

© Copyright 2024

Pranav Srinivas Murali

Accelerating Electron Diffraction Analysis with Machine Learning Inference on FPGAs

Pranav Srinivas Murali

A thesis

submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Electrical Engineering

University of Washington

2024

Committee:

Scott Hauck

Shih-Chieh Hsu

Program Authorized to Offer Degree:

Electrical and Computer Engineering

University of Washington

Abstract

 Accelerating Electron Diffraction Analysis with Machine Learning Inference on FPGAs

Pranav Srinivas Murali

Chair of the Supervisory Committee:

Scott Hauck

Department of Electrical and Computer Engineering

Reflection High-Energy Electron Diffraction (RHEED) is used to study the crystal structure and

growth of thin films in material science. The RHEED systems available today take several

minutes to analyze the crystal’s structure from an image captured during the crystal's growth.

This thesis captures the design and deployment of a high-speed camera pipeline with a LeNet5

neural network using the HLS4ML library on an FPGA. After deployment, a latency of 450-750

us was obtained depending on the input size to the neural network. It establishes the possibility

of an RHEED system that can process images from a camera up to a rate of 1000 Hz. This

system would enable users to gain more insights about their experiments in real-time and allow

them to modify or stop the deposition process during the crystal growth to achieve desired

characteristics.

i

TABLE OF CONTENTS

Chapter 1. Introduction ... 1

1.1 RHEED Systems ... 2

1.2 RHEED Image Analysis ... 4

1.3 LeNet-5 ... 5

1.4 LeNet-5 with RHEED ... 8

1.5 FPGAs for RHEED ... 9

1.6 HLS4ML ... 10

Chapter 2. Hardware Description ... 12

2.1 Camera .. 12

2.2 Euresys CoaXPress frame grabbers .. 13

Chapter 3. Neural Network Design and Training ... 15

3.1 Neural Network Design .. 15

3.2 Dataset for Training .. 18

3.3 Loss Function for Estimating Accuracy ... 19

3.4 Training Results .. 21

Chapter 4. Firmware Design ... 22

4.1 Euresys Reference Design .. 22

4.2 Getting Started with the Reference Design ... 24

4.3 Input Processing .. 24

4.4 Cropping the Region of Interest .. 28

4.5 Porting The Neural Network ... 30

ii

4.5.1 HLS4ML Flow .. 30

4.5.2 Porting the Outputs of HLS4ML into the Firmware ... 31

4.6 Output Processing ... 32

4.7 Integrating the Firmware... 32

Chapter 5. Performance Optimization and Other Features ... 33

5.1 HLS4ML - Resource vs Latency Choices .. 33

5.2 Clock Rate Reduction and ILA Addition.. 35

Chapter 6. Vivado Flow and Deployment .. 37

6.1 Vivado HLS and CSIM Testbench ... 37

6.2 Vivado Synthesis and Implementation ... 38

6.3 Deployment ... 39

Chapter 7. Results and Discussion .. 40

Chapter 8. Conclusion ... 44

Chapter 9. Future Work .. 45

iii

ACKNOWLEDGEMENTS

This research was funded in part by National Science Foundation Grant No. PHY-2117997 and

would not have been possible without the efforts and support of numerous people. First and

foremost, I would like to thank my advisor Prof. Scott Hauck who has been very supportive

throughout my master’s degree at UW. I couldn’t have asked for a better advisor who was

willing to give me time and help me understand where I needed to improve. I’ll always be

grateful for all the insights I received over the last two years in terms of engineering, career

paths, and the workings of the semiconductor industry. All of this has enabled me to think

beyond and become a better engineer. I would also like to thank Prof. Shih-Chieh Hsu supported

me by creating opportunities for me to work with wonderful people from CERN and Drexel

University during my master's. Geoff Jones was also incredibly helpful in teaching me good

FPGA design principles and techniques.

Next, I would like to thank all the collaborators of this project. Prof. Joshua Agar from Drexel

University envisioned accelerating RHEED with machine learning and helped steer the project

by defining the requirements. Ryan Forelli from Lehigh University contributed the most to the

firmware design since the project’s inception. At Drexel University, Sean Rassa created the

neural network used in the project, and Yichen Guo collected the dataset used for training. Both

Ryan and Sean were very helpful during my onboarding to the project. It was great working

alongside Pujan Patel and Matthew Wilkinson from UW who worked on quantizing the neural

network and improving the project by adding YOLO object recognition respectively.

Finally, I would like to thank my family, friends, and all the ACME lab members. My parents

and close family were very supportive of my decision to pursue higher education. I received

useful tips and help from my Beeclust MRSL (bachelor’s research lab) peers Nikhil, Kedar,

Inderan, Atul, and Revanth. Sushree was my biggest collaborator at UW, and navigating grad

school together helped both of us learn from each other. Although not mentioned here, countless

other people also played a significant role that shaped me during my time at UW and I can’t

thank everyone enough.

1

Chapter 1. INTRODUCTION

Machine learning is rapidly gaining traction across various scientific domains, including material

science. Within this field, its applications range from predicting material properties and

expediting the discovery of novel materials to tailoring materials for specific use cases and

enhancing our foundational comprehension of them.

In crystallography, characterization traditionally involves microscopy or spectroscopy

techniques. One prominent method for surface-level characterization is Reflective High Energy

Electron Diffraction (RHEED). However, the analysis of crystal structures with RHEED can be

time-consuming, often taking hours during crystal growth. Hence, the primary motivation behind

this thesis was to find a method to accelerate RHEED analysis.

This thesis proposes a framework for deploying a neural network on an FPGA to accelerate

RHEED analysis. Machine learning offers a solution to expedite this process by classifying

material characteristics in real-time, by helping identify defects as they form, and optimizing the

growth process. Convolutional neural networks (CNNs) are particularly well-suited for

implementing such machine learning models.

Neural networks operate by processing input data through interconnected layers and

activation functions to make predictions. The machine learning process comprises two main

phases: training and inference. During training, the neural network's parameters, including

weights and biases, are optimized using a dataset. Inference refers to the application of the

trained neural network to make predictions for specific tasks. Depending on the scale and

requirements, neural networks can be deployed on various computing devices, ranging from

microcontrollers and CPUs to GPUs, or specialized hardware like FPGAs or NPUs.

2

The choice of inference hardware hinges on considerations such as computational demands,

cost, and development time. FPGAs offer an attractive option for edge inference scenarios,

where general-purpose CPUs and GPUs may exceed area, power, and mobility constraints.

FPGAs are particularly suitable for intermediate computational requirements that surpass those

feasible for microcontrollers and offer low CPU/GPU utilization, offering a balance between

processing capabilities and efficiency.

