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Abstract

Current reconfigurable systems suffer from a significant overhead
due to the time it takes to reconfigure their hardware.  In order to
deal with this overhead, and increase the power of reconfigurable
systems, it is important to develop hardware and software systems
to reduce or eliminate this delay.  In this paper we propose one
technique for significantly reducing the reconfiguration latency:
the prefetching of configurations.  By loading a configuration into
the reconfigurable logic in advance of when it is needed, we can
overlap the reconfiguration with useful computation.  We
demonstrate the power of this technique, and propose an
algorithm for automatically adding prefetch operations into
reconfigurable applications.  This results in a significant
decrease in the reconfiguration overhead for these applications.

1  Introduction

When FPGAs were first introduced in the mid 1980s they were
viewed as a technology for replacing standard gate arrays for
some applications.  In these first generation systems, a single
configuration is created for the FPGA, and this configuration is
the only one loaded into the FPGA.  A second generation soon
followed, with FPGAs that could use multiple configurations, but
reconfiguration was done relatively infrequently [Hauck97a].  In
such systems, the time to reconfigure the FPGA was of little
concern.

Many of the most exciting applications being developed with
FPGAs today involve run-time reconfiguration [Hauck97a].  In
such systems the configuration of the FPGAs may change
multiple times in the course of a computation, reusing the silicon
resources for several different parts of a computation.  Such
systems have the potential to make more effective use of the chip
resources than even standard ASICs, where fixed hardware may
only be used in a portion of the computation.  However, the
advantages of run-time reconfiguration do not come without a
cost.  By requiring multiple reconfigurations to complete a

computation, the time it takes to reconfigure the FPGA becomes a
significant concern.  In most systems the FPGA must sit idlewhile
it is being reconfigured, wasting cycles that could otherwise be
performing useful work.  For example, applications on the DISC
and DISC II system have spent 25% [Withlin96] to 71%
[Wirthlin95] of their execution time performing reconfiguration.

It is obvious from these overhead numbers that reductions in the
amount of cycles wasted to reconfiguration delays can have a
significant impact on the performance of run-time reconfigured
systems.  For example, if an application spends 50% of its time in
reconfiguration, and we were somehow able to reduce the
overhead per reconfiguration by a factor of 2, we would reduce
the application’s runtime by at least 25%.  In fact, the
performance improvement could be even higher than this.
Specifically, consider the case of an FPGA used in conjunction
with a host processor, with only the most time-critical portions of
the code mapped into reconfigurable logic.  An application
developed for such a system with a given reconfiguration delay
may be unable to take advantage of some optimizations because
the speedups of the added functionality are outweighed by the
additional reconfiguration delay required to load the functionality
into the FPGA.  However, if we can reduce the reconfiguration
delay, more of the logic might profitably be mapped into the
reconfigurable logic, providing an even greater performance
improvement.  For example, in the UCLA ATR work the system
wastes more than 75% of its cycles in reconfiguration
[Villasenor96, Villasenor97].  This overhead has limited the
optimizations explored with the algorithm, since performance
optimizations to the computation cycles will yield only limited
improvement in the overall runtimes.  This has kept the
researchers from using higher performance FPGA families and
other optimizations which can significantly reduce the
computation cycles required.

Because of the potential for improving the performance of
reconfigurable systems, developing techniques for reducing the
reconfiguration delay is an important research area.  In this paper
we consider one method for reducing this overhead:  the
overlapping of computation with reconfiguration via the
prefetching of FPGA configurations.

2  Configuration Prefetch

Run-time reconfigured systems use multiple configurations in the
FPGA(s) in the system during a single computation.  In current
systems the computation is allowed to run until a configuration
that is not currently loaded is required to continue the
computation.  At that point, the computation is stalled while the
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new configuration is loaded.  These stall cycles represent an
overhead to the computation, increasing runtimes without
performing useful work on the actual computation.

A simple method to reduce or eliminate this reconfiguration
overhead is to begin loading the next configuration before it is
actually required.  Specifically, in systems with multiple contexts
[Bolotski94], partial run-time reconfigurability [Hutchings95], or
tightly coupled processors [DeHon94, Razdan94, Wittig96,
Hauck97b] it is possible to load a configuration into all or part of
the FPGA while other parts of the system continue computing.  In
this way, the reconfiguration latency is overlapped with useful
computations, hiding the reconfiguration overhead.  We will call
the process of preloading a configuration before it is actually
required configuration prefetching.

The challenge in configuration prefetching is determining far
enough in advance which configuration will be required next.
Many computations (especially those found in general-purpose
computations) can have very complex control flows, with multiple
execution paths branching off from any point in the computation,
each potentially leading to a different next configuration.  At a
given point in the computation it can be difficult to decide which
configuration will be required next.  Even worse, the decision of
which configuration to prefetch may need to be done hundreds or
thousands of cycles in advance if we wish to hide the entire
reconfiguration delay.  In a system where it takes a thousand
cycles to load a configuration, if we do not begin fetching the
configuration at least a thousand cycles in advance we will be
unable to hide the entire reconfiguration latency.

