
   

 

 

 

 

 

 

© Copyright 2024 

 

Pranav Srinivas Murali 

  



   

 

 

 

Accelerating Electron Diffraction Analysis with Machine Learning Inference on FPGAs 

 

 

 

Pranav Srinivas Murali 

 

 

 

 

A thesis 

 

submitted in partial fulfillment of the 

 

requirements for the degree of 

 

 

 

Master of Science in Electrical Engineering 

 

 

 

 

University of Washington 

 

2024 

 

 

 

 

Committee: 

 

Scott Hauck 

Shih-Chieh Hsu 

 

 

 

 

 

Program Authorized to Offer Degree:  

 

Electrical and Computer Engineering 

  



   

 

 

 

 

University of Washington 

 

 

 

Abstract 

 

 

 

 Accelerating Electron Diffraction Analysis with Machine Learning Inference on FPGAs 

 

 

Pranav Srinivas Murali 

 

 

Chair of the Supervisory Committee: 

Scott Hauck 

Department of Electrical and Computer Engineering 

 

 

Reflection High-Energy Electron Diffraction (RHEED) is used to study the crystal structure and 

growth of thin films in material science. The RHEED systems available today take several 

minutes to analyze the crystal’s structure from an image captured during the crystal's growth.  

This thesis captures the design and deployment of a high-speed camera pipeline with a LeNet5 

neural network using the HLS4ML library on an FPGA. After deployment, a latency of 450-750 

us was obtained depending on the input size to the neural network. It establishes the possibility 

of an RHEED system that can process images from a camera up to a rate of 1000 Hz. This 

system would enable users to gain more insights about their experiments in real-time and allow 

them to modify or stop the deposition process during the crystal growth to achieve desired 

characteristics. 
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Chapter 1. INTRODUCTION  

Machine learning is rapidly gaining traction across various scientific domains, including material 

science. Within this field, its applications range from predicting material properties and 

expediting the discovery of novel materials to tailoring materials for specific use cases and 

enhancing our foundational comprehension of them. 

In crystallography, characterization traditionally involves microscopy or spectroscopy 

techniques. One prominent method for surface-level characterization is Reflective High Energy 

Electron Diffraction (RHEED). However, the analysis of crystal structures with RHEED can be 

time-consuming, often taking hours during crystal growth. Hence, the primary motivation behind 

this thesis was to find a method to accelerate RHEED analysis.  

This thesis proposes a framework for deploying a neural network on an FPGA to accelerate 

RHEED analysis. Machine learning offers a solution to expedite this process by classifying 

material characteristics in real-time, by helping identify defects as they form, and optimizing the 

growth process. Convolutional neural networks (CNNs) are particularly well-suited for 

implementing such machine learning models. 

Neural networks operate by processing input data through interconnected layers and 

activation functions to make predictions. The machine learning process comprises two main 

phases: training and inference. During training, the neural network's parameters, including 

weights and biases, are optimized using a dataset. Inference refers to the application of the 

trained neural network to make predictions for specific tasks. Depending on the scale and 

requirements, neural networks can be deployed on various computing devices, ranging from 

microcontrollers and CPUs to GPUs, or specialized hardware like FPGAs or NPUs. 
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The choice of inference hardware hinges on considerations such as computational demands, 

cost, and development time. FPGAs offer an attractive option for edge inference scenarios, 

where general-purpose CPUs and GPUs may exceed area, power, and mobility constraints. 

FPGAs are particularly suitable for intermediate computational requirements that surpass those 

feasible for microcontrollers and offer low CPU/GPU utilization, offering a balance between 

processing capabilities and efficiency. 

This section provides a background on the working of various components related to this 

project such as the architecture of RHEED systems, working of RHEED image analysis, the 

design of LeNet-5 and how it can be used for RHEED and finally the use of FPGAs and the 

HLS4ML package for this project. Section 2 provides hardware description of the camera and 

frame grabber while section 3 describes the design and training of the neural network used in the 

project. Section 4, 5 and 6 capture the FPGA design, performance optimization and toolchain 

configurations for deployment respectively. Lastly, the results are discussed in section 7. 

1.1 RHEED SYSTEMS 

The Reflection High-Energy Electron Diffraction (RHEED) technique stands as a cornerstone in 

surface science, extensively utilized to investigate the structural properties of crystalline 

materials. It serves as a pivotal tool in monitoring crystal growth, facilitating measurements of 

thickness, growth rate, surface roughness, and even surface configuration. 

RHEED operates by directing a high-energy electron beam at a shallow angle (θ) onto the 

material's surface, where the electrons engage with surface atoms and are subsequently 

redirected toward a detector. Typically, the electron gun is calibrated to an energy value ranging 
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from 8keV to 100keV, and the incident angle (θ) can vary between 1 and 4 degrees [1]. Figure 1 

below represents the usual RHEED setup used in experiments. 

 

Figure 1: RHEED setup to form patterns on the Detector/CCD Camera [2] 

 

 

 

 

Figure 2: RHEED patterns obtained from experiments [3] 
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The resultant diffraction pattern furnishes invaluable insights into the crystal structure, 

surface morphology, and other surface characteristics of the material under examination. An 

example diffraction pattern obtained with RHEED is shown in figure 2 above. With its 

versatility, RHEED finds widespread applications in analyzing thin films, epitaxial growth 

processes, and surface reconstructions, solidifying its status as an indispensable technique in both 

materials' science and semiconductor research. 

1.2 RHEED IMAGE ANALYSIS 

RHEED patterns can consist of streaks or spots [4]. Streaks occur when the surface has atomic 

terraces or steps, which cause the diffraction pattern to elongate into streaks. Well-defined 

RHEED streaks indicate a smooth, flat surface with high crystallinity, whereas broader streaks 

suggest a rougher surface with more atomic steps or defects. 

Spots are formed when the surface is highly ordered and smooth on an atomic scale, leading 

to sharp diffraction features. The positions of these spots help determine lattice parameters and 

surface symmetry, while their sharpness indicates the level of crystallinity. Well-defined spots 

suggest a high-quality crystalline surface, whereas broadened or smeared spots indicate defects 

or disorder. Changes in spot patterns can signal that atoms in the surface assume a different 

structure than the bulk.  

