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Modern quantum computing experiments demand exceptional precision, especially when

controlling laser pulses for trapped-ion systems. Recent optical breakthroughs now pack

dozens of channels onto a single chip, enabling efficient multichannel laser control. However,

the supporting electronics often lack the necessary timing accuracy and flexibility. This

shortfall can hinder progress and frustrate researchers.

This thesis presents an FPGA-based laser control system on a Xilinx Zynq platform. A

key module generates precise pulse waveforms and integrates into a system that delivers 32

pulsed and 32 static voltage signals. By leveraging dual-port block memories, state machines,

and high-speed interfaces, the system achieves sub-microsecond timing with low resource

usage. Simulation and board testing confirm accurate pulse generation while highlighting

opportunities for enhanced precision and improved error handling. Overall, this work offers

a reliable, scalable, and cost-effective solution for advanced FPGA applications in quantum

control.
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Chapter 1. Introduction

Trapped-ion quantum computing stands at the forefront of modern quantum technology,

promising unparalleled computational capabilities through the manipulation of individual

atomic ions. A cornerstone of these systems is the laser control unit, which must deliver

precisely tailored optical pulses with extreme timing accuracy [8]. Motivated by recent

advances in both quantum experiments and control hardware, this thesis presents a novel

laser control system specifically designed for trapped-ion quantum computing [6].

This hardware design, implemented on a Xilinx Zynq FPGA platform, harnesses the

combined power of high-speed and low-speed digital-to-analog converters (DACs) to achieve

synchronous control across 32 discrete laser channels. With a frequency of 100 MHz, the

system meets the rigorous temporal precision required for high-fidelity qubit manipulation.

Such demanding performance is paramount, as even slight deviations in timing can signifi-

cantly impact the accuracy and repeatability of quantum operations [8].

The design approach is both well-structured and modular, ensuring a robust foundation

for development. Initially, a single pulse channel is developed and rigorously evaluated as a

proof-of-concept. This initial validation demonstrates the feasibility and effectiveness of the

design. Once the single channel is successfully validated, it is scaled into a comprehensive

system by integrating custom programmable logic blocks. These blocks are designed to

efficiently deliver stable DC voltage control and generate dynamic, high-frequency pulsed

waveforms. This capability ensures versatile and precise signal manipulation. The scalability
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and modularity of the design not only meet current experimental demands but also provide a

framework that can adapt to future challenges in quantum computing [9]. This adaptability

is particularly important as it allows the system to evolve with advancements in the field,

ensuring long-term relevance and utility.

Central to the system’s performance is its effective exploitation of the FPGA’s built-in

features. By incorporating custom memory IP, high-speed internal communication inter-

faces, and an embedded ARM CPU core, the design achieves remarkable throughput and

performance. This careful coordination of resources ensures precise hardware timing and

optimal utilization. This strategic use of FPGA capabilities underscores the system’s ability

to deliver high performance and reliability.
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Chapter 2. Background

2.1 Laser Trapped-Ion Experiment

Trapped-ion quantum systems have emerged as a leading candidate for quantum comput-

ing platforms due to their outstanding coherence times, high-fidelity quantum gates, and

promising scalability. In trapped-ion systems, charged atoms confined by electric fields are

precisely controlled and manipulated using laser beams. These lasers serve instrumental

roles, including initializing quantum states, implementing quantum gates, and performing

state measurements [3].

However, traditional approaches for optical hardware tend to be bulky, expensive, and

power-intensive, posing severe limitations on scalability. As the number of qubits in a

trapped-ion quantum computing system grows, these challenges become more pronounced

[5]. Compact, efficient, and rapid modulation capabilities are thus needed to scale quantum

computing platforms beyond small-scale demonstrations.

Recent advancements in photonic integrated circuits (PICs) have substantially addressed

these challenges [4]. These PICs are miniaturized, enabling direct integration with ion-

trap chips, thereby dramatically reducing optical losses, system complexity, and the overall

footprint. Crucially, integrated modulators facilitate modulation at very high speeds—on

the order of nanoseconds—which matches the stringent timing requirements of quantum

operations [3].

To fully utilize the capabilities of these advanced PICs, corresponding electronic control
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systems capable of generating precisely timed, flexible modulation signals at around 100 MHz

resolution are necessary. The 100 MHz resolution provided by our system ensures that the

modulation signals can be precisely timed and shaped, directly corresponding to the stringent

timing requirements of quantum gates that often operate on microsecond timescales. Having

32 synchronous dynamic voltage channels is necessary because it allows the simultaneous

manipulation of multiple qubits with coherent precision. The precise synchronization of these

channels ensures minimal timing jitter and improved gate fidelity, which is indispensable for

scaling quantum computing systems [8].