This section provides a background on the working of various components related to this

project such as the architecture of RHEED systems, working of RHEED image analysis, the

design of LeNet-5 and how it can be used for RHEED and finally the use of FPGAs and the

HLS4ML package for this project. Section 2 provides hardware description of the camera and

frame grabber while section 3 describes the design and training of the neural network used in the

project. Section 4, 5 and 6 capture the FPGA design, performance optimization and toolchain

configurations for deployment respectively. Lastly, the results are discussed in section 7.

1.1 RHEED SYSTEMS

The Reflection High-Energy Electron Diffraction (RHEED) technique stands as a cornerstone in

surface science, extensively utilized to investigate the structural properties of crystalline

materials. It serves as a pivotal tool in monitoring crystal growth, facilitating measurements of

thickness, growth rate, surface roughness, and even surface configuration.

RHEED operates by directing a high-energy electron beam at a shallow angle (θ) onto the

material's surface, where the electrons engage with surface atoms and are subsequently

redirected toward a detector. Typically, the electron gun is calibrated to an energy value ranging

3

from 8keV to 100keV, and the incident angle (θ) can vary between 1 and 4 degrees [1]. Figure 1

below represents the usual RHEED setup used in experiments.

Figure 1: RHEED setup to form patterns on the Detector/CCD Camera [2]

Figure 2: RHEED patterns obtained from experiments [3]

4

The resultant diffraction pattern furnishes invaluable insights into the crystal structure,

surface morphology, and other surface characteristics of the material under examination. An

example diffraction pattern obtained with RHEED is shown in figure 2 above. With its

versatility, RHEED finds widespread applications in analyzing thin films, epitaxial growth

processes, and surface reconstructions, solidifying its status as an indispensable technique in both

materials' science and semiconductor research.

1.2 RHEED IMAGE ANALYSIS

RHEED patterns can consist of streaks or spots [4]. Streaks occur when the surface has atomic

terraces or steps, which cause the diffraction pattern to elongate into streaks. Well-defined

RHEED streaks indicate a smooth, flat surface with high crystallinity, whereas broader streaks

suggest a rougher surface with more atomic steps or defects.

Spots are formed when the surface is highly ordered and smooth on an atomic scale, leading

to sharp diffraction features. The positions of these spots help determine lattice parameters and

surface symmetry, while their sharpness indicates the level of crystallinity. Well-defined spots

suggest a high-quality crystalline surface, whereas broadened or smeared spots indicate defects

or disorder. Changes in spot patterns can signal that atoms in the surface assume a different

structure than the bulk.

Additionally, intensity oscillations of the streaks or spots during film growth provide

valuable information about growth rates and the layer-by-layer deposition process, aiding in real-

time monitoring and optimization of thin-film quality. Different patterns are produced based on

the material properties and the operating conditions such as temperature and pressure, as

illustrated in figure 3.

5

Figure 3: RHEED patterns obtained from Indium Tin Oxide films produced at different

growth pressures and temperatures [5]

The RHEED patterns captured on the detector or CCD digital camera are processed by

software like RHEED Image Analysis [6] and kSA 400 [7]. Parameters such as spot positions,

intensities, and widths are measured. The kSA 400 software can measure peak intensity,

minimum intensity, summed intensity, average intensity, centroid intensity, elapsed time, data

point, peak row, peak column, centroid row, centroid column, and standard deviation of

intensity. The user of the system can use these parameters to understand the properties of the

crystal.

1.3 LENET-5

LeNet is a straightforward convolutional neural network (CNN) crafted to enhance the efficacy

of pattern recognition systems by leveraging backpropagation-based machine learning, rather

6

than relying on hand-designed heuristics. Pattern recognition unfolds in two stages: feature

extraction and classification, with the feature extractor tailored to the task at hand and the

classifier being general-purpose and trainable. The overarching architecture of LeNet unfolds as

follows:

• Input Layer: Receives the input image

• Feature Extraction Layers: Executes convolutions followed by average-pooling

• Fully Connected Layers: Encompasses three fully connected layers for classification

• Output Layer: Generates the final predictions

Excluding the input layer, LeNet-5 comprises 7 layers housing trainable parameters

referred to as weights. The original architecture of LeNet-5 for digit recognition materializes as

follows in figure 4:

 Figure 4: LeNet5 Architecture for digits recognition [8]

7

Table 1: LeNet5 Architecture configuration

Layer Type Output
Size

Kernel
Size

Stride Feature Maps Trainable
Parameters

Input - 32x32 - - 1 -

C1 Convolutional 28x28 5x5 1 6 156

S2 Average
Pooling

14x14 2x2 2 6 -

C3 Convolutional 10x10 5x5 1 16 2,416

S4 Average
Pooling

5x5 2x2 2 16 -

C5 Convolutional 1x1 5x5 1 120 48,120

F6 Fully
Connected

84 - - - 10,164

Output Fully
Connected

10 - - - 850

For the convolutional layer, the kernel serves as a filter for extracting features such as edges,

patterns, or textures to create feature maps. The subsampling layers (referred to as S2 and S4)

use average pooling to reduce the dimensionality of the feature maps. The use of multiple feature

maps allows the network to learn and represent a richer set of features, improving its ability to

recognize complex patterns and make accurate predictions. By having multiple feature maps, the

network can effectively capture diverse aspects of the input data, enhancing its overall

performance and robustness. The number of trainable parameters for each layer is given by:

Convolutional Layer = (No. of input channels x Kernel Height x Width + bias) x No. of output channels

Fully Connected Layer = (No. of inputs x No. of outputs) + No. of outputs

8

The loss function gauges the neural network's performance during training by comparing the

difference between the predictions and actual values. In LeNet5, the Maximum Likelihood

Estimation (MLE) is the simplest loss function used to find the weights during training. This loss

function helps adjust the network's weights through backpropagation, improving the model's

accuracy by reducing prediction errors over successive training iterations.

1.4 LENET-5 WITH RHEED

Pulsed Laser Deposition (PLD) [9] involves using high-energy laser pulses to ablate a target

material, creating a plasma plume that deposits onto a substrate, forming a thin film. The film's

properties can be controlled by adjusting parameters like laser energy, pulse duration, and

background gas pressure. Typically, the RHEED system is used as feedback with PLD to

cultivate crystals with diverse characteristics. A Gaussian distribution pattern emerges as

diffracted electrons undergo constructive interference at specific angles processed by the

RHEED system to analyze the material's characteristics. However, most commercially available

RHEED systems struggle to keep pace with the deposition rate. To address this challenge, an

alternative to RHEED can be devised, employing a Convolutional Neural Network (CNN) to

swiftly ascertain the crystal's characteristics during deposition [10].

The three attributes of a Gaussian spot or streak are 2-dimensional mean, 2-dimensional

covariance, and theta [11]. Mean represents the center position of a diffraction spot or streak,

indicating the average location of the diffracted electrons. Covariance describes the spread and

orientation of the spot or streak, providing information about the surface roughness and disorder.

Theta represents the rotation of an elliptical Gaussian spot to represent anisotropic features,

typically including the mean and covariance.