Additionally, intensity oscillations of the streaks or spots during film growth provide 

valuable information about growth rates and the layer-by-layer deposition process, aiding in real-

time monitoring and optimization of thin-film quality. Different patterns are produced based on 

the material properties and the operating conditions such as temperature and pressure, as 

illustrated in figure 3. 
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Figure 3: RHEED patterns obtained from Indium Tin Oxide films produced at different 

growth pressures and temperatures [5] 

 

The RHEED patterns captured on the detector or CCD digital camera are processed by 

software like RHEED Image Analysis [6] and kSA 400 [7]. Parameters such as spot positions, 

intensities, and widths are measured. The kSA 400 software can measure peak intensity, 

minimum intensity, summed intensity, average intensity, centroid intensity, elapsed time, data 

point, peak row, peak column, centroid row, centroid column, and standard deviation of 

intensity. The user of the system can use these parameters to understand the properties of the 

crystal. 

1.3 LENET-5 

LeNet is a straightforward convolutional neural network (CNN) crafted to enhance the efficacy 

of pattern recognition systems by leveraging backpropagation-based machine learning, rather 
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than relying on hand-designed heuristics. Pattern recognition unfolds in two stages: feature 

extraction and classification, with the feature extractor tailored to the task at hand and the 

classifier being general-purpose and trainable. The overarching architecture of LeNet unfolds as 

follows: 

• Input Layer: Receives the input image 

• Feature Extraction Layers: Executes convolutions followed by average-pooling 

• Fully Connected Layers: Encompasses three fully connected layers for classification 

• Output Layer: Generates the final predictions 

Excluding the input layer, LeNet-5 comprises 7 layers housing trainable parameters 

referred to as weights. The original architecture of LeNet-5 for digit recognition materializes as 

follows in figure 4: 

 

 Figure 4: LeNet5 Architecture for digits recognition [8]  
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Table 1: LeNet5 Architecture configuration 

Layer Type Output 
Size 

Kernel 
Size 

Stride Feature Maps Trainable 
Parameters 

Input - 32x32 - - 1 - 

C1 Convolutional 28x28 5x5 1 6 156 

S2 Average 
Pooling 

14x14 2x2 2 6 - 

C3 Convolutional 10x10 5x5 1 16 2,416 

S4 Average 
Pooling 

5x5 2x2 2 16 - 

C5 Convolutional 1x1 5x5 1 120 48,120 

F6 Fully 
Connected 

84 - - - 10,164 

Output Fully 
Connected 

10 - - - 850 

 

For the convolutional layer, the kernel serves as a filter for extracting features such as edges, 

patterns, or textures to create feature maps. The subsampling layers (referred to as S2 and S4) 

use average pooling to reduce the dimensionality of the feature maps. The use of multiple feature 

maps allows the network to learn and represent a richer set of features, improving its ability to 

recognize complex patterns and make accurate predictions. By having multiple feature maps, the 

network can effectively capture diverse aspects of the input data, enhancing its overall 

performance and robustness. The number of trainable parameters for each layer is given by: 

 
Convolutional Layer = (No. of input channels x Kernel Height x Width + bias) x No. of output channels 

 
Fully Connected Layer = (No. of inputs x No. of outputs) + No. of outputs 
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The loss function gauges the neural network's performance during training by comparing the 

difference between the predictions and actual values. In LeNet5, the Maximum Likelihood 

Estimation (MLE) is the simplest loss function used to find the weights during training. This loss 

function helps adjust the network's weights through backpropagation, improving the model's 

accuracy by reducing prediction errors over successive training iterations. 

1.4 LENET-5 WITH RHEED 

Pulsed Laser Deposition (PLD) [9] involves using high-energy laser pulses to ablate a target 

material, creating a plasma plume that deposits onto a substrate, forming a thin film. The film's 

properties can be controlled by adjusting parameters like laser energy, pulse duration, and 

background gas pressure. Typically, the RHEED system is used as feedback with PLD to 

cultivate crystals with diverse characteristics. A Gaussian distribution pattern emerges as 

diffracted electrons undergo constructive interference at specific angles processed by the 

RHEED system to analyze the material's characteristics. However, most commercially available 

RHEED systems struggle to keep pace with the deposition rate. To address this challenge, an 

alternative to RHEED can be devised, employing a Convolutional Neural Network (CNN) to 

swiftly ascertain the crystal's characteristics during deposition [10]. 

The three attributes of a Gaussian spot or streak are 2-dimensional mean, 2-dimensional 

covariance, and theta [11]. Mean represents the center position of a diffraction spot or streak, 

indicating the average location of the diffracted electrons. Covariance describes the spread and 

orientation of the spot or streak, providing information about the surface roughness and disorder. 

Theta represents the rotation of an elliptical Gaussian spot to represent anisotropic features, 

typically including the mean and covariance. 
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The LeNet5 architecture presents a viable option for fulfilling this classification task. By 

configuring the CNN to encapsulate the pertinent Gaussian features, LeNet5 can effectively 

discern the Gaussian spot's or streak’s attributes. A LeNet5 model trained to process incoming 

images and classify parameters Mean, Covariance, and Theta can feasibly operate at a pace 

exceeding that of pulsed-laser deposition. Further insights into the neural network's 

implementation are expounded upon in Section 3. 

1.5 FPGAS FOR RHEED 

Neural Networks inherently exhibit significant data parallelism, a characteristic that scales with 

the model's complexity. Common platforms for implementing neural networks include CPUs, 

GPGPUs, FPGAs, and ASIC Accelerators. GPGPUs offer high parallelism and throughput, 

making them ideal for training large models but less suited for latency-sensitive tasks since they 

are machines optimized for throughput and not latency. CPUs are versatile and easy to program 

but lack the parallel processing capabilities of GPGPUs. FPGAs offer reconfigurability and 

lower power consumption, making them suitable for real-time inference. The best power and 

performance benefits are attained when the circuit is tailored to the neural network model as in 

the case of ASIC Accelerators.  