2.2 Hardware Description

To meet the demands of advanced control electronics, this project utilizes a Field Pro-

grammable Gate Array (FPGA). FPGAs excel at high-speed, low-latency parallel processing,

enabling the simultaneous control of multiple channels and the implementation of flexible,

efficient digital signal processing algorithms. These capabilities make FPGAs particularly

suited for managing complex experimental setups that demand precise timing and real-time

adaptability. This project employs the Xilinx Zynq UltraScale+ ZCU102 Evaluation Board,

a platform chosen for its remarkable computational resources and flexible high-speed inter-

facing capabilities.

The ZCU102 board (Figure 2.1) is integral for generating precise modulation signals

required by quantum lasers. It features a range of peripherals, including PMOD interfaces

that support low-speed digital-to-analog converters (DACs) via SPI protocols, and two FMC
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HPC connectors for high-speed DACs. The core of this FPGA platform is the Xilinx Zynq

architecture, which combines a Processing System (PS) with Programmable Logic (PL) [10].

Figure 2.1: The FPGA board with necessary peripherals.

The PS is powered by a quad-core Arm® Cortex®-A53 processor, capable of running real-

time processing applications. It incorporates multiple peripherals, such as DDR4 memory
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for application storage and an Advanced eXtensible Interface (AXI) that connects the PS

to other components, including the programmable logic. The PL, which is the FPGA itself,

contains logic cells, flip-flops, and block RAMs (BRAM) [10]. It provides ample capacity for

storing intermediate data.

This project leverages programmable logic to build custom hardware designs that serve

the unique demands of quantum laser experiments. The FPGA’s dedicated logic circuits and

integrated high-speed interfaces enable quick, reliable communication with external modules.

This capability maintains accurate control and precise timing. General-purpose I/O options,

such as PMOD and FMC connectors, further simplify the experimental setup. These connec-

tors offer flexible interfacing, allowing for both low-speed and high-speed connections that

scale to the experiment’s complexity without sacrificing performance.

In addition to the hardware features, a Python interface abstracts the low-level hard-

ware details, streamlines testing, and integration with the FPGA platform. Indicated in

Figure 2.1, a custom C-based program running in the processing system translates Python-

generated commands into data that the FPGA can efficiently process. This layered approach

bridges high-level control with low-level hardware performance, ensuring that experimental

algorithms and rapid prototyping can be achieved.

2.3 Pulse Sequence

In high-fidelity quantum computing and atomic manipulation, pulsed sequences are pivotal

for delivering precise, accurate, and stable outputs to photonic integrated circuits [4]. These
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laser pulses (Figure 2.2) are designed with a controlled shape that consists of three distinct

phases: rise, sustain, and fall. Each phase ensures quantum operations are performed reliably.

Figure 2.2: Example of the pulse sequence. Both the time and gain factors are set to 1

During the rise phase, the laser intensity increases to its target level. A well-controlled

rise minimizes errors and ensures that the experiment operate exactly when needed. The

sustain phase follows, during which the laser maintains a constant optical intensity. This

steady state is paramount because any fluctuation can compromise the fidelity of quantum

gates by introducing operational errors [3]. Finally, the fall phase allows the laser power

to decrease smoothly. Maintaining symmetry between the rise and fall phases is critical for

consistency and repeatability. In this design, the fall essentially becomes the mirror image of

the rise. The rise is a programmable waveform pattern, while the sustain is a flat region with

programmable length. User settings specify additional parameters such as start time, sustain

time, and waveform length, as described in Figure 2.2. These configurations enable the

module to adjust pulse characteristics programmatically without redefining the waveforms.
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In many cases, a pulse is produced by scaling a common base waveform using programmable

factors for both time and amplitude. However, when a pulse sequence includes pulses with

different time and amplitude features, the configuration selects the distinct waveforms for

each pulse. This approach ensures accurate and flexible control over the behavior of the

entire sequence.

Figure 2.3: Two pulses with pulse 2 having half the amplitude of pulse 1.

For instance, the rising edge of pulse 0 in Figure 2.2 follows a curved profile while pulse

1 increases linearly. Since these profiles cannot be interconverted by scaling alone, the user

must define two unique waveforms and assign each to the respective pulse configurations.

