penalty calculation. In this stage the algorithm will compute
the potential penalties for a set of prefetches at each
instruction node of the control flow graph.

2) Prefetch scheduling and generation. In this stage the
algorithm will determine the configurations that need to be
prefetched at each instruction node based on the penalties
calculated in stage 1. Prefetches will be generated under the
restriction of the size of the chip.

3) Prefetch reduction. In this stage the algorithm will trim the
redundant prefetches generated in the previous stage. In
addition, the termination instructions are inserted.

In order to make our analysis clearer in the control flow graph,
we will use circles to represent the instruction nodes and squarse
to represent the RFUOPs. Since a prefetch should be executed at
the top node of a single entry and single exit path, but not other
nodes contained in the path, only the top node is considered as
the candidate where prefetch instructions can be inserted.
Therefore, we simplify the control graph by packing other nodes
in the path. In the following sections we will discuss the details
for every stage.

5.2.1. Penalty Calculation
In [Hauck98] a bottom-up approach is applied to calculate the
penalties using the probability and distance factors. Since the
probability is dominant in deciding the penalties, and the
average prefetching distance is mostly greater than the latencies
of RFUOPs, it is adequate to use probability to represent
penalty. Note that control flow graph can be complex with
nested loops, the bottom-up algorithm cannot be performed
without loop detection and conversion. In this work we apply
the loop detection and conversion algorithm presented in
[Hauck98].

Given the simplified control flow graph and the branch
probabilities, we will use a bottom-up approach to calculate the
potential probabilities for an instruction node to reach a set of
RFUOPs. The basic steps of the bottom-up algorithm are
outlined below:

1. For each instruction, initialize the probability of
each reachable configuration to 0, and set the
num_children_searched to be 0.

2. Set the probability of the configuration nodes to 1.
Place the configuration nodes into a queue.

3. While the queue is not empty, do
3.1. Remove a node k from the queue, if it is not a

configuration node, do

5

3.1.1. Pkj = ∑(Pki × Pij), for all children i of
node k.

3.2. For each parent node, if it is not a configuration
node, do
3.2.1. Increase num_children_searched by 1,

if num_children_searched equals to the
total number of children of that node,
insert the parent node into the queue.

Once this stage is complete, each instruction will contain the
probabilities of the reachable RFUOPs. The following stages
will use the results to schedule the necessary prefetches.

5.2.2. Prefetch Scheduling and Generation
The prefetch scheduling is quite trivial once the probabilities are
calculated. Based on the decreasing order the probabilities a
sequence of prefetches could be generated for each instruction
node. Since the aggregate size of the reachable RFUOPs for a
certain instruction may exceed the capacity of the chip, the
algorithm will only generate prefetches under the size restriction
of the chip. The rest of the reachable RFUOPs are ignored.

Assume in Figure 4 that the chip can at most hold 2 RFUOPs at
a time, the generated prefetches at each instruction are showed
on the right side of the figure.

I1

1 2 3 4

0.3 0.7 0.4 0.6

0.6 0.4 0.80.2

0.6 0.4

0.2 0.3 0.5

I2 I3 I4

I5 I6

I7 I8

I9

I10

I1

1 2 3 4

I2 I3 I4

I5 I6

I7 I8

I9

I10

P1 P2 P3 P4

P1,2 P4,3

P1,3 P4,3

P3,4

P1,4

Figure 4. An example of prefetch scheduling and generation. The control flow is shown on the left. The corresponding prefetches
are shown on the right.

5.2.3. Prefetch Reduction
The prefetches generated at a child node are considered as
redundant if they match the beginning sub-sequence generated at
its parents. Our algorithm will check and eliminate these
redundant prefetches. One may argue that the prefetches at a
child node should be considered as redundant if they are a sub-
sequence, but not necessary the beginning sub-sequence, of its
parents because the parents represent a superset of prefetches.
However, by eliminating the prefetch instructions at the child
node, the desired the prefetches cannot start immediately since
the unwanted prefeches at the parents might have not completed.
For example in Figure 4, P2 at the instruction I2 cannot be
eliminated even though it is a sub-sequence of P1,2 because
when I2 is reached P2 may not be able to start if P1 has not
completed. In Figure 4, the prefetches at instructions I1, I4, and
I6 can be eliminated.