9

The LeNet5 architecture presents a viable option for fulfilling this classification task. By

configuring the CNN to encapsulate the pertinent Gaussian features, LeNet5 can effectively

discern the Gaussian spot's or streak’s attributes. A LeNet5 model trained to process incoming

images and classify parameters Mean, Covariance, and Theta can feasibly operate at a pace

exceeding that of pulsed-laser deposition. Further insights into the neural network's

implementation are expounded upon in Section 3.

1.5 FPGAS FOR RHEED

Neural Networks inherently exhibit significant data parallelism, a characteristic that scales with

the model's complexity. Common platforms for implementing neural networks include CPUs,

GPGPUs, FPGAs, and ASIC Accelerators. GPGPUs offer high parallelism and throughput,

making them ideal for training large models but less suited for latency-sensitive tasks since they

are machines optimized for throughput and not latency. CPUs are versatile and easy to program

but lack the parallel processing capabilities of GPGPUs. FPGAs offer reconfigurability and

lower power consumption, making them suitable for real-time inference. The best power and

performance benefits are attained when the circuit is tailored to the neural network model as in

the case of ASIC Accelerators.

Given that GPGPUs prioritize throughput over latency, investing in domain-specific

accelerators for inference proves prudent, with GPGPUs being favored for training. In scenarios

with smaller volumes, FPGAs emerge as the closest alternative to domain-specific accelerators.

Moreover, if the neural network design changes with the same target latency, with reasonable

engineering effort, the same FPGA can be used to accommodate the modified neural network. It

is also possible to estimate the latency by multiplying the clock period by the number of pipeline

10

stages. In contrast, selecting the appropriate GPGPU can pose challenges under evolving

circumstances. While frameworks like CUDA facilitate program scalability with standardized

blocks, programmers still encounter significant optimization demands during deployment.

Furthermore, the unawareness of processing latency during programming can exacerbate

optimization complexities.

For this project, minimizing compute latency stands as a key objective, with inference

ideally completed no later than the subsequent phase of the deposition process. The image

processing along with the neural network, being latency-sensitive, can significantly impact

system performance if not managed effectively. Commercial off-the-shelf products such as the

Euresys frame grabber, built atop FPGAs, adeptly handle interfacing duties, and are elaborated

upon in the subsequent section. Conversely, most GPGPUs operate within heterogeneous

systems, wherein a CPU orchestrates workload distribution and data movement between main

memory and shared GPU memory. This arrangement accommodates the execution of serial parts

more efficiently by the CPU. Consequently, interfacing the camera directly with a GPGPU poses

greater challenges for this project.

1.6 HLS4ML

The HLS4ML [12] Python package serves as a valuable tool for converting neural networks into

FPGA-compatible implementations. It endeavors to bridge the divide between neural network

design and hardware implementation, recognizing the challenges that machine learning engineers

face in conceptualizing hardware-efficient implementations. Moreover, the traditional

development process of hand-written code in a specialized hardware description language for

such implementations is notably time-consuming.

11

HLS4ML offers support for various layers commonly employed in neural networks

across popular frameworks like Keras, ONNX, and PyTorch. By generating high-level synthesis

(HLS) code, compatible with FPGA tools from both Intel and AMD, HLS4ML facilitates the

translation of neural network designs into hardware-ready implementations.

For machine learning engineers, transitioning from neural network design to hardware

implementation can be daunting. HLS4ML simplifies this process by automating much of the

conversion, thus enabling engineers to focus on optimizing network performance rather than

grappling with intricate hardware considerations. The HLS4ML workflow of transforming a

machine learning model into synthesizable HDL is show in figure 5 below. Further details

regarding the HLS4ML configuration are elucidated in Section 4, while Section 7 covers the

optimizations undertaken to enhance deployment efficiency.

Figure 5: HLS4ML workflow [13]

12

Chapter 2. HARDWARE DESCRIPTION

To facilitate RHEED analysis, a high frame rate camera is indispensable for capturing diffraction

patterns swiftly and accurately. To this end, the Phantom S200 camera proves instrumental in

achieving the requisite frame rate. Once the frames are acquired from the camera, they undergo

cropping before being relayed to the input layer of the neural network for processing.

Euresys provides a comprehensive hardware-software stack tailored to streamline the

integration of prevalent camera interfaces, such as coaxial links, through specialized FPGA-

based hardware known as frame grabbers. These frame grabbers, offered by Euresys, serve as

intermediary devices, facilitating the seamless connection between the camera and

accommodating the neural network processing pipeline on the same FPGA. By leveraging this

hardware-software stack, the integration process is expedited, enabling rapid deployment and

efficient utilization of the Phantom S200 camera for RHEED analysis.

2.1 CAMERA

As previously emphasized, synchronizing the camera's speed with the rate of the pulsed-laser

deposition is paramount for seamless RHEED analysis. The Phantom S200 shown in figure 6

emerges as a high-speed camera solution, boasting a maximum resolution of 640x480 pixels at a

rate of 6,950 frames/second and configurable bit depths of 8 or 10 bits [14]. While the camera

offers support for both color and monochrome capture, the absence of benefits from capturing

colors in this project leads to a decision to capture grayscale frames solely. Consequently, the

camera captures grayscale frames, with the bits representing the intensity of white corresponding

to each pixel.

13

Figure 6: Phantom S200 camera [15]

To interface the camera with a readout system, the camera employs support for the CXP6

protocol. CXP6 stands as a standardized protocol able to sustain a bit rate of 6.25 Gbits/s.

Leveraging the CXP6 protocol, the camera seamlessly integrates into the RHEED setup,

ensuring efficient data transfer and synchronization with the deposition process.

2.2 EURESYS COAXPRESS FRAME GRABBERS

Euresys offers a range of CoaXPress products that seamlessly interface with cameras supporting

the CXP protocol, facilitating efficient integration into RHEED setups. Two variants evaluated

for this project are the Coaxlink Quad and Coaxlink Octo. The Quad variant supports 4 CXP6

connections, while the Octo variant supports 8 CXP6 connections.

Both variants are equipped with an onboard AMD Kintex Ultrascale XCKU035 FPGA,

with 70% of programmable resources available for user utilization. This FPGA is leveraged to

perform image processing on incoming frames and execute inference tasks. Additionally,

Euresys provides encrypted reference designs that can be readily integrated into the project,

enabling seamless access to inputs, memory, and GPIO pins on the frame grabber. Separate

14

reference projects are available for the Quad and Octo variants, ensuring optimal compatibility

and performance.

The frame grabber interfaces directly with a PC via PCI Express, offering convenience

for logging results for postprocessing purposes. This direct interfacing streamlines data transfer

and facilitates efficient processing and analysis of RHEED data. The figure 7 below represents

the block diagram of the system. The block diagram of the frame grabber is provided in Figure 9.