Not only is it necessary to decide which configuration to load far
in advance of a configuration’s actual use, it is also important to
correctly guess which configuration will be required.  In order to
load a configuration, configuration data that is already in the
FPGA must be overwritten.  An incorrect decision on what
configuration to load can not only fail to reduce the
reconfiguration delay, but in fact can greatly increase the
reconfiguration overhead when compared to a non-prefetching
system.  Specifically, the configuration that is required next may
already be loaded, and an incorrect prefetch may require the
system to have to reload the configuration that should have simply
been retained in the FPGA, adding reconfiguration cycles where
none were required in the non-prefetch case.

Note that prefetching has already been used successfully in other
domains.  Standard processors can use prefetching to load data
into the processor’s caches, or load data from disk into the
processor’s memory.  However, the demands of configuration
prefetching are quite different than those of other prefetching
domains.  In the case of prefetching data from disks into memory,
or from memory into the processor’s cache, the system can look
for regular access patterns in order to predict the next required
data.  For configurations, the calling pattern will be extremely
irregular.  Because of this, new algorithms for determining how to
best perform prefetching in reconfigurable systems must be
developed in order to make this a viable approach to reducing the
reconfiguration overhead.

In this paper, we will demonstrate the potential of prefetching for
reconfigurable systems, and present a new algorithm for

automatically determining how this prefetching should be
performed.  We first present a simple model of a reconfigurable
system that can allow us to experiment with configuration
prefetching.  We then develop an upper bound on the
improvements possible from configuration prefetching under this
model via an (unachievable) optimal prefetching algorithm.
Finally, we present a new algorithm for configuration prefetching
which can provide significant decreases in the per-reconfiguration
latency in reconfigurable systems.  To the best of our knowledge,
this is the first configuration prefetch algorithm developed for
reconfigurable computing.

3  Reconfigurable System Model

In order to explore the potential of configuration prefetching, we
will assume a reconfigurable computing architecture similar to
that of the PRISC system [Razdan94].  This system will allow us
to easily measure the benefits of configuration prefetch, while
representing one of the most difficult systems for which to
develop prefetching algorithms.  In our experiments, we assume
that the reconfigurable computing system consists of a standard
microprocessor coupled with a reconfigurable coprocessor.  This
coprocessor is capable of implementing custom instructions for
arbitrary computations.  While the coprocessor can support
multiple configurations for a given application, we assume that it
is only capable of holding one computation at a time.  In order to
use the reconfigurable coprocessor to compute a different
computation a new configuration must be loaded, which takes a
fixed latency before it is ready for operation.  The actual
reconfiguration latency will be varied in our experiments to
demonstrate the sensitivity of prefetching to reconfiguration
latency, yet each individual experiment will have a fixed latency
for all reconfigurations.

In normal operation, the processor executes instructions until a
call to the reconfigurable coprocessor is found.  These calls to the
reconfigurable coprocessor (RFUOPs) contain the ID of the
configuration required to compute the desired function.  At this
point, the coprocessor checks to see if the proper configuration is
loaded.  If it is not, the host processor is stalled while the
configuration is loaded.  Once the configuration is loaded (or
immediately if the proper configuration was already present), the
reconfigurable coprocessor executes the desired computation in a
single clock cycle.  Once a configuration is loaded it is retained
for future executions, only being unloaded when some other
coprocessor call or prefetch operation specifies a different
configuration.

In order to avoid this latency, a program running on this
reconfigurable system can insert prefetch operations into the code
executed on the host processor.  These prefetch instructions are
executed just like any other instructions, occupying a single slot in
the processor’s pipeline.  The prefetch instruction specifies the ID
of a specific configuration that should be loaded into the
coprocessor.  If the desired configuration is already loaded, or is
in the process of being loaded by some other prefetch instruction,
this prefetch instruction becomes a NO-OP.  If the specified
configuration is not present, the coprocessor trashes the current
configuration and begins loading the configuration specified.  At
this point the host processor is free to perform other computations,
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overlapping the reconfiguration of the coprocessor with other
useful work.  Once the next call to the coprocessor occurs, it can
take advantage of the loading performed by prefetch instruction.
If this coprocessor call requires the configuration specified by the
last prefetch operation, it will either have to perform no
reconfiguration if the coprocessor has had enough time to load the
entire configuration, or only require a shorter stall period as the
remaining reconfiguration is done.  Obviously, if the prefetch
instruction specified a different configuration than was required
by the coprocessor call, the processor will have to be stalled for
the entire reconfiguration delay to load the correct configuration.
Because of this, an incorrect prefetch operation can not only fail
to save reconfiguration time, it can in fact increase the overhead
due to the reconfigurable coprocessor.  This occurs both in the
wasted cycles of the useless prefetch operations, as well as the
potential to overwrite the configuration that is in fact required
next, causing a stall to reload a configuration that should have
been retained in the reconfigurable coprocessor.