Given that GPGPUs prioritize throughput over latency, investing in domain-specific 

accelerators for inference proves prudent, with GPGPUs being favored for training. In scenarios 

with smaller volumes, FPGAs emerge as the closest alternative to domain-specific accelerators. 

Moreover, if the neural network design changes with the same target latency, with reasonable 

engineering effort, the same FPGA can be used to accommodate the modified neural network. It 

is also possible to estimate the latency by multiplying the clock period by the number of pipeline 
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stages. In contrast, selecting the appropriate GPGPU can pose challenges under evolving 

circumstances. While frameworks like CUDA facilitate program scalability with standardized 

blocks, programmers still encounter significant optimization demands during deployment. 

Furthermore, the unawareness of processing latency during programming can exacerbate 

optimization complexities. 

For this project, minimizing compute latency stands as a key objective, with inference 

ideally completed no later than the subsequent phase of the deposition process. The image 

processing along with the neural network, being latency-sensitive, can significantly impact 

system performance if not managed effectively. Commercial off-the-shelf products such as the 

Euresys frame grabber, built atop FPGAs, adeptly handle interfacing duties, and are elaborated 

upon in the subsequent section. Conversely, most GPGPUs operate within heterogeneous 

systems, wherein a CPU orchestrates workload distribution and data movement between main 

memory and shared GPU memory. This arrangement accommodates the execution of serial parts 

more efficiently by the CPU. Consequently, interfacing the camera directly with a GPGPU poses 

greater challenges for this project. 

1.6 HLS4ML  

The HLS4ML [12] Python package serves as a valuable tool for converting neural networks into 

FPGA-compatible implementations. It endeavors to bridge the divide between neural network 

design and hardware implementation, recognizing the challenges that machine learning engineers 

face in conceptualizing hardware-efficient implementations. Moreover, the traditional 

development process of hand-written code in a specialized hardware description language for 

such implementations is notably time-consuming. 
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HLS4ML offers support for various layers commonly employed in neural networks 

across popular frameworks like Keras, ONNX, and PyTorch. By generating high-level synthesis 

(HLS) code, compatible with FPGA tools from both Intel and AMD, HLS4ML facilitates the 

translation of neural network designs into hardware-ready implementations. 

For machine learning engineers, transitioning from neural network design to hardware 

implementation can be daunting. HLS4ML simplifies this process by automating much of the 

conversion, thus enabling engineers to focus on optimizing network performance rather than 

grappling with intricate hardware considerations. The HLS4ML workflow of transforming a 

machine learning model into synthesizable HDL is show in figure 5 below. Further details 

regarding the HLS4ML configuration are elucidated in Section 4, while Section 7 covers the 

optimizations undertaken to enhance deployment efficiency. 

 

Figure 5: HLS4ML workflow [13] 
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Chapter 2. HARDWARE DESCRIPTION 

To facilitate RHEED analysis, a high frame rate camera is indispensable for capturing diffraction 

patterns swiftly and accurately. To this end, the Phantom S200 camera proves instrumental in 

achieving the requisite frame rate. Once the frames are acquired from the camera, they undergo 

cropping before being relayed to the input layer of the neural network for processing. 

Euresys provides a comprehensive hardware-software stack tailored to streamline the 

integration of prevalent camera interfaces, such as coaxial links, through specialized FPGA-

based hardware known as frame grabbers. These frame grabbers, offered by Euresys, serve as 

intermediary devices, facilitating the seamless connection between the camera and 

accommodating the neural network processing pipeline on the same FPGA. By leveraging this 

hardware-software stack, the integration process is expedited, enabling rapid deployment and 

efficient utilization of the Phantom S200 camera for RHEED analysis. 

2.1 CAMERA 

As previously emphasized, synchronizing the camera's speed with the rate of the pulsed-laser 

deposition is paramount for seamless RHEED analysis. The Phantom S200 shown in figure 6 

emerges as a high-speed camera solution, boasting a maximum resolution of 640x480 pixels at a 

rate of 6,950 frames/second and configurable bit depths of 8 or 10 bits [14]. While the camera 

offers support for both color and monochrome capture, the absence of benefits from capturing 

colors in this project leads to a decision to capture grayscale frames solely. Consequently, the 

camera captures grayscale frames, with the bits representing the intensity of white corresponding 

to each pixel. 
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Figure 6: Phantom S200 camera [15] 

 

To interface the camera with a readout system, the camera employs support for the CXP6 

protocol. CXP6 stands as a standardized protocol able to sustain a bit rate of 6.25 Gbits/s. 

Leveraging the CXP6 protocol, the camera seamlessly integrates into the RHEED setup, 

ensuring efficient data transfer and synchronization with the deposition process.  

2.2 EURESYS COAXPRESS FRAME GRABBERS  

Euresys offers a range of CoaXPress products that seamlessly interface with cameras supporting 

the CXP protocol, facilitating efficient integration into RHEED setups. Two variants evaluated 

for this project are the Coaxlink Quad and Coaxlink Octo. The Quad variant supports 4 CXP6 

connections, while the Octo variant supports 8 CXP6 connections. 

Both variants are equipped with an onboard AMD Kintex Ultrascale XCKU035 FPGA, 

with 70% of programmable resources available for user utilization. This FPGA is leveraged to 

perform image processing on incoming frames and execute inference tasks. Additionally, 

Euresys provides encrypted reference designs that can be readily integrated into the project, 

enabling seamless access to inputs, memory, and GPIO pins on the frame grabber. Separate 
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reference projects are available for the Quad and Octo variants, ensuring optimal compatibility 

and performance. 

The frame grabber interfaces directly with a PC via PCI Express, offering convenience 

for logging results for postprocessing purposes. This direct interfacing streamlines data transfer 

and facilitates efficient processing and analysis of RHEED data. The figure 7 below represents 

the block diagram of the system. The block diagram of the frame grabber is provided in Figure 9. 

 

Figure 7: Simplified Block Diagram of the system 
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Chapter 3. NEURAL NETWORK DESIGN AND TRAINING 

The primary objective of this project is to classify the parameters Mean, Covariance, and Theta 

associated with an input diffraction pattern featuring a Gaussian spot. Input data comprises 

images of the diffraction pattern, while the output comprises the classified results of these 

parameters. To realize this goal, the PyTorch framework was employed for both the development 

and training of the neural network. 

