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Abstract  
One of the major overheads for reconfigurable computing is the 
time it takes to reconfigure the devices in the system.  This 
overhead limits the speedup possible in this paradigm.  In this 
paper we explore configuration prefetching techniques for 
reducing this overhead.  By overlapping the configuration 
loadings with the computation on the host processor the 
reconfiguration overhead can be reduced.  Our prefetching 
techniques target to the reconfigurable systems containing a 
Partial Reconfigurable FPGA with Relocation + Defragmentation 
(R+D model) since the R+D FPGA showed high hardware 
utilization.  We have investigated various techniques including 
static configuration prefetching, dynamic configuration 
prefetching, and hybrid prefetching.  We have developed 
prefetching algorithms that significantly reduce the 
reconfiguration overhead. 

1.  INTRODUCTION 
In recent years, reconfigurable computing systems such as Garp 
[Hauser97], OneChip [Wittig96], PipeRench [Schmit97], and 
Chimaera [Hauck97] have attracted a lot of attention because of 
their promise to deliver the high performance provided by 
reconfigurable hardware along with the flexibility of general 
purpose processors.  In such systems, portions of an application 
with repetitive logic and arithmetic computation are mapped to 
the reconfigurable hardware, while the general-purpose processor 
handles other portions of computation.  For many applications the 
systems need to be reconfigured frequently during run-time.  
Reconfiguration overhead becomes a major concern because the 
systems must sit idle during reconfiguration.  By reducing the 
overall reconfiguration overhead, the performance of the system 
can be improved.  Therefore, many studies have involved 
investigating techniques to reduce the configuration overhead.  
Some of these techniques include configuration caching [Li00] 
and configuration compression [Li99, Li01, Dandilas01].   

 

 

 

 

 

 

 

Another interesting technique that effectively reduces this 
overhead is configuration prefetching [Hauck98].  The 
basic idea of configuration prefetching, similar to that of 
prefetching in general purpose computer system, is to 
overlap the configuration loading with computation.  
Targeted at the Single Context FPGA model, [Hauck98] 
described an algorithm that can reduce the reconfiguration 
overhead by a factor of 2.   

As technology moves forward more advanced devices and 
systems, such as Xilinx Virtex families, Xilinx XC6200 families, 
Garp [Hauser 97], and Chimaera [Hauck97], can be partially 
reconfigured at run time.  For a system containing a Partial Run-
Time Reconfigurable device, a configuration can be loaded into 
part of the device while the rest of the system continues 
computing.  Compared with the Single Context FPGA, the Partial 
Run-Time Reconfigurable devices provide greater flexibility and 
higher hardware utilization.  Based on the Partial Run-Time 
Reconfigurable model, a new model called Relocation + 
Defragmentation [Compton00] is built to further improve the 
hardware utilization.  The relocation allows the final placement 
of a configuration within the FPGA to be determined at run-time, 
while defragmentation provides a method to consolidate unused 
area within an FPGA during run-time without unloading useful 
configurations.  The configuration caching techniques [Li00] 
applied on the Relocation + Defragmentation model (Partial 
R+D) have demonstrated a significant reduction in 
reconfiguration overhead.  Note that this overhead reduction was 
based on the demand fetch of configurations, meaning that 
effective prefetching approaches will further reduce this 
overhead. 

2.  PARTIAL R+D FPGA 
Similarly to the partially reconfigurable FPGA, the memory array 
of the Partial R+D FPGA is composed of an array of SRAM bits.  
These bits are read/write enabled by the decoded row address for 
the programming data.  However, instead of using a column 
decoder, a SRAM buffer called a “staging area” is built.  This 
buffer is essentially a set of memory cells equal in number to one 
row of programming bits in the FPGA memory array at the row 
location indicated by the row address.  To configure the chip 
every row of a configuration is loaded into the staging area and 
then transferred to the array.  By providing the run-time-
determined row address to the row decoder rows of a 
configuration can be relocated to locations specified by the 
system.  
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Incoming configuration:

(a)                                    (b)             (c)                                    (d)

 

Figure 1.  An example of configuration Relocation.  The incoming configuration contains 2 rows.  The first row is loaded 
into staging area (a) and then transferred to the desired location that is determined at run-time (b).  Then the second row 
of the incoming configuration is loaded to the staging area (c) and transferred to the array (d). 

