
FPGA-Based Pulse Pileup Correction
M.D. Haselman1, Member IEEE, S. Hauck1, Senior Member IEEE, T.K. Lewellen2, Fellow IEEE,

R.S. Miyaoka2, Member IEEE,
1 University of Washington Department of Electrical Engineering, Seattle, WA

2 University of Washington Department of Radiology, Seattle, WA.

Abstract- Modern Field Programmable Gate Arrays (FPGAs)
are capable of performing complex discrete signal processing
algorithms with clock rates above 100MHz. This combined with
FPGA’s low expense, ease of use, and selected dedicated
hardware make them an ideal technology for a data acquisition
system for a positron emission tomography (PET) scanner. The
University of Washington is producing a high-resolution, small-
animal PET scanner that utilizes FPGAs as the core of the front-
end electronics. For this next generation scanner, functions that
are typically performed in dedicated circuits, or offline, are being
migrated to the FPGA. This will not only simplify the electronics,
but the features of modern FPGAs can be utilizes to add
significant signal processing power to produce higher resolution
images. In this paper we report on an all-digital pulse pileup
correction algorithm that is being developed for the FPGA. The
pileup mitigation algorithm will allow the scanner to run at
higher count rates without incurring large data losses due to the
overlapping of scintillation signals. This correction technique
utilizes a reference pulse to extract timing and energy
information for most pileup events. Using pulses were acquired
from a Zecotech Photonics MAPDN with an LFS-3 scintillator,
we show that good timing and energy information can be
achieved in the presence of pileup.

I. INTRODUCTION
e are developing a second-generation data acquisition
system to support several positron emission

tomography (PET) designs being developed at the University
of Washington [1]. It is based on our experience with the
original MiCES electronics concepts [2]. Along with the
development of the hardware, we are also developing
algorithms for the field programmable gate array (FPGA) that
will make up the core of the front-end electronics. In previous
work, we have developed algorithms for statistical event
location [3], digital timing [4], and automated pulse parameter
discovery [5].

The main goal of this and previous work is to develop an
all-digital FPGA-based signal processing suite for a small
animal PET scanner. The addition of a pulse pileup correction
routine will allow us to investigate experiments with higher
count rates. This will be especially important for experiments

 Manuscript for NSS/MIC record received November 13, 2010. This

work was supported in part by DOE grant DE-FG02-05ER15709Zecotech,
Altera, and NIH grant EB002117.

Michael Haselman and Scott Hauck are with the Dept. of Electrical
Engineering, University of Washington, Seattle, WA 98195 USA. (email:
{haselman,hauck}@ee.washington.edu).

Thomas Lewellen and Robert Miyaoka are with the Dept. of Radiology,
University of Washington, Seattle, WA 98195 USA. (email: {tkldog,
rmiyaoka}@u.washington.edu).

that use a continuous scintillator crystal [6] or readout

electronics with row-column summing. We are currently
experimenting with scanner architectures that have both of
these features. In [7] we show how a common anode timing
channel for an MAPD array can be built. While this will
lower the number of timing channels in the system, a common
anode will increase the likelihood of pileup. The common
anode is essentially a summation of all of the channels of a
detector. So if two interactions occur anywhere within a
detector in the timeframe of a single pulse, pileup will occur
on the common anode.

This work will build upon our all-digital timing algorithm
[4]. In this previous work, we utilize a high-resolution
reference pulse that has the same shape as the scintillation
pulses arriving from the ADC. In [5], we show how this
reference pulse can be built in the FPGA out of the same
pulses that it will be used on. This reference pulse is used to
interpret the start time of the pulses. We also show how
normalizing the pulse amplitudes by normalizing the area
under the pulses can reduce time walk. The timestamp comes
from a lookup table that stores the time elapsed from the start
of the reference pulse based on the voltage of a sample.

II. PREVIOUS WORK
In order to extract timing and energy information from a

pileup event, the multiple pulses need to be separated. There
have been previous analog and digital circuits implemented to
recover from pulse pileup. The first analog method uses a
dynamic integration technique to retrieve the energy
information from a pileup event [8]. Dynamic integration
uses an analog circuit to integrate a pulse until it detects a
pileup event at which point it starts a new integration. To get
the total energy value, the remaining tail of the first pulse is
interpolated. The interpolated tail of the first pulse is
subtracted from the second integration to resolve the energy of
the second pulse. The high yield pileup event recovery
(HYPER) method corrects for multiple pulse pileup events by
computing a weighted sum of an overlapping pulse and
subtracting the weighted sum of the previous pulses decreased
by a time-decay term [9]. This method requires analog
components and an integrator that clears when a pileup event
occurs. This method has recently been converted into a digital
implementation in an FPGA [10]. In order to achieve good
energy resolution in a digital circuit, HYPER needs ADC
rates of at least 200Msps as well as an analog trigger to signal
the beginning of any pulse. Finally, after this idea was
developed and the detailed implementation was studied, it was
determined that a patent [11] exists that proposes a similar
idea of pileup correction. This patent is targeted to gamma