Through PyTorch, the neural network architecture was crafted, and the model was trained 

on a dataset containing labeled diffraction patterns. The network learned to discern the 

distinctive features of Gaussian spots within the input images and associate them with 

corresponding Mean, Covariance, and Theta parameters. 

Upon successful training, the neural network can accurately classify the Mean, Covariance, 

and Theta parameters of Gaussian spots, thereby contributing to the advancement of RHEED 

analysis and materials science research. Sean Rassa from Drexel University developed the neural 

network discussed in this section. 

3.1 NEURAL NETWORK DESIGN 

The general form of a 2D Gaussian function is given by the equation: 

 

Equation 1: Two-Dimensional Gaussian Function 

Where A is the amplitude or height of the Gaussian Peak. (μx, μy) are the coordinates of 

the peak center. The mean of the Gaussian function corresponds to the anticipated position of the 
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pattern, effectively pinpointing the location within the image where the Gaussian pattern is most 

prominent. σx and σy are the standard deviations of controlling the spread of the function along 

the x and y axes. When the Gaussian distribution is rotated at an angle θ, a rotation matrix is 

applied to perform the rotation. The rotation matrix and the subsequent rotation vector for 

coordinates (x,y) is given by equations 2 and 3. By replacing x0 with xcosθ – ysinθ and y0 with 

xsinθ + ycosθ in equation 1 and simplifying it, equation 4 can be obtained which represents a 2D 

Gaussian rotated at an angle θ. 

 

 

Equation 2: Rotation Matrix 

 

 

Equation 3: Rotation Vector 

 

 

Equation 4: 2D Gaussian Function with rotation θ 

 

In this application, the 2D Gaussian function serves as a model for the spatial 

arrangement of atoms [16] within the crystal structure as observed in the camera images. The 

architecture of a neural network based on LeNet5 for this project is modeled as follows: 

• Input Layer: Receives an input image of dimensions 48x48 

• Sequential Layer 1:  
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o Convolution: Kernel = 5x5; Stride = 1; Output Channels = 6; 

o Batch Normalization: Output Channels = 6; 

o ReLU Activation: Output Channels = 6; 

o Max Pooling: Kernel = 4x4; Stride = 4; Output Channels = 6;  

• Sequential Layer 2: 

o Convolution: Kernel = 5x5; Stride = 1; Output Channels = 16; 

o Batch Normalization: Output Channels = 16; 

o ReLU Activation: Output Channels = 16; 

o Max Pooling: Kernel = 4x4; Stride = 4; Output Channels = 16;  

• Fully Connected Linear and ReLu Activation Layer  

• Fully Connected Linear and ReLu Activation Layer 

• Fully Connected Linear and ReLu Activation Layer 

• Output Layer: (μx, μy, σx, σy, θ)   

The sequential layers operate as follows: 

• Convolution layer has filters to extract specific features 

• Batch Normalization Layer is used to improve the accuracy by adjusting and scaling the 

activations 

• ReLU Activation Layer introduces non-linearity in the system to enhance learning 

complex relationships 

• Max Pooling Layer reduces the spatial dimensions of the layer 

The successive Fully Connected and ReLU Activation layers help in the finer refinement 

of the features extracted from the previous layers. ReLU introduces non-linearity that enables the 
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network to learn from complex relationships in the data. The following figure represents the 

architecture of the neural network: 

 

Figure 8: LeNet5 architecture for RHEED of input size 48x48 

3.2 DATASET FOR TRAINING 

To facilitate the training of the neural network, a Gaussian generator method was developed in 

Python. This generator takes as input the parameters required to define a Gaussian distribution 

and generates a corresponding distribution. The input parameters necessary for generating 

suitable Gaussians for training are: 

1. Size of the output tensor: The size of the output tensor is predetermined to match the 

input layer of the neural network, which is set at 48x48 pixels. 

2. μx: The mean along the x-axis of the Gaussian distribution. 

3. μy: The mean along the y-axis of the Gaussian distribution. 

4. σx: The covariance along the x-axis of the Gaussian distribution. 
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5. σy: The covariance along the y-axis of the Gaussian distribution. 

6. θ: The angle of rotation for the Gaussian distribution. 

These parameters are utilized within the Gaussian generator to generate Gaussian spots of 

varying characteristics. The generated Gaussian distributions are then passed into the equation 

depicted in equation 1, transforming them into tensors representing images captured by the 

camera. 

Furthermore, the neural network underwent testing using a real-world dataset acquired 

from experiments conducted by Prof. Joshua Agar's research group at Drexel University. The 

dataset comprises multiple growth areas and growth spots stored in an H5 file, indexed as 

'growth_n' and 'spot_n', respectively. This real-world dataset provided invaluable data for 

validating the performance and efficacy of the trained neural network in analyzing RHEED 

patterns and classifying parameters accurately. 

3.3 LOSS FUNCTION FOR ESTIMATING ACCURACY 

In our project, we employed a custom-weighted Mean Squared Error (MSE) loss function to 

evaluate the disparity between the predicted crystallographic images and the ground truth. This 

loss function, implemented using PyTorch, is tailored to calculate the mean squared error of 

grayscale images A (actual) and B (predictions). Both the actual image A and the predicted 

image B are represented as PyTorch tensors with shapes [batch_size, 1, M, N], indicating the 

batch size, number of channels (1 for grayscale), and image dimensions M x N. A pivotal 

parameter introduced in our custom loss function is 'n,' an exponent that dictates the weighting 

strategy applied to the input image. This exponent is utilized to exponentiate the input image I, 
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thereby influencing the emphasis placed on various regions of the image during the loss 

computation. The formula for the loss function is: 

 

Equation 5: Custom weighted loss function for the neural network 

where: 

size is the number of data points. 

yi is the actual value for the ii-th data point. 

ŷi is the predicted value for the ii-th data point. 

n is the power to which the differences are raised, commonly 2 for mean squared error. 