Figure 2.  An example of Defragmentation.  By moving the rows in a top-down fashion into the staging area and then 
moving upwards into the array, the smaller fragments were collected. 

Figure 1 shows the steps of relocating a configuration into the 
array.  Defragmentation operation is slightly more complicated 
than a simple relocation operation.  In order to collect the 
fragments within that array each row of a particular 
configuration is read back into the staging area and then moved 
to a new location in the array.  Figure 2 demonstrates the steps 
of a defragmentation operation.  It has been demonstrated in 
[Compton00] that with a very minor area increase over standard 
architectures the Relocation + Defragmentation model has a 
considerably lower reconfiguration overhead than the Partial 
Run-Time Reconfigurable model.  

3.  PREFETCHING OVERVIEW 
As demonstrated in [Li00], an FPGA can be viewed as a cache 
of configurations.  Prefetching configurations on an FPGA, 
which is similar to prefetching in a general memory system, 
overlaps the reconfigurations with computation to hide the 
reconfiguration latency.  Before we will discuss the details for 
the configuration prefetching, we first reexamine the factors 
very important to the effectiveness of the prefetching for a 
general purpose system: 

1) Accuracy.  This is the ratio of the executed prefetched 
instructions or data to the overall prefetched instructions or 
data.  

2) Coverage.  This is the fraction of cache misses eliminated 
by the effectiveness of a prefetching technique.  An 
accurate prefetch technique will not significantly reduce the 
latency without a high coverage. 

3) Pollution.  One side-effect of prefetching techniques 
produce is the cache lines that would have been used in the 
future will be replaced by some prefetched instructions or 
data that may not be used.  This is known as cache 
pollution.   

These issues are even more critical to the performance of 
configuration prefetching.  In general purpose systems the 
atomic data transfer unit is cache block.  Cache studies 
consistently showed that the average access time will likely to 
drop when the block size increases until it reaches a certain 
value (usually fewer than 128 bytes), then the access time will 
increases as the block size continue to increase since a very 
large block will result an enormous penalty for every cache 
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miss.  The atomic data transfer unit in the configuration caching 
or configuration prefetching domain, rather than a block, is the 
configuration itself, which normally is significantly larger than a 
block.  Therefore the system suffers severely if a demanded 
configuration is not present on chip.  In order for a system to 
minimize this huge latency accurate prediction of the next 
required configurations is highly desired.   

As bad as it could be in general memory systems, cache 
pollution plays a much more malicious role in the configuration 
prefetchng domain.  As demonstrated in [Li00], due to the large 
configuration size and relatively small on-chip memory, very 
few configurations can be stored on chip.  As the result, a wrong 
prefech will be very likely to cause a required configuration to 
be replaced and a significant overhead will be generated when 
the required configuration is brought back later.  Thus, rather 
than reducing the overall configuration overhead a poor 
prefetching approach can actually significantly increase 
this overhead.   

In general, prefetching algorithms can be divided into 3 
categories: static prefetching, dynamic prefetching and hybrid 
prefetching.  A compiler-controlled approach, static prefetching 
inserts prefetch instructions after performing control flow or 
data flow analysis based on profile information and data access 
patterns.  One major advantage of static prefetching is that it 
requires no additional hardware.  However, since a significant 
amount of access information is unknown at compile time, the 
static approach is limited by the lack of run-time data access 
information.  Dynamic prefetching determines and dispatches 
prefetches at run-time without compiler intervention.  With the 
help of the extra hardware, dynamic prefetching uses more data 
access information to make accurate predictions.  Hybrid 
prefetching tries to combine the strong points of both 
approaches—it utilizes both compile-time and run-time 
information to become a more accurate and efficient approach.   

4. PREFETCHING FACTORS 
In order to better discuss the factors that will affect the 
prefeching performance, we first make following definitions. 

