
FPGA-Based Pulse Pileup Correction 
M.D. Haselman1, Member IEEE, S. Hauck1, Senior Member IEEE, T.K. Lewellen2, Fellow IEEE,  

R.S. Miyaoka2, Member IEEE,  
1 University of Washington Department of Electrical Engineering, Seattle, WA 

2 University of Washington Department of Radiology, Seattle, WA.

Abstract- Modern Field Programmable Gate Arrays (FPGAs) 
are capable of performing complex discrete signal processing 
algorithms with clock rates above 100MHz.  This combined with 
FPGA’s low expense, ease of use, and selected dedicated 
hardware make them an ideal technology for a data acquisition 
system for a positron emission tomography (PET) scanner.  The 
University of Washington is producing a high-resolution, small-
animal PET scanner that utilizes FPGAs as the core of the front-
end electronics. For this next generation scanner, functions that 
are typically performed in dedicated circuits, or offline, are being 
migrated to the FPGA. This will not only simplify the electronics, 
but the features of modern FPGAs can be utilizes to add 
significant signal processing power to produce higher resolution 
images. In this paper we report on an all-digital pulse pileup 
correction algorithm that is being developed for the FPGA.  The 
pileup mitigation algorithm will allow the scanner to run at 
higher count rates without incurring large data losses due to the 
overlapping of scintillation signals.  This correction technique 
utilizes a reference pulse to extract timing and energy 
information for most pileup events. Using pulses were acquired 
from a Zecotech Photonics MAPDN with an LFS-3 scintillator, 
we show that good timing and energy information can be 
achieved in the presence of pileup. 

I. INTRODUCTION 
e are developing a second-generation data acquisition 
system to support several positron emission 

tomography (PET) designs being developed at the University 
of Washington [1]. It is based on our experience with the 
original MiCES electronics concepts [2].  Along with the 
development of the hardware, we are also developing 
algorithms for the field programmable gate array (FPGA) that 
will make up the core of the front-end electronics.  In previous 
work, we have developed algorithms for statistical event 
location [3], digital timing [4], and automated pulse parameter 
discovery [5]. 

The main goal of this and previous work is to develop an 
all-digital FPGA-based signal processing suite for a small 
animal PET scanner.  The addition of a pulse pileup correction 
routine will allow us to investigate experiments with higher 
count rates.  This will be especially important for experiments  
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that use a continuous scintillator crystal [6] or readout 

electronics with row-column summing.  We are currently 
experimenting with scanner architectures that have both of 
these features. In [7] we show how a common anode timing 
channel for an MAPD array can be built.  While this will 
lower the number of timing channels in the system, a common 
anode will increase the likelihood of pileup.  The common 
anode is essentially a summation of all of the channels of a 
detector.  So if two interactions occur anywhere within a 
detector in the timeframe of a single pulse, pileup will occur 
on the common anode.   

This work will build upon our all-digital timing algorithm 
[4].  In this previous work, we utilize a high-resolution 
reference pulse that has the same shape as the scintillation 
pulses arriving from the ADC.  In [5], we show how this 
reference pulse can be built in the FPGA out of the same 
pulses that it will be used on.  This reference pulse is used to 
interpret the start time of the pulses.  We also show how 
normalizing the pulse amplitudes by normalizing the area 
under the pulses can reduce time walk.  The timestamp comes 
from a lookup table that stores the time elapsed from the start 
of the reference pulse based on the voltage of a sample.  

II.   PREVIOUS WORK 
In order to extract timing and energy information from a 

pileup event, the multiple pulses need to be separated.  There 
have been previous analog and digital circuits implemented to 
recover from pulse pileup.  The first analog method uses a 
dynamic integration technique to retrieve the energy 
information from a pileup event [8].  Dynamic integration 
uses an analog circuit to integrate a pulse until it detects a 
pileup event at which point it starts a new integration.  To get 
the total energy value, the remaining tail of the first pulse is 
interpolated.  The interpolated tail of the first pulse is 
subtracted from the second integration to resolve the energy of 
the second pulse. The high yield pileup event recovery 
(HYPER) method corrects for multiple pulse pileup events by 
computing a weighted sum of an overlapping pulse and 
subtracting the weighted sum of the previous pulses decreased 
by a time-decay term [9].  This method requires analog 
components and an integrator that clears when a pileup event 
occurs.  This method has recently been converted into a digital 
implementation in an FPGA [10].  In order to achieve good 
energy resolution in a digital circuit, HYPER needs ADC 
rates of at least 200Msps as well as an analog trigger to signal 
the beginning of any pulse.  Finally, after this idea was 
developed and the detailed implementation was studied, it was 
determined that a patent [11] exists that proposes a similar 
idea of pileup correction.  This patent is targeted to gamma 
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cameras, so the ability to timestamp pulses was not proposed 
as we do in this work.  The main concern of the patent was to 
obtain energy information from pileup events.  So instead of 
actually separating the pulses, as this work does, only the 
energy contribution of individual pulses is calculated.  As the 
following sections will show, in order to timestamp pulses 
involved in pileup, the pulses need to be separated. 