  

During training, the custom-weighted MSE loss is calculated by averaging the squared 

differences of corresponding pixels in the input and target images. However, the exponentiated 

input image, derived from applying the exponent 'n,' introduces a weighted factor that either 

amplifies or diminishes the contribution of each pixel based on the specified exponent. By 

minimizing the MSE, the network adjusts its parameters to reduce the error between the 

predicted outputs and the actual labels. 

In our scenario, the custom weighting with the exponent 'n' enables us to highlight 

specific features within the crystallographic images throughout the training phase. This tailored 

loss function acknowledges the importance of particular spatial characteristics, such as Gaussian 

patterns or deposition positions, and steers the optimization process to prioritize learning these 

pivotal features. By integrating this custom-weighted MSE loss function into our neural network 
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training, our objective was to refine the model's capacity to accurately forecast and replicate the 

intricate patterns present in crystallographic images, thereby enhancing the overall performance 

and precision of our predictive model. 

3.4 TRAINING RESULTS 

The neural network was trained for 200 epochs and an average loss of 0.005566 was attained. 

Following training, the model was saved and will subsequently be utilized for inference tasks. 

The upcoming section provides insights into the utilization of the pre-trained model during 

deployment on hardware for inference execution. 

 

Figure 9: Example prediction for a given input Gaussian spot from a real dataset 
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Chapter 4. FIRMWARE DESIGN 

This section captures the design of the firmware operating on the FPGA. The firmware design 

encompasses three primary components: processing incoming video frames, executing inference, 

and transmitting the results back to a PC. The work discussed in this section was developed by 

Ryan Forelli of Lehigh University. 

4.1 EURESYS REFERENCE DESIGN 

The design of the firmware for the FPGA is structured around two main modules: iCoaxlinkCore 

and iCustomLogic. The iCoaxlinkCore module manages system-level functions within the frame 

grabber, while the iCustomLogic module serves as a platform for user-designed functionalities 

leveraging the remaining FPGA resources. The block diagram in figure 9 illustrates the reference 

firmware design, with all components, except CustomLogic, encapsulated within iCoaxlinkCore 

as an encrypted design. The camera is interfaced to the firmware through the CoaXPress 

connections. 

The design revolves around two global signals: clk250, serving as the common clock, and 

srst250, asserted synchronously during a PCIe reset. It is crucial to ensure that the critical path 

within the CustomLogic design is at most 4ns, so that it works correctly with the 250 MHz logic 

clock. If optimization efforts fall short, reducing the clock can be contemplated, with 

implementation details discussed in the subsequent section. 

Data exchange between CustomLogic and other components occurs through the AXI4 

bus protocol. The interface for acquiring incoming images by CustomLogic is termed the slave 

side, while the side for transferring results is referred to as the master side. 
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Figure 9: Euresys frame grabber firmware architecture [17] 

 

The directory structure of the reference design is organized as follows: 

• 01_readme: Provides the TCL command for creating a new project. 

• 02_coaxlink: Houses all encrypted files utilized in iCoaxlinkCore. 

• 03_scripts: Contains TCL scripts for executing the Vivado backend flow. 

• 04_ref_design: Comprises VHDL files of example designs and the module for 

iCustomLogic. 

• 05_ref_design_hls: Stores all HLS source files and files generated after running HLS. 

• 06_release: Holds the generated bitstream post Vivado backend flow. 

• 07_vivado_project: Generated after executing the Vivado backend flow, this directory 

can be used to access project information as it traverses through Vivado. 
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4.2 GETTING STARTED WITH THE REFERENCE DESIGN 

The initial step in porting the reference design involves eliminating non-essential portions. 

Within the reference design, three example designs—iPixelLut, iHlsPixTh, and iFrame2Line—

are instantiated within CustomLogic but are not requisite for this project. 

Designers have the flexibility to instantiate modules essential to their project within the 

reference design. In this project, the wrapper for the HLS4ML module is instantiated here, with 

further discussion on its design provided later. 

All newly added modules must be sourced by the TCL script during Vivado compilation. 

Thus, all files added to the project were listed under "files" within 

03_scripts/create_vivado_project.tcl. To modify the directory structure or reorganize files, paths 

within the TCL scripts were adjusted accordingly. 

4.3 INPUT PROCESSING 

The initial phase involves capturing frames from the camera, accomplished via the slave side 

utilizing AXI-Stream bus format with latency-insensitive READY-VALID handshaking for data 

exchange. Data transfer occurs when both READY and VALID signals are asserted. The 

READY signal is asserted by CustomLogic whenever it can accept new data. 

In addition to the data, crucial sideband information is transmitted through a 4-bit signal 

TUSER, essential for reconstructing an image from the incoming serial data. The 4 bits signify: 

• TUSER [0]: Start of Frame (SOF) 

• TUSER [1]: Start of Line (SOL) 

• TUSER [2]: End of Line (EOL) 

• TUSER [3]: End of Frame (EOF) 
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Each incoming frame commences with a start-of-frame and concludes with an end-of-

frame. Frames are transmitted line by line, with each line beginning with a start-of-line and 

concluding with an end-of-line. The pixels in each line are packed into equally sized words. Each 

word is transmitted in a clock cycle. Between the start-of-line and end-of-line, only words 

belonging to the same line will be transmitted. A set of lines can be grouped into equally sized 

blocks. The frame grabber is initialized through the eGrabber studio [18] software by the user. 

During initialization, the user configures the dimensions of lines, blocks, and frames. These 

dimensions are static, therefore facilitating the construction of the input image by tracking the 

TUSER bits. 

 

 
Figure 10: CustomLogic AXI handshaking [17] 

 

The timing diagram in the above figure illustrates the anticipated data exchange sequence 

between the AXI master and CustomLogic. The CustomLogic module asserts TREADY first 

indicating that it is ready to accept new inputs and is held HIGH until the frame is received. The 

master interface then asserts TVALID and begins word transmission over TDATA. If either 

TREADY or TVALID goes LOW during the transmission, TDATA is held in the same word 

until both TREADY and TVALID are asserted, and the remaining words are transmitted. The 

start of frame (SOF) is asserted when the first word of the frame is transmitted. The end of frame 
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(EOF) is asserted when the last word of the frame is transmitted. Similarly, the start of line 

(SOL) and end of line (EOL) are asserted when the first word and last word of a line are 

transmitted, respectively. 

The frame can be reconstructed by tracking the SOL and EOL signals. However, it is 

important to note that the lines are not received in their natural order. Incoming images must be 

unscrambled according to the mode configured in the DMA Engine via the eGrabber at runtime. 

The BlockHeight determines how many lines comprise a block. The StripeHeight and 

StripePitch are multiple of the BlockHeight. Stripes are used to selectively mask lines and 

distribute them to two devices as shown in figure 12. For this project, the 1X_2YM configuration 

with a block height of 2, comprising 8 lines, is employed. In this configuration, line 1 received 

after the start-of-frame corresponds to the center of a naturally ordered image as shown in figure 

11. 

 

Figure 11: 1X_2YM Configuration to deliver lines by blocks of 2 to one host [19] 
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Figure 12: 1X_2YM Configuration to deliver lines by blocks of 4 to two hosts [19] 

 

Consequently, the firmware design entails creating a frame buffer to reconstruct the incident 

images from the camera. This is executed within a C++ function named read_pixel_data, which 

can undergo the HLS flow to generate the required RTL. The flow chart of the read_pixel_data 

function used for input processing is depicted below: 
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Figure 13: Flow chart of read_pixel_data function 

4.4 CROPPING THE REGION OF INTEREST 

After assembling the input image, it is forwarded for processing. However, the neural network 

designed in the prior section can only handle 48x48 pixel inputs. For this initial project iteration, 

it is guaranteed by design that the Gaussian pattern will solely be present within a region of 

interest measuring 48x48 pixels. The user of the system must accurately input the starting 

coordinates of this region of interest in the CustomLogic.h file before firmware compilation. It is 
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imperative to ensure that the Gaussian patterns are formed within this designated region when 

deploying the system. 

  Given that 48x48 pixels are smaller than the camera's lowest resolution of 128x48 pixels, 

the region of interest needs to be cropped from the input image. Another C++ function named 

unpack_data serves this purpose. It compares the coordinates of the incoming frame with those 

of the region of interest. If the coordinates of the pixels in the current frame align with the pixels 

within the region of interest, the incoming frame is stored in a buffer that feeds into the neural 

network's input stream. The flow chart of the unpack_data function is depicted below: 

 

Figure 14: Flow chart of unpack_data function 
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In future iterations, the predefined region of interest could be substituted by deploying 

algorithms like YOLO (You Only Look Once) to automatically ascertain the coordinates of the 

48x48 pixel area accommodating the Gaussian pattern. This approach would enhance the 

system's flexibility and adaptability, enabling it to dynamically identify the relevant region 

within the input image without manual intervention. 

4.5 PORTING THE NEURAL NETWORK 

Creating an HLS-compatible C++ version of the neural network involves passing the PyTorch 

implementation of the model through the HLS4ML flow. This process enables the translation of 

the neural network model into a hardware description language (HDL) representation suitable for 

High-Level Synthesis (HLS). By leveraging HLS4ML, the neural network can be optimized and 

synthesized into hardware-accelerated code suitable for FPGA implementation, facilitating 

efficient inference on embedded devices. 

4.5.1 HLS4ML Flow 

The HLS4ML flow comprises two key steps: creating an HLS4ML configuration and using this 

configuration to convert the model to HLS. These steps are facilitated by the following 

functions: 

• config_from_pytorch_model: This function, from the “hls4ml.utils" package, is utilized 

to generate an HLS4ML configuration based on the PyTorch model. 

• convert_from_pytorch_model: This function, from the "hls4ml.converters" package, is 

employed to convert the PyTorch model to HLS using the generated configuration. 
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The HLS4ML configuration allows for parameter customization such as Strategy and 

ReuseFactor, which impact the optimization and resource utilization of the generated hardware 

implementation. During the model conversion process, parameters such as FPGA-specific 

settings (e.g., clock_period, io_type) were passed as arguments. These parameters dictate aspects 

like clock frequency and input/output types, ensuring compatibility with the target FPGA 

platform. 

4.5.2 Porting the Outputs of HLS4ML into the Firmware 

After HLS4ML processing, a directory named "firmware" was generated, containing essential 

files to be incorporated into the project. Here is a breakdown of the contents: 

• ap_types: This directory houses arbitrary precision datatype definitions utilized within 

the neural network. 

• nn_utils: It contains the C++ implementation of various layers utilized in the neural 

network. 

• weights: This directory stores the weights associated with each layer within the neural 

network. 

• defines.h: This file specifies the shape of the neural network and defines custom 

datatypes. 

• parameters.h: It configures each layer within the neural network. 

• project.cpp: This file comprises the C++ program of the neural network. 

• project.h: This header file provides declarations and prototypes for the project. 
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4.6 OUTPUT PROCESSING 

Following the neural network processing, the outputs can be conveyed over the AXI bus to a PC. 

For subsequent post-processing or further analysis, it is advantageous to log the results of the 

neural network alongside the input frame. Consequently, an additional line containing the neural 

network results is appended to the input frame, forming the output sent to the PC. Furthermore, 

signaling inference completion via a GPIO pin proves beneficial. This functionality is also 

integrated within this function. 

4.7 INTEGRATING THE FIRMWARE 

Sections 4.2 through 4.6 laid the groundwork for designing various sub-blocks essential for 

constructing a system to monitor RHEED. All the aforementioned components now require 

integration. The C++ functions defined within the file “myproject.cpp” are consolidated, with 

invocation occurring within the function “myproject.” This function accepts the video stream as 

input and generates an output computed by the neural network. The file “CustomLogic.h” serves 

as the repository for storing all reconfigurable parameters and custom datatypes within the 

system, providing flexibility for designers to modify as needed. The block diagram of the 

program myproject.cpp is depicted below: 

 

 
Figure 15: Block Diagram of the project 
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Chapter 5. PERFORMANCE OPTIMIZATION AND OTHER 

FEATURES 

In this section, I will outline my contribution to the project. Our primary objective was to 

develop a system capable of processing images in real time, aiming for a inference latency less 

than 1 ms. This goal served as the main impetus for our optimization efforts. A significant hurdle 

we encountered in the development phase was attaining timing closure. To address this 

challenge, we implemented optimizations at various stages of the deployment process. 

 

5.1 HLS4ML - RESOURCE VS LATENCY CHOICES 

The HLS4ML configuration initially operates with a 'model' level granularity, employing an 

arbitrary <16,6> precision. Notably, the model prioritizes latency optimization. Consequently, 

the tool maximizes model parallelization and dedicates hardware resources accordingly. 

Upon compilation and synthesis of files using the default configuration in Vivado HLS, it 

became apparent that the total available resources in the Kintex Ultrascale part 'xcku035' were 

exceeded. Consequently, optimization was necessary for some layers to ensure efficient resource 

utilization. 

To address resource constraints, the reuse factor of all layers was increased to 2 in the 

configuration. Also, attention was given to the three fully connected Linear layers, known for 

their resource intensity. In such layers, resource consumption scales linearly with the number of 

parameters. Figure 16 below denotes the number of parameters in each layer. Thus, by 

augmenting the reuse factor, FPGA resource utilization could be mitigated. However, this 

adjustment resulted in increased model latency as a trade-off. 
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Figure 16: Layers vs Parameters of the Neural Network 

 

The reuse factors 128, 98, and 52 were implemented for the fc, fc1, and fc2 layers, 

respectively. HLS4ML allows for reuse factors that are multiples of the input tensor size for each 

specific layer. For the first fully connected layer, a reuse factor 4 times the size of the input 

tensor was selected, based on insights from Ryan Forelli, who has experience deploying a similar 

model. 

Subsequently, the HLS-generated files were integrated into the CustomLogic module of 

the reference design, following the steps outlined in section 4.5.2. This integration resulted in a 

utilization of 42.23% of LUT and 56.39% of BRAM as shown in figure 17. 

Throughout the optimization process, I noted that the tradeoffs between latency and 

resource utilization could potentially be managed through the utilization of Vivado HLS 

Directives. This aspect presents an avenue for future work that could enhance the deployment 

process, as detailed in section 8. 
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Figure 17: FPGA Utilization 

5.2 CLOCK RATE REDUCTION AND ILA ADDITION 

Two features were integrated into the design with potential future utility: Firstly, anticipating 

scenarios were achieving timing closure with a 4 ns clock period for a large model deployment 

on the FPGA might prove challenging, a solution was devised. The iCoaxlinkCore module 

within the reference design operates using a fixed global 250 MHz clock, which could not be 
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altered due to encrypted source files provided by the manufacturer. To adapt to this constraint, 

the global clock was reduced exclusively for the neural network and seamlessly interfaced with 

the rest of the system. The neural network module, equipped with an AXI interface employing a 

ready-valid handshake protocol, facilitated independent clocking.  

The neural network was clocked at half the rate of the global clock by using an FPGA 

block called an MMCM to generate a new, 125 MHz clock However, this necessitated managing 

clock domain crossing on both the master and slave sides of the neural network module. To 

address this, an asynchronous FIFO was implemented on the master side, acting as a frame 

buffer to store incoming frames. This was achieved using an AXI FIFO sized according to the 

required number of frames. Conversely, on the slave side, a FIFO of width = 1 was required to 

synchronize the output of the neural network as it exited the system. 

Secondly, the addition of an Integrated Logic Analyzer (ILA) for debugging purposes 

significantly enhanced the system. Monitoring the states of critical registers such as axi_tuser or 

GPIO pins proved invaluable for understanding system behavior. To facilitate this, an ILA IP 

block was configured to monitor signals like the global clock, reset, and axi_tuser pins between 

the master and slave sides. This setup can be easily expanded to accommodate additional signals 

as needed. 
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Chapter 6. VIVADO FLOW AND DEPLOYMENT 

The C++ and reference design files underwent initial processing through Vivado HLS to 

generate the RTL. CSIM support within Vivado HLS was harnessed for design verification 

purposes. Subsequently, the generated RTL files were synthesized and implemented using 

Vivado to produce the necessary bitstream. To streamline this workflow, scripts were developed 

to automate the entire process. 

6.1 VIVADO HLS AND CSIM TESTBENCH 

The conversion of the C++ design to RTL involved the following steps: 

1. Creation of a new project. 

2. Inclusion of all necessary files. 

3. Configuration of Vivado HLS by initializing the FPGA part, clock period, and backend 

settings. 

4. Execution of pre-synthesis C++ simulation (CSIM). 

5. C++ synthesis. 

For the purpose of verifying the C++ design, a simulation testbench was developed. This 

testbench is responsible for retrieving input data for the neural network from a designated data 

file. Subsequently, this data is serialized into blocks of a size corresponding to the neural 

network's input requirements. The resulting output of the neural network is then serialized and 

stored in another data file. To generate the input data required for CSIM, a dataset collected from 

samples was utilized. The predictions obtained from the tool were then compared to those 

generated by the model running on a general-purpose CPU/GPU. 
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6.2 VIVADO SYNTHESIS AND IMPLEMENTATION 

The RTL generated through HLS was implemented using Vivado, with a custom script 

developed to incorporate specific optimization directives [21] aimed at ensuring timing closure 

and achieving an efficient implementation. The directives corresponding to each of the 

aforementioned steps are outlined in the table below: 

Table 2: Optimization directives used during the Vivado flow 

Vivado Operation Directive(s) Used 

Synthesis AggressiveExplore 

Post Synthesis Optimization Explore 

Placement EarlyBlockPlacement 

Placement Optimization AggressiveExplore, AggressiveFanoutOpt, and 

AlternateReplication 

Routing Explore 

Routing Optimization AggressiveExplore 

 

Given that the design initially failed to meet timing requirements, the placement 

optimization step was iterated five times to achieve the most favorable placement. As the 

project's objective was to attain timing at 4 ns, the optimization directives were carefully selected 

to grant the tool flexibility in modifying certain previously completed steps to enhance timing 

performance. This iterative approach ensured that the design underwent necessary adjustments 

and optimizations to meet the project's timing goals. 
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6.3 DEPLOYMENT 

After generating the bitstream using Vivado, the frame grabber was flashed utilizing the 

manufacturer-provided software, eGrabber studio. Prior to flashing the firmware, configuration 

of eGrabber studio was conducted. This setup enabled the PC running the software to receive 

outputs from the neural network. Key parameters within eGrabber studio included the frame 

grabber type, camera protocol, camera model, camera frame dimensions, pixel bit-depth, 

exposure settings, and target frames per second (FPS). Furthermore, the software facilitated 

buffering of incoming images, with buffer size scaled according to the configured FPS. For 

instance, a buffer size of 1000 was chosen for high frame rates, while a value of 1 was selected 

for lower rates. 
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Chapter 7. RESULTS AND DISCUSSION 

The input frames expected to be supplied to the frame grabber were subsequently utilized as 

inputs to the design during simulation using Vivado CSIM. The results obtained from the C-

simulation during synthesis were compared against those obtained from the predictions made by 

a python script. The comparisons were performed for three sets of inputs. The first set was a zero 

matrix, and the last two sets were growth spots obtained from a real dataset from experiments at 

Drexel University. The results are tabulated below: 

Table 3: Python Predictions vs CSIM Results with an input array of zeros 

Output 

Parameter 

Python Predicted 

Value 

CSIM-Simulated 

Value 

Absolute Difference 

μx 1.4284 0.45703125 0.97136875 

μy -8.6971 -12.20800781 3.51090781 

σx -2.7575 -1.35058594 1.40691406 

σy 
-5.8484 -2.57421875 3.27418125 

Θ -11.1176 4.93066406 16.04826406 
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Table 4: Python Predictions vs CSIM Results for Gaussian 1 

Output 

Parameter 

Python Predicted 

Value 

CSIM-Simulated 

Value 

Absolute Difference 

μx 0.3983 -1.0996094 1.4979094 

μy -7.2431 -6.116211 1.126889 

σx -1.5766 0.23144531 1.80804531 

σy 
-2.9833 -0.70996094 2.27333906 

Θ -10.7376 -17.6748047 7.4124047 

 

 

Table 5: Python Predictions vs CSIM Results for Gaussian 2 

Output 

Parameter 

Python-Predicted 

Value 

CSIM-Simulated 

Value 

Absolute Difference 

μx -0.4355 -0.53515625 0.09965625 

μy -2.8672 -7.71875 4.85155 

σx 1.1447 -0.92285156 2.06755156 

σy 
2.9763 -2.3583984 5.3346984 

Θ 0.6459 -0.51660156 1.16250156 

 

Recognizing the significance of neural network latency, a GPIO pin on the frame grabber 

was configured to indicate activity whenever the neural network was engaged. These 

comparative tests were conducted using two different regions of interest (ROI) sizes: 48x29 and 
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48x48 pixels. Latencies of 450 us and 750 us were observed for the 48x29 and 48x48 images, as 

shown in figures 23 and 24 respectively. These latency values fell within the predetermined 

acceptable goals of 1 ms for the project. 

 

Figure 23: Latency results of 450 us for 48x29 pixels 

 

 
Figure 24: Latency results of 750 us for 48x48 pixels 

 

Through this project, a proof of concept for a real-time RHEED system based on machine 

learning has been successfully implemented. This design serves as a foundation for future 

enhancements aimed at building a larger, more efficient, and accurate system. These 

improvements are discussed in the subsequent section, with the anticipation that they will 

provide material scientists with concurrent analysis capabilities for their work. 
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A key takeaway from this project was the critical role played by the configuration of 

HLS4ML and Vivado tools in achieving the design objectives. It became apparent that 

overlooking certain optimization parameters can significantly impact the outcome. This 

underscores the importance of thorough parameter consideration and optimization throughout the 

development process. 
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Chapter 8. CONCLUSION 

This thesis provided the design of a system to perform RHEED analysis at a rate of 10ms which 

is close to the rate of the deposition of atoms during crystal growth. This is significantly faster 

than commercial RHEED systems that take operate in the order of minutes to analyze one 

sample. This thesis presented details on the design of a LeNet-5 based neural network to classify 

the mean, covariance and theta of gaussian distribution of atoms from a given image. The 

implementation of this neural network on an FPGA-based frame grabber along with the camera 

interface was also captured. This thesis also demonstrated useful deployment and optimization 

strategies that can be used to fit the neural network into the FPGA efficiently. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

45 

 

Chapter 9. FUTURE WORK 

To significantly enhance this project, improvements in neural network design, quantization 

techniques, and automated region-of-interest detection are paramount. Additionally, a more 

structured approach to design verification and validation is essential prior to deployment in a 

laboratory setting. Furthermore, integration into a larger system capable of providing feedback to 

control the pulsed-laser deposition process would substantially enhance the yield of the crystal 

growth process. Here are specific areas where work can be undertaken to improve this project: 

• Quantization-aware Training: Evaluate the feasibility of deploying a smaller model 

without sacrificing prediction accuracy through quantization-aware training techniques. 

• YOLO Object Detection: Implement a version of the YOLO (You Only Look Once) 

object detection algorithm to automatically detect Gaussians from input frames, 

enhancing automation and efficiency. 

• Concurrent Model Processing: Develop a system capable of running multiple models 

concurrently to process Gaussians simultaneously, thereby improving throughput and 

performance. 

• Debugging and Monitoring: Identify crucial signals within the design and integrate ILA 

IP for effective debugging and monitoring during system operation, enhancing reliability 

and fault diagnosis capabilities. 

• Testing and Validation: Conduct comprehensive testing of the system with a pulsed-

laser deposition system to validate its functionality and performance in a real-world 

environment, ensuring seamless integration with existing processes and workflows. 
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By addressing these areas of improvement, the project can achieve enhanced efficiency, 

accuracy, and reliability, ultimately leading to significant advancements in real-time RHEED-

based crystal growth analysis. 
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