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ABSTRACT  
High-level synthesis (HLS) offers the promise of simpler and easier 
hardware development, but at a cost.  In this paper we consider the 
application of HLS to machine learning applications, seeking to 
quantify the resource and performance costs of this technique 
within Vivado HLS and the widely used HLS4ML framework.  By 
creating carefully optimized SystemVerilog versions of identical 
HLS4ML designs, we demonstrate that the HLS designs are very 
competitive with hand-optimization techniques.  

1 Introduction 
High-Level Synthesis (HLS) tools are based on a compelling 
premise: a designer expresses the intent of their computation in a 
higher-level language, such as C or C++, and automatic software 
flows translate these intentions into hardware realizations. However, 
this generally does not allow for hand-tuning the implementation, 
thus eliminating opportunities for area, power, and performance 
improvements. Therefore, the viability of HLS tools depends on a 
tradeoff: are the ease-of-use benefits worth the resulting 
implementation quality impacts?  

It has been previously shown that HLS provides a significantly 
faster development time at the cost of the quality of the overall 
design [Xu10]. Studies comparing HLS to custom designs reported 
that the development time is about 2x - 4.4x faster using HLS as 
opposed to doing a custom hardware design [Andre18, Cornu11, 
Homsirikamol14, Xu10]. However, this resulted in a quality loss of 
roughly 2x due to factors like longer clock periods, significantly 
higher resource utilization, etc. [Andre18, Pelcat16, Xu10]. In this 
paper we seek to quantify the quality losses in modern HLS tools 
within the machine learning (ML) domain.  

We focus on hardware implementations of ML algorithms within 
the HLS4ML framework [Duarte18]. HLS4ML is a widely used 
HLS based ML flow, that automatically translates from MLspecific 
design languages such as Keras, PyTorch, and TensorFlow to 
FPGA-based implementations via the vendors’ HLS flows, in this 
case Vivado HLS. This allows for data scientists and other ML 
users, with little or no FPGA-specific expertise, to produce high-
performance hardware implementations.  HLS4ML has been used 
for a wide range of applications, including high-energy physics 
[CMS21, CMS22, Guglielmo20, Hartmann20, Khoda22], 
astronomy [Jwa22], quantum computing [Xu22], image processing 
and recognition [Aarrestad21, Ghielmetti22, Guglielmo20, 

Tarfdar21], superconducting magnets [Hoang21, John21], food 
contamination [Ricci21], and ultra-low power inference [Borras22].  

To measure the tradeoffs of an HLS-based implementation strategy 
we have developed custom Verilog-based implementations of two 
HLS4ML applications: a Keras1_Layer model trained on the UCI 
Human Activity Recognition dataset [Anguita13], and a 
Keras_conv2d model trained on the MNIST handwritten digit 
database. These are simple machine learning models, which can be 
carefully hand-optimized for an efficient implementation, and 
represent core building blocks of larger deep learning models.  

We have also verified that the HLS4ML designs (HLS) and our 
SystemVerilog (SV) implementations are bit-accurate.  Note that 
many implementations of neural networks will trade hardware 
complexity with computational accuracy (i.e. reduce the floating-
point software implementation to 16-bit fixed-point integers, at a 
loss of 2% in recognition accuracy).  However, in this paper we are 
comparing HLS and SV flows; thus the implementations perform 
exactly the same computation using exactly the same numeric 
format and produce exactly the same accuracy. In fact, we will use 
bitwidth as an independent variable, comparing the two versions at 
various bitwidths to help demonstrate some tradeoffs in the 
implementation flows.   