III.   ALGORITHM 
In contrast to the methods discussed above, we aim to 

develop a pulse pileup correction algorithm on an all-digital 
platform that recovers the start time and energy of each 
individual pulse involved in tail pileup.  Our proposed method 
uses a combination of pulse shape discrimination and partial 
dynamic integration to detect and remove peak pileup and to 
correct for tail pileup.  

Fig. 1 shows the general structure of the algorithm for 
pileup correction.  As a pulse is detected, the time stamp and 
pulse energy are calculated. After this, the pulse is removed 
from the data stream, which is sent to a second processing 
engine.  By removing the first pulse, any pileup event present 
will be separated so that the second engine can process it for 
start time and energy.  If no pileup is present, then the second 
engine will receive a flat signal. To remove the first pulse 
from the stream, the reference pulse is used to interpolate the 
tail of the first pulse that is hidden under any pileup event.  
The number of stages present in the algorithm is dependent on 
the amount of pileup events expected.  For example, if the 
probability of having a pileup event that contains four pulses 
is less than 1%, then it isn’t probably necessary to have more 
than three processing engines.  The probability cutoff is a 
designer choice and is easy to change, as all of the internal 
stages (not first or last stage) are identical.   

 

 
 

Fig. 1.  Block diagram of the overall pulse pileup correction algorithm.  
Note that number of stages is dependent on the expected rate of pileup. 
 

To determine the start time of the pulse, the timing 
algorithm [4] has to be modified, as the whole pulse can no 
longer be used to normalize that amplitude.  Instead of using 
the whole pulse, only the area under the first portion of the 
pulse is used.  The point that the summing is stopped will be 
designated as the transition from peak to tail pileup.  This 
means that we will try to mitigate any pileup after this cutoff 
and remove any pileup before.  The lookup table for area to 
amplitude normalization must be modified to reflect this 
change.  In other words, when comparing the area of the data 
pulse to the reference pulse, the same number of samples is 
used in both summations.  Instead of comparing the area of 
the whole pulse to the area of the whole reference pulse, the 

areas of the first portion of the two pulses are compared.  The 
time lookup does not have to be modified.  To eliminate 
pulses involved in peak pileup, the energy is also checked to 
determine whether it is below the expected energy maximum 
that was determined in the reference pulse discovery routine.  
The idea is that if a second pulse starts before the cutoff, then 
it will add energy to the summation.  If it is determined that 
peak pileup has occurred, the pulses are discarded and the 
system is dead until the incoming data stream returns to 
baseline.   

Once the first pulse is time stamped, it can be removed 
from the data stream.  Because only tail pileup after the area 
summation cutoff will be corrected, only the samples after the 
cutoff need to be removed from the stream and the 
downstream engine only needs to process data after the cutoff 
for the above engine.  This also means that the system can run 
in real-time, as no past data needs to be sent to the 
downstream engines.  In this algorithm, it is assumed that 
pileup will occur, so the reference pulse is always used to 
remove the tail of the first pulse from the stream.  The 
timestamp is used to determine what samples from the 
reference pulse to use.  Recall that the reference pulse is 
defined at a much finer resolution (every 40ps in this work) 
than the sampling rate of the ADC.  The data that is sent to the 
next processing engine is calculated using equation 1. 
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Here, Vinput is the data stream from the ADC, Vref is the 
reference pulse voltage, n is the number of ADC samples 
summed on the leading edge of the pulse for the amplitude 

normalization, 
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normalize the reference pulse amplitude to the first incoming 
pulse amplitude. 