For simplicity we assume that the coprocessor can implement
arbitrary code sequences, but these code sequences must not have
any sequential dependencies.  This is enforced by requiring that
the code sequences mapped to the reconfigurable coprocessor
appear sequentially in the executable, have a single entry point
and a single exit point, and have no backwards edges.  Note that
while assuming a reconfigurable coprocessor could implement
any such function is optimistic, it provides a reasonable testbed
with properties similar to reconfigurable systems that have been
proposed [Razdan94, Wittig96, Hauck97b].

4  Experimental Setup

In order to investigate the impact of prefetching on the
reconfiguration overhead in reconfigurable systems, we have
tested prefetching on some standard software benchmarks from
the SPEC benchmark suite [Spec95].  Note that these applications

have not been optimized for reconfigurable systems, and may not
be as accurate in predicting exact performance as would real
applications for reconfigurable systems.  However, such real
applications are not in general available for experimentation.
Also, applications of reconfigurable systems are tailored to a
specific system, and can be carefully optimized in reaction to a
specific reconfiguration overhead.  These applications may
change significantly if they were mapped to a system with a much
higher or lower reconfiguration delay, with different portions of
the source code mapped to the reconfigurable logic.  Thus, we feel
that the only feasible way to investigate optimizations to the
reconfiguration system is to use current, general-purpose
applications, and make reasonable assumptions in order to mimic
the structure of future reconfigurable system.

In order to conduct these experiments, we must perform three
steps.  First, some method must be developed to choose which
portions of the software algorithms should be mapped to the
reconfigurable coprocessor.  Second, a prefetch algorithm must be
developed to automatically insert prefetch operations into the
source code.  Third, a simulator of the reconfigurable system must
be employed to measure the performance of these applications.
Each of these three steps will be described in paragraphs that
follow.

The first step in the experiments is to choose which portions of the
source code should be mapped to the reconfigurable coprocessor
(these mappings will be referred to as RFUOPs here).  As
mentioned before, in this paper we will assume that arbitrary code
sequences can be mapped to the reconfigurable logic as long as
they have a single entry and a single exit point, and have no
backward branches or jumps.  This ensures that only
combinational code sequences are considered.  This is a somewhat
conservative assumption, since in many reconfigurable systems it
is possible to implement loops and other sequential control flow
operations in the reconfigurable logic.

ld [%fp - 0x18], %o0
subcc %o0, 0x7f, %g0
ble 0x3a3c
nop
ba 0x3a88
nop
ld [%fp - 0x14], %o0
or %g0, %o0, %o1
sll %o1, 9, %o0
sethi %hi(0x0), %o2
or %o2, 0xb0, %o1
ld [%fp - 0x18], %o2
or %g0, %o2, %o3

ld [%fp - 0x18], %o0
subcc %o0, 0x7f, %g0
ble 0x3a3c
nop
ba 0x3a88
nop
RFUOP 56
ba 0x3a24
nop
ld [%fp - 0x10], %o0
subcc %o0, 0, %g0
bg 0x3aa0
nop

ld [%fp - 0x18], %o0
subcc %o0, 0x7f, %g0
ble 0x3a3c
nop
ba 0x3a88
nop
RFUOP 56
ba 0x3a24
nop
PREFETCH 60
ld [%fp - 0x10], %o0
subcc %o0, 0, %g0
bg 0x3aa0

RFU
Picker

Prefetch
Insertion

Simulator

Figure 1.  Experimental setup for the prefetch tests.  Source code is augmented with calls to the reconfigurable coprocessor
(RFUOPs) by the RFU picker.  This code then has prefetch instructions inserted into it.  The performance of a given set of
RFUOPs and PREFETCHes is measured by the simulator.
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One complexity in deciding which portions of the source code
should be mapped to the reconfigurable logic is to find that set of
mappings that provide the best performance improvement in the
face of a potentially substantial delay for each reconfiguration.  In
general this is a complex problem, and one we do not attempt to
solve here.  Our solution is to simply find all potential mappings
to the reconfigurable logic, and then simulate the impact of
including each candidate.  This is done by repeatedly calling the
reconfigurable system simulator, and assuming optimal
prefetching (both of which are described later in this paper).  Our
algorithm then greedily chooses the candidate which provides the
best performance improvement, and retests the remaining
candidates.  These retests examine the impact of including any
one candidate in with the already chosen candidates.  This repeats
until the simulator determines that there is at most a potential 1%
improvement available in the remaining candidates.  In this way a
reasonable set of RFUOPs can be developed which produces a
significant performance improvement even when reconfiguration
delay is taken into consideration.  The result of this operation is to
create a file that specifies which portion of the source executable
should be mapped into RFUOPs, and which can be given to the
simulator to compute the delays seen in the target reconfigurable
system.

The simulator we have developed takes in an executable for a Sun
SPARCstation, a specification of the location of RFUOPs and
PREFETCH instructions in the executable, and a parameter that
specifies the number of cycles it takes to reconfigure the
coprocessor.  This simulator is developed from the SHADE
simulator [Cmelik93a].  This allows us to track the cycle-by-cycle
operation of the system, and get exact cycle counts.  Note that
only one program can be executed at a time, and operating system
calls are not instrumented, so context switch effects and the
potential to overlap reconfiguration with cycles in the operating
system are not considered.  This simulator reports the
reconfiguration time and overall performance for the application
under both normal and optimal prefetching, as well as
performance assuming no prefetching occurs at all.  These
numbers are used to measure the impact of the various prefetching
techniques.