W

cameras, so the ability to timestamp pulses was not proposed
as we do in this work. The main concern of the patent was to
obtain energy information from pileup events. So instead of
actually separating the pulses, as this work does, only the
energy contribution of individual pulses is calculated. As the
following sections will show, in order to timestamp pulses
involved in pileup, the pulses need to be separated.

III. ALGORITHM
In contrast to the methods discussed above, we aim to

develop a pulse pileup correction algorithm on an all-digital
platform that recovers the start time and energy of each
individual pulse involved in tail pileup. Our proposed method
uses a combination of pulse shape discrimination and partial
dynamic integration to detect and remove peak pileup and to
correct for tail pileup.

Fig. 1 shows the general structure of the algorithm for
pileup correction. As a pulse is detected, the time stamp and
pulse energy are calculated. After this, the pulse is removed
from the data stream, which is sent to a second processing
engine. By removing the first pulse, any pileup event present
will be separated so that the second engine can process it for
start time and energy. If no pileup is present, then the second
engine will receive a flat signal. To remove the first pulse
from the stream, the reference pulse is used to interpolate the
tail of the first pulse that is hidden under any pileup event.
The number of stages present in the algorithm is dependent on
the amount of pileup events expected. For example, if the
probability of having a pileup event that contains four pulses
is less than 1%, then it isn’t probably necessary to have more
than three processing engines. The probability cutoff is a
designer choice and is easy to change, as all of the internal
stages (not first or last stage) are identical.

Fig. 1. Block diagram of the overall pulse pileup correction algorithm.
Note that number of stages is dependent on the expected rate of pileup.

To determine the start time of the pulse, the timing
algorithm [4] has to be modified, as the whole pulse can no
longer be used to normalize that amplitude. Instead of using
the whole pulse, only the area under the first portion of the
pulse is used. The point that the summing is stopped will be
designated as the transition from peak to tail pileup. This
means that we will try to mitigate any pileup after this cutoff
and remove any pileup before. The lookup table for area to
amplitude normalization must be modified to reflect this
change. In other words, when comparing the area of the data
pulse to the reference pulse, the same number of samples is
used in both summations. Instead of comparing the area of
the whole pulse to the area of the whole reference pulse, the

areas of the first portion of the two pulses are compared. The
time lookup does not have to be modified. To eliminate
pulses involved in peak pileup, the energy is also checked to
determine whether it is below the expected energy maximum
that was determined in the reference pulse discovery routine.
The idea is that if a second pulse starts before the cutoff, then
it will add energy to the summation. If it is determined that
peak pileup has occurred, the pulses are discarded and the
system is dead until the incoming data stream returns to
baseline.

Once the first pulse is time stamped, it can be removed
from the data stream. Because only tail pileup after the area
summation cutoff will be corrected, only the samples after the
cutoff need to be removed from the stream and the
downstream engine only needs to process data after the cutoff
for the above engine. This also means that the system can run
in real-time, as no past data needs to be sent to the
downstream engines. In this algorithm, it is assumed that
pileup will occur, so the reference pulse is always used to
remove the tail of the first pulse from the stream. The
timestamp is used to determine what samples from the
reference pulse to use. Recall that the reference pulse is
defined at a much finer resolution (every 40ps in this work)
than the sampling rate of the ADC. The data that is sent to the
next processing engine is calculated using equation 1.

!

V i[] =Vinput[j]" (Vref [(n + i) # ts
tADC

$
%
&

'
(
)

$

%
&

'

(
) + *t]) #

Ap

Ar

$

%
&

'

(
) (1)

Here, Vinput is the data stream from the ADC, Vref is the
reference pulse voltage, n is the number of ADC samples
summed on the leading edge of the pulse for the amplitude

normalization,

!

t
s

t
ADC

"

$ %

&
' is the ratio of reference pulse

resolution to ADC resolution,

!

"t is the result of the time
stamp lookup table (i.e. how far the first sample was from the

start of the pulse) and

!

Ap

Ar

"

$

%

&
' is the normalization factor to

normalize the reference pulse amplitude to the first incoming
pulse amplitude.