Partial dynamic integration is used to determine the energy 
of the pulse.  Two summations are generated for each pulse, 
one to the cutoff point and one for the full pulse.  If the 
downstream engine indicates that pileup did occur, then the 
cutoff summation energy is calculated by using the partial 
summation, with the remaining pulse energy calculated from 
the reference pulse as indicated above.  The cutoff point was 
experimentally determine, which will be presented in the next 
section.  If no pulse is detected in the downstream engine, 
then the whole pulse summation is used.  This scheme 
requires a termination processing engine that simply indicates 
whether it has detected a pulse but does not process it.  This 
engine would be in addition to the max number of expected 
consecutive pileups.  Additionally, if this engine detects a 
pulse, the system is dead until the incoming stream from the 
ADC returns to baseline.  The number of stages should be 
sufficient to handle the maximum number of consecutive 
pileup events expected.  This will be a user setting based on 
the count rate, the logic available on the FPGA and the 



acceptable level of data loss.  Fortunately, the probability of 
seeing a pileup train of length n follows a Poisson distribution, 
so for reasonable count rates, the number of stages is low.  For 
example, in our system with a pulse length of 200ns at 1Mcps, 
the probability of having a 4-pulse pileup is less than .5%. 

IV.   TESTS AND RESULTS 

A.   Determining peak pileup cutoff 
The first step in developing this algorithm is to determine 

where to set the cutoff between peak and tail pileup.  We 
started by investigating how much of the leading edge of the 
pulse is needed to accurately calculate the area to amplitude 
normalization and interpret the tail of the pulse.  The accuracy 
may degrade as less of the pulse is used, but using less of the 
pulse reduces the dead time, so the tradeoff between dead time 
and energy/timing resolution has to be balanced.  To perform 
this, a simulation was performed in Matlab using 1000 pulses 
from different pixels on a Zecotech MAPDN with a LFS-3 
scintillator.  

To determine the effect on timing resolution, two streams 
were created with the pulses in each stream in coincidence.  
The normal timing algorithm was run, except only a portion of 
the pulse was summed and that area was used to normalized 
the amplitude.  The amount that was summed was swept from 
100% to about 5%.  Fig. 2 shows the results of this study.  A 
sample pulse is included to provide a reference of what part of 
the pulse is being sampled.  The x-axis indicates how much of 
the pulse (in samples) is being summed up for amplitude 
normalization.  For this sampling rate (65MHz) and pulse 
length, 32 samples constitutes summing up 100% of the pulse, 
while 2 samples corresponds to about 5% of the pulse (note it 
doesn’t make sense to use just one sample).  Notice that the 
timing resolution remains fairly flat until the cutoff point 
approaches the peak.  If the summing is stopped before the 
peak, the timing resolution is substantially degraded, as would 
be expected. 

 
Fig. 2.  Graph of timing resolution for different amount of pulse used for 

amplitude normalization for a 65MHz sampled pulse. 

The next step is to determine how well the tail of the pulse 
can be interpolated based on summing up only a portion of the 
pulse.  For this test, only one stream is needed.  Again, for 
each percentage of pulse summed one thousand pulses were 
summed to the specified number of samples, while the rest of 
the pulse was interpolated with the reference pulse.  The 
resulting composite summation is compared to the summation 
of the total pulse.  The percent standard deviation of the error 
for all 1000 pulse is plotted in Fig. 3, along with an example 

pulse.  The percent standard deviation demonstrates how 
much overall error is associated with interpolating the tail.  
The area error increases as less of the pulse is summed and 
more is interpolated.  Again, there is a dramatic increase in 
error at about the peak of the pulse.   

 
Fig. 3.  Graph of area error as compared to how much of the pulse is 

interpolated for a 65MHz sampled pulse. 

The results in Fig. 2 and Fig. 3 indicate that about 20% (7 
samples for a 65MHz ADC) of the pulse is needed before the 
interpolation error becomes too great.  In fact, for timing, the 
best results are obtained at about 30% of the pulse, and 20% is 
roughly equivalent to summing up the whole pulse.  This is 
because the tail of the pulse contains a substantial amount of 
noise that corrupts the area normalization step.  Also, the error 
in Fig. 3 will only be realized during a pileup event because 
otherwise the entire pulse is summed.  Given these results, the 
line that distinguished peak pileup and tail pileup is set to 20% 
of the pulse.  That is, if pileup occurs before 20% of the pulse, 
it should be detected and discarded.  If it occurs afterwards, it 
can be separated with our algorithm.  These results also 
indicate that there is not enough benefit to have a truly 
dynamic integration.  That is, integrate until a pileup event is 
detected.  To support this, a complicated trigger would be 
required to detect the pileup event and multiple normalization 
lookup tables would be required for each partial summation.  
It is possible to use a lookup table to determine the overall 
pulse area based on what percentage of the pulse is summed, 
as is done in [11], and use that in the normalization step, but 
this will add the to latency of each stage which will have 
consequences in a real-time FPGA implementation. 