We compare HLS and SV designs in resource usage and 
performance. For performance, we consider both clock period (and 
thus throughput, since the initiation intervals are the same in the two 
designs), as well as latency of the overall computation. For resource 
usage, we need to consider the usage of generic fabric LUTs and 
DFFs, as well as hard elements including DSPs and BRAMs.  We 
will present all resources as the overall percentage of the chip’s 
resources used. Finally, to create an overall resource usage metric, 
we will use the “max resource usage”, which is the maximum 
resource utilization amongst all of the used resource classes.  Thus, 
if a design uses 10% of the LUTs, 15% of the DFFs, and 25% of 
the DSPs, its max resource usage is 25%. Intuitively (and ignoring 
that FPGA tools generally never successfully map a 100% resource 
utilization design), this means that we could only fit 4 copies of the 
design into the FPGA, or could only fit into an FPGA ¼ the size, 
since the DSPs would otherwise run out.  

We do not have numbers on the relative development time of the 
HLS and SV versions, though HLS4ML development is likely even 

mailto:anatoliym2@gmail.com


ICCAD ’23, November, 2023, San Francisco, California USA             C. Johnson et al. 

faster than the order of magnitude improvement in HLS 
development time found in [Xu10]. As an unfair comparison, our 
SV implementation of our 1-layer model represents roughly 1680 
lines of synthesizable code, while the corresponding HLS4ML is 
only 210 lines of code.  We view this as unfair since we had to 
develop the entire SV design from scratch, yet the library elements 
embedded in HLS4ML itself are not counted.  

2 Background  
The Verilog code produced by HLS, as well as our SV 
implementation, were both run on Vivado 2020.1. We target the 
Xilinx Virtex 709 FPGA.  The SV version is written in 
SystemVerilog, and compiled with Vivado synthesis, place and 
route. The HLS version starts as a Python YAML file with 
additional files for configuration, weights and biases. This gets 
converted by HLS4ML into C++ code before being built by Vivado 
HLS into Verilog code. Using Vivado, the generated Verilog is then 
synthesized, placed and routed in the same manner as the SV 
version, allowing us to compare reports one-to-one. 

3 Our Two Benchmarks  
In order to understand the effectiveness of HLS4ML, and ultimately 
the Vivado HLS tool, we used two simple neural network models 
as our benchmarks – a one layer dense neural network and a two-
dimensional convolutional neural network.  

The one layer neural network is a simple dense neural network. It 
sequentially processes inputs through four layers: dense, ReLU, 
dense, and Sigmoid (Figure 1). Each dense layer performs matrix 
multiplication on an input vector and kernel matrix. The output is 
then passed through activation functions such as ReLU and 
Sigmoid. The ReLU activation layer outputs element-wise 
𝑟𝑒𝑙𝑢(𝑥) 	= 	𝑚𝑎𝑥(𝑥, 0). The Sigmoid processes each value in its 
input and implements 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) 	= 	1/(1	 + 	𝑒𝑥𝑝(−𝑥)) .The 
one layer implementation is fully unrolled, with an initiation 
interval of 1. This allows for a new computation to be started every 
clock cycle.  

 

Figure 1.  The One Layer design.  

The second benchmark is a 2D convolutional neural network 
(CNN).  This algorithm is made up of 4 layers: convolution, ReLU, 
dense, and Softmax (Figure 2). The convolution layer utilizes two 
3x3 filters being convolved over an 8x8 matrix, thus resulting in 
8𝑥8𝑥	2	 = 	128 outputs. Convolution is typically used in image 
processing and data recognition due to its ability to go over a large 
matrix and analyze the pixels based on the filters provided. Here, 
the dense latency layer takes the ReLU output and splits it into 10 
groups, representing 10 possible classifications. Finally, the neural 
network ends with a Softmax, which converts the classifications 
into class probabilities, such that they sum to 1. This is done by 
taking the exponentiation of each input and dividing it by the sum 
of all of the values, 𝑜𝑢𝑡𝑝𝑢𝑡[𝑖] 	= 	 !

!

∑!!
 . 

 

Figure 2. The CNN Design. 