Figure 7: Simplified Block Diagram of the system

15

Chapter 3. NEURAL NETWORK DESIGN AND TRAINING

The primary objective of this project is to classify the parameters Mean, Covariance, and Theta

associated with an input diffraction pattern featuring a Gaussian spot. Input data comprises

images of the diffraction pattern, while the output comprises the classified results of these

parameters. To realize this goal, the PyTorch framework was employed for both the development

and training of the neural network.

Through PyTorch, the neural network architecture was crafted, and the model was trained

on a dataset containing labeled diffraction patterns. The network learned to discern the

distinctive features of Gaussian spots within the input images and associate them with

corresponding Mean, Covariance, and Theta parameters.

Upon successful training, the neural network can accurately classify the Mean, Covariance,

and Theta parameters of Gaussian spots, thereby contributing to the advancement of RHEED

analysis and materials science research. Sean Rassa from Drexel University developed the neural

network discussed in this section.

3.1 NEURAL NETWORK DESIGN

The general form of a 2D Gaussian function is given by the equation:

Equation 1: Two-Dimensional Gaussian Function

Where A is the amplitude or height of the Gaussian Peak. (μx, μy) are the coordinates of

the peak center. The mean of the Gaussian function corresponds to the anticipated position of the

16

pattern, effectively pinpointing the location within the image where the Gaussian pattern is most

prominent. σx and σy are the standard deviations of controlling the spread of the function along

the x and y axes. When the Gaussian distribution is rotated at an angle θ, a rotation matrix is

applied to perform the rotation. The rotation matrix and the subsequent rotation vector for

coordinates (x,y) is given by equations 2 and 3. By replacing x0 with xcosθ – ysinθ and y0 with

xsinθ + ycosθ in equation 1 and simplifying it, equation 4 can be obtained which represents a 2D

Gaussian rotated at an angle θ.

Equation 2: Rotation Matrix

Equation 3: Rotation Vector

Equation 4: 2D Gaussian Function with rotation θ

In this application, the 2D Gaussian function serves as a model for the spatial

arrangement of atoms [16] within the crystal structure as observed in the camera images. The

architecture of a neural network based on LeNet5 for this project is modeled as follows:

• Input Layer: Receives an input image of dimensions 48x48

• Sequential Layer 1:

17

o Convolution: Kernel = 5x5; Stride = 1; Output Channels = 6;

o Batch Normalization: Output Channels = 6;

o ReLU Activation: Output Channels = 6;

o Max Pooling: Kernel = 4x4; Stride = 4; Output Channels = 6;

• Sequential Layer 2:

o Convolution: Kernel = 5x5; Stride = 1; Output Channels = 16;

o Batch Normalization: Output Channels = 16;

o ReLU Activation: Output Channels = 16;

o Max Pooling: Kernel = 4x4; Stride = 4; Output Channels = 16;

• Fully Connected Linear and ReLu Activation Layer

• Fully Connected Linear and ReLu Activation Layer

• Fully Connected Linear and ReLu Activation Layer

• Output Layer: (μx, μy, σx, σy, θ)

The sequential layers operate as follows:

• Convolution layer has filters to extract specific features

• Batch Normalization Layer is used to improve the accuracy by adjusting and scaling the

activations

• ReLU Activation Layer introduces non-linearity in the system to enhance learning

complex relationships

• Max Pooling Layer reduces the spatial dimensions of the layer

The successive Fully Connected and ReLU Activation layers help in the finer refinement

of the features extracted from the previous layers. ReLU introduces non-linearity that enables the

18

network to learn from complex relationships in the data. The following figure represents the

architecture of the neural network:

Figure 8: LeNet5 architecture for RHEED of input size 48x48

3.2 DATASET FOR TRAINING

To facilitate the training of the neural network, a Gaussian generator method was developed in

Python. This generator takes as input the parameters required to define a Gaussian distribution

and generates a corresponding distribution. The input parameters necessary for generating

suitable Gaussians for training are:

1. Size of the output tensor: The size of the output tensor is predetermined to match the

input layer of the neural network, which is set at 48x48 pixels.

2. μx: The mean along the x-axis of the Gaussian distribution.

3. μy: The mean along the y-axis of the Gaussian distribution.

4. σx: The covariance along the x-axis of the Gaussian distribution.

19

5. σy: The covariance along the y-axis of the Gaussian distribution.

6. θ: The angle of rotation for the Gaussian distribution.

These parameters are utilized within the Gaussian generator to generate Gaussian spots of

varying characteristics. The generated Gaussian distributions are then passed into the equation

depicted in equation 1, transforming them into tensors representing images captured by the

camera.

Furthermore, the neural network underwent testing using a real-world dataset acquired

from experiments conducted by Prof. Joshua Agar's research group at Drexel University. The

dataset comprises multiple growth areas and growth spots stored in an H5 file, indexed as

'growth_n' and 'spot_n', respectively. This real-world dataset provided invaluable data for

validating the performance and efficacy of the trained neural network in analyzing RHEED

patterns and classifying parameters accurately.

3.3 LOSS FUNCTION FOR ESTIMATING ACCURACY

In our project, we employed a custom-weighted Mean Squared Error (MSE) loss function to

evaluate the disparity between the predicted crystallographic images and the ground truth. This

loss function, implemented using PyTorch, is tailored to calculate the mean squared error of

grayscale images A (actual) and B (predictions). Both the actual image A and the predicted

image B are represented as PyTorch tensors with shapes [batch_size, 1, M, N], indicating the

batch size, number of channels (1 for grayscale), and image dimensions M x N. A pivotal

parameter introduced in our custom loss function is 'n,' an exponent that dictates the weighting

strategy applied to the input image. This exponent is utilized to exponentiate the input image I,

20

thereby influencing the emphasis placed on various regions of the image during the loss

computation. The formula for the loss function is:

Equation 5: Custom weighted loss function for the neural network

where:

size is the number of data points.

yi is the actual value for the ii-th data point.

ŷi is the predicted value for the ii-th data point.

n is the power to which the differences are raised, commonly 2 for mean squared error.

During training, the custom-weighted MSE loss is calculated by averaging the squared

differences of corresponding pixels in the input and target images. However, the exponentiated

input image, derived from applying the exponent 'n,' introduces a weighted factor that either

amplifies or diminishes the contribution of each pixel based on the specified exponent. By

minimizing the MSE, the network adjusts its parameters to reduce the error between the

predicted outputs and the actual labels.

In our scenario, the custom weighting with the exponent 'n' enables us to highlight

specific features within the crystallographic images throughout the training phase. This tailored

loss function acknowledges the importance of particular spatial characteristics, such as Gaussian

patterns or deposition positions, and steers the optimization process to prioritize learning these

pivotal features. By integrating this custom-weighted MSE loss function into our neural network

21

training, our objective was to refine the model's capacity to accurately forecast and replicate the

intricate patterns present in crystallographic images, thereby enhancing the overall performance

and precision of our predictive model.