B.   Area correction 
One issue that becomes a factor when just the first portion 

of a pulse is summed is the dependence of a pulse’s calculated 
area on the voltage of the first sample.  Because the pulse 
trigger looks for a sample above a set voltage, the range of 
possible voltages for the first sample ranges from the trigger 
to some greater value.  The magnitude of this range is based 
on the slope of the leading edge of the pulse and the sampling 
interval.  Of course, the greater the slope and the larger the 
sampling period, the greater the range.  For the same pulse, a 
sampling that starts just after the threshold will have a lower 
calculated area than a sampling that starts well above the 
threshold.   

Fig. 4 shows the extent of this error.  Each graph shows the 
difference between the average area of a pulse and the area 
calculated for the same pulse for a given first sample voltage, 



as indicated on the x-axis.  The error is reported as a percent 
of the average pulse area for the amount of pulse summed.  
For example, Fig. 4a indicates that for a 65MHz ADC, the 
area summation is almost 8% under estimated when the first 
sample is just above the threshold (-.015V).  There are no 
voltages below -.015V because that is the voltage level of the 
trigger, so no samples will be below this value.  Fig. 4a 
demonstrates how the error is worse as less of the pulse is 
summed for the area to amplitude normalization.  Notice how 
percent error for summing up all of the pulse is nearly flat and 
centers around zero, while the error for summing up only 20% 
of the pulse has large errors when the first sample is at either 
end of the range. Fig. 4b shows how this error trends for 
different sampling rates.  A higher ADC means that there are 
more samples in the first 20% of the pulse and the range of the 
first sample is less.  This results in less error than a lower 
sampling rate.  However, the improvement from 65MHz to 
300MHz is not large because the slope of the leading edge of 
the 300MHz-sampled pulse is greater because the frequency 
cutoff for the low-pass filter is higher.  This is evident by the 
fact that the possible ranges of the first sample (x-axis) for 
both samplings is almost the same, though the range in time 
for the 300MHz sampling is ~1/5 that of the 65MHz 
sampling.   

           
       (a) 

                 
               (b) 

Fig. 4.  Graphs indicating the area summation error based on the voltage 
of the first sample.  (a)  For a pulse sampled at 65MHz while sampling 20% 
of the pulse or the whole pulse. (b)  For a pulse sampled at 65MHz and 
300MHz summing up 20% of the pulse. 

To correct for this, the error shown in Fig. 4 is calculated 
by sampling the reference pulse at all expected starting points 
and comparing the obtained area to the average area.  This 
result can be stored in a look-up table that is indexed with the 
voltage of the first sample.  After the initial area of 20% of the 
pulse is calculated, the first sample is normalized based on 
that area.  The normalized voltage of the first sample is fed 
into the line equation, and the correction factor is calculated.  
Note that the line that is calculated is actual error and not 

percentage error as shown in Fig. 4, so the result of this 
calculation can be added to the area of the pulse.  This 
corrected area is used to normalize the first samples of the 
pulse, which are used to determine the start time of the pulse.    

The previous results, after correcting for the voltage of the 
first sample, are shown in Fig. 5 and Fig. 6.  For both timing 
and area, there are no improvements when most of the pulse is 
summed which is logical considering how flat the 100% 
summation line is in Fig. 4a.  The important difference in 
timing resolution and area error is when the summation limit 
approaches the peak of the pulse.  For timing resolution in 
Fig. 5, correcting the area improves the timing at 20% 
summation by 6% and the standard deviation of the area 
interpretation reduces by 53%. 
 

 
Fig. 5.  Graph of timing resolution vs. amount of pulse summed with and 

without the area corrected for the amplitude of the first sample for a 65MHz 
sampled pulse. 

 

 
Fig. 6. Graph of area error with and without area correction as compared 

to how much of the pulse is interpolated for a 65MHz sampled pulse. 