Note that for simplicity we model reconfiguration costs as a single
delay constant.  Issues such as latency verses bandwidth in the
reconfiguration system, conflicts between configuration load and
other memory accesses in systems which use a single memory
port, and other concerns are ignored.  Such effects can be
considered to simply increase the average delay for each
configuration load, and thus should not significantly impact the
accuracy of the results.  We consider a very wide range of
reconfiguration overheads, from 10 cycles to 10,000 per
reconfiguration.  This delay range should cover most systems that
are likely to be constructed, including the very long delays found
in current systems, as well as very short delays that might be
achieved by future highly cached architectures.

The remaining component of the experimental setup is the
prefetch insertion program.  This algorithm decides where
prefetch instructions should be inserted into the executable given
the set of RFUOPs determined by the RFU picker.  The specific
algorithm used will be described in a later section.  The prefetch

insertion program takes in the specification of RFUOPs from the
RFU picker, as well as a control flow graph for the executable,
and produces a file for the simulator that specifies the
PREFETCH locations.  Note that in a production system both the
RFU picker and the prefetch insertion program would directly
modify the executable.  However, in order to allow us to use a
standard processor simulator to simulate the reconfigurable
system this information is maintained in a separate file.

5  Optimal Prefetch

In order to measure the potential prefetching has to reduce
reconfiguration overhead in reconfigurable systems, we have
developed the Optimal Prefetch concept.  Optimal Prefetch
represents the best any prefetch algorithm could hope to do, given
the architectural assumptions and choice of RFUOPs presented
earlier.

In Optimal Prefetching, instead of choosing specific locations for
prefetch operations we assume that prefetch operations occur only
when necessary, and occur as soon as possible.  Specifically,
whenever an RFUOP is encountered in the code, we determine
what RFUOP was last called.  If it was the same RFUOP it is
assumed that no PREFETCH instructions occurred in between the
RFUOPs since the correct RFUOP will simply remain in the
coprocessor, requiring no reconfiguration.  If the last RFUOP was
different than the current call, it is assumed that a PREFETCH
operation for the current call occurred directly after the last
RFUOP.  This yields the greatest possible overlap of computation
with reconfiguration.

...
03a28 RFUOP 56
      ?? PREFETCH ??
03a2c ble 0x3a28 ! Branch to RFUOP 56
03a30 nop
03a34 ld [%fp - 0x10], %o0
03a38 subcc %o0, 0, %g0
03a3c ble 0x3a60 ! Branch beyond RFUOP 60
03a40 nop
03a44 RFUOP 60
...

Figure 2.  Example of the optimism of the Optimal
Prefetch technique.  Once RFUOP 56 in line 3a28 is
executed, there are multiple possible next RFUOPs
which might be encountered.  If the branch at 3a2c is
taken, RFUOP 56 is executed again, and no
intermediate prefetch cycle occurs.  If neither the branch
at 3a2c nor at 3a3c is taken, RFUOP 60 is the next to
occur, and it is assumed that a PREFETCH 60 occurs
right after the call of RFUOP 56, overlapping 6 cycles
of computation with the reconfiguration.  No fixed
prefetching scheme could achieve both results for the
code sequence shown.

It is important to realize that the Optimal Prefetch technique,
while providing a bound on the potential of prefetching,
potentially produces results better than what could possibly be
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done by an actual prefetching algorithm.  As shown in Figure 2,
Optimal Prefetching may assume that a prefetch instruction occurs
at a given point in the code during some portions of the execution,
while the same location does not contain a prefetch at other times.
However, the bound provided by Optimal Prefetching is useful to
demonstrate the limits of configuration prefetching.

As can be seen in Table 1, optimal prefetching has the potential to
significantly reduce reconfiguration times.  This ranges from an
average factor of almost 4 for reconfigurable systems with a 10
cycle reconfiguration delay, to a factor of almost 44 for systems

with a reconfiguration delay of 10,000 cycles.  Averaged across
the reconfiguration delays considered, this produces a reduction in
reconfiguration delay of 88.6%, or a factor of almost 9.