3.4 TRAINING RESULTS

The neural network was trained for 200 epochs and an average loss of 0.005566 was attained.

Following training, the model was saved and will subsequently be utilized for inference tasks.

The upcoming section provides insights into the utilization of the pre-trained model during

deployment on hardware for inference execution.

Figure 9: Example prediction for a given input Gaussian spot from a real dataset

22

Chapter 4. FIRMWARE DESIGN

This section captures the design of the firmware operating on the FPGA. The firmware design

encompasses three primary components: processing incoming video frames, executing inference,

and transmitting the results back to a PC. The work discussed in this section was developed by

Ryan Forelli of Lehigh University.

4.1 EURESYS REFERENCE DESIGN

The design of the firmware for the FPGA is structured around two main modules: iCoaxlinkCore

and iCustomLogic. The iCoaxlinkCore module manages system-level functions within the frame

grabber, while the iCustomLogic module serves as a platform for user-designed functionalities

leveraging the remaining FPGA resources. The block diagram in figure 9 illustrates the reference

firmware design, with all components, except CustomLogic, encapsulated within iCoaxlinkCore

as an encrypted design. The camera is interfaced to the firmware through the CoaXPress

connections.

The design revolves around two global signals: clk250, serving as the common clock, and

srst250, asserted synchronously during a PCIe reset. It is crucial to ensure that the critical path

within the CustomLogic design is at most 4ns, so that it works correctly with the 250 MHz logic

clock. If optimization efforts fall short, reducing the clock can be contemplated, with

implementation details discussed in the subsequent section.

Data exchange between CustomLogic and other components occurs through the AXI4

bus protocol. The interface for acquiring incoming images by CustomLogic is termed the slave

side, while the side for transferring results is referred to as the master side.

23

Figure 9: Euresys frame grabber firmware architecture [17]

The directory structure of the reference design is organized as follows:

• 01_readme: Provides the TCL command for creating a new project.

• 02_coaxlink: Houses all encrypted files utilized in iCoaxlinkCore.

• 03_scripts: Contains TCL scripts for executing the Vivado backend flow.

• 04_ref_design: Comprises VHDL files of example designs and the module for

iCustomLogic.

• 05_ref_design_hls: Stores all HLS source files and files generated after running HLS.

• 06_release: Holds the generated bitstream post Vivado backend flow.

• 07_vivado_project: Generated after executing the Vivado backend flow, this directory

can be used to access project information as it traverses through Vivado.

24

4.2 GETTING STARTED WITH THE REFERENCE DESIGN

The initial step in porting the reference design involves eliminating non-essential portions.

Within the reference design, three example designs—iPixelLut, iHlsPixTh, and iFrame2Line—

are instantiated within CustomLogic but are not requisite for this project.

Designers have the flexibility to instantiate modules essential to their project within the

reference design. In this project, the wrapper for the HLS4ML module is instantiated here, with

further discussion on its design provided later.

All newly added modules must be sourced by the TCL script during Vivado compilation.

Thus, all files added to the project were listed under "files" within

03_scripts/create_vivado_project.tcl. To modify the directory structure or reorganize files, paths

within the TCL scripts were adjusted accordingly.

4.3 INPUT PROCESSING

The initial phase involves capturing frames from the camera, accomplished via the slave side

utilizing AXI-Stream bus format with latency-insensitive READY-VALID handshaking for data

exchange. Data transfer occurs when both READY and VALID signals are asserted. The

READY signal is asserted by CustomLogic whenever it can accept new data.

In addition to the data, crucial sideband information is transmitted through a 4-bit signal

TUSER, essential for reconstructing an image from the incoming serial data. The 4 bits signify:

• TUSER [0]: Start of Frame (SOF)

• TUSER [1]: Start of Line (SOL)

• TUSER [2]: End of Line (EOL)

• TUSER [3]: End of Frame (EOF)

25

Each incoming frame commences with a start-of-frame and concludes with an end-of-

frame. Frames are transmitted line by line, with each line beginning with a start-of-line and

concluding with an end-of-line. The pixels in each line are packed into equally sized words. Each

word is transmitted in a clock cycle. Between the start-of-line and end-of-line, only words

belonging to the same line will be transmitted. A set of lines can be grouped into equally sized

blocks. The frame grabber is initialized through the eGrabber studio [18] software by the user.

During initialization, the user configures the dimensions of lines, blocks, and frames. These

dimensions are static, therefore facilitating the construction of the input image by tracking the

TUSER bits.

Figure 10: CustomLogic AXI handshaking [17]

The timing diagram in the above figure illustrates the anticipated data exchange sequence

between the AXI master and CustomLogic. The CustomLogic module asserts TREADY first

indicating that it is ready to accept new inputs and is held HIGH until the frame is received. The

master interface then asserts TVALID and begins word transmission over TDATA. If either

TREADY or TVALID goes LOW during the transmission, TDATA is held in the same word

until both TREADY and TVALID are asserted, and the remaining words are transmitted. The

start of frame (SOF) is asserted when the first word of the frame is transmitted. The end of frame

26

(EOF) is asserted when the last word of the frame is transmitted. Similarly, the start of line

(SOL) and end of line (EOL) are asserted when the first word and last word of a line are

transmitted, respectively.

The frame can be reconstructed by tracking the SOL and EOL signals. However, it is

important to note that the lines are not received in their natural order. Incoming images must be

unscrambled according to the mode configured in the DMA Engine via the eGrabber at runtime.

The BlockHeight determines how many lines comprise a block. The StripeHeight and

StripePitch are multiple of the BlockHeight. Stripes are used to selectively mask lines and

distribute them to two devices as shown in figure 12. For this project, the 1X_2YM configuration

with a block height of 2, comprising 8 lines, is employed. In this configuration, line 1 received

after the start-of-frame corresponds to the center of a naturally ordered image as shown in figure

11.

Figure 11: 1X_2YM Configuration to deliver lines by blocks of 2 to one host [19]

27

Figure 12: 1X_2YM Configuration to deliver lines by blocks of 4 to two hosts [19]

Consequently, the firmware design entails creating a frame buffer to reconstruct the incident

images from the camera. This is executed within a C++ function named read_pixel_data, which

can undergo the HLS flow to generate the required RTL. The flow chart of the read_pixel_data

function used for input processing is depicted below:

28

Figure 13: Flow chart of read_pixel_data function

4.4 CROPPING THE REGION OF INTEREST

After assembling the input image, it is forwarded for processing. However, the neural network

designed in the prior section can only handle 48x48 pixel inputs. For this initial project iteration,

it is guaranteed by design that the Gaussian pattern will solely be present within a region of

interest measuring 48x48 pixels. The user of the system must accurately input the starting

coordinates of this region of interest in the CustomLogic.h file before firmware compilation. It is

29

imperative to ensure that the Gaussian patterns are formed within this designated region when

deploying the system.

