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1. Introduction 

In the previous work ULTRA-LOW LATENCY RECURRENT NEURAL 

NETWORK INFERENCE ON FPGAS FOR PHYSICS APPLICATIONS WITH 

HLS4ML, we convert three RNN models in hls4ml and estimate its performance 

and resource usage on FPGA. During the conversion, we introduce a process 

called quantization. “The weights and biases in trained models are typically 

stored with 32-bit floating-point precision. However, 32-bit 188 floating-point 

calculations are often not required for optimal network inference and are costly to 

implement on FPGAs. Other quantization techniques can offer more efficient 

ways of compressing neural networks by reducing the number of bits used to 

represent the weights and biases, ideally with no or minimal loss in 

performance.” 

 
The quantization we did in previous work is called posted training quantization, 

which is the process of quantizing the whole keras model after it is trained. Post 

training quantization process is embedded in hls4ml process but it is less 

accurate in same number of bits compared to quantization aware training. In this 

paper, we focus on doing quantization aware training for the keras RNN model 

and fit the quantized model into our hls4ml workflow. Therefore we implement a 

workflow from floating point machine learning model to quantized machine 

learning model to hls4ml.  

 

 

2. Qkeras (can highlight autoqkeras) 
Qkeras is a quantization extension to Keras that provides a drop-in replacement 

for some of the Keras layers. In this project, we use Qkeras to replace all of the 

layers in our RNN model with quantized layer and train the Qkeras model(which 

is how we do quantization aware training). The way Qkeras does quantization is 

to add a quantized layer after each original layer. Therefore for qkeras model, it 



is not fully running at fixed point numbers. Most of the calculation for each layer 

is still running at floating point numbers but after the calculation, the layer will 

quantize the output of each layer into fixed point numbers. 

 
 When it comes to bits selection, we are now trying all the possible bits 

combinations and find the sweet point where using the least number of bits to 

achieve comparable accuracy (above 95% of the Keras model accuracy). We did 

this because we want to make the bit selection through our whole model 

consistent.  

However, Qkeras also offers a feature called autoqkeras. By using autoqkeras, it 

will help us to find the most suitable bits for quantization but this will cause each 

layer of the model using different bits for quantization. Also using autoqkeras is 

more time-consuming and requires more calculation resources.  

 

 

3. Implemented Details  
Right now the hls4ml still not support qkeras model directly. However we can 

stilluse the quantized model in hls4ml by loading the weight of qkeras model 

back into the original keras model and convert the keras model into hls4ml. 

 

 

4. Performance 
4.1 Models 

The 3 models we selected as demonstrations are the Top Quark Tagging 

model, Jet Flavor Tagging model, and Quick Draw model.  

Top quark tagging models utilize deep learning algorithms to identify and 

classify top quark events from complex collision data. By analyzing the kinematic 



and geometric properties of particles produced in collisions, these models can 

accurately distinguish top quark events from background noise.  

Jet flavor tagging models, which goal is similar to the quark tagging model, 

employ machine learning techniques to identify and categorize the flavors of jets 

produced in high-energy collisions. 

The Quick Draw model is a remarkable application of machine learning 

that enables users to sketch objects, which are then recognized and classified by 

an artificial intelligence algorithm. By leveraging deep learning techniques, the 

Quick Draw model can learn to interpret a wide variety of hand-drawn sketches 

and identify the corresponding objects with impressive accuracy. 

 

4.2 Quantization Performance 

For top-tag model, after quantization, the accuracy of model can achieve  

nearly identical to keras model at 2 int bits and 6 fractional bits, which is in toal 9 

bits. This is smaller than the 32 bits we use in keras model. Also the model with 

LSTM layer performances better than GRU layer with 0 or 2 integer bits but not 

with 4 integer bits. After convert it into HLS model, hls4ml perdicts its estimated 

utlization and performance.(model with GRU is on the left and model with LSTM 

is on the right)  

 



 
For b-tagging model, after quantization, the accuracy of model can 

achieve  nearly identical to keras model at 2 int bits and 2 fractional bits, which is 

in toal 5 bits. This is smaller than the 32 bits we use in keras model. Also the 

model with LSTM layer performances mostly identical compares to GRU layer 

when fractional bits are larger than 2 bits.  