Lk: The latency of loading a configuration k. 
Sk: The size of the configuration k. 
Dik: The distance between an operation i (can be either a 
normal instruction or a prefetch operation) and the execution of 
the configuration k. 
Pik: The probability of i to reach the configuration k. 
C: The capacity of the chip. 

The probability factor could have a significant impact on the 
prefetching accuracy.  The combination of Sk and C determines 
whether there is enough space on the chip to load the 
configuration k.  The combination of Lk and Dik determines that 
the amount of the latency of the configuration k can be hidden if 
it is prefetched at i.  It is obvious that there will not be a 
significant reduction if the Dik is too short because most of the 
latency of the configuration k cannot be eliminated if it is 
prefetched at i.   

In addition, the non-uniform configuration latency will affect the 
order of the prefetches that need to be performed.  Specifically, 
we might want to perform out-of-order prefetch (prefetch 
configuration j before configuration k even if k is required 

earlier than j) for some situations.  For example, suppose we 
have 3 configurations 1, 2, and 3 to be executed in that order.  
Given that S3 >> S1 >> S2, S1 + S3 < C < S1 + S2 + S3, and D12 
>> L3 >> L2 >D23, prefetching the configration 3 before the 
configuration 2 when 1 is executed results in a penalty of L2 at 
most.  This is because the latency of the configuration 3 can be 
completely hidden and the configuration 2 can be either 
demanded fetched (penalty of L2) or prefetched once the 
execution of the configuration 1 completes.  However, if the in-
order prefetches are performed the overall penalty is calculated 
as L3 -D23, which is much larger than L2.   

5.  CONFIGURATION PREFETCHING 
Most current reconfigurable computing architectures consist of a 
FPGA connected, either loosely or tightly, to a host 
microprocessor.  In these systems the microprocessor will act as 
controller for the computation, and will perform computations 
which are more efficiently handled outside the FPGA logic.  The 
FPGA will perform multiple, regular operations (contained in 
FPGA configurations) during the execution of the computation.  
In normal operation the processor executes until a call to the 
reconfigurable coprocessor is found.  These calls (RFUOPs) 
contain the ID of the configuration required to compute the 
desired function.  In this work, we target systems containing 
Partial R+D FPGAs.  In this work we seek to find efficient 
prefetching techniques for such systems.  We have developed 
algorithms applying the different configuration prefetching 
techniques.  Based on the available access information and the 
additional hardware required, our configuration caching 
algorithms can be divided into 3 categories: Static Configuration 
Prefetching, Dynamic Configuration Prefetching, and Hybrid 
Configuration Prefetching.  Before presenting the details of the 
algorithms, we first discuss the experimental setup. 

5.1. Experimental Setup 
In order to evaluate the different configuration prefetching 
algorithms we must perform the following steps.  First, some 
method must be developed to choose which portions of the 
software algorithms should be mapped to the reconfigurable 
coprocessor.  In this work, we apply the approach presented in 
[Hauck98] (these mappings of the portions of the source code 
will be referred to as RFUOPs).  Second, a simulator of the 
reconfigurable system must be employed to measure the 
performance of the prefetching algorithms.  Our simulator is 
developed from SHADE [Cmelik93].  It allows us to track the 
cycle-by-cycle operation of the system, and get exact cycle 
counts.  We will compare the performance of the prefetching 
algorithms as well as the performance assuming no prefetch 
occurs at all. 

5.2.  Static Configuration Prefetching 
Similar to the prefetching approach used in [Hauck98], a 
program running on this reconfigurable system can insert 
prefetch operations into the code executed on the host processor.  
However, the system described in [Hauck98] contains a Single 
Context FPGA rather than a Partial R+D FPGA.  The prefetch 
instructions for systems containing a Single Context FPGA are 
executed just like any other instructions, occupying a single slot 
in the processor’s pipeline.  The prefetch instruction specifies 
the ID of a specific configuration that should be loaded into the 
coprocessor.  If the desired configuration is already loaded, or is 
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in the process of being loaded by some other prefetch 
instruction, this prefetch instruction becomes a NO-OP.  Since a 
Single Context FPGA can only hold one configuration, at any 
given point only one configuration needs to be prefetched.  This 
greatly simplifies prefetches in these systems. 

