

Quantifying the Efficiency of High-Level Synthesis for
Machine Learning Inference

Caroline Johnson, Scott Hauck, Shih-Chieh Hsu1, Waiz Khan, Matthew Bavier, Oleh
Kondratyuk, Trinh Nguyen, Stephany Ayala-Cerna, Aidan Short, Jan Silva, Anatoliy

Martynyuk, and Geoff Jones
Department of Electrical and Computer Engineering 1Department of Physics

University of Washington
{cjj9, hauck, schsu, wkhan, mbavier , olehkond , nguyetri , sayala , jansilva,

shortap}@uw.edu, anatoliym2@gmail.com, geoffhjones@msn.com

ABSTRACT
High-level synthesis (HLS) offers the promise of simpler and easier
hardware development, but at a cost. In this paper we consider the
application of HLS to machine learning applications, seeking to
quantify the resource and performance costs of this technique
within Vivado HLS and the widely used HLS4ML framework. By
creating carefully optimized SystemVerilog versions of identical
HLS4ML designs, we demonstrate that the HLS designs are very
competitive with hand-optimization techniques.

1 Introduction
High-Level Synthesis (HLS) tools are based on a compelling
premise: a designer expresses the intent of their computation in a
higher-level language, such as C or C++, and automatic software
flows translate these intentions into hardware realizations. However,
this generally does not allow for hand-tuning the implementation,
thus eliminating opportunities for area, power, and performance
improvements. Therefore, the viability of HLS tools depends on a
tradeoff: are the ease-of-use benefits worth the resulting
implementation quality impacts?

It has been previously shown that HLS provides a significantly
faster development time at the cost of the quality of the overall
design [Xu10]. Studies comparing HLS to custom designs reported
that the development time is about 2x - 4.4x faster using HLS as
opposed to doing a custom hardware design [Andre18, Cornu11,
Homsirikamol14, Xu10]. However, this resulted in a quality loss of
roughly 2x due to factors like longer clock periods, significantly
higher resource utilization, etc. [Andre18, Pelcat16, Xu10]. In this
paper we seek to quantify the quality losses in modern HLS tools
within the machine learning (ML) domain.

We focus on hardware implementations of ML algorithms within
the HLS4ML framework [Duarte18]. HLS4ML is a widely used
HLS based ML flow, that automatically translates from MLspecific
design languages such as Keras, PyTorch, and TensorFlow to
FPGA-based implementations via the vendors’ HLS flows, in this
case Vivado HLS. This allows for data scientists and other ML
users, with little or no FPGA-specific expertise, to produce high-
performance hardware implementations. HLS4ML has been used
for a wide range of applications, including high-energy physics
[CMS21, CMS22, Guglielmo20, Hartmann20, Khoda22],
astronomy [Jwa22], quantum computing [Xu22], image processing
and recognition [Aarrestad21, Ghielmetti22, Guglielmo20,

Tarfdar21], superconducting magnets [Hoang21, John21], food
contamination [Ricci21], and ultra-low power inference [Borras22].

To measure the tradeoffs of an HLS-based implementation strategy
we have developed custom Verilog-based implementations of two
HLS4ML applications: a Keras1_Layer model trained on the UCI
Human Activity Recognition dataset [Anguita13], and a
Keras_conv2d model trained on the MNIST handwritten digit
database. These are simple machine learning models, which can be
carefully hand-optimized for an efficient implementation, and
represent core building blocks of larger deep learning models.

We have also verified that the HLS4ML designs (HLS) and our
SystemVerilog (SV) implementations are bit-accurate. Note that
many implementations of neural networks will trade hardware
complexity with computational accuracy (i.e. reduce the floating-
point software implementation to 16-bit fixed-point integers, at a
loss of 2% in recognition accuracy). However, in this paper we are
comparing HLS and SV flows; thus the implementations perform
exactly the same computation using exactly the same numeric
format and produce exactly the same accuracy. In fact, we will use
bitwidth as an independent variable, comparing the two versions at
various bitwidths to help demonstrate some tradeoffs in the
implementation flows.