.  



 
 

 

 

5. Discussion 
5.1 Super high accuracy in qkeras quantization aware training ? 

 For people who try to do the quantization aware training using qkeras, 

they might find it surprising that the model can achieve nearly identical accuracy 

with very tiny bits (such as only 2 integer bits, 4 fractional bits and 1 sign bits, 

total of 7 bits). The reason for such high accuracy in qkeras is that qkeras does 

not fully quantized our model. Instead, for most of the quantized layers, qkeras 

just combine the original layer with a quantizer after it to quantize the output of 

the layer. Therefore for most of the quantized layers (especially for activation 

layers), the calculation is still running in floating point numbers but qkeras just 

make the output of them to be fixed point numbers.  

 

5.2 How to convert qkeras model into hls4ml ? 

 Right now, hls4ml is still not offically supported qkeras. When we trying to 

do so the error shows hls4ml couldn’t recongize layers in qkeras. Instead, the 

trick I did is to load the weights of qkeras model back into the keras model and 

use the keras model with quantized weight and covert it into hls4ml.  

 
 

5.3 Accuracy of qerkas model drops a lot in hls4ml ? 

 When we convert the model into hls4ml, the accuracy will drop a lot 

compares to what we got in qkeras. This happens for all qkeras model but the 

accuracy drops more when there are RNN layers in qkeras model. As we 

discussed in 5.1, the way qkeras quantize the model is not fully quantized but 

normally just quantizes the output of each layer. However, in hls4ml, we are 



doing fully quantized since floating point calculation is not supported on FPGA. 

The plot below shows the changes in accuracy when we give different numbers 

of bits for qkeras model. 

 
 

 Taking quantized activation functions as an example, when we see the 

code in qkeras activation function, we will find that there is no difference inside 



the calculation of the activation function.

 
 

 When it comes to RNN layers, the two RNN layers in our models are GRU 

and LSTM. For GRU layer, there are two different activation layers inside it: tanh 

and sigmoid. Sigmoid is for calculating the update gate and reset gate and Tanh 

is for calculating candidate hidden state in GRU. For LSTM layer, there are also 

using tanh and sigmoid functions. Sigmoid is for calculating the forgetting and  

input gate and Tanh is for calculating the candidate cell state. Both of them are 

for calculating output. Since activation functions in qkeras are all calculated in 

floating point numbers, the accuracy difference between qkeras and hls mode 

will be huge.  

  
 

 

 

6. Conclusion 



This project is mainly for adding quantization aware trianing process before 

hls4ml process. By doing so we will need to use less bits in calculation and 

therefore decerease the resouce useage while maintaining similiar performance. 

Above the three models we disscussed as benckmark for RNN models, toptag is 

the smallest one and should be the first one to train for people who want to try it. 

Quickdraw model is the largest one and doing quantization aware training to it 

takes a lot of time and need a really good GPU. Due to the limited computational 

resource, I didn’t finish the quantization aware training for quickdraw model and 

the HLS conversion for b-tagging model and toptag model.  

 

 

7. Code and Data 
quantiaztion aware training for above three models: https://github.com/uw-

acme/HLS4ML_RNN 

Hls4ml conversion:  

https://github.com/yihuiccc/hls4ml-RNN-test 

Qkeras tutorial for starters: 

https://github.com/uw-acme/acme-lab-

documentation/blob/main/quantization/Qkeras-Tutorial-AndrewChen.ipynb 

toptag dataset:

 https://cernbox.cern.ch/s/0CBn5SsUPb5KDnX?redirectUrl=%2Ffiles%2Fli

nk%2Fpublic%2F0CBn5SsUPb5KDnX 

btag dataset (pwd:hls-btag): 

https://cernbox.cern.ch/s/dYrWPhWQFbAgjh1?redirectUrl=%2Ffiles%2Flink%2F

public%2FdYrWPhWQFbAgjh1 

quickdraw dataset: 

https://console.cloud.google.com/storage/browser/quickdraw_dataset/sketchrnn;t

ab=objects?pli=1&prefix=&forceOnObjectsSortingFiltering=false 

 

 

 

 