Furthermore, suppose a subsequent pulse, such as pulse 2, is intended to have half the

amplitude of pulse 1 while retaining similar waveform characteristics (Figure 2.3). In that

case, the configuration should specify that pulse 2 uses the waveform of pulse 1 with a gain

factor of 0.5. This structured configuration approach allows the module to adjust pulse

characteristics without redefining fundamental waveforms, ensuring precise control over the
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entire sequence’s behavior.
Table 2.1: A single pulse’s output at various time

Time Phase Output

0 Wait 0

...

S0 − 1 Wait 0

S0 Rise A0f0(0)

S0 + α Rise A0f0(
α
T0
)

...

S0 + T0 Rise A0f0(
T0−1
T0

)

S0 + T0 + 1 Sustain W0

...

S0 + T0 +D0 Sustain W0

S0 + T0 +D0 + 1 Fall A0f0(
T0−1
T0

)

...

S0 + T0 +D0 + T0 Fall A0f0(0)

S0 + T0 +D0 + T0 + 1 Wait 0

For an unscaled pulse 0 from Figure 2.2, with a waveform f0(x) (green line), can be

generated using the equations in Table 2.1 at various times and phases. Here, S denotes the

pulse start time, T is the waveform length, α is the time factor, D is the sustain time, A is

the gain factor, and W is the output value during the sustain phase.
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Chapter 3. Block Architecture

3.1 Functional Description

To fulfill the requirement to generate a pulse sequence, the pulse channel module uses Xilinx

block RAM IPs, a state machine, and an interface to drive an external 16-bit DAC. One

of the block RAMs is dedicated to the waveform table memory, where unique digital rep-

resentations of pulses’ waveforms are stored. A separate block RAM, known as the pulse

definition table memory, holds configuration data for each pulse, including start time, sus-

tain time, time and gain factors, waveform length, and a waveform identifier that links to

the corresponding waveform stored in the waveform table memory. The state machine reads

from both memories to select the appropriate waveform and configuration of a pulse, thereby

driving the DAC to produce the desired pulse sequence. The area highlighted in purple in

Figure 3.1 illustrates the relative placement of these two memories within the module, with

further details discussed in later sections.

All waveform data and parameters are loaded into memory via a word-addressable inter-

face, as highlighted by the green arrow in Figure 3.1. This interface supports both configu-

ration and monitoring, allowing the module to select between the RAM blocks or perform

real‐time diagnostics and debugging. The design enables rapid reconfiguration and continu-

ous system oversight, which assists in maintaining high performance during pulse sequence

generation.

Error handling is integrated into the module. Dedicated error signals are generated during
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Figure 3.1: Block diagram of the pulse channel with two RAMs integrated.

pulse generation to detect anomalies and trigger immediate responses. Pipeline delays are

carefully managed to ensure signal synchronization and maintain timing margins across the

data path.

3.2 Setup

Waveform Table

The waveform table memory stores 16-bit values that define each pulse’s shape. It is im-

plemented as a dual-port RAM using the Xilinx Block Memory Generator [1]. One port

accepts user read and write operations, while the other, designated for the pulse channel’s
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Figure 3.2: Memory layout for waveform table

internal controller (orange box in Figure 3.1), is read-only. As illustrated in Figure 3.2,

users write two 16-bit values per memory access, while the controller reads one 16-bit value.

This simultaneous access facilitates real-time monitoring and debugging of waveform values

without interfering with pulse generation.

In addition, the waveform table memory employs dynamic allocation. Each pulse config-

uration includes a start address and a waveform length, which together uniquely identify a

waveform in memory. This design allows pulses with a common waveform to share the same

memory region, ensuring that only the space required for these characteristics is allocated.
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Figure 3.3: Pulse Definition RAM overall allocation. a, the overall allocation in the

memory. b, specific bit-wise allocations of each pulse’s parameter.

3.2.1 Pulse Definition

The pulse definition memory, analogous to the waveform table memory, is implemented using

a Xilinx Dual-Port RAM. Unlike the waveform table, it adopts a static allocation scheme,

whereby each user-defined pulse configuration is assigned four consecutive 32-bit words,

forming a 128-bit entry (see Figure 3.3a). This organized structure minimizes addressing

overhead and simplifies data retrieval. Figure Figure 3.3b illustrates the specific allocation

of each pulse configuration in the pulse definition memory.
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Figure 3.4: State Diagram of the Pulse Channel Module
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3.2.2 Internal Controller

The internal controllers of the Pulse Channel module generate a precise pulse sequence by

transitioning through a series of well-defined states, as illustrated in Figure 3.4. The module

is activated when an external trigger is received and the module is enabled, as shown in

the bottom left of Figure 3.1. Upon activation, it loads the required data from the pulse

definition memory into a set of registers and then enters a waiting state until the 24-bit timer

reaches the predetermined start time. This design guarantees precise pulse generation at the

intended moments, ensuring seamless system synchronization.