We compare HLS and SV designs in resource usage and
performance. For performance, we consider both clock period (and
thus throughput, since the initiation intervals are the same in the two
designs), as well as latency of the overall computation. For resource
usage, we need to consider the usage of generic fabric LUTs and
DFFs, as well as hard elements including DSPs and BRAMs. We
will present all resources as the overall percentage of the chip’s
resources used. Finally, to create an overall resource usage metric,
we will use the “max resource usage”, which is the maximum
resource utilization amongst all of the used resource classes. Thus,
if a design uses 10% of the LUTs, 15% of the DFFs, and 25% of
the DSPs, its max resource usage is 25%. Intuitively (and ignoring
that FPGA tools generally never successfully map a 100% resource
utilization design), this means that we could only fit 4 copies of the
design into the FPGA, or could only fit into an FPGA ¼ the size,
since the DSPs would otherwise run out.

We do not have numbers on the relative development time of the
HLS and SV versions, though HLS4ML development is likely even

mailto:anatoliym2@gmail.com

ICCAD ’23, November, 2023, San Francisco, California USA C. Johnson et al.

faster than the order of magnitude improvement in HLS
development time found in [Xu10]. As an unfair comparison, our
SV implementation of our 1-layer model represents roughly 1680
lines of synthesizable code, while the corresponding HLS4ML is
only 210 lines of code. We view this as unfair since we had to
develop the entire SV design from scratch, yet the library elements
embedded in HLS4ML itself are not counted.

2 Background
The Verilog code produced by HLS, as well as our SV
implementation, were both run on Vivado 2020.1. We target the
Xilinx Virtex 709 FPGA. The SV version is written in
SystemVerilog, and compiled with Vivado synthesis, place and
route. The HLS version starts as a Python YAML file with
additional files for configuration, weights and biases. This gets
converted by HLS4ML into C++ code before being built by Vivado
HLS into Verilog code. Using Vivado, the generated Verilog is then
synthesized, placed and routed in the same manner as the SV
version, allowing us to compare reports one-to-one.

3 Our Two Benchmarks
In order to understand the effectiveness of HLS4ML, and ultimately
the Vivado HLS tool, we used two simple neural network models
as our benchmarks – a one layer dense neural network and a two-
dimensional convolutional neural network.

The one layer neural network is a simple dense neural network. It
sequentially processes inputs through four layers: dense, ReLU,
dense, and Sigmoid (Figure 1). Each dense layer performs matrix
multiplication on an input vector and kernel matrix. The output is
then passed through activation functions such as ReLU and
Sigmoid. The ReLU activation layer outputs element-wise
𝑟𝑒𝑙𝑢(𝑥) 	= 	𝑚𝑎𝑥(𝑥, 0). The Sigmoid processes each value in its
input and implements 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) 	= 	1/(1	 + 	𝑒𝑥𝑝(−𝑥)) .The
one layer implementation is fully unrolled, with an initiation
interval of 1. This allows for a new computation to be started every
clock cycle.

Figure 1. The One Layer design.

The second benchmark is a 2D convolutional neural network
(CNN). This algorithm is made up of 4 layers: convolution, ReLU,
dense, and Softmax (Figure 2). The convolution layer utilizes two
3x3 filters being convolved over an 8x8 matrix, thus resulting in
8𝑥8𝑥	2	 = 	128 outputs. Convolution is typically used in image
processing and data recognition due to its ability to go over a large
matrix and analyze the pixels based on the filters provided. Here,
the dense latency layer takes the ReLU output and splits it into 10
groups, representing 10 possible classifications. Finally, the neural
network ends with a Softmax, which converts the classifications
into class probabilities, such that they sum to 1. This is done by
taking the exponentiation of each input and dividing it by the sum
of all of the values, 𝑜𝑢𝑡𝑝𝑢𝑡[𝑖] 	= 	 !

!

∑!!
 .

Figure 2. The CNN Design.

For the CNN, both HLS and SV do not read in the whole input
matrix at once; instead the data is streamed in. This iterative
approach makes it such that one input of a matrix is read in each
clock cycle. For an 8x8 matrix, the convolution layer itself takes 64
clock cycles in total. This will be referred to as the streamed method
and it allows for a much more efficient implementation as the
overall resources for the inputs are significantly lower, as well as
creating a pipelined convolution layer [Lin21]. The convolution is
done in chunks and shift registers will hold onto the data as it passes
through the rows of the kernel.

3.1 Bitwidth and Fixed Point Numbers
All numbers in the benchmarks utilize fixed point 2’s complement
numbers. We will refer to all of our bitwidths in terms of how many
total bits are used. For simplicity, we set the number of fractional
bits to half the total bitwidth, rounded up. For a 16-bit fixed point
number with 8 fractional bits (and thus 7 integer bits plus a 2’s
complement sign bit), the decimal value would be evaluated as the
sum of the bits with the following powers of 2:

 S I I I I I I I F F F F F F F F

Power of 2: <sign> 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8

3.2 Verilog Library
Our SV implementation is highly pipelined to support high
throughput and low latency computations. The primary layers in our
benchmarks contain matrix multiplications. Depending on the
bitwidth, these expensive computations can heavily stress Xilinx’s
multiplication support. There are also non-linear activation
functions: ReLU, SoftMax, and Sigmoid. ReLU is a simple
comparison operation, converting any negative value to zero. For
SoftMax and Sigmoid, which are complex operations involving
division and exponentiation, we use table lookups. These tables are
read in and stored in LUTs or BRAMs.

HLS4ML is generally targeted to applications that use fixed weights,
which are pretrained and compiled into the implementation itself.
While designs may support loading of new weight matrices, this is
typically not done since the implementations can be significantly
optimized and simplified by using fixed constants. To support fixed
weights, we created a Python converter that takes Keras weight files
in plain text and converts them to SystemVerilog constants. We
pass these constants between hardware modules via SystemVerilog
parameters, which allows the compilation tools to perform constant
folding and related optimizations.

3.3 Multiplication Packing
The performance and resource usage of neural networks is highly
reliant upon how well the matrix multiplication is done. Since the
DSPs built into Virtex 7 FPGAs support 25x18 multiplication, it is

ICCAD ’23, November, 2023, San Francisco, California USA C. Johnson et al.

straightforward to handle a single multiplication for up to a bitwidth
of 18 within a single DSP; for smaller bitwidths, they will use that
DSP inefficiently. Therefore we initially explored DSP packing
[Fu17], which is a mechanism to more efficiently support low
bitwidth neural network computations. For small bit widths (<= 8),
it is possible to combine weights via the DSP preadder, with one of
the weights shifted up to higher, normally unused bit positions.
After applying this DSP packing to our one layer model, we found
that this technique did not help. The performance did not change
significantly; for resource usage, since we can only pack relatively
small bitwidths together, it did not help since these multiplications
can instead be easily implemented in LUTs. Thus, forcing low
bitwidth multiplications into DSPs is not a good tradeoff. If there
were to be a design that had spare DSPs then this might be useful,
but not in the case of these neural networks that stress the DSP
usage.

4 Results
We will now go through our results and the different hand-
optimization techniques we utilized on both the one layer and CNN
model, as well as what we learned from the results.

4.1 Initial Results - One Layer model
In Figure 3 we compare SV and HLS implementations of the one
layer model.

 Figure 3. Initial results for SV (solid) and HLS (dashed)
versions of the one-layer model.

While the graphs appear twitchy, with strange irregularities that
expose interesting features of the toolchains which we will discuss
later in the paper, the story is fairly consistent and contradicts our
initial assumptions. The HLS designs outperform the SV designs on
almost all metrics. For bitwidths <= 18 the SV version has a higher
clock rate, by an average of 1.46x, while the two versions have
roughly the same clock rate for >=20 bits. The SV version has a
1.7x worse latency overall, uses roughly 1.76x more DFFs and
1.08x more DSPs, and uses between 1x to 10x the number of LUTs
(excluding the 26 bitwidth). In terms of maximum resource usage,
the area is dominated by fabric resources for up to 10 bits, and DSPs
at most higher bitwidths.

Although we carefully optimized the SV implementation, using
standard hardware optimization techniques, heavy pipelining,
constant folding, and neural network-specific DSP optimizations,
the HLS tools are able to produce better solutions on almost all
metrics. These differences are explainable (including many of the
twitchy values), and there are surprising optimizations in the
Vivado HLS flow that allow it to shine in comparison to best-
practice Verilog hardware design.

4.2 The Missing DSPs
In the graph of DSP utilization in Figure 3, notice that for bitwidths
12 to 22 the HLS versions consistently use a few less DSPs than the
SV versions. This is somewhat strange, since both versions
implement multiplication by simply using their source languages’
“*” operator, and multiplications at those widths should fit easily
into a single DSP block.

The difference is the use of shift-add arithmetic in LUTs for
constant multiplications with “easy” constants. For example,
consider calculating 𝑜𝑢𝑡𝑝𝑢𝑡	 = 	𝑖𝑛𝑝𝑢𝑡	 ∗ 6. We could use a DSP
to implement this, or instead simple compute 𝑜𝑢𝑡𝑝𝑢𝑡	 =
	(𝑖𝑛𝑝𝑢𝑡	 <	< 	2) 	+	(𝑖𝑛𝑝𝑢𝑡	 <	< 	1). Since constant shifts are
essentially free in an FPGA, the replacement of a DSP with an adder
is a smart optimization. As the bitwidth of the constants goes down,
more of the constants are “easy”, and more multiplications are
converted to LUT-based shift-adds.

However, if the two source-codes are just using the “*” operator,
and relying on the Xilinx mapping flow to convert to shift-adds
where appropriate, why is the HLS version using fewer DSPs than
the SV version? The answer is that both the Vivado HLS and the
Xilinx Vivado synthesis tools perform shift-add transformations,
and the HLS tool has a more powerful optimizer.

To test this, we created simple Vivado-HLS and SystemVerilog
designs that performed a single constant multiplication, and
compiled them through the two toolflows. Through this we found
that the HLS tool appears to convert to shift-add any constant
multiplication where the constant is the sum of two powers of two,
in the form “+-(input<<c1)+-(input<<c2)”. For the standard Xilinx
Vivado flow, the conversion appears to be limited to “+-
(input<<c1)+-(input<<c2)” where c1 and c2 are 3 or less, as well as
any single power of two “+-(input<<c)”. This difference, where the
HLS tool has a more powerful conversion optimization than the
main Vivado tools, was quite surprising to us, since this type of

ICCAD ’23, November, 2023, San Francisco, California USA C. Johnson et al.

constant folding and multiplier conversion has been a core
technique for hand designs to FPGAs for decades.

4.3 SystemVerilog Shift-Add
In order to improve the SV version’s DSP usage, we developed our
own constant multiplication module. This unit takes in an input,
plus a constant weight as a parameter, and automatically determines
whether to use shift-add or a standard “*” operation, which is then
converted by Vivado to a DSP. The module, via SystemVerilog
functions and generate statements, iteratively converts 𝑖𝑛𝑝𝑢𝑡	 ∗
	𝑤𝑒𝑖𝑔ℎ𝑡 to ((𝑖𝑛𝑝𝑢𝑡	 <	< 	𝑐1) 	+ 	𝑖𝑛𝑝𝑢𝑡	 ∗ 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟), where c1
is the integer which most reduces the magnitude of the remainder
towards zero. This transformation is applied iteratively, up to
DEPTH times, where DEPTH is a configurable constant. If after
DEPTH applications of the rule, the remainder term is non-zero, the
tool decides that the multiplication should not be done via shift-add,
and instead should use a DSP. For example, DEPTH = 3 can support
“+-(input<<c1)+-(input<<c2)+-(input<<c3)”. DEPTH = 1 will use
shift-add only for powers of 2, and DEPTH = 0 turns off the
optimization completely.

A comparison of the fraction of chip resource usage for various
DEPTH settings is given in Figure 4. There is a steady decrease in
the use of DSPs, and a steady increase in the LUT usage, as the
DEPTH increases. DEPTH = 2 is what HLS is using, but it is clear
that a higher DEPTH gives better results.

Figure 4. Fraction of FPGA resources used vs. DEPTH
parameter for constant multiply. Computed for an overall
bitwidth of 16, on the one-layer benchmark.

4.4 Improved One Layer Results With Manual
Shift-Add
As discussed previously, based on intuition gained from the HLS
version, we mimicked those optimizations in the SV version. This
included a manual shift-add routine with DEPTH=2, and tweaking
of the pipelining of the design to better use DFFs. After these
changes, we began to see the SV design’s resource utilization
converge with the HLS design (Figure 5).

Figure 5. One-layer model results after applying optimizations.

As can be seen from the graphs, there is a transition in behavior at
bitwidths above 24, when the multiplications stop fitting into single
DSPs within our target FPGA; we will consider these high bitwidth
cases below. For bitwidths of 24 or less, the DSP usage is identical
between the HLS and SV implementations. For these cases the SV
version uses on average 2.55x DFFs, and 1.03x LUTs; the clock
speed is 1.54x faster, while the latency is 1.17x worse.

4.5 Multi-DSP Support for High Bitwidths
While the previous optimizations took care of bitwidths of 24 or
less, the results are quite different for bitwidths above this limit.
Given the fact that the DSPs support 25x18 multiplications, this
breakpoint makes some sense. However, why does the HLS version
switch to using pairs of DSPs at high bitwidths, while the SV
version abandons DSPs completely?

Recall that, outside of the “easy” weights that are converted to shift-
adds, both the HLS and SV versions perform multiplication via the
standard “*” in their respective source languages. In fact, the HLS
compiler converts the C-based source code into Verilog which also
uses the Verilog “*”. Yet somehow the HLS version gets converted
into 2 DSPs, while our SV version gets converted to LUTs.

The difference? The HLS code uses the multiplication subroutine
shown in [Khan23]. Although it appears to be basic Verilog without
any special features, this version compiles efficiently at high
bitwidths, and similar versions in Verilog do not. We have
experimented with different SV versions of the multiplication code,
including identical pipelining stages, and have discovered the
following: if we call the HLS-supplied multiplier subroutine in our
SV code, it compiles to DSPs, and if we use the “*” instead, it does
not. Somehow, that HLS subroutine is recognized by Vivado,
which then “does the right thing”.

ICCAD ’23, November, 2023, San Francisco, California USA C. Johnson et al.

When we include this magical multiplication subroutine into our SV
implementation, we get identical results to HLS as can be seen in
[Khan23]. This is solely utilizing DEPTH=2. However, since DSPs
are generally the scarcest FPGA resource for this application,
converting more complex weights to shift-add operations allows us
to better balance between LUTs and DSPs. In Figure 6 we adjust
the DEPTH, per bitwidth, based on maximum resource usage, and
report the results.

Figure 6. Comparison of SV (solid) and HLS (dashed) with
perbitwidth DEPTH tuning. We use DEPTH=3 for bitwidths
11-14, DEPTH=4 for bitwidths 15-24, DEPTH=5 for 25-29, and
DEPTH=6 for 30-32.

On average, the SV version uses 0.23x the number of DSPs, 1.97x
LUTs and 2.69x DFFs; clock speed is 1.49x faster and latency is
1.12x worse. Since DSPs are so scarce a resource, it often made
sense to convert more complex multiplications into LUTs from
DSPs. As a percentage of total FPGA resources used, the greatest
percentage of an FPGA resource any HLS bitwidth used was
19.44% (DSPs) while the greatest percentage of an FPGA resource
any SV bitwidth used was 6.46% (LUTs). On average the SV design
has 0.39x the maximum resource usage of the HLS design. By
adjusting depth, SV is able to shift the implementation resources
between LUTs and DSPs to whichever is more abundant.

5 CNN Implementation
So far, we have presented a comparison of SV and HLS for the one
layer model. Although our initial implementation of the SV model
(which corresponds to “best practice” FPGA hand design)
compared fairly poorly to the HLS design, by learning from the
HLS results we were able to reverse-engineer those optimizations

into the SV version and significantly improve the results.

However, how much do these changes generalize? In this section
we now apply these techniques to the CNN benchmark. The CNN
is a more complex neural network, with significant internal storage
and staging as the convolution kernel is moved across the input
array to produce the final result.

Figure 7. Initial SV (solid) vs HLS (dashed) results for the CNN
benchmark.

Figure 7 has initial graphs displaying the comparison without the
shift-add optimization as explained above. Note that the current
HLS4ML system has a hard constraint of a clock period of at most
5ns. At bitwidths above 20, that constraint is not met. Thus, we
will consider only bitwidths of 20 or lower.

On average the SV version is using 1.38x more DSPs, but has 1.67x
better latency. The HLS version is outperforming our SV version in
clock period by 1.13x. On average the SV design has 0.94x the
maximum resource usage of the HLS design.

After implementing the modifications we discovered for the first
benchmark, we were able to see significant improvement in
resource utilization and performance. Figure 8 shows the results of
this, including a shift-add module with a DEPTH of 3.

Our implementation becomes comparable to the HLS version in
most resources, except we are outperforming in terms of DSPs and
latency, but are using significantly more DFFs. Note that both CNN
designs make use of SRL 16s to buffer data through the convolution
layer; these are accounted for in the LUT usage. Compared to the
HLS system, on average we used 0.58x DSPs, and achieved a 1.21x

ICCAD ’23, November, 2023, San Francisco, California USA C. Johnson et al.

faster clock period. Our latency continued to be better than HLS’s:
initially our design was 1.19x faster, and in the second
implementation it became 1.62x times faster. However, our design
becomes even more DFF-dominated, such that our max resource
usage grows to 1.25x that of the HLS design. This is due to the shift
from DSPs to FFs and LUTs, and that the HLS design uses SRLs to
buffer data between the layers, while the SV versions use DFFs.

Figure 8. Comparison of final SV (solid) and HLS (dashed)
results for the CNN benchmark.

7 Conclusion

For the application domain of latency-sensitive deep learning
applications, HLS can provide implementations that are very
competitive with hand designs, to the point where hand-optimizing
any but the most critical designs seems to be of limited
utility. HLS4ML's high performance and resource usage leverages
the high quality results from the Vivado HLS tool. Hand design
may not be dead everywhere, but it is quite suspect in at least this
domain, and promotes the general use of the Vivado HLS tool.Will
these results hold true with larger more complex models with
varying parameters? With initial exploration of more complex
designs, we see that HLS4ML has worse performance and resource
usage when varying convolution reuse factor and stride length, in
terms of resource usage but especially in terms of the initiation
interval. It appears that the Vivado HLS tool may not be able to
compete with the more advanced layers, but HLS4ML can leverage
the strengths of Vivado HLS as seen in these simpler layers to make
it so all of their layers are as optimal as can be [Johnson23].

References
[Aarrestad21] Aarrestad, Thea, et al. 2021. Fast convolutional neural networks on

FPGAs with hls4ml. Machine Learning: Science and Technology 2.4 (2021):
045015. arXiv:2101.05108

[Altoyan20] W. Altoyan and J. J. Alonso. 2020. Investigating Performance Losses in
High-Level Synthesis for Stencil Computations, 2020 IEEE 28th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2020, pp. 195-203, doi: 10.1109/FCCM48280.2020.00034.

[Andre18] Tétrault Marc-André. 2018. Two FPGA Case Studies Comparing High
Level Synthesis and Manual HDL for HEP Applications.

[Anguita13] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L.
Reyes-Ortiz. 2013. A Public Domain Dataset for Human Activity Recognition
Using Smartphones. 21th European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, ESANN 2013. Bruges,
Belgium 24-26 April 2013.

[Bailey15] Bailey. 2015. The advantages and limitations of high level synthesis for
FPGA based image processing. Proceedings of the 9th International Conference
on Distributed Smart Cameras, 134–139.

[Borras22] Borras, Hendrik, et al. 2022. Open-source FPGA-ML codesign for the
MLPerf Tiny Benchmark. arXiv preprint arXiv:2206.11791 (2022).

[CMS21] CMS Collaboration. 2021. The CMS Level-1 Endcap Muon Trigger at the
High-Luminosity LHC, April 2021, https://doi.org/10.22323/1.390.0890

[CMS22] CMS Collaboration. 2022. Neural network-based algorithm for the
identification of bottom quarks in the CMS Phase-2 Level-1 trigger, June 2022,
CMS-DP-2022-021, https://cds.cern.ch/record/2814728.

[Cornu11] Cornu, Alexandre, Steven Derrien, and Dominique Lavenier. 2011. HLS
Tools for FPGA: Faster Development with Better Performance. In Reconfigurable
Computing: Architectures, Tools and Applications, 67–78, 2011. Berlin,
Heidelberg: Springer Berlin Heidelberg, n.d. doi:10.1007/978-3-642-19475-7_8.

[Duarte18] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis, J. Ngadiuba,
M. Pierini, R. Rivera, N. Tran, Z. Wu. 2018. Fast inference of deep neural
networks in FPGAs for particle physics. Journal of Instrumentation 13 (2018),
P07027. https://doi.org/10.1088/1748-0221/13/07/P07027 arXiv:1804.06913

[Fu17] Y. Fu, E. Wu, A. Sirasao, S. Attia, K. Khan, and R. Wittig. 2017. Deep Learning
with INT8 Optimization on Xilinx Devices, docs.xilinx.com, Apr. 24, 2017.
https://docs.xilinx.com/v/u/en-US/wp486-deep-learning-int8.

[Ghielmetti22] Ghielmetti, Nicol , et al. 2022. Real-time semantic segmentation on
FPGAs for autonomous vehicles with hls4ml. arXiv preprint arXiv:2205.07690
(2022).

[Guglielmo20]Di Guglielmo, Giuseppe, et al. 2020. Compressing deep neural networks
on FPGAs to binary and ternary precision with hls4ml. arXiv preprint
arXiv:2003.06308 (2020).

[Hartmann20] F. Hartmann and A. Ball. 2021. The Phase-2 Upgrade of the CMS Level-
1 Trigger, CERN Document Server. https://cds.cern.ch/record/2714892? ln=en

[Hoang21] D. Hoang et al., Intelliquench. 2021. An Adaptive Machine Learning
System for Detection of Superconducting Magnet Quenches, in IEEE
Transactions on Applied Superconductivity, vol. 31, no. 5, pp. 1-5, Aug. 2021,
Art no. 4900805, doi: 10.1109/TASC.2021.3058229.

[Homsirikamol14] E. Homsirikamol and K. Gaj. 2014. Can high-level synthesis
compete against a hand-written code in the cryptographic domain? A case study,
2014 International Conference on ReConFigurable Computing and FPGAs
(ReConFig14), 2014, pp. 1-8, doi: 10.1109/ReConFig.2014.7032504.

[John21] John, Jason St, et al. 2021. Real-time artificial intelligence for accelerator
control: a study at the fermilab booster. Physical Review Accelerators and

Beams 24.10 (2021): 104601. https://journals.aps.org/prab/abstract/10.1103/
PhysRevAccelBeams.24.104601
[Johnson23] Johnson, Caroline, et al. 2023. Evaluating the Quality of HLS4ML’s Basic

Neural Network Implementations on FPGAs.
[Jwa22] Jwa, Yeon-jae, et al. 2022. Real-time Inference with 2D Convolutional Neural

Networks on Field Programmable Gate Arrays for High-rate Particle Imaging
Detectors. Frontiers in Artificial Intelligence 5 (2022). doi: 10.48550/
arXiv.2201.05638

[Khoda22] Khoda, Elham E and Rankin, Dylan and de Lima, Rafael Teixeira and
Harris, Philip and Hauck, Scott and Hsu, Shih-Chieh and Kagan, Michael and
Loncar, Vladimir and Paikara, Chaitanya and Rao, Richa and Summers, Sioni and
Vernieri, Caterina and Wang, Aaron. 2022. Ultra-low latency recurrent neural
network inference on FPGAs for physics applications with hls4ml, arXiv, 2022,
https://arxiv.org/abs/2207.00559.

[Lin21] Kelvin Lin. 2021. Convolutional Layer Implementations in High-Level
Synthesis for FPGAs, M.S. Thesis, University of Washington, Dept. of ECE,
2021.

[Khan23] Waiz Khan, Caroline Johnson, Scott Hauck, Shih-Chieh Hsu, Geoff
Jones, "Benchmarking High Level Synthesis for Machine Learning
Implementations versus Hand-optimized SystemVerilog", A3D3 High-
Throughput AI Methods and Infrastructure Workshop, 2023.

[Pappalardo22] Pappalardo, Alessandro, et al. QONNX. 2022. Representing Arbitrary-
Precision Quantized Neural Networks. arXiv preprint arXiv:2206.07527 (2022).

https://arxiv.org/abs/2101.05108
https://doi.org/10.22323/1.390.0890
https://cds.cern.ch/record/2814728
https://cds.cern.ch/record/2814728
https://docs.xilinx.com/v/u/en-US/wp486-deep-learning-int8
https://cds.cern.ch/record/2714892?ln=en
https://cds.cern.ch/record/2714892?ln=en
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.104601
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.104601
https://doi.org/10.48550/arXiv.2201.05638
https://doi.org/10.48550/arXiv.2201.05638
https://doi.org/10.48550/arXiv.2201.05638
https://doi.org/10.48550/arXiv.2201.05638
https://arxiv.org/abs/2207.00559
https://arxiv.org/abs/2207.00559
https://people.ece.uw.edu/hauck/publications/VerilogNN_A3D3Poster.pdf
https://people.ece.uw.edu/hauck/publications/VerilogNN_A3D3Poster.pdf

ICCAD ’23, November, 2023, San Francisco, California USA C. Johnson et al.

[Pelcat16] M. Pelcat, C. Bourrasset, L. Maggiani and F. Berry. 2016. Design
productivity of a high level synthesis compiler versus HDL. International
Conference on Embedded Computer Systems: Architectures, Modeling and
Simulation (SAMOS), 2016, pp. 140-147, doi: 10.1109/SAMOS.2016.7818341.

[Ricci21] M. Ricci et al. 2021. Machine-Learning-Based Microwave Sensing: A Case
Study for the Food Industry, in IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 11, no. 3, pp. 503-514, Sept. 2021, doi: 10.1109/
JETCAS.2021.3097699.

[Tarafdar21] Tarafdar, Naif and Di Guglielmo, Giuseppe and Harris, Philip C and
Krupa, Jeffrey D and Loncar, Vladimir and Rankin, Dylan S and Tran, Nhan and
Wu, Zhenbin and Shen, Qianfeng and Chow, Paul, AIgean. 2021. An open
framework for deploying machine learning on heterogeneous clusters, ACM
Transactions on Reconfigurable Technology and Systems (TRETS), Vol. 15, No.
3, Pp 1-32, 2021.

[Xilinx18] Xilinx, Inc. 2018. 7 Series DSP48E1 Slice. User Guide. https://
docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1

[Xu10] J. Xu, N. Subramanian, A. Alessio and S. Hauck. 2010. Impulse C vs. VHDL
for Accelerating Tomographic Reconstruction, 2010 18th IEEE Annual
International Symposium on Field-Programmable Custom Computing Machines,
2010, pp. 171-174, doi: 10.1109/FCCM.2010.33.

[Xu22] Xu, David, et al. 2022. Neural network accelerator for quantum control.
arXiv preprint arXiv:2208.02645 (2022)

https://docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1
https://docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1
https://docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1