Unlike the Single Context FPGA a Partial R+D FPGA can hold 
more than one configuration, and at a given point multiple 
RFUOPs may need to be prefetched.  Thus, the method to 
effectively specify the IDs of the RFUOPs to prefetch becomes 
an issue.  One intuitive approach is to pack the IDs into one 
single instruction.  However, since the number of IDs need to be 
specified could be different for each prefetch instruction, it is 
not possible to generate prefetch instructions with equal length.  
Another option is to use a sequence of prefetch instructions 
when multiple prefetching operations need to be performed.  
However, to make it an effective approach a method that can 
terminate previously issued prefetches is required.  This is 
because during the execution certain previous unfinished 
prefetch instructions may become obsolete and these unwanted 
prefetching operations will significantly harm performance.  In 
Figure 3 for example, 1, 2, 3, and 4 are RFUOPs and P1, P2, P3, 
and P4 are prefetching instructions.  It is obvious that when P1 
is executed, configurations 3 and 4 will not be reached, therefore 
the prefetches of 3 and 4 are wasted.  This waste may be 
negligible for a general purpose system since the load latency of 
an instruction or a data block is very small.  However, because 
of the large configuration latency in reconfigurable systems, it is 
likely the prefetch of configuration 3 has not completed or even 
not started when P1 is reached.  As a consequence, if we use the 
same approach used in general purpose systems, letting the 
prefetches of P3 and P4 complete before prefetching P1 and P2, 
the effectiveness of the prefetches of P1 and P2 will be severely 
damaged since they cannot completely or mostly hide the load 
latencies of configurations 1 and 2.  Therefore, we must find a 
way to terminate previously issued prefetches if they become 
unwanted.   

1 2 

3 
P2 

P3 

P1 
4 

P4 

 

Figure 3.  Example of prefetching operation control. 

A simple approach we used in this work to solve this problem is 
to insert termination instructions when necessary.  The format of 
a termination instruction is just like any other instructions, 
consuming a single slot in the processor’s pipeline.  Once a 
termination instruction is encountered the processor will 
terminate all previously issued prefeches so the new prefetches 
can start immediately.  For the example in Figure 3, a 

termination instruction will be inserted immediately before P1 to 
eliminate the unwanted prefetches of P4 and P3. 

Now we have demonstrated the way to handle the prefetches, 
the remaining problem is to determine where the prefetch 
instructions will be placed given the RFUOPs and the control 
flow graph of the application.  Since the algorithm used in 
[Hauck98] demonstrates good-quality results for the Single 
Context reconfigurable systems, we will extend it for systems 
containing a Partial R+D. 

The algorithm we used to determine the prefetches contains 3 
stages:   

1) Penalty calculation.  In this stage the algorithm will compute 
the potential penalties for a set of prefetches at each 
instruction node of the control flow graph.   

2) Prefetch scheduling and generation.  In this stage the 
algorithm will determine the configurations that need to be 
prefetched at each instruction node based on the penalties 
calculated in stage 1.  Prefetches will be generated under the 
restriction of the size of the chip. 

3) Prefetch reduction.  In this stage the algorithm will trim the 
redundant prefetches generated in the previous stage.  In 
addition, the termination instructions are inserted. 

In order to make our analysis clearer in the control flow graph, 
we will use circles to represent the instruction nodes and squarse 
to represent the RFUOPs. Since a prefetch should be executed at 
the top node of a single entry and single exit path, but not other 
nodes contained in the path, only the top node is considered as 
the candidate where prefetch instructions can be inserted.  
Therefore, we simplify the control graph by packing other nodes 
in the path.  In the following sections we will discuss the details 
for every stage. 