It is important to realize that the reductions in reconfiguration
delay shown in Table 1 represent only an upper bound on what is
possible within the architecture described in this paper.  It is
unlikely that any actual prefetching algorithm will be able to
achieve improvements quite as good as the Optimal Prefetch
technique suggests.  In the next section, we will present an
algorithm for configuration prefetch.  This algorithm determines

Benchmark Latency No Prefetching Optimal Prefetching Ratio

Go 10 6,239,090 2,072,560 33.2%

100 6,860,700 1,031,739 15.0%

1,000 2,520,000 225,588 9.0%

10,000 1,030,000 314,329 30.5%

Compress 10 344,840 63,403 18.4%

100 127,100 46,972 37.0%

1,000 358,000 289,216 80.8%

10,000 520,000 12,535 2.4%

Li 10 6,455,840 958,890 14.9%

100 4,998,800 66,463 1.3%

1,000 55,000 21,325 38.8%

10,000 330,000 43,092 13.1%

Perl 10 4,369,880 656,210 15.0%

100 3,937,600 398,493 10.1%

1,000 3,419,000 9,801 0.3%

10,000 20,000 2 0.0%

Fpppp 10 2,626,180 1,415,924 53.9%

100 11,707,000 6,927,877 59.2%

1,000 19,875,000 5,674,064 28.5%

10,000 370,000 4,485 1.2%

Swim 10 600,700 265,648 44.2%

100 10,200 4,852 47.6%

1,000 91,000 79,905 87.8%

10,000 330,000 43,019 13.0%

Cumulative 10 26.2%

100 16.6%

1,000 16.5%

10,000 2.3%

All 11.4%

Table 1.  The results of Optimal Prefetch on the benchmark programs.  Each benchmark is tested at four different per-
reconfiguration delay values.  The “No Prefetch” and “Optimal Prefetch” columns report the total number of cycles spent stalling
the processor while the coprocessor is reconfigured, plus the number of cycles spent on PREFETCH opcodes.  The ratio column
lists the ratio of Optimal Prefetching delays to No Prefetching delays.  “All” is the average of all benchmarks at all
reconfiguration delays considered.
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specific locations where prefetch instructions should be inserted in
order to overlap computation with reconfiguration.

6  Prefetch Insertion

In the previous sections we have proposed the concept of
configuration prefetch, and have demonstrated that this technique
has the potential to significantly reduce the reconfiguration
overhead in reconfigurable systems, thus improving the
performance of these systems.  In this section we detail a specific
algorithm which has the capability to realize some of these
potential gains.

The challenge in developing a prefetch algorithm is to statically
determine which RFUOP is the next to be needed at some point in
the code.  This decision must be done as far in advance of the
RFUOP’s execution as possible, so that most or all of the
reconfiguration can be overlapped with useful computations.
However, the earlier the PREFETCH operation occurs the more
complicated the control flow between the PREFETCH and the
RFUOP, increasing the likelihood that the wrong configuration
will be loaded.  In fact, from a given point in the code there may
be many different RFUOPs that might occur next, since
subsequent branches may lead to many different RFUOPs.  Thus,
at best we can hope to make an educated guess as to what
configuration should be loaded, hoping that on average this
prefetch will reduce the reconfiguration overhead as much as
possible.

Our prefetch insertion algorithm starts with a control flow graph
for the benchmark being considered.  This graph contains
information on the potential execution paths within the program,
and thus forms the basis for determining which RFUOP will occur
next.  In a production system this control flow graph would be
extracted from the source code.  In our experimental system we
construct the control flow graph from the executable via
information provided by the SpixTools [Cmelik93b] code profiler,

as well as some additional information from the simulator.  The
insertion algorithm also takes the locations of RFUOPs produced
by the RFU picker.

The basis of our algorithm is a directed shortest-path algorithm on
the control flow graph, starting from each RFUOP location.  This
is based upon the belief that the RFUOP that can be reached in the
least number of clock cycles is the RFUOP configuration that
should be loaded.  We determine for each instructions in the
executable which RFUOP can be reached in the shortest number
of steps.  Note that we only consider forward arcs in the control
flow graph from an instruction to an RFUOP, or alternatively
backward edges from RFUOP to preceding instructions, since this
corresponds to the direction of control flow.  This closest RFUOP
is assumed to own the instruction, in that we will insert
PREFETCH operations such that that RFUOP will either be
present in the coprocessor when that instruction is executed, or
will begin prefetching it at this time.

Once we determine which RFUOP owns each instruction, we
have broken the code into ownership regions, where each region
represents the portion of the executable’s instructions owned by a
given RFUOP.  For example, in the code segment in Figure 3 left,
instructions 01-06 are in RFUOP 1’s ownership region, while
instructions 08-10 are in RFUOP 2’s ownership region.  The next
step in our prefetch insertion algorithm is to add PREFETCH
operations before any instruction in one ownership region which
has a direct predecessor in another ownership region.  This
PREFETCH operation will prefetch whichever RFUOP owns that
instruction.  Thus, in Figure 3 left we would insert a single
PREFETCH operations, and that would be a prefetch for RFUOP
2 just before Instruction 08.  Prefetches for RFUOP 1 would
appear somewhere before Instruction 01 and Instruction 02,
although their exact placement would depend on the exact control
flow.  In this way, we have multiple cycles in which to prefetch
RFUOP 1, while we will change to prefetching RFUOP 2 once it
becomes clear that that is the next RFUOP to occur, which

RFUOP 1

RFUOP 2

Instruction 01

Instruction 04

Instruction 06

Instruction 07

Instruction 08

Instruction 09

Instruction 10

Instruction 03

Instruction 05

Instruction 02

RFUOP 1

RFUOP 2

Instruction 01

Instruction 07

Instruction 09

Instruction 10

Instruction 02

Length = 4 Length = 4

Instruction 06 Instruction 08

Figure 3.  An example for the prefetch insertion algorithm (left), and the same example with the subroutine at instructions 3-5
removed (right).
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happens when we branch to Instruction 08.  Note that an RFUOP
is considered to be owned by itself, and thus if Instruction 07 is in
REFUOP 1’s ownership region we will not waste a PREFETCH
by inserting it before Instruction 07, while if Instruction 07 is
owned by some other RFUOP we would insert a PREFETCH for
that RFUOP at this location.