For the CNN, both HLS and SV do not read in the whole input 
matrix at once; instead the data is streamed in.  This iterative 
approach makes it such that one input of a matrix is read in each 
clock cycle. For an 8x8 matrix, the convolution layer itself takes 64 
clock cycles in total. This will be referred to as the streamed method 
and it allows for a much more efficient implementation as the 
overall resources for the inputs are significantly lower, as well as 
creating a pipelined convolution layer [Lin21]. The convolution is 
done in chunks and shift registers will hold onto the data as it passes 
through the rows of the kernel.  

3.1 Bitwidth and Fixed Point Numbers 
All numbers in the benchmarks utilize fixed point 2’s complement 
numbers. We will refer to all of our bitwidths in terms of how many 
total bits are used. For simplicity, we set the number of fractional 
bits to half the total bitwidth, rounded up. For a 16-bit fixed point 
number with 8 fractional bits (and thus 7 integer bits plus a 2’s 
complement sign bit), the decimal value would be evaluated as the 
sum of the bits with the following powers of 2:  

                          S         I  I  I  I  I  I  I   F   F    F   F   F   F   F   F  

Power of 2:   <sign>    6  5 4 3  2 1 0  -1  -2  -3  -4  -5  -6  -7  -8   

3.2 Verilog Library 
Our SV implementation is highly pipelined to support high 
throughput and low latency computations. The primary layers in our 
benchmarks contain matrix multiplications. Depending on the 
bitwidth, these expensive computations can heavily stress Xilinx’s 
multiplication support. There are also non-linear activation 
functions: ReLU, SoftMax, and Sigmoid. ReLU is a simple 
comparison operation, converting any negative value to zero.  For 
SoftMax and Sigmoid, which are complex operations involving 
division and exponentiation, we use table lookups. These tables are 
read in and stored in LUTs or BRAMs.  

HLS4ML is generally targeted to applications that use fixed weights, 
which are pretrained and compiled into the implementation itself.  
While designs may support loading of new weight matrices, this is 
typically not done since the implementations can be significantly 
optimized and simplified by using fixed constants. To support fixed 
weights, we created a Python converter that takes Keras weight files 
in plain text and converts them to SystemVerilog constants. We 
pass these constants between hardware modules via SystemVerilog 
parameters, which allows the compilation tools to perform constant 
folding and related optimizations.  

3.3 Multiplication Packing 
The performance and resource usage of neural networks is highly 
reliant upon how well the matrix multiplication is done. Since the 
DSPs built into Virtex 7 FPGAs support 25x18 multiplication, it is 
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straightforward to handle a single multiplication for up to a bitwidth 
of 18 within a single DSP; for smaller bitwidths, they will use that 
DSP inefficiently. Therefore we initially explored DSP packing 
[Fu17], which is a mechanism to more efficiently support low 
bitwidth neural network computations. For small bit widths (<= 8), 
it is possible to combine weights via the DSP preadder, with one of 
the weights shifted up to higher, normally unused bit positions. 
After applying this DSP packing to our one layer model, we found 
that this technique did not help. The performance did not change 
significantly; for resource usage, since we can only pack relatively 
small bitwidths together, it did not help since these multiplications 
can instead be easily implemented in LUTs.  Thus, forcing low 
bitwidth multiplications into DSPs is not a good tradeoff.  If there 
were to be a design that had spare DSPs then this might be useful, 
but not in the case of these neural networks that stress the DSP 
usage.   

4 Results 
We will now go through our results and the different hand-
optimization techniques we utilized on both the one layer and CNN 
model, as well as what we learned from the results.  

4.1 Initial Results - One Layer model 
In Figure 3 we compare SV and HLS implementations of the one 
layer model.  

 

 

 Figure 3. Initial results for SV (solid) and HLS (dashed) 
versions of the one-layer model.  