5.2.1. Penalty Calculation 
In [Hauck98] a bottom-up approach is applied to calculate the 
penalties using the probability and distance factors.  Since the 
probability is dominant in deciding the penalties, and the 
average prefetching distance is mostly greater than the latencies 
of RFUOPs, it is adequate to use probability to represent 
penalty.  Note that control flow graph can be complex with 
nested loops, the bottom-up algorithm cannot be performed 
without loop detection and conversion.  In this work we apply 
the loop detection and conversion algorithm presented in 
[Hauck98].   

Given the simplified control flow graph and the branch 
probabilities, we will use a bottom-up approach to calculate the 
potential probabilities for an instruction node to reach a set of 
RFUOPs.  The basic steps of the bottom-up algorithm are 
outlined below: 

1. For each instruction, initialize the probability of 
each reachable configuration to 0, and set the 
num_children_searched to be 0. 

2. Set the probability of the configuration nodes to 1.  
Place the configuration nodes into a queue. 

3. While the queue is not empty, do 
3.1.  Remove a node k from the queue, if it is not a 

configuration node, do 
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3.1.1. Pkj = ∑(Pki × Pij), for all children i of 
node k. 

3.2. For each parent node, if it is not a configuration 
node, do 
3.2.1. Increase num_children_searched by 1, 

if num_children_searched equals to the 
total number of children of that node, 
insert the parent node into the queue.   

Once this stage is complete, each instruction will contain the 
probabilities of the reachable RFUOPs.  The following stages 
will use the results to schedule the necessary prefetches.   

5.2.2. Prefetch Scheduling and Generation 
The prefetch scheduling is quite trivial once the probabilities are 
calculated.  Based on the decreasing order the probabilities a 
sequence of prefetches could be generated for each instruction 
node.  Since the aggregate size of the reachable RFUOPs for a 
certain instruction may exceed the capacity of the chip, the 
algorithm will only generate prefetches under the size restriction 
of the chip.  The rest of the reachable RFUOPs are ignored.   

Assume in Figure 4 that the chip can at most hold 2 RFUOPs at 
a time, the generated prefetches at each instruction are showed 
on the right side of the figure. 
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Figure 4.  An example of prefetch scheduling and generation.  The control flow is shown on the left.  The corresponding prefetches 
are shown on the right. 

5.2.3. Prefetch Reduction 
The prefetches generated at a child node are considered as 
redundant if they match the beginning sub-sequence generated at 
its parents.  Our algorithm will check and eliminate these 
redundant prefetches.  One may argue that the prefetches at a 
child node should be considered as redundant if they are a sub-
sequence, but not necessary the beginning sub-sequence, of its 
parents because the parents represent a superset of prefetches.  
However, by eliminating the prefetch instructions at the child 
node, the desired the prefetches cannot start immediately since 
the unwanted prefeches at the parents might have not completed.  
For example in Figure 4, P2 at the instruction I2 cannot be 
eliminated even though it is a sub-sequence of P1,2 because 
when I2 is reached P2 may not be able to start if P1 has not 
completed.  In Figure 4, the prefetches at instructions I1, I4, and 
I6 can be eliminated. 

Once the prefetch reduction is complete, for each instruction 
node where prefetches need to be performed a termination 
instruction is inserted followed by a sequence of prefetch 
instructions.  Note that a termination instruction does not flush 
the entire FPGA, but merely clears the prefetch queue.  RFUOPs 
that have already been loaded by the preceding prefetches are 
often retained.   

5.3. Dynamic Configuration Prefetching 
Among the various dynamic prefetching techniques available for 
general purpose computing systems, Markov prefetching [Joseph 
1997] is a very unique approach.  Markov Prefetching does not 
tie itself to particular data structure accesses and is capable of 
prefetching both instructions and data.   

5.3.1.  Markov Prefetching 
As the name implies, Markov prefetching utilize a Markov model 
to determine what blocks should be brought in from the higher-
level memory.  A Markov process is a stochastic system for 
which the occurrence of a future state depends on the 
immediately preceding state, and only on it.  A Markov process 
can be represented as a directed graph, with probabilities 
associated with each vertex.  Each node represents a specific 
state, and a state transition is described by traversing an edge 
from the current node to a new node.  The graph is built and 
updated dynamically using the available access information.  As 
an example, the access string A B C D C C C A B D E will 
result in the Markov model described in Figure 5.  Using the 
Markov graph multiple prefetches with different priorities can be 
issued. 
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Figure 5.  The Markov model generated from access string A 
B C D C C C A B D E.  Each node represents a specific state 
and each edge represents a transition from one state to 
another.  The number on an edge represents the probability 
of the transition occurring. 