There is one refinement to this initial prefetch insertion algorithm
that can be important to creating the best prefetching.  The issue is
that subroutine calls may combine multiple different regions of
the control flow graph, creating “false paths”.  Specifically,

imagine that Instructions 03-05 represent a subroutine in the
software, called by Instructions 01 and 02.  If we use the
algorithm just discussed, RFUOP 1 would be considered to own
Instruction 02, even though there may be no execution path that
would lead from Instruction 02 to RFUOP 1 without passing
through some other RFUOP.  The solution to this is simple: we
replace most subroutine calls in the control flow graph with
control flow edges from the instruction just before the subroutine
call to the corresponding instruction just after the call, and this
edge has a “length” (used in the shortest path algorithm) equal to
the shortest execution path through that subroutine.  Thus, if

Benchmark Latency No Prefetching Basic Prefetch (Bas/No) Pruned Prefetch (Pru/No) (Pru/Opt)

Go 10 6,239,090 3,134,360 50.2% 2,862,128 45.9% 138.1%

100 6,860,700 4,126,293 60.1% 2,989,912 43.6% 289.8%

1,000 2,520,000 2,599,305 103.1% 996,300 39.5% 441.6%

10,000 1,030,000 5,562,593 540.1% 706,611 68.6% 224.8%

Compress 10 344,840 86,284 25.0% 78,284 22.7% 123.5%

100 127,100 78,821 62.0% 78,821 62.0% 167.8%

1,000 358,000 311,677 87.1% 311,651 87.1% 107.8%

10,000 520,000 1,156,939 222.5% 263,213 50.6% 2099.8%

Li 10 6,455,840 2,043,246 31.6% 1,929,195 29.9% 201.2%

100 4,998,800 3,209,090 64.2% 2,395,041 47.9% 3603.6%

1,000 55,000 6,898,414 12542.6% 42,082 76.5% 197.3%

10,000 330,000 150,720 45.7% 150,720 45.7% 349.8%

Perl 10 4,369,880 1,873,472 42.9% 1,579,463 36.1% 240.7%

100 3,937,600 2,241,365 56.9% 1,965,287 49.9% 493.2%

1,000 3,419,000 5,616,728 164.3% 2,015,812 59.0% 20567.4%

10,000 20,000 5,715 28.6% 5,714 28.6% 285700.0%

Fpppp 10 2,626,180 1,505,906 57.3% 1,490,467 56.8% 105.3%

100 11,707,000 7,660,039 65.4% 7,656,892 65.4% 110.5%

1,000 19,875,000 11,782,888 59.3% 5,805,461 29.2% 102.3%

10,000 370,000 79,616,610 21518.0% 350,002 94.6% 7803.8%

Swim 10 600,700 325,339 54.2% 324,589 54.0% 122.2%

100 10,200 139,174 1364.5% 5,573 54.6% 114.9%

1,000 91,000 4,004,510 4400.6% 81,265 89.3% 101.7%

10,000 330,000 41,995,371 12725.9% 56,126 17.0% 130.5%

Cumulative 10 41.8% 38.9% 148.3%

100 103.3% 53.4% 321.2%

1,000 411.1% 58.6% 355.2%

10,000 591.8% 44.0% 1906.5%

All 180.0% 48.1% 423.8%

Table 2.  The results of the prefetching algorithm on the benchmark programs.  Each benchmark is tested at four different per-
reconfiguration delay values.  The “Basic Prefetch” and “Pruned Prefetch” columns report the total number of cycles spent
stalling the processor while the coprocessor is reconfigured, plus the number of cycles spent on PREFETCH opcodes.  The ratio
of prefetch to non-prefetch latency is also reported.  The final column lists the ratio of Pruned Prefetch to Optimal Prefetch.
“All” is the average of all benchmarks at all reconfiguration delays considered.
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Instructions 03-05 in Figure 3 left were in fact a subroutine, we
would remove these instructions, and replace them with a control
flow arc from Instruction 01 to Instruction 06, and another arc
from Instruction 02 to Instruction 08, with both of them having a
length of 4 (Figure 3 right).  Normal arcs have a length of 1.  In
this way, Instruction 01 would be owned by RFUOP 1, and
Instruction 02 would be owned by RFUOP 2, giving each of them
a much longer time to prefetch their configurations without
sacrificing any accuracy in the prefetching decisions.