While the graphs appear twitchy, with strange irregularities that 
expose interesting features of the toolchains which we will discuss 
later in the paper, the story is fairly consistent and contradicts our 
initial assumptions. The HLS designs outperform the SV designs on 
almost all metrics.  For bitwidths <= 18 the SV version has a higher 
clock rate, by an average of 1.46x, while the two versions have 
roughly the same clock rate for >=20 bits.  The SV version has a 
1.7x worse latency overall, uses roughly 1.76x more DFFs and 
1.08x more DSPs, and uses between 1x to 10x the number of LUTs 
(excluding the 26 bitwidth).  In terms of maximum resource usage, 
the area is dominated by fabric resources for up to 10 bits, and DSPs 
at most higher bitwidths.  

Although we carefully optimized the SV implementation, using 
standard hardware optimization techniques, heavy pipelining, 
constant folding, and neural network-specific DSP optimizations, 
the HLS tools are able to produce better solutions on almost all 
metrics. These differences are explainable (including many of the 
twitchy values), and there are surprising optimizations in the 
Vivado HLS flow that allow it to shine in comparison to best-
practice Verilog hardware design.  

4.2 The Missing DSPs 
In the graph of DSP utilization in Figure 3, notice that for bitwidths 
12 to 22 the HLS versions consistently use a few less DSPs than the 
SV versions. This is somewhat strange, since both versions 
implement multiplication by simply using their source languages’ 
“*” operator, and multiplications at those widths should fit easily 
into a single DSP block.  

The difference is the use of shift-add arithmetic in LUTs for 
constant multiplications with “easy” constants.  For example, 
consider calculating 𝑜𝑢𝑡𝑝𝑢𝑡	 = 	𝑖𝑛𝑝𝑢𝑡	 ∗ 6.  We could use a DSP 
to implement this, or instead simple compute 𝑜𝑢𝑡𝑝𝑢𝑡	 =
	(𝑖𝑛𝑝𝑢𝑡	 <	< 	2) 	+	(𝑖𝑛𝑝𝑢𝑡	 <	< 	1).  Since constant shifts are 
essentially free in an FPGA, the replacement of a DSP with an adder 
is a smart optimization.  As the bitwidth of the constants goes down, 
more of the constants are “easy”, and more multiplications are 
converted to LUT-based shift-adds.  

However, if the two source-codes are just using the “*” operator, 
and relying on the Xilinx mapping flow to convert to shift-adds 
where appropriate, why is the HLS version using fewer DSPs than 
the SV version? The answer is that both the Vivado HLS and the 
Xilinx Vivado synthesis tools perform shift-add transformations, 
and the HLS tool has a more powerful optimizer.  

To test this, we created simple Vivado-HLS and SystemVerilog 
designs that performed a single constant multiplication, and 
compiled them through the two toolflows. Through this we found 
that the HLS tool appears to convert to shift-add any constant 
multiplication where the constant is the sum of two powers of two, 
in the form “+-(input<<c1)+-(input<<c2)”.  For the standard Xilinx 
Vivado flow, the conversion appears to be limited to “+-
(input<<c1)+-(input<<c2)” where c1 and c2 are 3 or less, as well as 
any single power of two “+-(input<<c)”.  This difference, where the 
HLS tool has a more powerful conversion optimization than the 
main Vivado tools, was quite surprising to us, since this type of 
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constant folding and multiplier conversion has been a core 
technique for hand designs to FPGAs for decades.  

4.3 SystemVerilog Shift-Add 
In order to improve the SV version’s DSP usage, we developed our 
own constant multiplication module. This unit takes in an input, 
plus a constant weight as a parameter, and automatically determines 
whether to use shift-add or a standard “*” operation, which is then 
converted by Vivado to a DSP. The module, via SystemVerilog 
functions and generate statements, iteratively converts 𝑖𝑛𝑝𝑢𝑡	 ∗
	𝑤𝑒𝑖𝑔ℎ𝑡 to ((𝑖𝑛𝑝𝑢𝑡	 <	< 	𝑐1) 	+ 	𝑖𝑛𝑝𝑢𝑡	 ∗ 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟), where c1 
is the integer which most reduces the magnitude of the remainder 
towards zero. This transformation is applied iteratively, up to 
DEPTH times, where DEPTH is a configurable constant.  If after 
DEPTH applications of the rule, the remainder term is non-zero, the 
tool decides that the multiplication should not be done via shift-add, 
and instead should use a DSP. For example, DEPTH = 3 can support 
“+-(input<<c1)+-(input<<c2)+-(input<<c3)”. DEPTH = 1 will use 
shift-add only for powers of 2, and DEPTH = 0 turns off the 
optimization completely.  