 
C.    Algorithm simulation 
From the previous tests, the algorithm is as follows: 
1) remove baseline from incoming ADC stream 
2) detect pulse based on triggers discussed [4] 
3) sum up the first 20% and the whole pulse 
4) check if first 20% summation is too large indicating a 

pileup event in the first 20% of the pulse 
a. if the energy is too great stall until the 

stream returns to baseline 
b. otherwise continue 



5) normalize first sample of pulse based on area under 
first 20% of pulse 

6) calculate the area correction factor and adjust initial 
area 

7) normalize first samples (based on number of samples 
used in timing algorithm) of pulse to reference pulse 
using corrected area 

8) timestamp pulse as discussed in [4] 
9) normalize reference pulse to data pulse using 

corrected area 
10) using timestamp, lookup the correct samples from the 

normalized reference pulse to interpolate remaining 
80% of pulse 

11) subtract interpolated pulse from ADC stream and 
send resulting stream to second pileup correction 
engine 

12) if second engine detects a pulse it repeats steps 2-10 
on the pulse and the first engine uses the energy 
based on 20% summed plus 80% interpolated 

13) if no pulse is detected in the time it takes the first 
pulse to return to baseline, then the first engine uses 
the 100% summation for the pulse energy and it 
begins looking for pulses again on the ADC stream 

To simulate the algorithm, 1000 pulses from four 
different pixels on a Zecotech MAPDN array with a LFS-3 
scintillator were captured using a 25GHz oscilloscope.  These 
pulses were then imported into Matlab to perform simulations.  
The pulses were captured as singles, so the coincidence and 
pileup had to be generated in Matlab before the above 
algorithm could be simulated.  To facilitate this, two streams 
of pulses were created with one stream composed of pulses 
from a single pixel.  To generate the streams, the first step is 
to randomly pick a start time for the pulse in stream one.  
Based on the desired percentage of coincidence, it is randomly 
decided if a coincidental pulse is placed in stream two at the 
identical start time.  If it is decided that this pulse won’t have 
a coincidental pair in the second stream, the start time for the 
pulse in stream two is also randomly selected.  If however, it 
is determined that the current pulse will have a coincidental 
pair, then the start time in stream two is identical to the start 
time in stream one.  Next, a pulse has to be chosen from the 
respective data sets to be placed at the determined start times. 
If these pulses are in coincidence, then the pulses are selected 
in order (i.e. the first coincident set are pulse one out of the 
thousand, the second set are pulse two and so on).  This 
assures that all of the pulses from each pixel will be used in 
coincidence once and only once.  If the pulses are not in 
coincidence, a random pulse is selected from the 1000 
samples for the given pixel. Before the pulses can be added to 
the stream, the baseline has to be removed so that any overlap 
of pulses does not have multiple baseline components present.  
The baseline for each pulse is determined by averaging 300 
samples just before the pulse.  This value is subtracted from 
the pulse and then the pulse is added to the data stream.  The 
array that makes up the data stream starts out filled with zeros, 
but as more pulses are added, the chance of two or more 
pulses overlapping increases.  To generate a certain count rate, 
the length of the pulse stream is set such that after adding all 
of the coincidental pulses plus the random pulses, the number 
of pulses per unit time is correct.  In this work we investigate 

100 kilocount per second (kcps), 200kcps, 500kcps, and 
1Mcps (below 100kcps, pileup is no longer a large issue, and 
1Mcps is greater than the count rate we expect to handle).  
After all of the pulses are added to the stream, the baseline has 
to be added back between the pulses.  To do this, baseline 
samples surrounding the pulses from the oscilloscope data are 
added to the zeros in the stream.  When a pulse is intersected 
on the stream, the average of the previous 300 baseline 
samples added to the stream is added to the pulse.  This adds a 
constant baseline to the stream without adding the baseline 
noise to the pulse, which would effectively double the noise.  
Note that where pulses overlap, the noise is doubled, as the 
noise cannot be removed from the pulses.  The final step is to 
filter the stream and sample it with desired ADC sampling 
rate.  The result of this routine is two streams that consist of 
randomly placed coincidental pairs with singles randomly 
placed in the stream. Fig. 7 shows a small section of the 
resulting streams for 1Mcps.   

 
Fig. 7.  Matlab plot of a pileup streams with 1000kcps from the pulse 

stream generator routine.   