Partial dynamic integration is used to determine the energy
of the pulse. Two summations are generated for each pulse,
one to the cutoff point and one for the full pulse. If the
downstream engine indicates that pileup did occur, then the
cutoff summation energy is calculated by using the partial
summation, with the remaining pulse energy calculated from
the reference pulse as indicated above. The cutoff point was
experimentally determine, which will be presented in the next
section. If no pulse is detected in the downstream engine,
then the whole pulse summation is used. This scheme
requires a termination processing engine that simply indicates
whether it has detected a pulse but does not process it. This
engine would be in addition to the max number of expected
consecutive pileups. Additionally, if this engine detects a
pulse, the system is dead until the incoming stream from the
ADC returns to baseline. The number of stages should be
sufficient to handle the maximum number of consecutive
pileup events expected. This will be a user setting based on
the count rate, the logic available on the FPGA and the

acceptable level of data loss. Fortunately, the probability of
seeing a pileup train of length n follows a Poisson distribution,
so for reasonable count rates, the number of stages is low. For
example, in our system with a pulse length of 200ns at 1Mcps,
the probability of having a 4-pulse pileup is less than .5%.

IV. TESTS AND RESULTS

A. Determining peak pileup cutoff
The first step in developing this algorithm is to determine

where to set the cutoff between peak and tail pileup. We
started by investigating how much of the leading edge of the
pulse is needed to accurately calculate the area to amplitude
normalization and interpret the tail of the pulse. The accuracy
may degrade as less of the pulse is used, but using less of the
pulse reduces the dead time, so the tradeoff between dead time
and energy/timing resolution has to be balanced. To perform
this, a simulation was performed in Matlab using 1000 pulses
from different pixels on a Zecotech MAPDN with a LFS-3
scintillator.

To determine the effect on timing resolution, two streams
were created with the pulses in each stream in coincidence.
The normal timing algorithm was run, except only a portion of
the pulse was summed and that area was used to normalized
the amplitude. The amount that was summed was swept from
100% to about 5%. Fig. 2 shows the results of this study. A
sample pulse is included to provide a reference of what part of
the pulse is being sampled. The x-axis indicates how much of
the pulse (in samples) is being summed up for amplitude
normalization. For this sampling rate (65MHz) and pulse
length, 32 samples constitutes summing up 100% of the pulse,
while 2 samples corresponds to about 5% of the pulse (note it
doesn’t make sense to use just one sample). Notice that the
timing resolution remains fairly flat until the cutoff point
approaches the peak. If the summing is stopped before the
peak, the timing resolution is substantially degraded, as would
be expected.

Fig. 2. Graph of timing resolution for different amount of pulse used for

amplitude normalization for a 65MHz sampled pulse.

The next step is to determine how well the tail of the pulse
can be interpolated based on summing up only a portion of the
pulse. For this test, only one stream is needed. Again, for
each percentage of pulse summed one thousand pulses were
summed to the specified number of samples, while the rest of
the pulse was interpolated with the reference pulse. The
resulting composite summation is compared to the summation
of the total pulse. The percent standard deviation of the error
for all 1000 pulse is plotted in Fig. 3, along with an example

pulse. The percent standard deviation demonstrates how
much overall error is associated with interpolating the tail.
The area error increases as less of the pulse is summed and
more is interpolated. Again, there is a dramatic increase in
error at about the peak of the pulse.

Fig. 3. Graph of area error as compared to how much of the pulse is

interpolated for a 65MHz sampled pulse.

The results in Fig. 2 and Fig. 3 indicate that about 20% (7
samples for a 65MHz ADC) of the pulse is needed before the
interpolation error becomes too great. In fact, for timing, the
best results are obtained at about 30% of the pulse, and 20% is
roughly equivalent to summing up the whole pulse. This is
because the tail of the pulse contains a substantial amount of
noise that corrupts the area normalization step. Also, the error
in Fig. 3 will only be realized during a pileup event because
otherwise the entire pulse is summed. Given these results, the
line that distinguished peak pileup and tail pileup is set to 20%
of the pulse. That is, if pileup occurs before 20% of the pulse,
it should be detected and discarded. If it occurs afterwards, it
can be separated with our algorithm. These results also
indicate that there is not enough benefit to have a truly
dynamic integration. That is, integrate until a pileup event is
detected. To support this, a complicated trigger would be
required to detect the pileup event and multiple normalization
lookup tables would be required for each partial summation.
It is possible to use a lookup table to determine the overall
pulse area based on what percentage of the pulse is summed,
as is done in [11], and use that in the normalization step, but
this will add the to latency of each stage which will have
consequences in a real-time FPGA implementation.

B. Area correction
One issue that becomes a factor when just the first portion

of a pulse is summed is the dependence of a pulse’s calculated
area on the voltage of the first sample. Because the pulse
trigger looks for a sample above a set voltage, the range of
possible voltages for the first sample ranges from the trigger
to some greater value. The magnitude of this range is based
on the slope of the leading edge of the pulse and the sampling
interval. Of course, the greater the slope and the larger the
sampling period, the greater the range. For the same pulse, a
sampling that starts just after the threshold will have a lower
calculated area than a sampling that starts well above the
threshold.

Fig. 4 shows the extent of this error. Each graph shows the
difference between the average area of a pulse and the area
calculated for the same pulse for a given first sample voltage,

as indicated on the x-axis. The error is reported as a percent
of the average pulse area for the amount of pulse summed.
For example, Fig. 4a indicates that for a 65MHz ADC, the
area summation is almost 8% under estimated when the first
sample is just above the threshold (-.015V). There are no
voltages below -.015V because that is the voltage level of the
trigger, so no samples will be below this value. Fig. 4a
demonstrates how the error is worse as less of the pulse is
summed for the area to amplitude normalization. Notice how
percent error for summing up all of the pulse is nearly flat and
centers around zero, while the error for summing up only 20%
of the pulse has large errors when the first sample is at either
end of the range. Fig. 4b shows how this error trends for
different sampling rates. A higher ADC means that there are
more samples in the first 20% of the pulse and the range of the
first sample is less. This results in less error than a lower
sampling rate. However, the improvement from 65MHz to
300MHz is not large because the slope of the leading edge of
the 300MHz-sampled pulse is greater because the frequency
cutoff for the low-pass filter is higher. This is evident by the
fact that the possible ranges of the first sample (x-axis) for
both samplings is almost the same, though the range in time
for the 300MHz sampling is ~1/5 that of the 65MHz
sampling.

 (a)

 (b)

Fig. 4. Graphs indicating the area summation error based on the voltage
of the first sample. (a) For a pulse sampled at 65MHz while sampling 20%
of the pulse or the whole pulse. (b) For a pulse sampled at 65MHz and
300MHz summing up 20% of the pulse.

To correct for this, the error shown in Fig. 4 is calculated
by sampling the reference pulse at all expected starting points
and comparing the obtained area to the average area. This
result can be stored in a look-up table that is indexed with the
voltage of the first sample. After the initial area of 20% of the
pulse is calculated, the first sample is normalized based on
that area. The normalized voltage of the first sample is fed
into the line equation, and the correction factor is calculated.
Note that the line that is calculated is actual error and not

percentage error as shown in Fig. 4, so the result of this
calculation can be added to the area of the pulse. This
corrected area is used to normalize the first samples of the
pulse, which are used to determine the start time of the pulse.

The previous results, after correcting for the voltage of the
first sample, are shown in Fig. 5 and Fig. 6. For both timing
and area, there are no improvements when most of the pulse is
summed which is logical considering how flat the 100%
summation line is in Fig. 4a. The important difference in
timing resolution and area error is when the summation limit
approaches the peak of the pulse. For timing resolution in
Fig. 5, correcting the area improves the timing at 20%
summation by 6% and the standard deviation of the area
interpretation reduces by 53%.

Fig. 5. Graph of timing resolution vs. amount of pulse summed with and

without the area corrected for the amplitude of the first sample for a 65MHz
sampled pulse.

Fig. 6. Graph of area error with and without area correction as compared

to how much of the pulse is interpolated for a 65MHz sampled pulse.

C. Algorithm simulation
From the previous tests, the algorithm is as follows:
1) remove baseline from incoming ADC stream
2) detect pulse based on triggers discussed [4]
3) sum up the first 20% and the whole pulse
4) check if first 20% summation is too large indicating a

pileup event in the first 20% of the pulse
a. if the energy is too great stall until the

stream returns to baseline
b. otherwise continue

5) normalize first sample of pulse based on area under
first 20% of pulse

6) calculate the area correction factor and adjust initial
area

7) normalize first samples (based on number of samples
used in timing algorithm) of pulse to reference pulse
using corrected area

8) timestamp pulse as discussed in [4]
9) normalize reference pulse to data pulse using

corrected area
10) using timestamp, lookup the correct samples from the

normalized reference pulse to interpolate remaining
80% of pulse

11) subtract interpolated pulse from ADC stream and
send resulting stream to second pileup correction
engine

12) if second engine detects a pulse it repeats steps 2-10
on the pulse and the first engine uses the energy
based on 20% summed plus 80% interpolated

13) if no pulse is detected in the time it takes the first
pulse to return to baseline, then the first engine uses
the 100% summation for the pulse energy and it
begins looking for pulses again on the ADC stream

To simulate the algorithm, 1000 pulses from four
different pixels on a Zecotech MAPDN array with a LFS-3
scintillator were captured using a 25GHz oscilloscope. These
pulses were then imported into Matlab to perform simulations.
The pulses were captured as singles, so the coincidence and
pileup had to be generated in Matlab before the above
algorithm could be simulated. To facilitate this, two streams
of pulses were created with one stream composed of pulses
from a single pixel. To generate the streams, the first step is
to randomly pick a start time for the pulse in stream one.
Based on the desired percentage of coincidence, it is randomly
decided if a coincidental pulse is placed in stream two at the
identical start time. If it is decided that this pulse won’t have
a coincidental pair in the second stream, the start time for the
pulse in stream two is also randomly selected. If however, it
is determined that the current pulse will have a coincidental
pair, then the start time in stream two is identical to the start
time in stream one. Next, a pulse has to be chosen from the
respective data sets to be placed at the determined start times.
If these pulses are in coincidence, then the pulses are selected
in order (i.e. the first coincident set are pulse one out of the
thousand, the second set are pulse two and so on). This
assures that all of the pulses from each pixel will be used in
coincidence once and only once. If the pulses are not in
coincidence, a random pulse is selected from the 1000
samples for the given pixel. Before the pulses can be added to
the stream, the baseline has to be removed so that any overlap
of pulses does not have multiple baseline components present.
The baseline for each pulse is determined by averaging 300
samples just before the pulse. This value is subtracted from
the pulse and then the pulse is added to the data stream. The
array that makes up the data stream starts out filled with zeros,
but as more pulses are added, the chance of two or more
pulses overlapping increases. To generate a certain count rate,
the length of the pulse stream is set such that after adding all
of the coincidental pulses plus the random pulses, the number
of pulses per unit time is correct. In this work we investigate

100 kilocount per second (kcps), 200kcps, 500kcps, and
1Mcps (below 100kcps, pileup is no longer a large issue, and
1Mcps is greater than the count rate we expect to handle).
After all of the pulses are added to the stream, the baseline has
to be added back between the pulses. To do this, baseline
samples surrounding the pulses from the oscilloscope data are
added to the zeros in the stream. When a pulse is intersected
on the stream, the average of the previous 300 baseline
samples added to the stream is added to the pulse. This adds a
constant baseline to the stream without adding the baseline
noise to the pulse, which would effectively double the noise.
Note that where pulses overlap, the noise is doubled, as the
noise cannot be removed from the pulses. The final step is to
filter the stream and sample it with desired ADC sampling
rate. The result of this routine is two streams that consist of
randomly placed coincidental pairs with singles randomly
placed in the stream. Fig. 7 shows a small section of the
resulting streams for 1Mcps.

Fig. 7. Matlab plot of a pileup streams with 1000kcps from the pulse

stream generator routine.

These streams were created with all possible unique
pairings of the four pixels (six pairings), for five ADC
sampling rates (65MHz, 125MHz, 300MHz, 500MHz, 1GHz),
and with four count rates (100kcsp, 200kcps, 500kcps,
1Mcps). The energy resolution and coincidence timing
resolution was recorded for each test. The timing resolution
was averaged over the six pixel pairings. The results for how
timing resolution is affected by the count rate are shown in
Fig. 8. As expected, the timing resolution improves as the
ADC rates increase, and it degrades as the count rate increases
because more pulses are involved in pileup. The timing
resolution from 100kcps to 1Mcps degrades by about 17% for
a 65MHz-sampling rate and about 38% for the other sampling
rates. Fig. 8 also shows that the degradation is essentially
linear over the sampling rates covered. This indicates that our
algorithm degrades gracefully as pileup rates increase.

Fig. 8. Timing resolution for different count rates at different ADC

sampling rates.

To get an understanding of what is contributing to the
degradation, the timing resolution was calculated for each
possible coincidence scenario. That is, coincidental pulses
when neither pulse were involved in pileup, when one of the
two were in a pileup event, and when both pulses were some
part of a pileup event. These results are presented in Fig. 9 for
a 300MHz ADC sampling rate along with the overall timing
resolution. Note that data for 100kcps for one pulse involved
in overlap and the data for 100kcps and 200kcps for both
involved in pileup are missing. This is because there were not
enough instances of those events at low count rates to make
the data statistically sound.

From this data, it appears that most of the degradation is
from the pileup events, and especially from the case when
both pulses in coincidence are involved in pileup. There is
still some degradation in the timing resolution for pulses not
involved in pileup when count rates increase. The
degradation is about 17% from 100kcps to 1Mcps. This is
probably due to the effect of the ability to calculate a good
baseline when pulses are close together but not overlapped.
Also, as will be discussed in the next section, not all of the
pulses classified as “no overlap” may actually have pileup.

Fig. 9. Plot of timing resolution for a 300MHz ADC sampling for

different count rates. The timing resolution is shown for coincidental pulses
where neither of the pulse is in a pileup event, where one of the pulses is piled
up and where both of the pulses had to be separated from another pulse due to
pileup. The overall timing resolution is the combination of all three.

In addition to timing resolution, energy resolution is an
important factor of a PET pulse processing system. For the
pileup correction algorithm, the energy resolution will give an
indication of whether the energy of the pulses involved in
pileup can be accurately estimated. To calculate the energy
resolution, the energy of all pulses in the stream (except those

with too much pileup) was recorded and a histogram was
generated. The data set used in these experiments only
contains photoelectric events, so only the photo peak appears
in the histogram. To determine the FWHM, a Gaussian
function was fit to the data and the energy resolution was
calculated. The energy resolution results are reported in Fig.
10. Notice that the energy resolution is fairly constant over
different count rates. In fact, the worst degradation from
100kcps to 1Mcps is less than 5%.

Fig. 10. Graph of the energy resolution of our pulse pileup correction as

count rates increase for different ADC sampling rates

Like was done for the timing resolution, the energy
resolution can be broken down into the contribution of
different kinds of pulses. There are four different pulse
classifications for energy resolution.

1) no pileup – pulse not involved in pileup
2) tail interpolate – first pulses in a pileup event where the

tail of the pulse had to be calculated with the
reference pulse

3) pileup – pulses that are last in a pileup event where the
previous pulse had to be subtracted out

4) pileup with tail interpolate – pulses that are in the
middle of a pileup event where the previous pulse
had to be subtracted out and the tail had to
interpolated from the reference pulse

Fig. 11. Energy resolution for a 300MHz ADC broken down to pulses in

different places of a pileup event.

Again, there are not enough pileup events at 100kcps and
200kcps for any reliable results for the tail interpolate, pileup
or pileup with tail interpolate classifications. The most
interesting result from this simulation is how much better the

energy resolution is when some of the pulse has to be
interpolated using the reference pulse. This is because the
reference pulse doesn’t have nearly as much noise as the
individual data pulses. This is also reflected by the result that
the overall energy resolution and the energy resolution with
no pileup are almost identical. Recall that when there is no
pileup, that the pulse is summed up to 100% for the energy
calculation.

D. Pulse detection
Since the purpose of pulse pileup correction is to capture

additional pulses, it is important to investigate pulse detection
efficiency. That is, how well does the algorithm detect good
pulses and reject peak pileup pulses that have too much
pileup. To determine how well our algorithm is detecting
pulses, statistics of pulse detection were kept as they were
discovered and processed. Pulses were classified by the
number of pulses in a given pileup event. For example, 2-
pulse pileups are events where two pulses piled up in a row,
and 3-pulse pileups are events with three pulses in one pileup.
The number of pulses without pileup, as well as pulses with
too much pileup (peak pileup), was also recorded.

Analyzing our pileup correction algorithm indicates that it
is a paralyzable system. Recall that if pileup occurs in the
first 20% of a pulse, then the system is dead until the
incoming ADC values return to baseline. So, if a third pulse
arrives before the system returns to baseline, then the dead
time is extended by another pulse length. So our system has
essentially two dead times. The dead time when the system is
live (not resolving peak pileup) is 20% of the length of a
pulse. That is, when the system is live, the minimum
separation required between two pulses is 20% of the pulse
length. When peak pileup does occur, the dead time is then
the full pulse length. The system is dead for at least one pulse
length until the data stream returns to baseline. Given these
parameters, the pileup rates cannot be calculated with the
typical statistical models that assume a single dead time, so
instead the pileup rates were calculated with a Monte Carlo
simulation. Specifically, the rates were tabulated from the
stream generation routine. After each stream was generated,
the start times of every pulse were evaluated to determine how
many pulse “groups” had no pileup, and how many were a 2-
pileup, 3-pileup or 4-pileup event. The occurrence of peak
pileup was also determined. The results in Table I show the
percent difference from detected to expected for each
subcategory.

Table I. Percent differences from detected pileup events to expected pileup
events (detected count/expected count).

count
rate no pileup

2-pulse
pileup

3-pulse
pileup

4-pulse
pileup

peak
pileup

500kcsp
0.77%
(1691/1678)

5.4%
(129/122)

33.3%
(6/4)

0%
(0/0)

-175%
(12/33)

1Mcps
0.68%
(1464/1454)

13.7%
(190/164)

13.6%
(22/19)

0%
(5/5)

-137%
(27/64)

For these tests (Table I), the algorithm detects less than

half of the events when pileup occurs in the critical region.
The rest are classified as a normal pulse. This is the reason
that the algorithm detects more pulses with no pileup, 2-pulse
and 3-pulse pileup events. This indicates that our mechanism
for detecting pileup in the first 20% of the pulse is not robust

enough, and some of the pulses that should be classified as too
much pileup are making it through the filter.

To test this hypothesis an experiment was set up to
determine the ability of our algorithm to detect pileup before
the critical point. Recall that the test for too much pileup is
checking for too much energy in the first 20% of the pulse. A
simulation was generated where 200 different pulses from the
same pixel were put into a stream so that 100 2-pulse pileup
events were generated. The degree of pileup for all 100
events was the same for each test. The pileup started at 1% of
the first pulse (essentially two pulses directly overlapping)
and was swept to 20% (the peak pileup cutoff point). In other
words, about 20 tests were run with all of the 100 pileup
events having the same amount of pileup. For each test, the
peak pileup detection scheme was run and the number of
pulses that made it through the filter (did not detect peak
pileup) was noted. Of course, all pulses should be detected as
peak pileup because they are all before the peak pileup cutoff.
The results are tabulated in Fig. 12. For any pileup in the first
7% of the pulse, our peak detection scheme will accurately
classify all pulses as having too much pileup to resolve. From
about 7-15% the number of pulses that pass through the peak
pileup detection filter increase until about 16%, where all of
the pulses are incorrectly classified as not having pileup
before the critical point cutoff. The reason that Fig. 12
reaches 100% missed at 16% overlap is because of the margin
built into the max pulse energy for second (or third) pulses of
a pileup event. The area of the second or third pulses in a
pileup event contains the error associated with removing the
interpolated tail of the previous pulse. This error can cause the
area to increase (or decrease); therefore a small margin has to
be included in the max pulse energy to eliminate the
possibility of filtering out good pulses. Considering this, it is
possible to shift the curve in Fig. 12 to the right at the
potential cost of missing some good pulses.

Fig. 12. Plot of the percentage of pulses that incorrectly determined to

not have peak pileup for pileup events in the first 1-20% of the pulse.

The reason for this inefficiency of the peak pileup
detection routine lies in the energy parameters of the pulses.
Unfortunately, the range of energy of a pulse without pileup
can vary by almost 2X in this data set. This is for pulses from
a single pixel in a MAPD array. This range may be even
larger for the common anode design, as it will be a signal
derived from all pixels in the array. This means that if the
first pulse is on the lower end of the energy spectrum, then
more energy from a pileup event (i.e. greater overlap) is

required to trigger the filter. Therefore, this pileup event will
not be filtered as peak pileup.

The next question from these results is what is the effect of
these misclassified pulses on the timing and energy resolution
of our algorithm? To determine the extent of this error, the
same streams were generated as discussed above, but without
any pileup in the first 20% of any pulse. This will remove the
need for the peak pileup filter, as no peak pileup will exist in
the data set. Theses streams were evaluated with our
algorithm in the same manner discussed above. The results of
this test will indicate how much of a determent the missed
peak pileup events have on the system. In essence, we
determined how much of the increase in timing resolution
from 100kcps to 1Mcps in Fig. 8 is due to these errors. The
results of this test for a 300MHz sampling ADC are shown in
Fig. 13.

Fig. 13. Timing resolution versus count rate for a 300MHz sampling

ADC. The top line is for a test that contains peak pileup, while the lower line
shows the timing resolution for a test with peak pileup removed.

The elimination of all peak pileups from the processed data
set improves the timing resolution by 11% at 1Mcps. This
represents the ability of our algorithm if the peak pileup filter
was perfect.

When peak pileup is removed from the stream, the energy
resolution is about 21% for all of the count rates. This
indicates the increase in energy resolution is because of the
peak-pileup that is erroneously included into the data set.

While the energy resolution is not greatly affected by the
inefficiencies of the peak pileup filter, there are some
applications where an accurate measure of the energy of each
individual pulse is necessary. In these scenarios, any addition
energy from the second pulse would adversely affect the
algorithms that use the pulse energy. One possible solution in
an application that requires accurate pulse energy is to check
for too much energy in the pulse using a summation to 35% of
the pulse. The amplitude normalization would still occur with
20% of the pulse. This would presumably move the curve in
Fig. 12 to 22-30%, so the peak pileup filter would eliminate
all pileup before 22% of the pulse. Of course, this would
increase the theoretical dead time of the system to 35% of the
pulse, which would reduce the number of pileup events that
are mitigated.

Another possible implementation to detect peak pileup is
to use a two-part filter; one that looks for a second rising edge

as well as too much energy in the first 20% of the pulse.
Since the peaks of the pulses are generally in the same
location (~10% of the pulse), any drastic increase above the
previous sample after the peak could be classified as a peak
pileup event. This would detect many of the peak pileup
events that occur from the peak of the pulse to the peak pileup
cutoff. The existing energy filter would detect any pileup
before the peak. These possible peak-pileup filters will be
investigated in future work.

V. DISCUSSION
In this work, we show that an all-digital pulse pileup
correction algorithm can reliably recover pulses overlapped up
to 80%. In fact pulses with slightly greater overlap are still
processed (because they don’t have greatly increased
integration values) albeit with a slight degradation in energy
and timing resolution. This algorithm ties in very well with
our timing algorithm [4] and can easily be implemented in an
FPGA. The only complication in an FPGA implementation is
the latency between the first processing engine and the last.
This is because the downstream engines communicate with
the first engine to indicate that it is free to look for the next
pulse. If there is a large latency between samples coming
from the ADC and samples going into the last engine, then
there is the possibility of missing some ADC samples.

REFERENCES
[1] T.K. Lewellen et al., “Design of a Second Generation FireWire Based

Data Acquisition System for Small Animal PET Scanners,” IEEE
Nuclear Science Symp. Conf. Record, 2008, pp (NSS/MIC). 5023-5028.

[2] T.K. Lewellen, M. Janes, R.S. Miyaoka, S.B. Gillespie, B. Park, K.S.
Lee, P. Kinahan: "System integration of the MiCES small animal PET
scanner", IEEE Nuclear Science Symp. Conf. Record (NSS/MIC), 2004,
pp. 3316-3320.

[3] DeWitt D, Miyaoka RS, Li X, Lockhart C, Lewellen TK., “Design of a
FPGA Based Algorithm for Real-Time Solutions of Statistics-Based
Positioning,” IEEE Nuclear Science Symp. Conf. Record (NSS/MIC),
2008, pp. 5029-5035.

[4] M.D. Haselman, S. Hauck, T.K. Lewellen, and R.S. Miyaoka,
“Simulation of Algorithms for Pulse Timing in FPGAs,” IEEE Nuclear
Science Symp. Conf. Record (NSS/MIC), 2007, pp. 3161-3165.

[5] M. Haselman, S. Hauck, T.K. Lewellen., R.S. Miyaoka., "FPGA-Based
Pulse Parameter Discovery for Positron Emission
Tomography," IEEE Nuclear Science Symp. Conf. Record (NSS/MIC),
2009, pp. 2956-2961.

[6] R.S. Miyaoka, Xiaoli Li, C. Lockhart, T.K. Lewellen,
"New continuous miniature crystal element (cMiCE) detector
geometries", IEEE Nuclear Science Symp. Conf. Record (NSS/MIC),
2009, pp. 3639-3642.

[7] Y.C. Shih et. al.,"An 8x8 row-column summing readout electronics for
preclinical positron emission tomography scanners," IEEE Nuclear
Science Symp. Conf. Record (NSS/MIC), 2009, pp. 2376-2380.

[8] Lewellen TK, Bice AN, Pollard KR, Zhu JB, Plunkett ME, “Evaluation
of a clinical scintillation camera with pulse tail extrapolation
electronics”, J. Nuclear Medicine, 1989, vol. 30. pp. 1544 –1558.

[9] Wong, W.H., Li, H., “A Scintillation Detector Signal Processing
Technique with Active Pileup Prevention for Extending Scintillation
Count Rates,” IEEE Trans. Nuclear Medicine, vol. 45, no. 3, pp. 838-
842.

[10] Liu, J. et al., “Real Time Digital Implementation of the High-Yield-
Pileup-Event-Recovery (HYPER) Method,” 2007 IEEE Nuclear Science
Symposium Conference Record, M26-4, pp. 4230-4232.

[11] R.E. Arseneau, “Method and Apparatus for Unpiling Pulses Generated
by Piled-up Scintillation Events,” U.S. Patent 5 210 423, May 11, 1993.