In order to do this simplification of the control flow graph we
classify procedures as pure or impure.  Any subroutine that does
not contain an RFUOP, and does not call any impure subroutines,
is considered pure.  All others are considered impure.  This
distinction is important, because we do not want to remove any
impure subroutines from the control flow graph.  The reason for
this is that an impure subroutine will contain RFUOPs which
should block the ownership regions of RFUOPs following this
subroutine call.  For example, assume that Instructions 03-05 in
Figure 3 left are a subroutine, and Instruction 04 is in fact an
RFUOP 3 instruction.  In this case, it should be clear that
Instructions 01 and 02 should be owned by RFUOP 3, since that
will always be the next RFUOP encountered after these
instructions.  However, if we remove this subroutine from the
control flow graph we would not discover this fact.  To deal with
this, we only remove pure subroutines from the control flow
graph, leaving all impure subroutines as is.  Our algorithm would
then properly label Instructions 01 and 02 as being owned by
RFUOP3 and prefetch accordingly.  The classification of
subroutines as pure or impure can be made by a very simple
search of the control flow graph.

As shown in Table 2, the prefetching algorithm as described so far
(referred to here as the “Basic Prefetch” algorithm) does a
reasonable job of prefetching in most cases, but can do a poor job
in others.  For example, the Basic Prefetch algorithm reduces the
reconfiguration overhead by 58% on average for systems with a
reconfiguration delay of 10 cycles, but can in fact increase the
reconfiguration delay by a factor of almost 6 for systems with a
reconfiguration delay of 10,000 cycles.  The problem is that the
algorithm sometimes makes poor decisions for some prefetch
placements, causing the coprocessor to unload the configuration
that is in fact the next one needed in the system.  Obviously,
something must be done to improve the consistency of the
algorithm’s results.

Our solution is to use a profiler-based pruning of the prefetch
operations.  We maintain statistics, on a per PREFETCH
operation basis, of whether the outcome of that PREFETCH
operation was beneficial or not.  In those cases where it begins
loading the configuration that is in fact the next RFUOP to be
called, we credit it with the number of cycles saved.  If it is the
first RFUOP to overwrite the configuration that is required next,
we reduce it’s benefit by the number of cycles the system has to
stall while reloading that configuration (note that a subsequent
PREFETCH of the proper configuration can reduce this penalty).
Finally, we also reduce the PREFETCH’s benefit by the total
number of times that prefetch operation is executed, since every
time a PREFETCH operation is executed the processor must
waste a cycle performing this operation.  All of these statistics are

easy to maintain, and could be reported by techniques similar to
those found in prof, gprof, and other program profilers.

The information gathered on a per PREFETCH basis measures the
effect this instruction has on the operation of the system.  We go
through these statistics and remove (“prune”) any PREFETCH
instruction that has a net loss on the operation of the system.  This
operation is similar to the performance optimization performed on
standard software algorithms, with the added benefit that it can be
easily automated, requiring no user intervention.  Note that the
pruning of one PREFETCH operation can cause another
PREFETCH to have a negative impact on the system operation.
For example, in between two calls to the same RFUOP there may
be two different PREFETCH operations for other RFUOPs.
During the first pruning step the first PREFETCH operation
would be penalized for unloading the RFUOP, and would be
removed.  At this point, the second PREFETCH is responsible for
overwriting the RFUOP that should have been retained.  Our
solution is to run the pruning process iteratively, continuing to
remove PREFETCH operations that have a negative impact on the
system operation.  Note that this takes at most a handful of
pruning cycles.

As can be seen in Table 2, when we combine our original prefetch
insertion algorithm with a pruning step (“Pruned Prefetch”), we
get a much more consistent result.  This greatly improves the
performance of the prefetching algorithm, providing an overall
52% reduction in reconfiguration overhead when compared to the
base case of no prefetching.  While this is not nearly as good as
the 89% improvement suggested by the Optimal Prefetch
technique, it is important to realize that the Optimal Prefetch
numbers may not be achievable by any static configuration
prefetch algorithm.  With the algorithm described here, we are
capable of providing a significant reduction in the reconfiguration
overhead of reconfigurable systems.  As shown in Table 3, this
speedup has a direct impact on the runtime of the reconfigurable
system, providing a 10% reduction in overall runtime over the
case of no prefetching.

7  Conclusions

In this paper we have introduced the concept of configuration
prefetch for reconfigurable systems.  By adding instructions into
the code of an application, configurations for a reconfigurable
coprocessor can be loaded in advance.  This allows the
overlapping of computation and reconfiguration, reducing the
reconfiguration overhead of reconfigurable systems.  We have
also developed an algorithm which can automatically determine
the placement of these prefetch operations, avoiding burdening
the user with the potentially difficult task of placing these
operations by hand.  Finally, we have developed the Optimal
Prefetch technique, which provides a bound on the potential
improvement realizable via configuration prefetch.  The results
indicate that these techniques can reduce the reconfiguration
overhead of reconfigurable systems by more than a factor of two,
which will have a direct impact on the performance of
reconfigurable systems.