When the timer reaches the start time, the module moves sequentially through the rise,

sustain, and fall stages. During these stages, it carefully shapes the pulse by controlling

both the waveform table address and its data output using the time (”+” sign in Figure 3.1)

and gain (”x” sign in Figure 3.1) factor values. After the fall stage, the module evaluates

whether additional pulses remain in the pulse definition memory. If there are more pulses,

it immediately loads the next one. Otherwise, it waits for a ”done sequence” signal before

going idle.

An internal pulse counter monitors the current entry in the pulse definition memory

and increments each time a new pulse is loaded. Because each pulse definition spans four

memory addresses, the counter increases by four with every update. Another counter tracks

the number of clock cycles that the sustain phase has lasted following the rise stage. When

this counter reaches the defined sustain length, the state machine transitions to the fall

stage. This organized, stage-based design simplifies the control logic while enhancing timing
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precision and signal integrity.

In parallel, a dedicated process manages memory read and write operations via the CPU

interface, as indicated by the green arrows in Figure 3.1. Through this interface, users desig-

nate the target memory by including the appropriate identifier in the provided address. For

the waveform table, each write operation transfers a 32-bit value, which together constitute

one entry. This arrangement yields a total of 2048 available entries for user write accesses.

In contrast, each pulse definition entry spans four 32-bit words. Therefore, it takes four

consecutive write operations to complete one pulse definition entry. This clear division of

memory operations not only ensures efficient and reliable data transfer but also simplifies

the addressing scheme, maintaining data integrity and responsiveness in real-time FPGA

applications.

3.3 Error Handling

The pulse channel is engineered to be highly resilient, capable of handling both typical user

inputs and unusual or invalid parameters. It accounts for common values as well as edge cases

that might otherwise disrupt system operation. While the software interface manages most

user-induced errors, the built-in error registers and handling mechanisms serve as the final

safeguard. This layered approach prevents hazardous inputs from causing system failures,

ensuring that the design remains safe and reliable even under unexpected conditions.

To ensure performance, several potential cases must be carefully considered. The design

guarantees that pulses begin only when the current time meets or exceeds their scheduled
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Table 3.1: Error Registers

Register Bit Error Details

0 Wave table memory overflow

1 Waveform size ≤ 1 (need minimum of 2 values)

2 Time factor bigger than the size of the rise

3 Gain factor > 1

4 Time factor < 1

5 Start time too early (minimum 50ns apart between pulses)

6 Not yet assigned

7 Not yet assigned

start. Special attention is given to the sustain length. For instance, if a pulse definition

specifies a flat-top length of zero, the system immediately transitions to the fall stage. The

module also keeps track of the total number of generated pulses using the internal pulse

counter, which helps maintain proper sequence control. Moreover, if the start time of a

subsequent pulse is earlier than that of the previous one, the pulse is omitted to preserve

timing integrity.

Additionally, the design manages cases where a waveform exceeds the capacity of the

waveform table memory. In such instances, the system either wraps the addresses correctly

back into the valid range or triggers an error flag in an 8-bit register, with each bit defined

in Table 3.1. When a specific error occurs, the system sets only the corresponding flag.
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This clear mapping simplifies fault diagnosis and reduces ambiguity during troubleshooting.

When an error is detected, the system stops waveform generation to prevent the further

propagation of invalid data, thereby maintaining overall system integrity. Furthermore, the

registers are designed to log and maintain these error events, aiding in prompt debugging

and corrective measures. The error registers can be cleared with an external clear flag or by

resetting the system. Some registers have no error details assigned yet, allowing for future

expandability based on further testing results.
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Chapter 4. Metrics For Evalutation

This section outlines a comprehensive test plan for the pulse channel module, designed to

rigorously evaluate its functionality, performance, and error-handling capabilities. The test

strategy is systematically divided into distinct phases. Initially, it focuses on controlled

experiments using predefined pulse sequences, ensuring that the module writes and reads

fixed parameters accurately and that the hardware faithfully produces the expected pulse

patterns. Next, the plan expands to include tests with randomly generated pulse parameters,

simulating real-world conditions and assessing the design’s robustness against unpredictable

inputs. Finally, it validates the module’s error detection mechanisms by deliberately injecting

invalid parameters, confirming that the associated error flag registers correctly identify and

report faults. Together, these testing stages build confidence in the module’s reliability and

performance, ensuring it meets the stringent requirements of advanced digital systems.