 Given that 48x48 pixels are smaller than the camera's lowest resolution of 128x48 pixels,

the region of interest needs to be cropped from the input image. Another C++ function named

unpack_data serves this purpose. It compares the coordinates of the incoming frame with those

of the region of interest. If the coordinates of the pixels in the current frame align with the pixels

within the region of interest, the incoming frame is stored in a buffer that feeds into the neural

network's input stream. The flow chart of the unpack_data function is depicted below:

Figure 14: Flow chart of unpack_data function

30

In future iterations, the predefined region of interest could be substituted by deploying

algorithms like YOLO (You Only Look Once) to automatically ascertain the coordinates of the

48x48 pixel area accommodating the Gaussian pattern. This approach would enhance the

system's flexibility and adaptability, enabling it to dynamically identify the relevant region

within the input image without manual intervention.

4.5 PORTING THE NEURAL NETWORK

Creating an HLS-compatible C++ version of the neural network involves passing the PyTorch

implementation of the model through the HLS4ML flow. This process enables the translation of

the neural network model into a hardware description language (HDL) representation suitable for

High-Level Synthesis (HLS). By leveraging HLS4ML, the neural network can be optimized and

synthesized into hardware-accelerated code suitable for FPGA implementation, facilitating

efficient inference on embedded devices.

4.5.1 HLS4ML Flow

The HLS4ML flow comprises two key steps: creating an HLS4ML configuration and using this

configuration to convert the model to HLS. These steps are facilitated by the following

functions:

• config_from_pytorch_model: This function, from the “hls4ml.utils" package, is utilized

to generate an HLS4ML configuration based on the PyTorch model.

• convert_from_pytorch_model: This function, from the "hls4ml.converters" package, is

employed to convert the PyTorch model to HLS using the generated configuration.

31

The HLS4ML configuration allows for parameter customization such as Strategy and

ReuseFactor, which impact the optimization and resource utilization of the generated hardware

implementation. During the model conversion process, parameters such as FPGA-specific

settings (e.g., clock_period, io_type) were passed as arguments. These parameters dictate aspects

like clock frequency and input/output types, ensuring compatibility with the target FPGA

platform.

4.5.2 Porting the Outputs of HLS4ML into the Firmware

After HLS4ML processing, a directory named "firmware" was generated, containing essential

files to be incorporated into the project. Here is a breakdown of the contents:

• ap_types: This directory houses arbitrary precision datatype definitions utilized within

the neural network.

• nn_utils: It contains the C++ implementation of various layers utilized in the neural

network.

• weights: This directory stores the weights associated with each layer within the neural

network.

• defines.h: This file specifies the shape of the neural network and defines custom

datatypes.

• parameters.h: It configures each layer within the neural network.

• project.cpp: This file comprises the C++ program of the neural network.

• project.h: This header file provides declarations and prototypes for the project.

32

4.6 OUTPUT PROCESSING

Following the neural network processing, the outputs can be conveyed over the AXI bus to a PC.

For subsequent post-processing or further analysis, it is advantageous to log the results of the

neural network alongside the input frame. Consequently, an additional line containing the neural

network results is appended to the input frame, forming the output sent to the PC. Furthermore,

signaling inference completion via a GPIO pin proves beneficial. This functionality is also

integrated within this function.

4.7 INTEGRATING THE FIRMWARE

Sections 4.2 through 4.6 laid the groundwork for designing various sub-blocks essential for

constructing a system to monitor RHEED. All the aforementioned components now require

integration. The C++ functions defined within the file “myproject.cpp” are consolidated, with

invocation occurring within the function “myproject.” This function accepts the video stream as

input and generates an output computed by the neural network. The file “CustomLogic.h” serves

as the repository for storing all reconfigurable parameters and custom datatypes within the

system, providing flexibility for designers to modify as needed. The block diagram of the

program myproject.cpp is depicted below:

Figure 15: Block Diagram of the project

33

Chapter 5. PERFORMANCE OPTIMIZATION AND OTHER

FEATURES

In this section, I will outline my contribution to the project. Our primary objective was to

develop a system capable of processing images in real time, aiming for a inference latency less

than 1 ms. This goal served as the main impetus for our optimization efforts. A significant hurdle

we encountered in the development phase was attaining timing closure. To address this

challenge, we implemented optimizations at various stages of the deployment process.

5.1 HLS4ML - RESOURCE VS LATENCY CHOICES

The HLS4ML configuration initially operates with a 'model' level granularity, employing an

arbitrary <16,6> precision. Notably, the model prioritizes latency optimization. Consequently,

the tool maximizes model parallelization and dedicates hardware resources accordingly.

Upon compilation and synthesis of files using the default configuration in Vivado HLS, it

became apparent that the total available resources in the Kintex Ultrascale part 'xcku035' were

exceeded. Consequently, optimization was necessary for some layers to ensure efficient resource

utilization.

To address resource constraints, the reuse factor of all layers was increased to 2 in the

configuration. Also, attention was given to the three fully connected Linear layers, known for

their resource intensity. In such layers, resource consumption scales linearly with the number of

parameters. Figure 16 below denotes the number of parameters in each layer. Thus, by

augmenting the reuse factor, FPGA resource utilization could be mitigated. However, this

adjustment resulted in increased model latency as a trade-off.

34

Figure 16: Layers vs Parameters of the Neural Network

The reuse factors 128, 98, and 52 were implemented for the fc, fc1, and fc2 layers,

respectively. HLS4ML allows for reuse factors that are multiples of the input tensor size for each

specific layer. For the first fully connected layer, a reuse factor 4 times the size of the input

tensor was selected, based on insights from Ryan Forelli, who has experience deploying a similar

model.

Subsequently, the HLS-generated files were integrated into the CustomLogic module of

the reference design, following the steps outlined in section 4.5.2. This integration resulted in a

utilization of 42.23% of LUT and 56.39% of BRAM as shown in figure 17.

Throughout the optimization process, I noted that the tradeoffs between latency and

resource utilization could potentially be managed through the utilization of Vivado HLS

Directives. This aspect presents an avenue for future work that could enhance the deployment

process, as detailed in section 8.

35

Figure 17: FPGA Utilization

5.2 CLOCK RATE REDUCTION AND ILA ADDITION

Two features were integrated into the design with potential future utility: Firstly, anticipating

scenarios were achieving timing closure with a 4 ns clock period for a large model deployment

on the FPGA might prove challenging, a solution was devised. The iCoaxlinkCore module

within the reference design operates using a fixed global 250 MHz clock, which could not be

36

altered due to encrypted source files provided by the manufacturer. To adapt to this constraint,

the global clock was reduced exclusively for the neural network and seamlessly interfaced with

the rest of the system. The neural network module, equipped with an AXI interface employing a

ready-valid handshake protocol, facilitated independent clocking.