We believe that such techniques will become even more critical
for more advanced reconfigurable systems.  When one considers
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techniques such as partial Run-Time Reconfiguration
[Hutchings95] or multiple contexts [Bolotski94], this greatly
increases the amount of computation available to overlap with the
reconfiguration, since prefetching can be overlapped with other
computations in the reconfigurable logic.  We plan to explore the
application of prefetching to such advanced systems in our future
work.

Acknowledgments

This research has been sponsored in part by a grant from the
Defense Advanced Research Projects Agency, and a grant from
the National Science Foundation.

References

[Bolotski94] M. Bolotski, A. DeHon, T. F. Knight Jr., “Unifying
FPGAs and SIMD Arrays”, 2nd International
ACM/SIGDA Workshop on Field-Programmable
Gate Arrays, 1994.

[Cmelik93a] R. F. Cmelik, Introduction to Shade, Sun
Microsystems Laboratories, Inc., February, 1993.

[Cmelik93b] R. F. Cmelik, “SpixTools Introduction and User’s
Manual”, SMLI TR93-6, February, 1993.

Benchmark Latency Basic Prefetch Pruned Prefetch Optimal Prefetch

Go 10 82.4% 80.8% 76.4%

100 89.5% 85.1% 77.6%

1,000 100.3% 93.8% 90.7%

10,000 118.5% 98.7% 97.1%

Compress 10 87.4% 87.0% 86.3%

100 97.9% 97.9% 96.5%

1,000 98.2% 98.2% 97.3%

10,000 119.5% 92.1% 84.5%

Li 10 79.2% 78.7% 74.1%

100 92.6% 89.2% 79.6%

1,000 134.3% 99.9% 99.8%

10,000 99.1% 99.1% 98.6%

Perl 10 83.8% 81.9% 75.9%

100 90.5% 88.9% 80.1%

1,000 111.6% 92.6% 82.0%

10,000 99.9% 99.9% 99.9%

Fpppp 10 79.2% 78.9% 77.6%

100 80.0% 80.0% 76.3%

1,000 84.0% 72.2% 72.0%

10,000 205.9% 100.0% 99.5%

Swim 10 84.4% 84.4% 81.1%

100 106.7% 99.8% 99.7%

1,000 293.3% 99.5% 99.5%

10,000 1732.8% 89.3% 88.8%

Cumulative 10 82.7% 81.9% 78.4%

100 92.5% 89.9% 84.5%

1,000 124.0% 92.2% 89.6%

10,000 192.0% 96.4% 94.5%

All 116.2% 89.9% 86.6%

Table 3.  Relative performance numbers for different prefetch techniques.  The numbers represent the ratio of the total runtime
(execution plus reconfiguration time) under the specified prefetch technique to the delay with no prefetching.  “All” is the
average of all benchmarks at all reconfiguration delays considered.



10

[DeHon94] A. DeHon, “DPGA-Coupled Microprocessors:
Commodity ICs for the Early 21st Century”, IEEE
Workshop on FPGAs for Custom Computing
Machines, pp. 31-39, 1994.

[Hauck97a] S. Hauck, “The Roles of FPGAs in
Reprogrammable Systems”, submitted to
Proceedings of the IEEE, 1997.

[Hauck97b] S. Hauck, T. W. Fry, M. M. Hosler, J. P. Kao, “The
Chimaera Reconfigurable Functional Unit”, IEEE
Symposium on FPGAs for Custom Computing
Machines, 1997.

[Hutchings95] B. L. Hutchings, M. J. Wirthlin, “Implementation
Approaches for Reconfigurable Logic
Applications”, in W. Moore, W. Luk, Eds., Lecture
Notes in Computer Science 975 - Field-
Programmable Logic and Applications, London:
Springer, pp. 419-428, 1995.

[Razdan94] R. Razdan, PRISC:  Programmable Reduced
Instruction Set Computers, Ph.D. Thesis, Harvard
University, Division of Applied Sciences, 1994.

[Spec95] SPEC CPU95 Benchmark Suite, Standard
Performance Evaluation Corp., Manassas, VA,
1995.

[Villasenor96]J. Villasenor, B. Schoner, K.-N. Chia, C. Zapata,
H. J. Kim, C. Jones, S. Lansing, B. Mangione-
Smith, “Configurable Computing Solutions for
Automatic Target Recognition”, IEEE Symposium
on FPGAs for Custom Computing Machines, pp.
70-79, 1996.

[Villasenor97]J. Villasenor, Personal Communications, 1997.

[Wirthlin95] M. J. Wirthlin, B. L. Hutchings, “A Dynamic
Instruction Set Computer”, IEEE Symposium on
FPGAs for Custom Computing Machines,  pp. 99-
107, 1995.

[Wirthlin96] M. J. Wirthlin, B. L. Hutchings, “Sequencing Run-
Time Reconfigured Hardware with Software”,
ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 122-128, 1996.

[Wittig96] R. Wittig, P. Chow, “OneChip:  An FPGA
Processor with Reconfigurable Logic”, IEEE
Symposium on FPGAs for Custom Computing
Machines, 1996.