These streams were created with all possible unique 
pairings of the four pixels (six pairings), for five ADC 
sampling rates (65MHz, 125MHz, 300MHz, 500MHz, 1GHz), 
and with four count rates (100kcsp, 200kcps, 500kcps, 
1Mcps).  The energy resolution and coincidence timing 
resolution was recorded for each test.  The timing resolution 
was averaged over the six pixel pairings.  The results for how 
timing resolution is affected by the count rate are shown in 
Fig. 8.  As expected, the timing resolution improves as the 
ADC rates increase, and it degrades as the count rate increases 
because more pulses are involved in pileup.  The timing 
resolution from 100kcps to 1Mcps degrades by about 17% for 
a 65MHz-sampling rate and about 38% for the other sampling 
rates. Fig. 8 also shows that the degradation is essentially 
linear over the sampling rates covered.  This indicates that our 
algorithm degrades gracefully as pileup rates increase. 

 



 
Fig. 8.  Timing resolution for different count rates at different ADC 

sampling rates. 

To get an understanding of what is contributing to the 
degradation, the timing resolution was calculated for each 
possible coincidence scenario.  That is, coincidental pulses 
when neither pulse were involved in pileup, when one of the 
two were in a pileup event, and when both pulses were some 
part of a pileup event.  These results are presented in Fig. 9 for 
a 300MHz ADC sampling rate along with the overall timing 
resolution.  Note that data for 100kcps for one pulse involved 
in overlap and the data for 100kcps and 200kcps for both 
involved in pileup are missing.  This is because there were not 
enough instances of those events at low count rates to make 
the data statistically sound.   

From this data, it appears that most of the degradation is 
from the pileup events, and especially from the case when 
both pulses in coincidence are involved in pileup.  There is 
still some degradation in the timing resolution for pulses not 
involved in pileup when count rates increase.  The 
degradation is about 17% from 100kcps to 1Mcps.  This is 
probably due to the effect of the ability to calculate a good 
baseline when pulses are close together but not overlapped.   
Also, as will be discussed in the next section, not all of the 
pulses classified as “no overlap” may actually have pileup.   

 
Fig. 9. Plot of timing resolution for a 300MHz ADC sampling for 

different count rates.  The timing resolution is shown for coincidental pulses 
where neither of the pulse is in a pileup event, where one of the pulses is piled 
up and where both of the pulses had to be separated from another pulse due to 
pileup.  The overall timing resolution is the combination of all three. 

In addition to timing resolution, energy resolution is an 
important factor of a PET pulse processing system.  For the 
pileup correction algorithm, the energy resolution will give an 
indication of whether the energy of the pulses involved in 
pileup can be accurately estimated.  To calculate the energy 
resolution, the energy of all pulses in the stream (except those 

with too much pileup) was recorded and a histogram was 
generated.  The data set used in these experiments only 
contains photoelectric events, so only the photo peak appears 
in the histogram.  To determine the FWHM, a Gaussian 
function was fit to the data and the energy resolution was 
calculated.  The energy resolution results are reported in Fig. 
10.  Notice that the energy resolution is fairly constant over 
different count rates.  In fact, the worst degradation from 
100kcps to 1Mcps is less than 5%.    

 
Fig. 10.  Graph of the energy resolution of our pulse pileup correction as 

count rates increase for different ADC sampling rates 

Like was done for the timing resolution, the energy 
resolution can be broken down into the contribution of 
different kinds of pulses.  There are four different pulse 
classifications for energy resolution.   

1) no pileup – pulse not involved in pileup 
2) tail interpolate – first pulses in a pileup event where the 

tail of the pulse had to be calculated with the 
reference pulse 

3) pileup – pulses that are last in a pileup event where the 
previous pulse had to be subtracted out 

4) pileup with tail interpolate – pulses that are in the 
middle of a pileup event where the previous pulse 
had to be subtracted out and the tail had to 
interpolated from the reference pulse 

 

 
Fig. 11.  Energy resolution for a 300MHz ADC broken down to pulses in 

different places of a pileup event. 

Again, there are not enough pileup events at 100kcps and 
200kcps for any reliable results for the tail interpolate, pileup 
or pileup with tail interpolate classifications.  The most 
interesting result from this simulation is how much better the 



energy resolution is when some of the pulse has to be 
interpolated using the reference pulse.  This is because the 
reference pulse doesn’t have nearly as much noise as the 
individual data pulses.  This is also reflected by the result that 
the overall energy resolution and the energy resolution with 
no pileup are almost identical.  Recall that when there is no 
pileup, that the pulse is summed up to 100% for the energy 
calculation. 