A comparison of the fraction of chip resource usage for various 
DEPTH settings is given in Figure 4. There is a steady decrease in 
the use of DSPs, and a steady increase in the LUT usage, as the 
DEPTH increases. DEPTH = 2  is what HLS is using, but it is clear 
that a higher DEPTH gives better results.  

Figure 4. Fraction of FPGA resources used vs. DEPTH 
parameter for constant multiply.  Computed for an overall 
bitwidth of 16, on the one-layer benchmark.  

4.4 Improved One Layer Results With Manual 
Shift-Add 
As discussed previously, based on intuition gained from the HLS 
version, we mimicked those optimizations in the SV version. This 
included a manual shift-add routine with DEPTH=2, and tweaking 
of the pipelining of the design to better use DFFs. After these 
changes, we began to see the SV design’s resource utilization 
converge with the HLS design (Figure 5).  

 

 

Figure 5. One-layer model results after applying optimizations.  

As can be seen from the graphs, there is a transition in behavior at 
bitwidths above 24, when the multiplications stop fitting into single 
DSPs within our target FPGA; we will consider these high bitwidth 
cases below. For bitwidths of 24 or less, the DSP usage is identical 
between the HLS and SV implementations. For these cases the SV 
version uses on average 2.55x DFFs, and 1.03x LUTs; the clock 
speed is 1.54x faster, while the latency is 1.17x worse.  

4.5 Multi-DSP Support for High Bitwidths 
While the previous optimizations took care of bitwidths of 24 or 
less, the results are quite different for bitwidths above this limit. 
Given the fact that the DSPs support 25x18 multiplications, this 
breakpoint makes some sense. However, why does the HLS version 
switch to using pairs of DSPs at high bitwidths, while the SV 
version abandons DSPs completely?  

Recall that, outside of the “easy” weights that are converted to shift-
adds, both the HLS and SV versions perform multiplication via the 
standard “*” in their respective source languages.  In fact, the HLS 
compiler converts the C-based source code into Verilog which also 
uses the Verilog “*”. Yet somehow the HLS version gets converted 
into 2 DSPs, while our SV version gets converted to LUTs.  

The difference? The HLS code uses the multiplication subroutine 
shown in [Khan23]. Although it appears to be basic Verilog without 
any special features, this version compiles efficiently at high 
bitwidths, and similar versions in Verilog do not.  We have 
experimented with different SV versions of the multiplication code, 
including identical pipelining stages, and have discovered the 
following: if we call the HLS-supplied multiplier subroutine in our 
SV code, it compiles to DSPs, and if we use the “*” instead, it does 
not.  Somehow, that HLS subroutine is recognized by Vivado, 
which then “does the right thing”.  
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When we include this magical multiplication subroutine into our SV 
implementation, we get identical results to HLS as can be seen in 
[Khan23]. This is solely utilizing DEPTH=2. However, since DSPs 
are generally the scarcest FPGA resource for this application, 
converting more complex weights to shift-add operations allows us 
to better balance between LUTs and DSPs. In Figure 6 we adjust 
the DEPTH, per bitwidth, based on maximum resource usage, and 
report the results.   
 

 

 
 
Figure 6. Comparison of SV (solid) and HLS (dashed) with 
perbitwidth DEPTH tuning.  We use DEPTH=3 for bitwidths 
11-14, DEPTH=4 for bitwidths 15-24, DEPTH=5 for 25-29, and 
DEPTH=6 for 30-32.   
 
On average, the SV version uses 0.23x the number of DSPs, 1.97x 
LUTs and 2.69x DFFs; clock speed is 1.49x faster and latency is 
1.12x worse. Since DSPs are so scarce a resource, it often made 
sense to convert more complex multiplications into LUTs from 
DSPs. As a percentage of total FPGA resources used, the greatest 
percentage of an FPGA resource any HLS bitwidth used was 
19.44% (DSPs) while the greatest percentage of an FPGA resource 
any SV bitwidth used was 6.46% (LUTs). On average the SV design 
has 0.39x the maximum resource usage of the HLS design.  By 
adjusting depth, SV is able to shift the implementation resources 
between LUTs and DSPs to whichever is more abundant.  
 
5 CNN Implementation  
So far, we have presented a comparison of SV and HLS for the one 
layer model.  Although our initial implementation of the SV model 
(which corresponds to “best practice” FPGA hand design) 
compared fairly poorly to the HLS design, by learning from the 
HLS results we were able to reverse-engineer those optimizations 

into the SV version and significantly improve the results.  
 
However, how much do these changes generalize?  In this section 
we now apply these techniques to the CNN benchmark.  The CNN 
is a more complex neural network, with significant internal storage 
and staging as the convolution kernel is moved across the input 
array to produce the final result.   

 

Figure 7. Initial SV (solid) vs HLS (dashed) results for the CNN 
benchmark.  
 
Figure 7 has initial graphs displaying the comparison without the 
shift-add optimization as explained above. Note that the current 
HLS4ML system has a hard constraint of a clock period of at most 
5ns.  At bitwidths above 20, that constraint is not met.  Thus, we 
will consider only bitwidths of 20 or lower.   
 
On average the SV version is using 1.38x more DSPs, but has 1.67x 
better latency. The HLS version is outperforming our SV version in 
clock period by 1.13x.  On average the SV design has 0.94x the 
maximum resource usage of the HLS design.   
 
After implementing the modifications we discovered for the first 
benchmark, we were able to see significant improvement in 
resource utilization and performance. Figure 8 shows the results of 
this, including a shift-add module with a DEPTH of 3. 

Our implementation becomes comparable to the HLS version in 
most resources, except we are outperforming in terms of DSPs and 
latency, but are using significantly more DFFs. Note that both CNN 
designs make use of SRL 16s to buffer data through the convolution 
layer; these are accounted for in the LUT usage. Compared to the 
HLS system, on average we used 0.58x DSPs, and achieved a 1.21x 
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faster clock period. Our latency continued to be better than HLS’s: 
initially our design was 1.19x faster, and in the second 
implementation it became 1.62x times faster. However, our design 
becomes even more DFF-dominated, such that our max resource 
usage grows to 1.25x that of the HLS design. This is due to the shift 
from DSPs to FFs and LUTs, and that the HLS design uses SRLs to 
buffer data between the layers, while the SV versions use DFFs.    
 

 

 
 
Figure 8. Comparison of final SV (solid) and HLS (dashed) 
results for the CNN benchmark.   
 
7 Conclusion  
 
For the application domain of latency-sensitive deep learning 
applications, HLS can provide implementations that are very 
competitive with hand designs, to the point where hand-optimizing 
any but the most critical designs seems to be of limited 
utility.  HLS4ML's high performance and resource usage leverages 
the high quality results from the Vivado HLS tool.  Hand design 
may not be dead everywhere, but it is quite suspect in at least this 
domain, and promotes the general use of the Vivado HLS tool.Will 
these results hold true with larger more complex models with 
varying parameters? With initial exploration of more complex 
designs, we see that HLS4ML has worse performance and resource 
usage when varying convolution reuse factor and stride length, in 
terms of resource usage but especially in terms of the initiation 
interval. It appears that the Vivado HLS tool may not be able to 
compete with the more advanced layers, but HLS4ML can leverage 
the strengths of Vivado HLS as seen in these simpler layers to make 
it so all of their layers are as optimal as can be [Johnson23]. 
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