Once the prefetch reduction is complete, for each instruction
node where prefetches need to be performed a termination
instruction is inserted followed by a sequence of prefetch
instructions. Note that a termination instruction does not flush
the entire FPGA, but merely clears the prefetch queue. RFUOPs
that have already been loaded by the preceding prefetches are
often retained.

5.3. Dynamic Configuration Prefetching
Among the various dynamic prefetching techniques available for
general purpose computing systems, Markov prefetching [Joseph
1997] is a very unique approach. Markov Prefetching does not
tie itself to particular data structure accesses and is capable of
prefetching both instructions and data.

5.3.1. Markov Prefetching
As the name implies, Markov prefetching utilize a Markov model
to determine what blocks should be brought in from the higher-
level memory. A Markov process is a stochastic system for
which the occurrence of a future state depends on the
immediately preceding state, and only on it. A Markov process
can be represented as a directed graph, with probabilities
associated with each vertex. Each node represents a specific
state, and a state transition is described by traversing an edge
from the current node to a new node. The graph is built and
updated dynamically using the available access information. As
an example, the access string A B C D C C C A B D E will
result in the Markov model described in Figure 5. Using the
Markov graph multiple prefetches with different priorities can be
issued.

6

Figure 5. The Markov model generated from access string A
B C D C C C A B D E. Each node represents a specific state
and each edge represents a transition from one state to
another. The number on an edge represents the probability
of the transition occurring.

5.3.2. Dynamic Prefetching Algorithm
Markov prefetching can be extended to handle the configuration
prefetching for reconfigurable systems. Specifically, the
RFUOPs can be represented as the vertices in the Markov graph
and the transitions can be built and updated using the RFUOP
access sequence. However, the Markov prefetching needs to be
modified because of the differences between general purpose
systems and reconfigurable systems.

As mentioned in previous sections, due to their large sizes only a
few RFUOPs can be stored on chip at a given time. Therefore, it
is very unlikely that all the transitions from the current RFUOP
node can be executed. This feature requires the system to make
accurate predictions to guarantee that only the highly probable
RFUOPs are prefetched. In order to find good candidates to
prefetch, Markov prefetching keeps updating the probability of
each transition using the currently available access information.
This probability represents the overall likelihood this transition
could happen during the course of the execution and may work
well for a general purpose system which a large number of
instructions or data blocks with small loading latency can be
stored in a cache. However, without emphasizing the recent
history, Markov prefetching could make poor prediction during a
certain period of the execution. Due to the features of the
reconfigurable systems mentioned above, we believe the
probability calculated based on the recent history is more
important than the overall probability.

In this work, a weighed probability in which recent accesses are
given higher weight in probability calculation is used as a metric
for candidate selection and prefetching order determination. The
weighted probability of each transition is continually updated as
the RFUOP access sequence progresses. Specifically,
probabilities out of a node u will be updated once a transition (u,
v) is executed:

For each transition starting from u,

Pu,w = Pu,w / (1 + C) if w ≠ v;

Pu,v = (Pu,v + C) / (1 + C);

Where C is a weight coefficient.

For general purpose systems, the prefetching unit generally
operates separately from the cache management unit.

Specifically, the prefetching unit will pick candidates and then
send prefetch requests into the prefetching buffer (usually a
FIFO). Working separately, the cache management unit will
vacate the requests one by one from the buffer and load the
instructions or data blocks into the cache. Since more accurate
run-time access information is available for prefetching,
integrating caching with prefetching will allow cache manager to
choose better victims to replace. The dynamic prefetching
algorithm can be described as following:

Upon the finish of each RFUOP k execution, do:

1. Sort the weighted probabilities in decreasing order of
all transitions starting from k in the Markov graph.

2. Terminate all previously issued prefetches. Select k as
the first candidate.

3. Select the rest of the candidates in sorted order under
the size constraint of the chip. Issue prefetch requests
for each candidate that is not currently on chip.

4. Update the weighted probability of each transition
starting from j, where j is the RFUOP executed just
before k.

Though the replacement is not presented in the algorithm, it is
carried out indirectly. Specifically, any RFUOPs that are
currently on chip will be marked for eviction if they are not
selected as candidates. One last thing to mention is that the
RFUOP just executed is treated as the top candidate
automatically since generally each RFUOP is contained in a loop
and likely to be repeated multiple times. Correspondingly, the
self-loop transitions in the Markov graph are ignored.

5.3.3. Hardware Requirements of Dynamic
Prefetching
A data structure is required to maintain and continually update
the Markov graph as execution progresses. A table showed in
Figure 6 can be used to represent the Markov graph. Each node
(RFUOP) of the Markov graph occupies a single row of the table.
The first column of each row is the ID of an RFUOP, and the rest
of the columns are the RFUOPs it can reach. Since under chip
size constraint only the high probable RFUOPs out of each node
are used for the prefetching algorithm, keeping all transitions out
of a node will simply waste precious hardware resources. As can
be seen in Figure 6, the number of transitions retained is limited
to K.

RFUOP 1 Next 1 Next 2 … Next K

RFUOP 2 Next 1 Next 2 … Next K

… … … … …

RFUOP M Next 1 Next 2 … Next K

Figure 6. A table is used to represent the Markov graph.
The first column of each row is the ID of a RFUOP and the
rest of the columns are k reachable RFUOPs from this row’s
RFUOP with highest probability.

In addition, a small FIFO buffer is required to store the prefetch
requests. The configuration management unit will take the
requests from the buffer and load the corresponding RFUOPs.
Note that the buffer will be flushed to terminate previous

7

prefetches before the new prefetches are sent to the buffer.
Furthermore, the configuration management unit can be
interrupted to stop the current loading if an RFUOP not currently
loaded is invoked. In order for the host process to save execution
time in updating the probabilities, the weight coefficient C is set
to 1. This means when a transition need to be updated, the host
processor will simply right shift the register retaining the
probability by one bit. Then the most significant bit of the
register representing the currently occurring transition is set to 1.
To balance the hardware cost and retain enough history, we use
8-bit registers in this work.

5.4. Hybrid Configuration Prefetching
The dynamic prefetching using recent history works well for the
transitions occurred within a loop. However, this approach will
not be able to make accurate predictions for the transitions
jumping out a loop. For example on the left side of Figure 7 we
assume only one RFUOP can be store on chip at any given point.
By applying the dynamic prefetching approach, RFUOP 2 is
always prefetched after RFUOP 1 assuming the inner loop will
always be taken for several times. Thus, the reconfiguration
penalty for RFUOP 3 can never be hidden due to the wrong
prediction.

This misprediction can be avoided if the static prefetching
approach can be integrated with the dynamic approach. More
specifically, before reaching RFUOP3 a normal instruction node
will likely be encountered and the static prefetches determined at
that instruction node can be used to correct the wrong predictions
determined by the dynamic prefetching. As illustrated on the
right side of the Figure 7, a normal instruction I1 will be
encountered before RFUOP 3 is reached and our static
prefetching will correctly predict 3 will be the next required
RFUOP. As the consequence, the wrong prefetch of RFUOP 2
determined by our dynamic prefetching can be corrected at I1.

3

1

2

I1

3

1

2

I1 P3

Figure 7. An example illustrates the ineffectiveness of the
dynamic prefetching.

The goal of combining the dynamic configuration prefetching
with the static configuration prefetching is to take advantage of
the recent access history without exaggerating it. Specifically,
dynamic prefetching using the recent history will make accurate
predictions within the loops while static prefetching using the
global history will make accurate predictions between the loops.

The challenge of integrating dynamic prefetching with static
prefetching is to coordinate the prefetches such that the wrong
prefetches are minimized. When the prefetches determined by
the dynamic prefetching do not agree those determined by the
static prefetching a decision must be made. The basic idea we
use to determine the beneficial prefetches for our hybrid
prefetching is to penalize the wrong prefetches. We add an per-
RFUOP flag bit to indicate the correctness of the prefetch made
by previous static prefetching. When the prefetches determined
by the static prefetching conflict with those determined by the
dynamic prefetching, the statically predicted prefetch of a
RFUOP is issued only if the flag bit for that RFUOP was set to 1.
The flag bit of a RFUOP is set to 0 once the static prefetch of the
RFUOP is issued, and will remain 0 until the RFUOP is
executed. As the consequence, statically predicted prefetches,
especially those made within the loops, are ignored if they are not
correctly predicted. On the other hand, those correctly predicted
static prefetches, especially those made between the loops, are
chosen to replace the wrong prefetches made by the dynamic
prefetching. The basic steps of the hybrid prefetching are
outlined as following:

1. Perform the static configuration prefetching algorithm.
Set the flag bit of each RFUOP to 1. An empty priority
queue is created.

2. Upon the finish of a RFUOP execution, perform the
dynamic prefetching algorithm. Set the flag bit of the
RFUOP to 1. Clear the priority queue first, then place
the Ids of the dynamically predicted RFUOPs into the
queue.

3. When a static prefetch of a RFUOP is encountered and
the flag bit of the RFUOP is 1, terminate current
loading. Set the flag bit of the RFUOP to 0. Give the
highest priority to this RFUOP and insert its ID into the
priority queue. The RFUOPs with lower priorities are
replaced or ignored to make room for the new RFUOP.

4. Load the RFUOPs from the priority queue.

6. RESULTS AND ANALYSIS
All algorithms are implemented in C++ on a Sun Sparc-20
workstation and are simulated with the SHADE simulator
[Cmelik93]. We choose to use the SPEC95 benchmark suite to
test the performance of our prefetching algorithms. Note that
these applications have not been optimized for reconfigurable
systems, and may not be as accurate in predicting exact
performance as would real applications for reconfigurable
systems. However, such real applications are not in general
available for experimentation. In addition, the performance of
the prefetching techniques will be compared against the previous
caching techniques, which also use SPEC95 benchmark suite.

As can be seen in Figure 8, 5 algorithms are compared: Least
Recently Used (LRU) Caching, Off-line Caching, Static
Prefetching, Dynamic Prefetching, and Hybrid Prefetching. The
LRU algorithm chooses victims to be replaced based on run-time
information, while the Off-line algorithm takes consideration of
future access patterns to make more accurate decisions. Note that
our static prefetching uses the Off-line algorithm to pick victims.
Since the cache replacement is integrated into the dynamic
prefetching and the hybrid prefetching, no additional replacement

8

algorithms are used for both prefetching algorithms. Clearly, all
prefetching techniques substantially outperformed the solely
caching techniques, especially when cache size is small. As
cache size grows, the chip is able to hold more RFUOPs and the
cache misses will be reduced. However, the prefetching
distance will not be changed. As the consequence, the
performance due to prefetching will not significantly improve as
the cache size grows. Among the prefetching techniques,
dynamic prefetching performs consistently better than static
prefetching because dynamic prefetching can use the RFUOP
access information. Hybrid prefetching performs slightly better

than dynamic prefetching because of its ability to correct some
wrong prediction made by dynamic prefetching. However, the
advantage of hybrid prefetching becomes negligible as the cache
size grows.

Figure 9 demonstrates the effect of the different replacement
algorithms that used for the static prefetching. As can be seen,
the off-line replacement algorithm performs slightly better than
the LRU since it has more complete information on the
applications.

0

0.2

0.4

0.6

0.8

1

1.2

1 1.25 1.5 1.75 2
Normalized FPGA Size

N
or

m
al

iz
ed

 C
on

fig
ur

at
io

n
Pe

na
lty

LRU
Off-line
Static+Off-line
Dynamic
Hybrid

Figure 8. Reconfiguration overhead comparison.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 1.25 1.5 1.75 2
Normalized FPGA Size

N
or

m
al

iz
ed

 R
ec

on
fig

ur
at

io
n

Pe
na

lty

Static+LRU

Static+Off-line

Figure 9. Effect of the replacement algorithms for the static
prefetching.

7. CONCLUSIONS
Configuration prefetching, where configurations are preloaded on
chip before they are required, is a technique to reduce the
reconfiguration overhead. However, the limited on-chip memory
and the large configuration latency add complexity in deciding
which configurations to prefetch.

In this work we developed efficient prefetching techniques for
reconfigurable systems containing a Partial Reconfigurable
FPGA with Relocation and Defragmentation (R+D). We have

developed algorithms applying the different configuration
prefetching techniques. Based on the available access
information and the additional hardware required, our
configuration prefetching algorithms can be divided into 3
categories: Static Configuration Prefetching, Dynamic
Configuration Prefetching, and Hybrid Configuration
Prefetching. Compare with the caching techniques presented in
our previous work [Li00], our prefetching algorithms can further
reduce the reconfiguration overhead by more than a factor of 2.

References
[Babb97] J. Babb, M. Frank, V. Lee, E. Waingold, R.

Barua, M. Taylor, J. Kim, S. Devabhaktuni,
A. Agarwal, “The RAW Benchmark Suite:
Computation Structures for General Purpose
Computing”, IEEE Symposium on FPGAs
for Custom Computing Machines, pp. 134-
143, 1997.

[Bolotski94] M. Bolotski, A. DeHon, T. F. Knight Jr.,
“Unifying FPGAs and SIMD Arrays”, 2nd
International ACM/SIGDA Workshop on
Field-Programmable Gate Arrays, 1994.

[Callahan91] D. Callahan, K. Kennedy, A. Porterfield,
“Software Prefetching”, International
Conference on Architectural Support for
Programming Languages and Operating
Systems, pp. 40-52, 1991.

[Cmelik93] R. F. Cmelik, Introduction to Shade, Sun
Microsystems Laboratories, Inc., February,
1993.

[Compton00] K. Compton, J. Cooley, S. Knol, S. Hauck,
“Abstract: Configuration Relocation and
Defragmentation for FPGAs”, IEEE
Symposium on Field-Programmable Custom
Computing Machines, 2000.

[Dandalis01] Andreas Dandalis, Viktor Prasanna,
“Configuration Compression for FPGA-
based Embedded Systems”, ACM/SIGDA
International Symposium on Field-
Programmable Gate Arrays.

[Hauck97] S. Hauck, T. W. Fry, M. M. Hosler, J. P.
Kao, “The Chimaera Reconfigurable
Functional Unit”, IEEE Symposium on
FPGAs for Custom Computing Machines,
1997.

 [

9

Hauck98] S. Hauck, “The Configuration prefetching
for the Single Context FPGA”, ACM/SIGDA
International Symposium on FPGAs, pp65-
74, 1998.

[Hauser97] John Hauser, John Wawrzynek, “Garp: A
MIPS Processor with a Reconfigurable
Coprocessor”, IEEE Symposium on FPGAs
for Custom Computing Machines, pp. 24-33,
1997

[Joseph97] Doug Joseph, Dirk Grunwald, “Prefetching
using Markov Predictors”, Proceedings of
the 24th International Symposium on
Computer Architecture, pp 252-263, 1997.

[Li99] Zhiyuan Li, S. Hauck, “Don’t Care
Discovery for FPGA Configuration
Compression”, ACM/SIGDA International
Symposium on Field-Programmable Gate
Arrays, pp. 91-100, 1999.

[Li00] Zhiyuan Li, K. Compton, Scott Hauck,
“Configuration Caching Management
Techniques for Reconfigurable Computing”,
IEEE Symposium on FPGAs for Custom
Computing Machines, pp. 87-96, 2000

[Li01] Zhiyuan Li, Scott Hauck, “Configuration
Compression for Virtex FPGA”, IEEE
Symposium on FPGAs for Custom
Computing Machines, pp 143-154, 2001

[Schmit97] Herman Schmit, “Incremental
Reconfiguration for Pipelined
Applications”, IEEE Symposium on FPGAs
for Custom Computing Machines, pp 47-55,
1997.

[Spec95] SPEC CPU95 Benchmark Suite, Standard
Performance Evaluation Corp., Manassas,
VA, 1995.

[Wittig96] R. Wittig, P. Chow, “OneChip: An FPGA
Processor with Reconfigurable Logic”,
IEEE Symposium on FPGAs for Custom
Computing Machines, pp126-135, 1996.