D. Pulse detection 
Since the purpose of pulse pileup correction is to capture 

additional pulses, it is important to investigate pulse detection 
efficiency.  That is, how well does the algorithm detect good 
pulses and reject peak pileup pulses that have too much 
pileup.  To determine how well our algorithm is detecting 
pulses, statistics of pulse detection were kept as they were 
discovered and processed.  Pulses were classified by the 
number of pulses in a given pileup event.  For example, 2-
pulse pileups are events where two pulses piled up in a row, 
and 3-pulse pileups are events with three pulses in one pileup.  
The number of pulses without pileup, as well as pulses with 
too much pileup (peak pileup), was also recorded. 

Analyzing our pileup correction algorithm indicates that it 
is a paralyzable system.  Recall that if pileup occurs in the 
first 20% of a pulse, then the system is dead until the 
incoming ADC values return to baseline.  So, if a third pulse 
arrives before the system returns to baseline, then the dead 
time is extended by another pulse length.  So our system has 
essentially two dead times.  The dead time when the system is 
live (not resolving peak pileup) is 20% of the length of a 
pulse.  That is, when the system is live, the minimum 
separation required between two pulses is 20% of the pulse 
length.  When peak pileup does occur, the dead time is then 
the full pulse length.  The system is dead for at least one pulse 
length until the data stream returns to baseline.  Given these 
parameters, the pileup rates cannot be calculated with the 
typical statistical models that assume a single dead time, so 
instead the pileup rates were calculated with a Monte Carlo 
simulation.  Specifically, the rates were tabulated from the 
stream generation routine.  After each stream was generated, 
the start times of every pulse were evaluated to determine how 
many pulse “groups” had no pileup, and how many were a 2-
pileup, 3-pileup or 4-pileup event.  The occurrence of peak 
pileup was also determined.  The results in Table I show the 
percent difference from detected to expected for each 
subcategory.   

Table I.  Percent differences from detected pileup events to expected pileup 
events (detected count/expected count). 

count 
rate no pileup 

2-pulse 
pileup 

3-pulse 
pileup 

4-pulse 
pileup 

peak 
pileup 

500kcsp 
0.77% 
(1691/1678) 

5.4% 
(129/122) 

33.3% 
(6/4) 

0% 
(0/0) 

-175% 
(12/33) 

1Mcps 
0.68% 
(1464/1454) 

13.7% 
(190/164) 

13.6% 
(22/19) 

0% 
(5/5) 

-137% 
(27/64) 

 
For these tests (Table I), the algorithm detects less than 

half of the events when pileup occurs in the critical region.  
The rest are classified as a normal pulse.  This is the reason 
that the algorithm detects more pulses with no pileup, 2-pulse 
and 3-pulse pileup events.  This indicates that our mechanism 
for detecting pileup in the first 20% of the pulse is not robust 

enough, and some of the pulses that should be classified as too 
much pileup are making it through the filter.   

To test this hypothesis an experiment was set up to 
determine the ability of our algorithm to detect pileup before 
the critical point.  Recall that the test for too much pileup is 
checking for too much energy in the first 20% of the pulse.  A 
simulation was generated where 200 different pulses from the 
same pixel were put into a stream so that 100 2-pulse pileup 
events were generated.  The degree of pileup for all 100 
events was the same for each test.  The pileup started at 1% of 
the first pulse (essentially two pulses directly overlapping) 
and was swept to 20% (the peak pileup cutoff point).  In other 
words, about 20 tests were run with all of the 100 pileup 
events having the same amount of pileup.  For each test, the 
peak pileup detection scheme was run and the number of 
pulses that made it through the filter (did not detect peak 
pileup) was noted.  Of course, all pulses should be detected as 
peak pileup because they are all before the peak pileup cutoff.  
The results are tabulated in Fig. 12.  For any pileup in the first 
7% of the pulse, our peak detection scheme will accurately 
classify all pulses as having too much pileup to resolve.  From 
about 7-15% the number of pulses that pass through the peak 
pileup detection filter increase until about 16%, where all of 
the pulses are incorrectly classified as not having pileup 
before the critical point cutoff.  The reason that Fig. 12 
reaches 100% missed at 16% overlap is because of the margin 
built into the max pulse energy for second (or third) pulses of 
a pileup event.  The area of the second or third pulses in a 
pileup event contains the error associated with removing the 
interpolated tail of the previous pulse. This error can cause the 
area to increase (or decrease); therefore a small margin has to 
be included in the max pulse energy to eliminate the 
possibility of filtering out good pulses.  Considering this, it is 
possible to shift the curve in Fig. 12 to the right at the 
potential cost of missing some good pulses. 