5.3.2. Dynamic Prefetching Algorithm 
Markov prefetching can be extended to handle the configuration 
prefetching for reconfigurable systems.  Specifically, the 
RFUOPs can be represented as the vertices in the Markov graph 
and the transitions can be built and updated using the RFUOP 
access sequence.  However, the Markov prefetching needs to be 
modified because of the differences between general purpose 
systems and reconfigurable systems.   

As mentioned in previous sections, due to their large sizes only a 
few RFUOPs can be stored on chip at a given time.  Therefore, it 
is very unlikely that all the transitions from the current RFUOP 
node can be executed.  This feature requires the system to make 
accurate predictions to guarantee that only the highly probable 
RFUOPs are prefetched.  In order to find good candidates to 
prefetch, Markov prefetching keeps updating the probability of 
each transition using the currently available access information.  
This probability represents the overall likelihood this transition 
could happen during the course of the execution and may work 
well for a general purpose system which a large number of 
instructions or data blocks with small loading latency can be 
stored in a cache.  However, without emphasizing the recent 
history, Markov prefetching could make poor prediction during a 
certain period of the execution.  Due to the features of the 
reconfigurable systems mentioned above, we believe the 
probability calculated based on the recent history is more 
important than the overall probability.   

In this work, a weighed probability in which recent accesses are 
given higher weight in probability calculation is used as a metric 
for candidate selection and prefetching order determination.  The 
weighted probability of each transition is continually updated as 
the RFUOP access sequence progresses.  Specifically, 
probabilities out of a node u will be updated once a transition (u, 
v) is executed: 

For each transition starting from u,  

Pu,w = Pu,w  / (1 + C) if w ≠ v; 

Pu,v = (Pu,v  + C) / (1 + C);  

Where C is a weight coefficient.   

For general purpose systems, the prefetching unit generally 
operates separately from the cache management unit.  

Specifically, the prefetching unit will pick candidates and then 
send prefetch requests into the prefetching buffer (usually a 
FIFO).  Working separately, the cache management unit will 
vacate the requests one by one from the buffer and load the 
instructions or data blocks into the cache.  Since more accurate 
run-time access information is available for prefetching, 
integrating caching with prefetching will allow cache manager to 
choose better victims to replace.  The dynamic prefetching 
algorithm can be described as following: 

Upon the finish of each RFUOP k execution, do: 

1. Sort the weighted probabilities in decreasing order of 
all transitions starting from k in the Markov graph.   

2. Terminate all previously issued prefetches.  Select k as 
the first candidate. 

3. Select the rest of the candidates in sorted order under 
the size constraint of the chip.  Issue prefetch requests 
for each candidate that is not currently on chip. 

4. Update the weighted probability of each transition 
starting from j, where j is the RFUOP executed just 
before k.  

Though the replacement is not presented in the algorithm, it is 
carried out indirectly.  Specifically, any RFUOPs that are 
currently on chip will be marked for eviction if they are not 
selected as candidates.  One last thing to mention is that the 
RFUOP just executed is treated as the top candidate 
automatically since generally each RFUOP is contained in a loop 
and likely to be repeated multiple times.  Correspondingly, the 
self-loop transitions in the Markov graph are ignored. 

5.3.3. Hardware Requirements of Dynamic 
Prefetching 
A data structure is required to maintain and continually update 
the Markov graph as execution progresses.  A table showed in 
Figure 6 can be used to represent the Markov graph.  Each node 
(RFUOP) of the Markov graph occupies a single row of the table.  
The first column of each row is the ID of an RFUOP, and the rest 
of the columns are the RFUOPs it can reach.  Since under chip 
size constraint only the high probable RFUOPs out of each node 
are used for the prefetching algorithm, keeping all transitions out 
of a node will simply waste precious hardware resources.  As can 
be seen in Figure 6, the number of transitions retained is limited 
to K.  