4.1 Memory Access

One of the metrics to evaluate is the pulse channel block’s ability to read from and write to

both the pulse definition and waveform table memories. This functionality directly affects

the pulse channel’s overall functionality and reliability. By continuously monitoring this

capability throughout various testing phases, one can identify potential issues early on. This

early detection ensures that data processed within the module remains consistent and accu-

rate. Adopting this proactive approach not only maintains system stability but also prevents

data corruption, thereby enhancing the overall integrity and efficiency of the system.
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4.2 Write Known Pulse

A fundamental step in verifying the functionality of the pulse channel module is to perform

a preliminary test using two to three predetermined pulses with fixed parameters. This care-

fully controlled test is designed to evaluate whether the hardware can accurately receive and

produce known values, ensuring that each pulse is generated exactly as specified. Moreover,

this initial validation helps identify potential issues before the module is deployed in sce-

narios involving more complex or real-world signal patterns. It provides a clear benchmark

for performance, aids in troubleshooting early-stage design flaws, and supports iterative re-

finement of the system. In doing so, the test not only ensures compliance with the required

technical specifications but also instills confidence in the module’s ability to operate reliably

under varying conditions.

4.3 Controlled Randomized Test

After verifying that the hardware behaves as expected during initial tests that memory

read and write operations execute correctly, a more comprehensive regression is initiated.

In this phase, a software generator creates random pulse parameters and base rise values

applicable to both the hardware design and its floating-point software equivalent model.

This randomized input methodology simulates a wide range of real-world conditions, thereby

enhancing the testing process in terms of efficiency and reliability.

The software model calculates a theoretical floating-point value for each randomly gener-

ated pulse, serving as the benchmark for comparisons. Since FPGA hardware uses integer-
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based addresses and data, pulse parameter values are scaled and rounded down to the nearest

integer before being written to memory or interfaced with peripherals, as shown in Figure 3.1.

After conversion, hardware-produced values are compared to the modeled floating-point val-

ues. Discrepancies may arise due to rounding. To quantify these differences, an error metric

is computed as the absolute difference between theoretical and actual values. Additionally,

a delta value measures the difference between sequential hardware output values, providing

insight into system behavior over time. Figure 6.1 illustrates the test results.

4.4 Check Error

The pulse channel module is equipped with error flag registers designed to detect and flag

invalid pulse parameters. To confirm that these error detection mechanisms operate as

intended, the test introduces invalid parameter values into the system. For example, con-

figuring a pulse with a rise length of 1 and a step value of 2 is expected to simultaneously

trigger the error flags in registers 1 and 2, as detailed in Table 3.1. Systematically verifying

that the system accurately identifies and reports these errors ensures the pulse channel’s

capability to handle unforeseen or erroneous conditions effectively.
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Chapter 5. System Integration

Figure 5.1: FPGA system architecture block diagram.

The pulse channel module is an integral component of an FPGA system designed to

generate 32 pulsed AC voltage signals and 32 static voltage signals. This system leverages

both the processing systems and the programmable logic of the ZCU102 architecture. A

Python-based interface allows users to input specific information about the pulses and voltage

signals. This interface translates user requests into custom commands, which are then sent

to the processing system via the FPGA’s UART interface.
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The processing system’s ARM-based CPU converts Python-generated commands into

addressable instructions for the FPGA’s blocks. Within the FPGA hardware, a bus router

takes the byte-addressable data from the CPU and translates it into block-specific word-

addressable data. The system comprises three distinct hardware blocks, each serving a

separate function. The orange blocks in Figure 5.1 illustrate the names of these blocks,

which will be discussed in detail in the subsequent sections. This architecture ensures ef-

ficient communication and data processing within the FPGA system, enhancing its overall

performance and reliability.

5.1 Static DC Voltage Block

Figure 5.2: Block diagram for the DC voltage module

The DC block provides stable and programmable static voltage control using four Analog

Device AD5286 PMOD DACs. Each DAC supports eight voltage channels, making a total of

32 channels, as illustrated in Figure 5.2. Communication between the DACs and the system

occurs via the SPI interface. These SPI interfaces are implemented as separate modules,

each managing the clock, data, and chip select signals for data transmission to the DACs.
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Table 5.1: SPI DAC message format

The DC block utilizes the lower five bits of the CPU address to select one of four SPI-

based DACs. Part of the address is used in the SPI message for the chosen DAC, as detailed

in Table 5.1. This address segment specifies the ”channel select” portion of the command,

determining which of the eight channels on the selected DAC will be used. The SPI message

also includes an ”update DAC” command to instruct the DAC to refresh the chosen channel’s

value, which is set in the ”data” portion of the message. The processing system provides

a 12-bit positive integer value for the DACs, which is then converted to a voltage value as

specified by:

Vout = Vref ×
D

212
(5.1)

Where Vout is the voltage output by the DAC, Vref is the DAC’s reference voltage, and

D is the data from the processing system [2]. This design ensures precise and flexible static

voltage control. Additionally, the module supports write operations to update DAC channels

and control features such as internal reference voltage and power. It also supports read

operations, which return status flags for each SPI transaction. The use of multiple DACs

and independent SPI modules allows for efficient handling of numerous voltage channels,

providing enhanced control and reliability.
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5.2 Pulse AC Voltage Block

Figure 5.3: Block Diagram of the AC block.

The pulse generation module—also referred to as the AC block—is a synchronous multi-

channel pulse generator designed to deliver precise control for laser operations on the photonic

chips. Its architecture generates pulse sequences with a 10-nanosecond resolution across 32

channels, ensuring that each digital output is synchronized.

The AC block acts as the central coordinator for all pulse channels. A Central Coor-

dinator Process (CC-P) manages both external control signals and error notifications from

individual channels, ensuring reliable overall performance. Central to its operation is a 24-bit

counter that functions as a common timer, as seen in Figure 5.3. Upon receiving an external

trigger, this counter initiates the timing process uniformly for all channels. It continues until
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it reaches either a user-defined sequence length or its maximum value, at which point it

sends stop signals to halt pulse generation. This coordinated stopping mechanism maintains

timing precision and prevents runaway pulses that could lead to data inconsistencies.

A series of internal registers underpin the module’s functionality. These registers store

key parameters such as the total sequence length, the active channel enable, and select for

memory reading and writing operations. Values are loaded into these registers via the CPU

interface, which streams configuration data from the processing system. The design supports

simultaneous writing to multiple channels, a useful feature for updating pulse parameters

in parallel. However, because the data bus is only 32 bits wide, the system limits read

operations to one channel at a time.

The module also incorporates an addressing scheme that distinguishes between channel-

specific memory and internal control registers. The lower address range is reserved for

waveform data and pulse parameters, while the upper range is dedicated to registers for the

CC-P. Registers for settings such as sequence length, channel enables, and channel selections

are both readable and writable. This bidirectional access permits real-time control and

monitoring of each channel, facilitating adjustments as operational conditions change. In

contrast, dedicated read-only registers continuously convey status information from both

the module and the individual pulse channels.

Error handling within the AC block is equally streamlined. As discussed, each pulse

channel generates error signals that are collected as multi-bit vectors. The CC-P then trans-

poses these into several 32-bit registers, with each register corresponding to a specific error
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type defined in Table 3.1. Within a given register, each bit represents the status of one of

the 32 channels. This systematic condensation of error information into a single-dimensional

format simplifies monitoring and debugging processes, enabling engineers to quickly identify

and address issues.

5.3 Miscellaneous

The miscellaneous block is a versatile control and status interface integrated into the sys-

tem. It manages a variety of auxiliary functions that streamline control processes. This

module organizes basic operations, such as managing system interfacing, monitoring status,

and distributing control signals. Its primary role is to bridge CPU control with hardware

functionality through several dedicated registers. These registers handle tasks such as ver-

sion reporting, LED indication, and debug routing. A notable feature is its configurable

LED control system. This system allows either PS or PL to drive status indicators based on

the LED enable register settings, providing flexibility and accurate control. Isolating these

auxiliary functions enhances maintainability, simplifies debugging, and promotes reusabil-

ity. Beyond its fundamental capabilities, the miscellaneous block streamlines operations and

supports a modular system architecture.

5.4 Software Control Interface

A dedicated Python package translates user-defined waveform values and pulse information

into addresses and data formats for the hardware [7]. This abstraction bridges the gap

between users with limited hardware design experience and the intricate nature of FPGA
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architectures. By automating tasks such as memory management and data formatting,

the system enables users to focus on refining their quantum control strategies rather than

wrestling with hardware-level operations. This design philosophy enhances both usability

and performance across the entire framework.
Table 5.2: Sample Format of the Waveform Record

Wave ID 262144 196612 327688

W
av

ef
or

m
V

al
ue

s 0 0 0

1 2 5

3 5 6

4 - 8

- - 12

The interface functions similarly to a streamlined web API, allowing users to submit

waveform data and parameters intuitively. For every pulse entry, the software automatically

locates the next available memory space, computes the starting address and length, and

allocates the data accordingly, returning a unique waveform ID for straightforward reference.

This methodical allocation ensures that inputs accumulate properly and that any error due

to exceeding available memory is promptly flagged. Additionally, the system archives each

waveform record in a dedicated file, providing traceability as detailed in Table 5.2. The first

row for each column in the table represents a unique six-digit wave ID. The remaining rows

are values for each waveform.

In a similar fashion, pulse parameter management is performed through dedicated func-
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Table 5.3: Sample Format of the Pulse Parameter Record

Wave ID Start Time Scale Gain Scale Address Sustain

262144 5 0.98 1.2 5

196612 48 1.0 1.1 7

327688 100 1.0 1.0 0

tions that support both loading and retrieval. Unlike waveform data, which can vary in

length and address, pulse parameters are stored in fixed groups of four values. Users provide

key details such as the pulse’s start time, time factor, gain factor, and sustain time, along

with the relevant waveform ID. The interface then leverages this ID to fetch additional hard-

ware parameters—such as the corresponding waveforms start address and length—converting

the user inputs into a hardware-accepted format as outlined in Figure 3.3b. Corresponding

records are then logged in a file following the format shown in Table 5.3.

After processing, the serial interface passes these hardware-ready values to a custom

Python class that integrates them with subroutines designed for the FPGA. Communication

with the embedded ARM CPU is maintained via a UART connection, with the third-party

PYSerial package ensuring reliable data transfer. Commands transmitted by the Python

class are interpreted by the PS to activate specific design blocks defined in Figure 5.1. This

layered control strategy not only streamlines user interaction but also preserves the precision

and high performance required by contemporary FPGA applications.
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Chapter 6. Outcome and Result

6.1 Simulation Result

Figure 6.1: Simulation result of a. Seed with incorrect parameters and b. Seed with

normal parameters

To validate the functionality and ensure the reliability of the pulse channel module, a con-

trolled, randomized regression test was designed and implemented. This test serves as a com-

prehensive evaluation of the module’s performance across several key aspects. Specifically, it

examines the module’s ability to execute memory read and write operations efficiently, pre-

serve data accuracy during these processes, and manage potential errors effectively. These

assessments are the cornerstone of identifying and resolving any latent issues that could
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compromise the module’s functionality in practical applications. The results of this test-

ing process provide significant insights into the module’s behavior and confirm its expected

performance. Figure 6.1 illustrates two simulation outcomes, both generated using Intel

ModelSim, which visually validate the module’s operation under the given test scenarios.

6.2 Board Result

The system is examined using Xilinx’s Integrated Logic Analyzer (ILA) to validate signals

from multiple modules, including the single pulse channel module.

Figure 6.2: ILA monitored the result from the top level.

A 55-sample waveform, starting from a nonzero value at 50 ns, is transmitted to the

hardware and captured by the ILA (see Figure 6.2). The first output appears after 8 cycles,

with each cycle lasting 10 nanoseconds. This timing results in an 80-nanosecond delay,

confirming that the pulse generation operates well within the sub-microsecond range required

for quantum control hardware. Furthermore, ILA data indicate that data updates occur

every 10 nanoseconds, highlighting the rapid switching performance required for high-speed

applications. Additionally, an external oscilloscope recorded a pulse sequence in Figure 6.3,

further verifying the overall functionality and behavior of the design.
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Figure 6.3: A single pulse sequence captured on an oscilloscope. The yellow line is the

pulse sequence, the green line is the valid signal, and the red line is the trigger signal.

6.3 Resource Utilization

In FPGA design, efficient resource utilization is integral for ensuring a high-quality, reliable

system. One of the most core aspects of this evaluation is timing analysis. After imple-

mentation, the Xilinx Vivado 2022.1 tool generates an in-depth timing report that details

the minimum and maximum delay paths within the design. Generated reports in Figure 6.4

confirm that both setup and hold times meet the specified constraints.

This timing verification ensures that all synchronous elements operate correctly within

the designated clock cycle, preventing data corruption and operational failures.

Table 6.1 shows that only a small fraction of the FPGA resources are used. This low usage

proves the design’s efficiency. Minimal resource usage reduces power consumption. It also
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Figure 6.4: Partial timing report from Vivado on the worst slack (top) and hold (bottom).

helps the FPGA maintain optimal timing and routing. This efficiency is ideal for scalable

systems that may need future modifications. It validates the careful design decisions made

during synthesis and optimization.
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Table 6.1: Post-Implementation Resource Utilization Reported by Vivado

On-Chip Power (W) Used Available Utilization (%)

Clocks 0.034 3 — —

CLB Logic 0.018 30403 — —

LUT as Logic 0.015 12671 274080 4.62

CARRY8 0.002 909 34260 2.65

Register <0.001 12952 548160 2.36

LUT as Shift Register <0.001 4 144000 <0.01

Others 0.000 567 — —

Signals 0.029 24867 — —

Block RAM 0.174 128 912 14.04

DSPs <0.001 2 2520 0.08

I/O 0.014 36 328 10.98

PS8 2.472 1 — —

Static Power 0.750

PS Static 0.098

PL Static 0.653

Total 3.492
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Chapter 7. Discussion

7.1 Hardware Precision

The current FPGA-based control system for quantum laser control demonstrates proof-of-

concept functionality and lays a foundation for future applications. However, test results

reveal consistent discrepancies between theoretical and measured values. These errors stem

primarily from the rounding mechanism. Figure 3.1 indicates that data and address inputs

in the waveform table memory are floored to the nearest integer, which discards important

fractional components and limits resolution.

Waveforms are generated from predefined tables that are externally computed and then

loaded into the system. This method simplifies on-chip logic and resource management by

avoiding complex dynamic computations. However, using a fixed 16-bit integer represen-

tation introduces quantization errors when multiple write operations produce a complete

waveform. The resulting trade-off between simplicity and precision underscores the limi-

tations of the current design. To improve accuracy, enhanced rounding methods, such as

midpoint rounding or adaptive precision schemes, could reduce truncation errors. Adopt-

ing dynamic waveform generation lowers the data transfer volume. In this approach, only

key parameters—amplitude, frequency, and phase—are specified. The system computes the

complete waveform in real time. This method produces waveforms that more closely match

their theoretical definitions. The reduced data transfer volume also lowers storage and com-

munication overhead.
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7.2 Hardware Error Handling

The system utilizes a basic error detection framework that effectively identifies invalid pa-

rameters from the user. When an error occurs, the system sets a status flag for the controlling

processor to read. However, it relies on a passive notification system rather than active er-

ror recovery. This approach depends entirely on a dedicated software interface to resolve

issues, which can lead to complications if the software is not properly implemented or if user

parameter conversions fail.

The pulse channel’s definition memory assumes waveform parameters are provided in

a consecutive, incrementing order. The hardware lacks a built-in mechanism to verify or

correct this order. The module directly maps the provided address to the memory, which

can lead to data inconsistencies if users do not sequence their parameters correctly. Future

development should introduce a hardware mechanism to enforce cumulative writes of pulse

parameters.

Additionally, permitting users to write to any memory location enhances system flexibility

but also introduces the risk of overlapping writes. Without rigorous external software control

over memory address management, the probability of data overwrites increases. Addressing

this vulnerability in future work at the hardware level helps to maintain system stability and

reliability.
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7.3 Interface Latency

Many user-level interfaces are implemented in Python on a separate PC, requiring UART

serial writes to the hardware system. Each write transmits only 8 bits of data from the host

to the FPGA, resulting in limited throughput and extended read and write times. Tests

show that reading and writing an entire waveform and one pulse configuration each take

an average of three to four seconds. These delays become significant bottlenecks, especially

when the system needs to access memories multiple times during operation.

To mitigate this issue, sophisticated C firmware could replace much of Python’s function-

ality in the future. This firmware would reside on Xilinx’s processing system, fully leveraging

Zynq’s high-speed AXI interface to accelerate data transfers. Instead of relying on Python

functions to relay user parameters, the processing system would accept input directly from a

command-line interface. Users could manually type parameters or design scripts to automate

their entry.
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Chapter 8. Conclusion

In this thesis, a novel laser control system for trapped-ion quantum experiments is intro-

duced and successfully tested, demonstrating a breakthrough design implemented on the

Xilinx Zynq FPGA platform. The system integrates external digital-to-analog converters

to achieve synchronous control over 32 laser channels with a minimum switching time of

10 ns for the precision required in quantum waveform generation. To ensure reliability and

performance, a single pulse channel capable of generating the desired waveform is first de-

veloped and thoroughly evaluated. This prototype is then scaled to the full system through

the incorporation of custom programmable logic blocks. These blocks deliver stable DC

voltage control alongside high-frequency pulsed waveform generation, ensuring versatile and

accurate signal manipulation that meets the stringent demands of quantum experiments.

By leveraging the FPGA’s built-in features, the design attains both high performance and

throughput. This strategic resource utilization guarantees precise hardware timing and max-

imum efficiency, addressing the complex challenges of laser control in trapped-ion systems.

Furthermore, a sophisticated user interface is developed to allow users to focus on designing

experiments rather than managing low-level hardware configurations. Collectively, these in-

tegrated features enhance system responsiveness and scalability, setting the stage for future

innovations in quantum computing hardware.
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