 
Fig. 12.  Plot of the percentage of pulses that incorrectly determined to 

not have peak pileup for pileup events in the first 1-20% of the pulse.   

The reason for this inefficiency of the peak pileup 
detection routine lies in the energy parameters of the pulses.  
Unfortunately, the range of energy of a pulse without pileup 
can vary by almost 2X in this data set.  This is for pulses from 
a single pixel in a MAPD array.  This range may be even 
larger for the common anode design, as it will be a signal 
derived from all pixels in the array.  This means that if the 
first pulse is on the lower end of the energy spectrum, then 
more energy from a pileup event (i.e. greater overlap) is 



required to trigger the filter.  Therefore, this pileup event will 
not be filtered as peak pileup. 

The next question from these results is what is the effect of 
these misclassified pulses on the timing and energy resolution 
of our algorithm?  To determine the extent of this error, the 
same streams were generated as discussed above, but without 
any pileup in the first 20% of any pulse.  This will remove the 
need for the peak pileup filter, as no peak pileup will exist in 
the data set.  Theses streams were evaluated with our 
algorithm in the same manner discussed above.  The results of 
this test will indicate how much of a determent the missed 
peak pileup events have on the system.  In essence, we 
determined how much of the increase in timing resolution 
from 100kcps to 1Mcps in Fig. 8 is due to these errors.  The 
results of this test for a 300MHz sampling ADC are shown in 
Fig. 13. 

 
Fig. 13.  Timing resolution versus count rate for a 300MHz sampling 

ADC.  The top line is for a test that contains peak pileup, while the lower line 
shows the timing resolution for a test with peak pileup removed.   
 

The elimination of all peak pileups from the processed data 
set improves the timing resolution by 11% at 1Mcps.  This 
represents the ability of our algorithm if the peak pileup filter 
was perfect.   

When peak pileup is removed from the stream, the energy 
resolution is about 21% for all of the count rates.  This 
indicates the increase in energy resolution is because of the 
peak-pileup that is erroneously included into the data set. 

While the energy resolution is not greatly affected by the 
inefficiencies of the peak pileup filter, there are some 
applications where an accurate measure of the energy of each 
individual pulse is necessary.  In these scenarios, any addition 
energy from the second pulse would adversely affect the 
algorithms that use the pulse energy.  One possible solution in 
an application that requires accurate pulse energy is to check 
for too much energy in the pulse using a summation to 35% of 
the pulse.  The amplitude normalization would still occur with 
20% of the pulse.  This would presumably move the curve in 
Fig. 12 to 22-30%, so the peak pileup filter would eliminate 
all pileup before 22% of the pulse.  Of course, this would 
increase the theoretical dead time of the system to 35% of the 
pulse, which would reduce the number of pileup events that 
are mitigated.    

Another possible implementation to detect peak pileup is 
to use a two-part filter; one that looks for a second rising edge 

as well as too much energy in the first 20% of the pulse.  
Since the peaks of the pulses are generally in the same 
location (~10% of the pulse), any drastic increase above the 
previous sample after the peak could be classified as a peak 
pileup event. This would detect many of the peak pileup 
events that occur from the peak of the pulse to the peak pileup 
cutoff.  The existing energy filter would detect any pileup 
before the peak.  These possible peak-pileup filters will be 
investigated in future work. 

V.   DISCUSSION 
In this work, we show that an all-digital pulse pileup 
correction algorithm can reliably recover pulses overlapped up 
to 80%.  In fact pulses with slightly greater overlap are still 
processed (because they don’t have greatly increased 
integration values) albeit with a slight degradation in energy 
and timing resolution.  This algorithm ties in very well with 
our timing algorithm [4] and can easily be implemented in an 
FPGA.  The only complication in an FPGA implementation is 
the latency between the first processing engine and the last.  
This is because the downstream engines communicate with 
the first engine to indicate that it is free to look for the next 
pulse.  If there is a large latency between samples coming 
from the ADC and samples going into the last engine, then 
there is the possibility of missing some ADC samples. 
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