The neural network was clocked at half the rate of the global clock by using an FPGA

block called an MMCM to generate a new, 125 MHz clock However, this necessitated managing

clock domain crossing on both the master and slave sides of the neural network module. To

address this, an asynchronous FIFO was implemented on the master side, acting as a frame

buffer to store incoming frames. This was achieved using an AXI FIFO sized according to the

required number of frames. Conversely, on the slave side, a FIFO of width = 1 was required to

synchronize the output of the neural network as it exited the system.

Secondly, the addition of an Integrated Logic Analyzer (ILA) for debugging purposes

significantly enhanced the system. Monitoring the states of critical registers such as axi_tuser or

GPIO pins proved invaluable for understanding system behavior. To facilitate this, an ILA IP

block was configured to monitor signals like the global clock, reset, and axi_tuser pins between

the master and slave sides. This setup can be easily expanded to accommodate additional signals

as needed.

37

Chapter 6. VIVADO FLOW AND DEPLOYMENT

The C++ and reference design files underwent initial processing through Vivado HLS to

generate the RTL. CSIM support within Vivado HLS was harnessed for design verification

purposes. Subsequently, the generated RTL files were synthesized and implemented using

Vivado to produce the necessary bitstream. To streamline this workflow, scripts were developed

to automate the entire process.

6.1 VIVADO HLS AND CSIM TESTBENCH

The conversion of the C++ design to RTL involved the following steps:

1. Creation of a new project.

2. Inclusion of all necessary files.

3. Configuration of Vivado HLS by initializing the FPGA part, clock period, and backend

settings.

4. Execution of pre-synthesis C++ simulation (CSIM).

5. C++ synthesis.

For the purpose of verifying the C++ design, a simulation testbench was developed. This

testbench is responsible for retrieving input data for the neural network from a designated data

file. Subsequently, this data is serialized into blocks of a size corresponding to the neural

network's input requirements. The resulting output of the neural network is then serialized and

stored in another data file. To generate the input data required for CSIM, a dataset collected from

samples was utilized. The predictions obtained from the tool were then compared to those

generated by the model running on a general-purpose CPU/GPU.

38

6.2 VIVADO SYNTHESIS AND IMPLEMENTATION

The RTL generated through HLS was implemented using Vivado, with a custom script

developed to incorporate specific optimization directives [21] aimed at ensuring timing closure

and achieving an efficient implementation. The directives corresponding to each of the

aforementioned steps are outlined in the table below:

Table 2: Optimization directives used during the Vivado flow

Vivado Operation Directive(s) Used

Synthesis AggressiveExplore

Post Synthesis Optimization Explore

Placement EarlyBlockPlacement

Placement Optimization AggressiveExplore, AggressiveFanoutOpt, and

AlternateReplication

Routing Explore

Routing Optimization AggressiveExplore

Given that the design initially failed to meet timing requirements, the placement

optimization step was iterated five times to achieve the most favorable placement. As the

project's objective was to attain timing at 4 ns, the optimization directives were carefully selected

to grant the tool flexibility in modifying certain previously completed steps to enhance timing

performance. This iterative approach ensured that the design underwent necessary adjustments

and optimizations to meet the project's timing goals.

39

6.3 DEPLOYMENT

After generating the bitstream using Vivado, the frame grabber was flashed utilizing the

manufacturer-provided software, eGrabber studio. Prior to flashing the firmware, configuration

of eGrabber studio was conducted. This setup enabled the PC running the software to receive

outputs from the neural network. Key parameters within eGrabber studio included the frame

grabber type, camera protocol, camera model, camera frame dimensions, pixel bit-depth,

exposure settings, and target frames per second (FPS). Furthermore, the software facilitated

buffering of incoming images, with buffer size scaled according to the configured FPS. For

instance, a buffer size of 1000 was chosen for high frame rates, while a value of 1 was selected

for lower rates.

40

Chapter 7. RESULTS AND DISCUSSION

The input frames expected to be supplied to the frame grabber were subsequently utilized as

inputs to the design during simulation using Vivado CSIM. The results obtained from the C-

simulation during synthesis were compared against those obtained from the predictions made by

a python script. The comparisons were performed for three sets of inputs. The first set was a zero

matrix, and the last two sets were growth spots obtained from a real dataset from experiments at

Drexel University. The results are tabulated below:

Table 3: Python Predictions vs CSIM Results with an input array of zeros

Output

Parameter

Python Predicted

Value

CSIM-Simulated

Value

Absolute Difference

μx 1.4284 0.45703125 0.97136875

μy -8.6971 -12.20800781 3.51090781

σx -2.7575 -1.35058594 1.40691406

σy
-5.8484 -2.57421875 3.27418125

Θ -11.1176 4.93066406 16.04826406

41

Table 4: Python Predictions vs CSIM Results for Gaussian 1

Output

Parameter

Python Predicted

Value

CSIM-Simulated

Value

Absolute Difference

μx 0.3983 -1.0996094 1.4979094

μy -7.2431 -6.116211 1.126889

σx -1.5766 0.23144531 1.80804531

σy
-2.9833 -0.70996094 2.27333906

Θ -10.7376 -17.6748047 7.4124047

Table 5: Python Predictions vs CSIM Results for Gaussian 2

Output

Parameter

Python-Predicted

Value

CSIM-Simulated

Value

Absolute Difference

μx -0.4355 -0.53515625 0.09965625

μy -2.8672 -7.71875 4.85155

σx 1.1447 -0.92285156 2.06755156

σy
2.9763 -2.3583984 5.3346984

Θ 0.6459 -0.51660156 1.16250156

Recognizing the significance of neural network latency, a GPIO pin on the frame grabber

was configured to indicate activity whenever the neural network was engaged. These

comparative tests were conducted using two different regions of interest (ROI) sizes: 48x29 and

42

48x48 pixels. Latencies of 450 us and 750 us were observed for the 48x29 and 48x48 images, as

shown in figures 23 and 24 respectively. These latency values fell within the predetermined

acceptable goals of 1 ms for the project.

Figure 23: Latency results of 450 us for 48x29 pixels

Figure 24: Latency results of 750 us for 48x48 pixels

Through this project, a proof of concept for a real-time RHEED system based on machine

learning has been successfully implemented. This design serves as a foundation for future

enhancements aimed at building a larger, more efficient, and accurate system. These

improvements are discussed in the subsequent section, with the anticipation that they will

provide material scientists with concurrent analysis capabilities for their work.

43

A key takeaway from this project was the critical role played by the configuration of

HLS4ML and Vivado tools in achieving the design objectives. It became apparent that

overlooking certain optimization parameters can significantly impact the outcome. This

underscores the importance of thorough parameter consideration and optimization throughout the

development process.

44

Chapter 8. CONCLUSION

This thesis provided the design of a system to perform RHEED analysis at a rate of 10ms which

is close to the rate of the deposition of atoms during crystal growth. This is significantly faster

than commercial RHEED systems that take operate in the order of minutes to analyze one

sample. This thesis presented details on the design of a LeNet-5 based neural network to classify

the mean, covariance and theta of gaussian distribution of atoms from a given image. The

implementation of this neural network on an FPGA-based frame grabber along with the camera

interface was also captured. This thesis also demonstrated useful deployment and optimization

strategies that can be used to fit the neural network into the FPGA efficiently.