RFUOP 1 Next 1 Next 2 … Next K 

RFUOP 2 Next 1 Next 2 … Next K 

… … … … … 

RFUOP M Next 1 Next 2 … Next K 

Figure 6.  A table is used to represent the Markov graph.  
The first column of each row is the ID of a RFUOP and the 
rest of the columns are k reachable RFUOPs from this row’s 
RFUOP with highest probability. 

In addition, a small FIFO buffer is required to store the prefetch 
requests.  The configuration management unit will take the 
requests from the buffer and load the corresponding RFUOPs.  
Note that the buffer will be flushed to terminate previous 



7 

prefetches before the new prefetches are sent to the buffer.  
Furthermore, the configuration management unit can be 
interrupted to stop the current loading if an RFUOP not currently 
loaded is invoked.  In order for the host process to save execution 
time in updating the probabilities, the weight coefficient C is set 
to 1.  This means when a transition need to be updated, the host 
processor will simply right shift the register retaining the 
probability by one bit.  Then the most significant bit of the 
register representing the currently occurring transition is set to 1.  
To balance the hardware cost and retain enough history, we use 
8-bit registers in this work. 

5.4.  Hybrid Configuration Prefetching 
The dynamic prefetching using recent history works well for the 
transitions occurred within a loop.  However, this approach will 
not be able to make accurate predictions for the transitions 
jumping out a loop.  For example on the left side of Figure 7 we 
assume only one RFUOP can be store on chip at any given point.  
By applying the dynamic prefetching approach, RFUOP 2 is 
always prefetched after RFUOP 1 assuming the inner loop will 
always be taken for several times.  Thus, the reconfiguration 
penalty for RFUOP 3 can never be hidden due to the wrong 
prediction. 

This misprediction can be avoided if the static prefetching 
approach can be integrated with the dynamic approach.  More 
specifically, before reaching RFUOP3 a normal instruction node 
will likely be encountered and the static prefetches determined at 
that instruction node can be used to correct the wrong predictions 
determined by the dynamic prefetching.  As illustrated on the 
right side of the Figure 7, a normal instruction I1 will be 
encountered before RFUOP 3 is reached and our static 
prefetching will correctly predict 3 will be the next required 
RFUOP.  As the consequence, the wrong prefetch of RFUOP 2 
determined by our dynamic prefetching can be corrected at I1.   

3 

1 

2 

I1 

3 

1 

2 

I1 P3

Figure 7.  An example illustrates the ineffectiveness of the 
dynamic prefetching. 

The goal of combining the dynamic configuration prefetching 
with the static configuration prefetching is to take advantage of 
the recent access history without exaggerating it.  Specifically, 
dynamic prefetching using the recent history will make accurate 
predictions within the loops while static prefetching using the 
global history will make accurate predictions between the loops.  

The challenge of integrating dynamic prefetching with static 
prefetching is to coordinate the prefetches such that the wrong 
prefetches are minimized.  When the prefetches determined by 
the dynamic prefetching do not agree those determined by the 
static prefetching a decision must be made.  The basic idea we 
use to determine the beneficial prefetches for our hybrid 
prefetching is to penalize the wrong prefetches.  We add an per-
RFUOP flag bit to indicate the correctness of the prefetch made 
by previous static prefetching.  When the prefetches determined 
by the static prefetching conflict with those determined by the 
dynamic prefetching, the statically predicted prefetch of a 
RFUOP is issued only if the flag bit for that RFUOP was set to 1.  
The flag bit of a RFUOP is set to 0 once the static prefetch of the 
RFUOP is issued, and will remain 0 until the RFUOP is 
executed.  As the consequence, statically predicted prefetches, 
especially those made within the loops, are ignored if they are not 
correctly predicted.  On the other hand, those correctly predicted 
static prefetches, especially those made between the loops, are 
chosen to replace the wrong prefetches made by the dynamic 
prefetching.  The basic steps of the hybrid prefetching are 
outlined as following: 

1. Perform the static configuration prefetching algorithm.  
Set the flag bit of each RFUOP to 1.  An empty priority 
queue is created.   

2. Upon the finish of a RFUOP execution, perform the 
dynamic prefetching algorithm.  Set the flag bit of the 
RFUOP to 1.  Clear the priority queue first, then place 
the Ids of the dynamically predicted RFUOPs into the 
queue. 

3. When a static prefetch of a RFUOP is encountered and 
the flag bit of the RFUOP is 1, terminate current 
loading.  Set the flag bit of the RFUOP to 0.  Give the 
highest priority to this RFUOP and insert its ID into the 
priority queue.  The RFUOPs with lower priorities are 
replaced or ignored to make room for the new RFUOP.   

4. Load the RFUOPs from the priority queue. 

6.  RESULTS AND ANALYSIS 
All algorithms are implemented in C++ on a Sun Sparc-20 
workstation and are simulated with the SHADE simulator 
[Cmelik93].  We choose to use the SPEC95 benchmark suite to 
test the performance of our prefetching algorithms. Note that 
these applications have not been optimized for reconfigurable 
systems, and may not be as accurate in predicting exact 
performance as would real applications for reconfigurable 
systems.  However, such real applications are not in general 
available for experimentation.  In addition, the performance of 
the prefetching techniques will be compared against the previous 
caching techniques, which also use SPEC95 benchmark suite.   

As can be seen in Figure 8, 5 algorithms are compared: Least 
Recently Used (LRU) Caching, Off-line Caching, Static 
Prefetching, Dynamic Prefetching, and Hybrid Prefetching.  The 
LRU algorithm chooses victims to be replaced based on run-time 
information, while the Off-line algorithm takes consideration of 
future access patterns to make more accurate decisions.  Note that 
our static prefetching uses the Off-line algorithm to pick victims.  
Since the cache replacement is integrated into the dynamic 
prefetching and the hybrid prefetching, no additional replacement 
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algorithms are used for both prefetching algorithms.  Clearly, all 
prefetching techniques substantially outperformed the solely 
caching techniques, especially when cache size is small.  As 
cache size grows, the chip is able to hold more RFUOPs and the 
cache misses will be reduced.  However, the prefetching 
distance will not be changed.  As the consequence, the 
performance due to prefetching will not significantly improve as 
the cache size grows.  Among the prefetching techniques, 
dynamic prefetching performs consistently better than static 
prefetching because dynamic prefetching can use the RFUOP 
access information.  Hybrid prefetching performs slightly better 

than dynamic prefetching because of its ability to correct some 
wrong prediction made by dynamic prefetching.  However, the 
advantage of hybrid prefetching becomes negligible as the cache 
size grows. 

Figure 9 demonstrates the effect of the different replacement 
algorithms that used for the static prefetching.  As can be seen, 
the off-line replacement algorithm performs slightly better than 
the LRU since it has more complete information on the 
applications. 
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Figure 8.  Reconfiguration overhead comparison. 
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Figure 9.  Effect of the replacement algorithms for the static 
prefetching. 

7.  CONCLUSIONS 
Configuration prefetching, where configurations are preloaded on 
chip before they are required, is a technique to reduce the 
reconfiguration overhead.  However, the limited on-chip memory 
and the large configuration latency add complexity in deciding 
which configurations to prefetch.   

In this work we developed efficient prefetching techniques for 
reconfigurable systems containing a Partial Reconfigurable 
FPGA with Relocation and Defragmentation (R+D).  We have 

developed algorithms applying the different configuration 
prefetching techniques.  Based on the available access 
information and the additional hardware required, our 
configuration prefetching algorithms can be divided into 3 
categories: Static Configuration Prefetching, Dynamic 
Configuration Prefetching, and Hybrid Configuration 
Prefetching.  Compare with the caching techniques presented in 
our previous work [Li00], our prefetching algorithms can further 
reduce the reconfiguration overhead by more than a factor of 2. 
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