45

Chapter 9. FUTURE WORK

To significantly enhance this project, improvements in neural network design, quantization

techniques, and automated region-of-interest detection are paramount. Additionally, a more

structured approach to design verification and validation is essential prior to deployment in a

laboratory setting. Furthermore, integration into a larger system capable of providing feedback to

control the pulsed-laser deposition process would substantially enhance the yield of the crystal

growth process. Here are specific areas where work can be undertaken to improve this project:

• Quantization-aware Training: Evaluate the feasibility of deploying a smaller model

without sacrificing prediction accuracy through quantization-aware training techniques.

• YOLO Object Detection: Implement a version of the YOLO (You Only Look Once)

object detection algorithm to automatically detect Gaussians from input frames,

enhancing automation and efficiency.

• Concurrent Model Processing: Develop a system capable of running multiple models

concurrently to process Gaussians simultaneously, thereby improving throughput and

performance.

• Debugging and Monitoring: Identify crucial signals within the design and integrate ILA

IP for effective debugging and monitoring during system operation, enhancing reliability

and fault diagnosis capabilities.

• Testing and Validation: Conduct comprehensive testing of the system with a pulsed-

laser deposition system to validate its functionality and performance in a real-world

environment, ensuring seamless integration with existing processes and workflows.

46

By addressing these areas of improvement, the project can achieve enhanced efficiency,

accuracy, and reliability, ultimately leading to significant advancements in real-time RHEED-

based crystal growth analysis.

47

BIBLIOGRAPHY

[1] A. Ichimiya and P. I. Cohen. Reflection High-Energy Electron Diffraction. 2004

[2] Reflection High-Energy Electron Diffraction, Wikipedia

[3] J. Agar, Real-Time Machine Learning in Materials Microscopy and Spectroscopy, Fast

Machine Learning for Science Workshop 2023

[4] H. Sghaier et al., RHEED digital image analysis system for in-situ growth rate and alloy

composition measurements of GaAs-based nanostructures, SQO-2004

[5] H. Zhou et al., Effects of strain on ultrahigh-performance optoelectronics and growth

behavior of high-quality indium tin oxide films on yttria-stabilized zirconia (001)

substrates

[6] RHEE Image Analysis Software, SVT Associates,

https://www.svta.com/uploads/documents/RHEEDImageAnalysis.pdf

[7] kSA400 - RHEED Analysis Software, k-space Associates, https://k-

space.com/product/400-rheed/

[8] Y. LeCun et al., Gradient-Based Learning Applied to Document Recognition,

Proceedings of the IEEE, 1998

[9] Pulsed Laser Deposition, https://www.sciencedirect.com/topics/materials-science/pulsed-

laser-deposition

[10] J. Agar, Practical and Parsimonious Real-Time Analysis in Materials Microscopy,

Microscopy and Microanalysis, 2023

[11] J.E. Mahan et al., A review of the geometrical fundamentals of reflection

high‐energy electron diffraction with application to silicon surfaces, J. Vac. Sci. Technol.

1990

[12] HLS4ML documentation, https://fastmachinelearning.org/hls4ml/

[13] J. Duarte et al., Fast inference of deep neural networks in FPGAs for particle

physics, JINST, 2018

[14] Phantom S200 High-Speed Camera Datasheet,

https://www.phantomhighspeed.com/-

/media/project/ameteksxa/visionresearch/documents/datasheets/web/wdss200s210.pdf?do

wnload=1

[15] Phantom S200 Camera,

https://www.phantomhighspeed.com/news/newsarticles/2018/november/s200

[16] S. Hasegawa, Reflection High-Energy Electron Diffraction, Characterization of

Materials, 2012

[17] Euresys Custom Logic Documentation,

https://documentation.euresys.com/Products/COAXLINK/COAXLINK/60/en-

us/Content/09_CustomLogic/Introduction/Framework.htm

[18] Euresys eGrabber Studio Documentation,

https://documentation.euresys.com/Products/COAXLINK/COAXLINK_16_0/en-

us/Content/11_Pdf/D805ET-Using_eGrabber_Studio-eGrabber-16.0.2.2128.pdf#page=15

[19] Euresys Coaxlink image data unscrambling,

https://documentation.euresys.com/Products/COAXLINK/COAXLINK/10/en-

us/Content/03_Interfaces/functional-guide/idt/image-unscrambling.htm

[20] Pytorch Quantization, https://pytorch.org/docs/stable/quantization.html

https://www.svta.com/uploads/documents/RHEEDImageAnalysis.pdf
https://k-space.com/product/400-rheed/
https://k-space.com/product/400-rheed/
https://www.sciencedirect.com/topics/materials-science/pulsed-laser-deposition
https://www.sciencedirect.com/topics/materials-science/pulsed-laser-deposition
https://fastmachinelearning.org/hls4ml/
https://www.phantomhighspeed.com/-/media/project/ameteksxa/visionresearch/documents/datasheets/web/wdss200s210.pdf?download=1
https://www.phantomhighspeed.com/-/media/project/ameteksxa/visionresearch/documents/datasheets/web/wdss200s210.pdf?download=1
https://www.phantomhighspeed.com/-/media/project/ameteksxa/visionresearch/documents/datasheets/web/wdss200s210.pdf?download=1
https://www.phantomhighspeed.com/news/newsarticles/2018/november/s200
https://documentation.euresys.com/Products/COAXLINK/COAXLINK/60/en-us/Content/09_CustomLogic/Introduction/Framework.htm
https://documentation.euresys.com/Products/COAXLINK/COAXLINK/60/en-us/Content/09_CustomLogic/Introduction/Framework.htm
https://documentation.euresys.com/Products/COAXLINK/COAXLINK_16_0/en-us/Content/11_Pdf/D805ET-Using_eGrabber_Studio-eGrabber-16.0.2.2128.pdf#page=15
https://documentation.euresys.com/Products/COAXLINK/COAXLINK_16_0/en-us/Content/11_Pdf/D805ET-Using_eGrabber_Studio-eGrabber-16.0.2.2128.pdf#page=15
https://documentation.euresys.com/Products/COAXLINK/COAXLINK/10/en-us/Content/03_Interfaces/functional-guide/idt/image-unscrambling.htm
https://documentation.euresys.com/Products/COAXLINK/COAXLINK/10/en-us/Content/03_Interfaces/functional-guide/idt/image-unscrambling.htm
https://pytorch.org/docs/stable/quantization.html

48

[21] Vivado HLS Manual,

https://www.xilinx.com/support/documents/sw_manuals/xilinx2020_1/ug902-vivado-

high-level-synthesis.pdf

https://www.xilinx.com/support/documents/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf

