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Abstract—We present a pipelining-aware router for FPGAs. 

The problem of routing pipelined signals is different from the 
conventional FPGA routing problem. The two terminal ND 
pipelined routing problem is to find the lowest cost route between 
a source and sink that goes through at least N (N ≥≥≥≥ 1) distinct 
pipelining resources. In the case of a multi-terminal pipelined 
signal, the problem is to find a Minimum Spanning Tree that 
contains sufficient pipelining resources such that pipelining 
constraints at each sink are satisfied. In this work, we first 
present an optimal algorithm for finding a lowest cost 1D route. 
The optimal 1D algorithm is then used as a building block for a 
greedy two terminal ND router. Next, we discuss the development 
of a multi-terminal routing algorithm (PipeRoute) that effectively 
leverages both the 1D and ND routers. Finally, we present a pre-
processing heuristic that enables the application of PipeRoute to 
pipelined FPGA architectures. PipeRoute’s performance is 
evaluated by routing a set of benchmark netlists on the RaPiD 
architecture. Our results show that the architecture overhead 
incurred in routing netlists on RaPiD is less than 20%. Further, 
the results indicate a possible trend between the architecture 
overhead and the percentage of pipelined signals in a netlist. 
 

Index Terms—Design automation, Field programmable gate 
arrays, Reconfigurable architectures, Routing 
 

I. INTRODUCTION 

 
ver the last few years, reconfigurable technologies have 
made remarkable progress. Today, state-of-the-art 

devices [1], [19] from FPGA vendors provide a wide range of 
functionalities. Coupled with gate-counts in the millions, these 
devices can be used to implement entire systems at a time. 
However, improvements in FPGA clock cycle times have 
consistently lagged behind advances in device functionality 
and capacities. Even the simplest circuits cannot be clocked at 
more than a few hundred megahertz. 
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A number of research groups have tried to improve clock 
cycle times by proposing pipelined FPGA architectures. Some 
examples of pipelined architectures are HSRA [16], RaPiD [3] 
– [4], and the architecture proposed in [13]. The main 
distinguishing feature of a pipelined FPGA is the possible 
location of registers in the architecture. While both pipelined 
and conventional FPGA architectures provide registers in the 
logic structure, pipelined FPGAs also provide register sites in 
the interconnect structure. The registers in the interconnect 
structure are used to supplement the registers in the logic 
structure. Applications mapped to pipelined FPGAs are often 
retimed to take advantage of a relatively large number of 
registers in the logic and interconnect structures. 

The subject of this paper is the development of an algorithm 
called PipeRoute that routes application netlists on pipelined 
FPGA architectures. PipeRoute takes a netlist and a pipelined 
FPGA architecture as inputs, and produces an assignment of 
signals to routing resources as the output. To the best of our 
knowledge, PipeRoute is the first algorithm that is capable of 
routing netlists on pipelined FPGA architectures. Furthermore, 
the strength of the PipeRoute algorithm lies in the fact that it is 
architecture-independent. The algorithm is capable of routing 
pipelined signals on any FPGA architecture that can be 
abstracted as a graph consisting of routing and pipelining 
nodes. 

The rest of this paper is organized as follows. In Section II, 
we survey pipelined FPGAs and the techniques used to 
allocate pipelining registers during the physical design phase. 
The pipelined routing problem is introduced and formalized in 
Section III. In sections IV, V and VI we present PipeRoute 
[10] – [12], a greedy heuristic search algorithm for routing 
signals on pipelined FPGA architectures. Section VII discusses 
a pre-processing heuristic that takes advantage of registered IO 
terminals and interconnect sites that provide multiple registers. 
In Section VIII, we briefly describe the techniques we used to 
make PipeRoute timing aware. The target architecture that we 
used in our experiments is described in Section IX, while 
Section X explains the placement algorithm we developed to 
enable our routing approach. We describe our experimental 
setup and test strategy in Section XI, followed by results in 
Section XII. In Section XIII, we conclude this paper. 

II. PIPELINED FPGAS AND MAPPING HERISTICS 

In this section we briefly survey examples of pipelined 

PipeRoute: A Pipelining-Aware Router for 
Reconfigurable Architectures 

Akshay Sharma, Student Member, IEEE, Carl Ebeling, Member, IEEE and Scott Hauck, Senior 
Member, IEEE 

O



TCAD 2181 
 

2

FPGA architectures, and the heuristics used to allocate 
pipelining registers during physical design. 

A. Fixed-frequency Architectures 
HSRA [16] and SFRA [17] are two examples of fixed-

frequency architectures that guarantee the execution of an 
application at a fixed frequency. HSRA has a strictly 
hierarchical, tree-like routing structure, while SFRA has a 
capacity depopulated island style routing structure. 
Applications mapped to HSRA and SFRA are aggressively C-
slowed to reduce clock cycle times. An important consequence 
of C-slowing is that the register count in a netlist increases by 
a factor of C. Since an FPGA has limited resources, finding 
pipelining registers in the interconnect and/or logic structure 
without adversely affecting the routability and delay of a 
netlist is a difficult problem. Both HSRA and SFRA 
circumvent this problem by providing deep retiming register-
banks at the inputs of logic blocks, as well as registered 
switch-points.  

Since fixed-frequency FPGAs provide register-rich logic 
and routing structures, there is no need to efficiently locate 
pipelining registers during placement and routing. 
Consequently, the place & route flows developed for SFRA 
and HSRA are unaware of pipelining registers. However, the 
area overhead incurred by these architectures due to their 
heavily pipelined structure is high. HSRA incurs 
approximately a 2X area overhead, while SFRA takes a 4X 
area hit. While these overheads might be justifiable for certain 
classes of applications (those that are amenable to C-slowing 
and/or heavy pipelining), they are prohibitive for conventional, 
general-purpose FPGAs. 

B. General-purpose FPGA Architectures 
A number of researchers have attempted to integrate 

pipelining with place and route flows for general-purpose 
FPGAs. The techniques presented in [8] use post place-and-
route delay information to accurately retime netlists mapped to 
the Virtex family of FPGAs. To preserve the accuracy of 
delay information, the authors do not attempt to re-place-and-
route the netlist after the completion of the retiming operation. 
Since the logic blocks (called ‘slices’) in Virtex devices 
have a single output register, the edges in the retiming graph 
are constrained to allow no more than a single register. This 
constraint might be overly restrictive, especially for 
applications that might benefit from a more aggressive 
retiming approach like C-slowing.  

In [18], a post-placement C-slow retiming technique for the 
Virtex family of FPGAs is presented. Since C-slowing 
increases the register count of a netlist by a factor of C, a post-
retiming heuristic is used to place registers in unused logic 
blocks. A search for unused logic blocks is begun at the center 
of the bounding box of a net. The search continues to spiral 
outward until an unused register location is found. When an 
unused register location is found, it is allocated. This process 
is repeated until all retiming registers have been placed. A 
significant shortcoming of this heuristic is its dependence on 

the pre-retiming placement of a netlist. If the placement of the 
netlist is dense, then the heuristic may not be able to find 
unused register locations within the net’s bounding box. 
Instead, unused locations that are far removed from the net’s 
terminals may be allocated. The resultant routes between the 
net’s terminals and the newly allocated registers might become 
critical and thus destroy the benefits of C-slowing. 

An alternative approach to locate post-placement retiming 
registers is presented in [15]. The newly created registers are 
initially placed into preferred logic blocks even if the logic 
blocks are occupied. A greedy iterative improvement 
technique then tries to resolve illegal overlaps by moving non-
critical logic blocks to make space for registers. The cost of a 
placement is determined by the cumulative illegality of the 
placement, overall timing cost, and wirelength cost. The timing 
cost is used to prevent moves that would increase critical path 
delay, while the wirelength cost is used to estimate the 
routability of a placement. 

The retiming-aware techniques for general-purpose FPGAs 
presented so far use heuristics to place retiming registers in the 
logic blocks of the FPGA. An alternative to placing registers in 
the logic structure of a general-purpose FPGA is to allocate the 
registers in the routing structure. In [14], the authors propose a 
routing algorithm that attempts to move long (and hence 
critical) routes onto tracks that have registered routing 
switches. The algorithm exploits the planarity of the target 
architecture to permute the routes on a registered / 
unregistered track with those on a compatible unregistered / 
registered track. An architecturally constrained retiming 
algorithm is coupled with the routing step to identify tracks 
that are used by critical routes. All routes on a given critical 
track are then permuted with a compatible registered track, so 
that critical routes can go through registered routing switches. 
After the completion of retiming-aware routing, a final 
retiming step is performed to achieve a target clock period. 

There are two important shortcomings of the retiming-aware 
routing algorithm presented in [14]. First, the process of 
permuting routes on to registered tracks may be overly 
restrictive, since all routes on a registered track must go 
through registered routing switches. While long routes may 
benefit from an assignment to a registered routing track, other 
less-critical routes on the track will use up registered switches 
unnecessarily. Second, the routing algorithm relies on planar 
FPGA architectures to enable track permutation. 
Consequently, the algorithm cannot be used to route netlists on 
non-planar FPGA architectures that have registered routing 
switches. 

In summary, it is clear from sub-section II-A that the area 
overhead incurred in eliminating the problem of locating 
pipelining registers is high. At the same time, the heuristic 
techniques described in II-B are architecture-specific solutions 
that might not be applicable to a range of architecturally 
diverse pipelined FPGAs. The subject of this paper is the 
development of an architecture independent pipelining-aware 
FPGA routing algorithm called PipeRoute. The primary 
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Fig. 1.  A multi-terminal pipelined signal. 
 
strength of the PipeRoute algorithm lies in the fact that it is 
architecture-independent. The algorithm may be used to route 
netlists on any FPGA architecture that can be abstractly 
represented as a graph consisting of routing and pipelining 
nodes. Unlike the techniques presented in this section, 
PipeRoute does not rely on specific architectural features or 
heuristics to successfully route signals. PipeRoute’s 
architecture adaptability is a direct result of using Pathfinder 
[6] as the core routing algorithm. 

III. PROBLEM BACKGROUND 

The traditional FPGA routing problem is to determine an 
assignment of signals to limited routing resources while trying 
to achieve the best possible delay characteristics. Pathfinder 
[6] is one of the most widely used FPGA routing algorithms. It 
is an iterative algorithm, and consists of two parts. The signal 
router routes individual signals based on Prim’s algorithm, 
which is used to build a Minimum Spanning Tree (MST) on an 
undirected graph. The global router adjusts the cost of each 
routing resource at the end of an iteration based on the 
demands placed on that routing resource during that iteration. 
During the first routing iteration, signals are free to share as 
many routing resources as they like. However, the cost of 
using a shared routing resource is gradually increased during 
later iterations, and this increase in cost is proportional to the 
number of signals that share that resource. Thus, this scheme 
forces signals to negotiate for routing resources. A signal can 
use a high cost resource if all remaining resource options are in 
even higher demand. On the other hand, a signal that can take 
an alternative, lower cost route is forced to do so because of 
competition for shared resources. Circuits routed using 
Pathfinder’s congestion resolution scheme converge quickly, 
and exhibit good delay characteristics. 

In the case of retimed netlists, the routing problem is 
different from the conventional FPGA routing problem. This is 
because a significant fraction of the signals in a netlist are 
deeply pipelined, and merely building an MST for a pipelined 
signal is not enough. For example, consider the pipelined 
signal sig in Fig. 1 that has a source S and sinks K1, K2 and 
K3. The signal is pipelined in such a way that sink K1 must be 
delayed 3 clock cycles relative to S, sink K2 must be 4 clock 
cycles away, and sink K3 must be 5 clock cycles away. A route 
for sig is valid only if it contains enough pipelining resources 
to satisfy the clock cycle constraints at every sink. Due to the 
fact that there are a fixed number of sites in the interconnect 

where a signal can go through a register, it can be easily seen 
that a route found for sig by a conventional, pipelining-
unaware FPGA router may not go through sufficient registers 
to satisfy the clock cycle constraint at every sink. Thus, the 
routing problem for pipelined signals is different from that for 
unpipelined signals. For a two-terminal pipelined signal, the 
routing problem is stated as: 
 

Two-terminal ND Problem: Let G=(V,E) be an undirected 
graph, with the cost of each node v in the graph being wv >= 
1. The graph consists of two types of nodes: D-nodes and R-
nodes. Let S, K∈V be two R-nodes. Find a path PG(S,K) that 
connects nodes S and K, and contains at least N (N ≥ 1) 
distinct  D-nodes, such that w(PG(S,K)) is minimum, where 

�
∈

=
K)(S,P  v

vG

G

w  K))(S,w(P  

Further, impose the restriction that the path cannot use the 
same edge to both enter and exit any D-node. 

 
We call a route that contains at least ‘N’ distinct D-nodes an 

‘ND’ route. R-nodes represent interconnect wire-segments and 
the IO pins of logic units in a pipelined FPGA architecture, 
while D-nodes represent registered switch-points. A registered 
switch-point (from this point on, we will use the terms 
‘registered switch-points’ and ‘registers’ interchangeably) can 
be used to pick up 1 clock cycle delay, or no delay at all. 
Every node is assigned a cost, and an edge between two nodes 
represents a physical connection between them in the 
architecture. The cost of a node is a function of congestion, 
and is identical to the cost function developed for Pathfinder’s 
NC algorithm [6]. Under this framework, the routing problem 
for a simpler two-terminal signal is to find the lowest cost 
route between source and sink that goes through at least N (N 
≥ 1) distinct D-nodes (N is the number of clock cycles that 
separates the source from the sink). Note that in this version a 
lowest cost route can be self-intersecting i.e. R-nodes can be 
shared in the lowest cost route. In Appendix A of this paper, 
we show that the two terminal ND problem is NP-Complete via 
a reduction from the Traveling Salesman Problem with 
Triangle Inequality. 

IV. ONE-DELAY (1D) ROUTER 

In the previous section, we pointed out that the problem of 
finding the lowest cost route between a source and sink that 
goes through at least N distinct D-nodes is NP-Complete. We 
now show that a lowest cost route between a source and sink 
that goes through at least one D-node can be found in 
polynomial time. On a weighted undirected graph, Dijkstra’s 
algorithm is widely used to find the lowest cost route between 
a source and sink node. The remainder of this section 
evaluates several modifications of Dijkstra’s algorithm that 
can be used to find a lowest cost 1D route. Our first 
modification is Redundant-Phased-Dijkstra. In this algorithm, 
a phase 0 wavefront is launched at the source. When the phase 
0 exploration hits a D-node, it is locally terminated there (i.e. 
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the phase 0 exploration is not allowed to continue through the 
D-node, although the phase 0 exploration can continue through 
other R-nodes and runs simultaneously with the phase 1 
search), and an independent phase 1 wavefront is begun 
instead. When commencing a phase 1 wavefront at a D-node, 
we impose a restriction that disallows the phase 1 wavefront 
from exiting the D-node along the same edge that was used to 
explore it at phase 0. This is based on the assumption that it is 
architecturally infeasible for the D-node that originates the 
phase 1 wavefront to explore the very node that is used to 
discover it at phase 0. When a phase 1 wavefront explores a D-
node, the D-node is treated like an R-node, and the phase 1 
wavefront propagates through the D-node.  

If the number of D-nodes that can be explored at phase 0 
from the source is ‘F’, up to F independent phase 1 wavefronts 
can co-exist during Redundant-Phased-Dijkstra. The search 
space of the phase 1 wavefronts can overlap considerably due 
to the fact that each R-node in the graph can be potentially 
explored by up to F independent phase 1 wavefronts. 
Consequently, the worst-case run-time of Redundant-Phased-
Dijkstra is F+1 times that of the conventional Dijkstra’s 
algorithm. Since F could potentially equal the total number of 
interconnect registers in a pipelined FPGA, the worst-case run-
time of Redundant-Phased-Dijkstra may get prohibitive. 

An alternative to Redundant-Phased-Dijkstra that can be 
used to find a lowest cost 1D route is Combined-Phased-
Dijkstra. This algorithm attempts to reduce run-time by 
combining the search space of the phase 1 wavefronts that 
originate at D-nodes. The only difference between Redundant-
Phased-Dijkstra and Combined-Phased-Dijkstra is that the 
latter algorithm allows each R-node to be visited only once by 
a phase 1 wavefront. As a consequence, the run-time of 
Combined-Phased-Dijkstra is only double that of Dijkstra’s 
algorithm. In both Redundant-Phased-Dijkstra and Combined-
Phased-Dijkstra, the phase 1 search begins at a cost equal to 
the path up to the D-node that starts the wavefront. The final 
route is found in two steps. In the first step, the phase 1 
segment of the route is found by backtracing the phase 1 
wavefront to the D-node that initiated the wavefront. The 
phase 0 segment of the route is then found by backtracing the 
phase 0 wavefront from the D-node back to the source. 

A step-by-step illustration of how Combined-Phased-
Dijkstra works is shown in Figs. 2(a) through 2(e). For the 
sake of simplicity, assume all nodes in the example graph have 
unit cost. The source S is explored at phase 0 at the start of the 
phased exploration. The number 0 next to S in Fig. 2(a) 
indicates that S has been explored by a phase 0 wavefront. In 
Fig. 2(b), the neighbors of S are explored by the phase 0 
wavefront initiated at S. The 2nd-level neighbors of S are 
explored by phase 0 in Fig. 2(c), one of which is D-node D1. 
Note that we make a special note of D1’s phase 0 predecessor 
here, so that we do not explore this predecessor by means of 
the phase 1 wavefront that is commenced at D1. In Fig. 2(d), 
the neighbors of D1 (excluding R1) are explored at phase 1. 
The phase 0 exploration also continues simultaneously, and 
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(e)  
Fig. 2.  (a) Phase 0 exploration commences at node S. (b) The neighbors of S 
are explored at phase 0. (c) 2nd – level neighbors of S are explored at phase 0, 
and in the process D-node D1 is discovered. (d) D1 starts a phase 1 
exploration. The phase 0 exploration continues simultaneously, and D2 is 
discovered. (e) K is explored by phase 1 wavefront commenced at D1. 
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note how both phase 0 and phase 1 wavefronts have explored 
nodes R4 and R7. Finally, in Fig. 2(e), the sink K is explored 
by the phase 1 wavefront initiated at D1. The route found by 
Combined-Phased-Dijkstra is shown in boldface in Fig. 2(e), 
and is in fact an optimal route between S and K. 

Unfortunately, Combined-Phased-Dijkstra fails to find a 
lowest cost route on some graph topologies. An example of a 
failure case is shown in Fig. 3. Here the node S is both the 
source and sink of a signal, and each node is unit cost. 
Combined-Phased-Dijkstra will fail to return to S at phase 1 
because R-nodes on each possible route back to S have already 
been explored by the phase 1 wavefront. In effect, Combined-
Phased-Dijkstra isolates nodes S, R1, R2, D1 and D2 from the 
rest of the graph, thus precluding the discovery of any route 
back to S at all. 

The reason for the failure of Combined-Phased-Dijkstra is 
that a node on the phase 1 segment of the lowest cost route is 
instead explored by a phase 1 wavefront commenced at 
another D-node. For example, in Fig. 3 we consider the route 
S-R1-D1-R3-R5-R4-D2-R2-S to be lowest cost. Node R4 is 
explored by the phase 1 wavefront commenced at D2, thus 
precluding node R4 from being explored by the phase 1 
wavefront started at D1. However, if we slightly relax 
Combined-Phased-Dijkstra to allow each node in the graph to 
be explored by at most two phase 1 wavefronts that are 
independently started at different D-nodes, then the phase 1 
wavefronts started at D1 and D2 will now be able to overlap, 
thus allowing the lowest cost route to be found. 

An important consequence of the nature of the transition 
from phase 0 to phase 1 at a D-node is shown in Fig. 4. In this 
case, S is the source of the signal, and K is the sink. Observe 
that a phase 0 exploration explores D1 from R1. Consequently, 
the phase 0 exploration is precluded from exploring D1 from 
R4. This prevents the optimal 1D route to K from being found. 
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0
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Fig. 3.  A case for which phased exploration fails. Observe how the phase 1 
exploration has got isolated from the phase 0 exploration. 
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Fig. 4.  D1 is explored at phase 0 from R1, thus precluding the discovery of 
the 1D path to the sink K. 

To address this problem, we allow any D-node to be explored 
at most two times at phase 0. In Fig. 4, D1 can be explored at 
phase 0 from R1 and R4, thus allowing the optimal 1D path S-
R2-R3-R4-D1-R1-K to be found. 

Fig. 5 shows pseudo-code for the algorithm 2Combined-
Phased-Dijkstra that finds an optimal 1D route between 
a source S and sink K. At the start of the algorithm, a phase 0 
exploration is commenced at the source by initializing the 
priority queue PQ to S at phase 0. The phase 0 wavefront is 
expanded in a manner similar to that of Dijkstra’s algorithm. 
Each time a node lnode is removed from PQ, its phase is 
recorded in the variable phase. The cost of the path from S 
to lnode is stored in path_cost. The variable 
node_type indicates whether lnode is an R-node or D-
node. The fields lnode.num_ex0 and lnode.num_ex1 
record the number of times lnode has been explored at phase 
0 and 1 respectively, and are both initialized to 0. A node is 
marked finally_explored at a given phase when it is no 
longer possible to expand a wavefront through that node at the 
given phase. For each lnode that is removed from PQ, the 
following possibilities exist: 

�� phase==0 and node_type is R-node: R-nodes 
can be explored at phase 0 only once, and thus 
lnode is finally_explored if x0==1.  
AddNeighbors(PQ,lnode,path_cost,p) is 
used to add the neighbors of lnode to PQ at phase 
p,  where p==0 in this case. 

�� phase==0 and node_type is D-node: D-nodes 
can be explored at phase 0 twice, and thus lnode is 
marked finally_explored if x0==2. A phase 1 
exploration is begun at this D-node by adding its 
neighbors to PQ at phase 1. 

�� phase==1: Since both R-nodes and D-nodes can be 
explored twice at phase 1, lnode is marked 
finally_explored at phase 1 if x1==2. If we 
are not done (i.e. lnode is not the sink K) the 
neighbors of lnode are added to PQ at phase 1. 

 

A. Proof Of Optimality 
The optimality of 2Combined-Phased-Dijkstra can 

be demonstrated by means of a proof by contradiction in which 
we show that 2Combined-Phased-Dijkstra will 
always find an optimal 1D path between S and K, if one exists. 
Before presenting a sketch of the proof, we introduce some 
terminology. 2Combined-Phased-Dijkstra explores 
multiple paths through the graph via a modification to 
Dijkstra's algorithm. We state that the algorithm explores a 
path "P" up to a node "N" if the modified Dijkstra's search, in 
either phase 0 or phase 1, reaches node "N" and the search 
route to this node is identical to the portion of the path P from 
the source to node N. Further, a path A is “more explored” 
than path B if the cost of the path on A from the source to A's 
last explored point is greater than the cost of the path on B 
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2Combined-Phased-Dijkstra(S,K){
Init PQ to S at phase 0;
LOOP{
Remove lowest cost node lnode from PQ;
if(lnode == NULL){
1D path between S and K does not exist;
return 0;

}
if(lnode is finally_explored at phase 0 and phase 1)
continue;

path_cost = cost of path from S to lnode;
phase = phase of lnode;
node_type = type of lnode;
if(phase == 0){
lnode.num_ex0++;
x0 = lnode.num_ex0;

}
else{
lnode.num_ex1++;
x1 = lnode.num_ex1;

}
if(phase == 0){
if(node_type == R-node){
if(x0 == 1)
Mark lnode finally_explored at phase 0;

AddNeighbors(PQ,lnode,path_cost,0);
}
else{
if(x0 == 2)
Mark lnode finally_explored at phase 0;

AddNeighbors(PQ,lnode,path_cost,1);
}

}
else{
if(lnode == K)
return backtraced 1D path from S to K;

else{
if(x1 == 2)
Mark lnode finally_explored at phase 1;

AddNeighbors(PQ,lnode,path_cost,1);
}

}
}END LOOP

}

AddNeighbors(PQ,lnode,path_cost,p){
Foreach neighbor neb_node of lnode{
neb_cost = cost of neb_node;
neb_path_cost = neb_cost + path_cost; 
Add neb_node to PQ with phase p at cost neb_path_cost;

}
}

  
Fig. 5.  Pseudocode for 2Combined-Phased-Dijkstra. 
 
from the source to B's last explored point. For purposes of the 
proof sketch, we define the "goodness" of a path in the 
following way: 

1. If the cost of one path is lower than another’s, it is 
"better" than the other. Thus, an optimal path is 
always better than a non-optimal path. 

2. If the costs of two paths C and D are the same, then C 
is "better" than D if C is more explored than D. 

From these definitions, the “best” path is an optimal path.  If 
there is more than one optimal path, the best path is the most 
explored optimal path. 

Initial Assumption: Assume that Fig. 6 shows the most 
explored optimal 1D path between S and K. In other words, the 
path shown in the figure is the best 1D path between S and K, 
with a single clock-cycle delay picked up at D-node DL. Note 
that there are no D-nodes on the path S-DL, although there 
could be multiple D-nodes on DL-K. This is because we 
assume that in case the best 1D path between S and K goes 
through multiple D-nodes, then the D-node nearest S is used to  

S KDL  
Fig. 6.  The initial assumption is that the most explored lowest cost 1D route 
between S and K goes through D-node DL. 
 

S KDL

R

 
Fig. 7.  Representation of a path from S to node R shown in gray. 
 

S KDL

R

 
Fig. 8.  The path from S to R could actually intersect with the paths S-DL and 
DL-K. 
 

S KDL

R

G  
Fig. 9.  The case in which an R-node on the path S-DL gets explored at phase 
0 along some other path. 
 

S KDL

G2

R2

G1

 
Fig. 10.  DL gets explored at phase 0 along paths S-G1-DL and S-G2-R2-DL. 
 
pick up one clock-cycle delay. 

Although it appears that the paths S-DL and DL-K in Fig. 6 
are non-intersecting, note that the R-nodes on the path S-DL 
can in fact be reused in the path DL-K.  In all diagrams in this 
section, we use the convention of showing paths without 
overlaps (Fig. 7), even though they may actually overlap (Fig. 
8).  Our proof does not rely on the extent of intersection 
between hypothetical paths (which are always shown in gray) 
and the known best 1D path. 

There are three distinct cases in which 2Combined-
Phased-Dijkstra could fail to find the best path S-DL-K 
shown in Fig. 6: 

�� CASE 1: An R-node on the path S-DL gets explored 
at phase 0 along a path other than S-DL. 

�� CASE 2: The D-node DL gets explored at phase 0 
along two paths other than S-DL. 

�� CASE 3: A node on the path DL-K gets explored at 
phase 1 along two paths other than DL-K. 

Fig. 9 shows why CASE 1 can never occur. For CASE 1 to 
occur, the cost of the gray path S-G-R would have to be less 
than or equal to the cost of path S-R. In this case, the path S-
G-R-DL-K would be better than the known best path, which is 
a contradiction of our initial assumption. 

Fig. 10 shows an instance of CASE 2. The cost of each of 
the paths S-G1-DL and S-G2-R2-DL is less than or equal to the 
cost of path S-DL. In this case, the path S-G1-DL-R2-K would  
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S KDL

D

G1

G2

R1
X

 
Fig. 11.  Node X can get explored at phase 1 along either S-G2-D-X or S-G1-
R1-D-X. 
 

S K

D11

D21

D22

D31

D32

 
Fig. 12.  Building a 3D route from 1D routes. 
 
be better than the known best path S-DL-K, thus contradicting 
our initial assumption. 

Fig. 11 illustrates an example of CASE 3, in which a node 
X on the path DL-K gets explored at phase 1 along two paths 
other than DL-K. There are two possibilities here: 

�� The cost of path S-G1-R1-D-X is less than or equal to 
the cost of the path to X along the known best path. In 
this case, the path S-G1-R1-D-X-K would be better 
than the known best path, which is a contradiction of 
our initial assumption. 

�� The cost of path S-G2-D-X is less than or equal to the 
cost of the path to X along the known best path. This 
means that the path S-G2-D-X-K is better than the 
known best path, which contradicts our initial 
assumption. 

A more detailed case-by-case analysis of the proof of 
optimality of 2Combined-Phased-Dijkstra can be found in 
[11]. In this study, we enumerate all the possible sub-cases of 
CASE 1, CASE 2 and CASE 3 and separately show that each 
of the sub-cases contradicts our initial assumption. 
Consequently, none of CASE 1, CASE 2 or CASE 3 can 
occur, implying that 2Combined-Phased-Dijkstra is optimal. 

V. N-DELAY (ND) ROUTER 

In this section, we present a heuristic that uses the optimal 
1D router to build a route for a two terminal ND signal. This 
heuristic greedily accumulates D-nodes on the route by using 
1D routes as building blocks. In general, an ND route is 
recursively built from an (N-1)D route by successively 
replacing each segment of the (N-1)D route by a 1D route and 
then selecting the lowest cost ND route. Fig. 12 is an abstract 
illustration of how a 3D route between S and K is found. In the 
first step, we find a 1D route between S and K, with D11 being 
the D-node where we pick up a register. At this point, we 
increment the sharing cost [6] of all nodes that constitute the 

route S-D11-K. In the second step, we find two 1D routes, 
between S and D11, and D11 and K. The sequence of sub-
steps in this operation is as follows: 

�� Decrement sharing cost of segment S-D11. 
�� Find 1D route between S and D11 (S-D21-D11). Store 

the cost of route S-D21-D11-K. 
�� Restore segment S-D11 by incrementing the sharing 

cost of segment S-D11. 
�� Decrement sharing cost of segment D11-K. 
�� Find 1D route between D11 and K (D11-D22-K). 

Store the cost of route S-D11-D22-K. 
�� Restore segment D11-K by incrementing the sharing 

cost of segment D11-K. 
�� Select the lowest cost route, either S-D21-D11-K or 

S-D11-D22-K. 
Suppose the lowest cost 2D route is S-D11-D22-K. We rip 

up and decrement sharing due to the segment D11-K in the 
original route S-D11-K, and replace it with segment D11-D22-
K. Finally, we increment sharing of the segment D11-D22-K. 
The partial route now is S-D11-D22-K. The sequence of sub-
steps in step three is similar. Segments S-D11, D11-D22 and 
D22-K are successively ripped up, replaced with individual 1D 
segments, and for each case the cost of the entire 3D route 
between S and K is stored. The lowest cost route is then 
selected. In Fig. 12, the 3D route that is found is shown in dark 
lines, and is S-D11-D31-D22-K. 

The number of 1D explorations launched for the 3D route 
that we just discussed is 1 + 2 + 3 = 6. For the general ND 
case, the number of 1D explorations launched is 1 + 2 + ... + N 
= N(N+1)/2. 

VI. MULTI-TERMINAL ROUTER 

The previous section described a heuristic that uses optimal 
1D routes to build a two-terminal ND route. The most general 
type of pipelined signal is a multi-terminal pipelined signal. A 
multi-terminal pipelined signal has more than one sink, and the 
number of registers separating the source from each sink could 
differ across the set of sinks. A simple example of a multi-
terminal pipelined signal sig was shown in Fig. 1. The sinks 
K1, K2 and K3 must be separated from the source S by 3, 4 
and 5 registers respectively. We will now demonstrate how a 
route for a multi-terminal signal can be found by taking 
advantage of the 1D and ND routers that were discussed in 
Sections IV and V. 

In a manner similar to the Pathfinder algorithm, the routing 
tree for a multi-terminal pipelined signal is built one sink at a 
time. Each sink is considered in non-decreasing order of 
register separation from the source of the signal. The multi-
terminal router starts by finding a route to a sink that is the 
least number of registers away from the source. Since finding a 
route to the first sink is a two-terminal case, we use the two-
terminal ND router to establish a route between the source and 
first sink. The remainder of this section examines the task of 
expanding the route between the source and the first sink to 
include all other sinks. 
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S K2

D1 D2

K3

(a)  

S K2

D1 D2

K3

DA

P1

(b)  

S K2

D1 D2

K3

P2

(c)  

S K2

D1 D2

K3

DB

P3

(d)  
Fig. 13.  (a) 2D route to K2 using the two-terminal ND router. S-D1-D2-K2 is 
the partial_routing_tree. (b) 1D route to K3. P1-DA-K3 is found by launching 
a 1D exploration that starts with segment S-D1 at phase 0 and segment D1-D2 
at phase 1. P1-DA-K3 is the surviving_candidate_tree. (c) 2D route to K3. P2-
K3 is now the surviving_candidate_tree. (d) P3-DB-K3 is the final 
surviving_candidate_tree, and this tree is joined to the partial_routing_tree 
S-D1-D2-K2 to complete the route to K3. 

We explain the multi-terminal router via a simple example. 
Assume a hypothetical signal that has a source S and sinks K2 
and K3. K2 must be separated from S by 2 registers, whereas 
K3 must be separated by 3 registers. Sink K2 is considered 
first, and the ND router is used to find a 2D route between S 
and K2. In Fig. 13(a), the route S-D1-D2-K2 represents the 2D 
route between S and K2, and constitutes the 
partial_routing_tree of the signal. In general, the 
partial_routing_tree of a multi-terminal pipelined signal can 
be defined as the tree that connects the source to all sinks that 
have already been routed. 

After a route to K2 is found, the router considers sink K3. 
As was the case in the ND router, we accumulate registers on 
the route to K3 one register at a time. Thus, we start by finding 
a 1D route to K3, then a 2D route, and finally a 3D route to K3. 
It can be seen that a 1D route to K3 can be found either from 
the 0D segment S-D1 by going through another D-node, or 
from the 1D segment D1-D2 directly. However, it is not 
necessary to launch independent wavefronts from segments S-
D1 and D1-D2. This is because both wavefronts can be 
combined into a single 1D search in which segment S-D1 
constitutes the starting component of the phase 0 wavefront, 
and segment D1-D2 constitutes the starting component of the 
phase 1 wavefront. Setting up the 1D search in such a way 
could find a 1D path from S-D1 or a 0-delay path from D1-D2, 
depending on which is of lower cost. Assume that P1-DA-K3 is 
the 1D route found to K3 (Fig. 13(b)). After the 1D route to K3 
is found, the sharing cost of the nodes that constitute P1-DA-
K3 is incremented. The segment P1-DA-K3 is called the 
surviving_candidate_tree. The surviving_candidate_tree can 
be defined as the tree that connects the sink (K3 in this case) 
under consideration to some node in the partial_routing_tree 
every time an ND route (1≤N≤3 in this case) to the sink is 
found. Thus, a distinct surviving_candidate_tree results 
immediately after finding the 1D, 2D, and 3D routes to K3. 

Next, we attempt to find a 2D route to K3. Before explaining 
specifics, it is important to point out here that while finding an 
ND route to a sink we try two options. The first is to alter the 
surviving_candidate_tree to include an additional D-node as 
was done in the two terminal ND router. The second option is 
to use the ND and (N-1)D segments in the partial_routing_tree 
together to start a 1D exploration. The lower cost option is 
chosen, and this becomes the new surviving_candidate_tree. 

For finding a 2D route to K3, we first modify P1-DA-K3 to 
include another D-node much in the same way that a two 
terminal 2D route is built from an already established 1D route 
(Section V). The segments P1-DA and DA-K3 are each 
separately replaced by optimal 1D routes, and the lowest cost 
route is stored. To evaluate the second option, we rip up the 
segment P1-DA-K3 (Fig. 13(b)) and launch a 1D search using 
segments D1-D2 at phase 0 and D2-K2 at phase 1. The cost of 
the resultant 1D route is also stored. The lower cost route 
amongst the two options is chosen, and the sharing cost of the 
nodes that constitute this route is incremented. This selected 
route becomes the new surviving_candidate_tree. In Fig.  



TCAD 2181 
 

9

Multi-Terminal-Router (Net){
PRT = φ; CRT = φ;
Sort elements of SK in non-decreasing order
of Dnode-separation from SrcNet;

Use the two-terminal ND-Router to find 
route R from SrcNet to SK[1];

Add R to the partial routing tree PRT;
Foreach i in 2…|SK| {
ki = SK[i];
di = num Dnodes between SrcNet and ki;
Foreach j in 1…di {
Use the two-terminal ND-Router to find
a jD route called RNj by altering the
(j-1)D route contained in CRT;

Use 2Combined-Phased-Dijkstra to build

a jD route called RDj from the (j-1)D
and jD segments of the route contained 
in PRT;

if cost(RDj) < cost(RNj) {
CRT = RDj;

}
else {
CRT = RNj;

}
}
Add surviving candidate tree CRT to partial
routing tree PRT;    

}
return the route contained in PRT;

}

 
Fig. 14.  Pseudocode for the multi-terminal routing algorithm. 
 
13(c), assume that the lower cost route that is selected is the 
segment P2-K3 shown in gray. 

Finally, the segment P2-K3 is ripped up and a 1D 
exploration from the segment D2-K2 is launched at phase 0 to 
complete the 3D route to K3 (Fig. 13(d)). 

Fig. 14 presents pseudo-code for the multi-terminal routing 
algorithm. Net is the multi-terminal signal that is to be routed. 
Without loss of generality, we assume that Net has at least 
two sinks, and each sink is separated from Net’s source by at 
least one D-node. PRT contains the partial_routing_tree during 
the execution of the algorithm, and CRT contains the 
surviving_candidate_tree. SrcNet is the source of the signal 
Net, while SK is an array that contains Net’s sinks. ND-
Router is the N-Delay router presented in Section V. 

VII. MULITPLE REGISTER SITES 

The PipeRoute algorithm described in Sections IV, V and 
VI assumes that register sites (D-nodes) in the interconnect 
structure can only provide zero or one register. Also, the 
algorithm does not address the fact that the IO terminals of 
logic units may themselves be registered. Since a number of 
pipelined FPGA architectures [3] – [4], [16] do in fact provide 
registered IO terminals and multiple-register sites in the 
interconnect structure, we developed a greedy pre-processing 
heuristic that attempts to maximize the number of registers that 
can be acquired at registered IO terminals and multiple-
register sites. We present the details of this heuristic in three 
parts: 

S 1 1 1 1 1

S

S

K1 K2

1 1 1 1 1

K1 K2

1 1 1

K1 K2

 
Fig. 15.  Assuming that S can provide up to three registers locally, both the 
registers between S and K1 can be picked up at S. 
 

S 1 1 1 1 1

S

S

K1 K2

1 1 1 1 1

K1 K2

1 1

K1 K2

 
Fig. 16.  Assuming that the sinks K1 and K2 can locally provide up to three 
registers, both registers between S and K1 and three of the five registers 
between S and K2 can be picked up locally at the respective sinks. 
 

A. Logic Units with Registered Outputs 
We try to greedily pick up the maximum allowable number 

of registers at the source of each pipelined signal. The 
maximum number of registers that can be picked up at the 
source is capped by the sink that is separated by the least 
number of registers from the source. Consider the example in 
Fig. 15. The pipelined signal shown has a source S and two 
sinks K1 and K2 that must be separated from S by two and 
five registers respectively. Assuming that up to three registers 
can be turned on at S, both registers that separate S and K1 can 
be picked up at S itself, thus eliminating the need to find a 2D 
route between S and K1 in the interconnect structure. Instead, 
we now only need to find a simple lowest-cost route from S to 
K1, and a 3D route to K2. 

B. Logic units with Registered Inputs 
In this case, we push as many registers as possible into each 

sink of a pipelined signal. In Fig. 16, if we again assume that 
each sink can provide up to three registers locally, both 
registers between S and K1 can be moved into K1, while three 
registers between S and K2 can be moved into K2. This leaves 
us with the task of finding a simple lowest-cost route to K1  
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S 1 1 1 K1 1 1 1 1 1

S 3 K3 3
 

Fig. 17.  Finding a 9D route between S and K can effectively be transformed 
into a 3D pipelined routing problem. 
 

S 1 1 1 1 1 1 1 1

K1 K2 K3 K4 K5 K6 K7 K8

1 1 1 1

K1 K2 K3 K4 K5 K6 K7 K8

Long, unpipelined track segment

S

 
Fig. 18.  Pushing registers from the interconnect structure into functional unit 
inputs sometimes results in long, unpipelined track segments. 
 
and a 2D route to K2. 

C. Multiple-Register Sites in the Interconnect Structure 
Multiple-register sites in the interconnect structure provide 

an opportunity to significantly improve the routability of 
pipelined signals. In Fig. 17 for example, if we assume that 
each register site (D-node) in the interconnect can provide up 
to three registers, the task of finding a two terminal 9D route 
simplifies to finding a route that with at least three D-nodes. 
For a multi-terminal pipelined signal, every time an ND route 
to the new sink is to be found, we use all existing ND, (N-1)D, 
(N-2)D, and (N-3)D segments in the current partially built 
routing tree to start an exploration that finds a single D-node. 
Since each D-node can be used to pick up between zero and 
three registers, we use all segments within the current, partially 
built routing tree that are less than or equal to three registers 
away from the new sink. 

The intuition behind the development of the greedy heuristic 
in sub-sections VII-A, VII-B and VII-C is to aggressively 
reduce the number of register-sites that need to be found in the 
interconnect structure. The heuristic is clearly routability-
driven, since reductions in the number of interconnect registers 
favorably impact the routability of pipelined signals. Due to 
the finite nature of an FPGA’s interconnect structure, any 
place-and-route heuristic must consider routability to ensure 
that a placement can be successfully routed.  

A shortcoming of the greedy heuristic is that long segments 
of a pipelined signal may get unpipelined because of the 
removal of registers from the interconnect structure. This 
phenomenon is illustrated in Fig. 18. Assume that a maximum 
of four registers can be picked up at the sinks K1 – K8. In this 
case, one interconnect register will be moved into K1, two into 
K2, three into K3, and four into K4-K8. This process 
effectively unpipelines a long segment, which in turn may  

S KD D

D

D

D

D

D

D

D

Routing iteration ‘i’

Routing iteration ‘i+1’

Routing iteration ‘i+2’  
Fig. 19.  The route between source S and sink K of a signal may go through 
different D-nodes at the end of successive routing iterations. Also, since each 
D-node on the route is used to pick up a register, different segments on the 
route may be at different criticalities. 
 
increase the critical path delay of a netlist. 

To balance register-to-register interconnect delay, it might 
be necessary to perform a post-routing register redistribution 
step. Specifically, if the number of interconnect register-sites 
in the route for a two-terminal pipelined signal is greater than 
the minimum required, then the pipelining registers may be 
reallocated along the route to balance path delays. 
 

VIII. TIMING-AWARE PIPELINED ROUTING 

Since the primary objective of pipelined FPGAs is the 
reduction of clock cycle time, it is imperative that a pipelined 
routing algorithm maintains control over the criticality of 
pipelined signals during routing. In making PipeRoute timing 
aware, we draw inspiration from the Pathfinder algorithm. 
While routing a signal, Pathfinder uses the criticality of the 
signal in determining the relative contributions of the 
congestion and delay terms to the cost of routing resources. If 
a signal is near critical, then the delay of a routing resource 
dominates the total cost of that resource. On the other hand, if 
the signal’s criticality is considerably less than the critical 
path, the congestion on a routing resource dominates. 

In the case of pipelined routing, the signal’s route may go 
through multiple D-nodes. Consequently, the routing delay 
incurred in traversing the route from source to sink may span 
multiple clock cycles. Also, the location of D-nodes on the 
route may be different across routing iterations. This is 
because PipeRoute may have to select different routes between 
the source and sink of a signal to resolve congestion. In Fig. 19 
for example, the 2D route between S and K may go through 
different D-nodes at the end of iterations i, i+1 and i+2 
respectively. 

To address these problems, we treat D-nodes like normal 
registers during the timing analysis at the end of a routing 
iteration. Once the timing analysis is complete, we are faced 
with making a guess about the overall criticality of a pipelined 
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signal. Note that different segments of a pipelined signal’s 
route could be at different criticalities (Fig. 19). Our solution 
is to make a pessimistic choice. Since we know the individual 
criticalities of signals sourced at each D-node, we make the 
criticality of the pipelined signal equal to the criticality of the 
most critical segment on the route. Thus, when the pipelined 
signal is routed during the next iteration, the most critical 
segment of the signal’s previous route determines the delay 
cost of routing resources. 

IX. TARGET PIPELINED ARCHITECTURE 

In this section we describe features of the pipelined FPGA 
architecture (RaPiD [3] – [4]) that we used in our experiments. 
The RaPiD architecture is targeted to high-throughput, 
compute-intensive applications like those found in DSP. Since 
such applications are generally pipelined, the RaPiD datapath 
and interconnect structures include an abundance of registers. 
The 1-Dimensional (1-D) RaPiD datapath (Fig. 20) consists of 
coarse-grained logic units that include ALUs, multipliers, 
small SRAM blocks, and general purpose registers (hereafter 
abbreviated GPRs). Each logic unit is 16 bits wide. To support 
pipelining in the logic structure, a register bank is provided at 
each output of a logic unit. The output register bank can be 
used to acquire between 0 – 3 registers.  

The interconnect structure consists of 1-D routing tracks 
that are also 16 bits wide. There are two types of routing 
tracks: short tracks and long tracks. Short tracks are used to 
achieve local connectivity between logic units, whereas long 
tracks traverse longer distances along the datapath. In Fig. 20, 
the uppermost five tracks are short tracks, while the remaining 
tracks are long tracks. A separate routing multiplexer is used to 
select the track that drives each input of a logic unit. Each 
output of a logic unit can be configured to drive multiple 
tracks by means of a routing demultiplexer. 

The long tracks in the RaPiD interconnect structure are 
segmented by means of bus connectors (shown as empty boxes 
in Fig. 20 and abbreviated BCs). BCs serve two roles in the 
RaPiD interconnect structure. First, a BC serves as a buffered, 
bidirectional switch that facilitates the connection between two 
long-track segments. Second, a BC serves the role of an 
interconnect register site or D-node. RaPiD provides the 
option of picking up between 0 – 3 registers at each BC. The 
total number of BCs determines the number of registers that 
can be acquired in the interconnect structure. 

While BCs are used as registered, bidirectional switches that 
connect segments on the same long track, GPRs can be used to 
switch tracks. A GPR’s input multiplexer and output 
demultiplexer allow a connection to be formed between 
arbitrary tracks. At the end of a placement phase, all 
unoccupied GPRs are included in the routing graph as 
unregistered switches. The ability to switch tracks provides an 
important degree of flexibility while routing netlists on the 
RaPiD architecture. 
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Fig. 20.  An example of a RaPiD architecture cell. Several RaPiD cells can be 
tiled together to create a representative architecture. 
 

X. PLACEMENT ALGORITHM 

The placement of a netlist is determined using a Simulated 
Annealing [5], [7] algorithm. The cost of a placement is 
formulated as a linear function of the maximum and average 
cutsize, where cutsize is the number of signals that need to be 
routed across a vertical partition of the architecture for a given 
placement. Since the RaPiD interconnect structure provides a 
fixed number of routing tracks, the cost function must be 
sensitive to changes in maximum cutsize. At the same time, 
changes in average cutsize also influence the cost of a 
placement. This is because average cutsize is a direct measure 
of the total wirelength of a placement.  

Pipelining information is included in the cost of a placement 
by mapping each pipelining register (a pipelining register is a 
register that must be mapped to an interconnect register) in the 
netlist to a unique BC in the interconnect structure. Our high-
level objective in mapping pipelining registers to BCs is to 
place netlist components such that the router is able to find a 
sufficient number of BCs in the interconnect structure while 
routing pipelined signals. A more detailed discussion of the 
placement algorithm can be found in [9], and [11]. 

Since pipelining registers are explicitly placed, it might be 
possible to solve the register allocation problem during 
placement. In general, the pipelining registers in a netlist could 
be mapped to registered switch-points in the architecture, and 
a simulated annealing placement algorithm could determine a 
placement of the pipelining registers. After the placement 
phase, a conventional FPGA router (Pathfinder) could be used 
to route the signals in the netlist. While this approach is 
attractive for its simplicity and ease of implementation, it has a 
serious shortcoming. A placement of a netlist that explicitly 
maps pipelining registers to registered switch-points eliminates 
portions of the routing graph. This is because a registered 
switch-point that is occupied by a particular pipelining register 
cannot be used by signals other than the signals that connect to 
that pipelining register. As a consequence, the search space of 
a conventional FPGA router is severely limited, and this 
results in solutions of poor quality.  

To validate our hypothesis, we ran an experiment on a 
subset of the benchmark netlists. The objective of the 
experiment was to find the size of the smallest RaPiD array 
needed to route (using a pipelining-unaware router Pathfinder) 
placements produced by the algorithm described in this  
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TABLE  I. 
OVERHEAD INCURRED IN USING A PIPELINING-UNAWARE ROUTER 

(PATHFINDER) TO ROUTE NETLISTS. 
 

NETLIST NORM. AREA
firtm 1
sobel 1
fft16 1.6

imagerapid FAIL
cascade FAIL

matmult4 FAIL
sort_g FAIL
sort_rb FAIL

firsymeven FAIL  
 
section. Note that pipelining registers were explicitly mapped 
to BCs in the interconnect structure, and the post-placement 
routing graph was modified to reflect the assignment of 
pipelining registers to BCs. 

Table I presents the results of this experiment. Column 1 
lists the netlists in our benchmark set. Column 2 lists the 
minimum-size array required to route each netlist using 
Pathfinder. The entries in column 2 are normalized to the 
minimum-size RaPiD array needed to route the netlists using 
PipeRoute. A “FAIL” entry in column 2 means that the netlist 
could not be routed on any array whose normalized size was 
between 1.0 – 2.0. Table I shows that Pathfinder was unable to 
route a majority of netlists on arrays that had double the 
number of logic and routing resources needed to route the 
placements using PipeRoute. This result clearly showed that 
pipelining register allocation is best done during the routing 
phase. 

XI. EXPERIMENTAL SETUP AND BENCHMARKS 

The set of benchmark netlists used in our experimentation 
includes implementations of FIR filters, sorting algorithms, 
matrix multiplication, edge detection, 16-point FFT, IIR 
filtering and a camera imaging pipeline. While selecting the 
benchmark set, we included a diverse set of applications that 
were representative of the domains to which the RaPiD 
architecture is targeted. We also tried to ensure that the 
benchmark set was not unduly biased towards netlists with too 
many or too few pipelined signals. Table II lists statistics of 
the application netlists in our benchmark set. Column 1 lists 
the netlists, column 2 lists the total number of nets in each 
netlist, column 3 lists the percentage of nets that are pipelined, 
column 4 lists the maximum number of registers needed 
between any source-sink terminal pair in the netlist (this 
number is similar to the latency of the application), and 
column 5 lists the average number of registers needed across 
all source-sink terminal pairs in the netlist. 

While the size of the netlists in Table II might seem small, 
remember that a single pipelined signal represents multiple 
routing problems. An example of a pipelined signal in the 
netlist sort_rb has 38 sinks. The number of registers that 

separate the 38 sinks from the source is evenly distributed 
between 0 registers and 35 registers. Although this signal is  
 

TABLE II. 
BENCHMARK APPLICATION NETLIST STATISTICS. 

 

NUM % MAX AVG
NETLIST NETS PIPELINED DEPTH DEPTH

firtm 158 3 16 5.5
fft16 94 29 3 0.74

cascade 113 40 21 3.88
matmult4 164 44 31 4.62

sobel 74 44 5 1.44
imagerapid 101 51 12 3.46
firsymeven 95 54 31 6.98

sort_g 70 65 35 4.98
sort_rb 63 71 35 5.42

 
 
counted as a single signal in Table II, finding a route for this 
signal may require hundreds of individual routing searches. 
Thus, routing the pipelined signals in the benchmark netlists 
clearly represents a problem of reasonable complexity. Also 
note that RaPiD is a coarse-grained architecture. Thus, a single 
net represents a 16-bit bus. 

Applications are mapped to netlists using the RaPiD 
compiler [3], and the architecture is represented as an 
annotated structural Verilog file. Area models for the RaPiD 
architecture are derived from a combination of the current 
layout of the RaPiD cell, and transistor-count models. The 
delay model is extrapolated from SPICE simulations. Each 
netlist is placed using the algorithm presented in Section X. 
The placement algorithm places pipelining registers into BC 
positions in order to model the demands of pipelining. 
However, the BC assignments are removed before routing to 
allow PipeRoute full flexibility in assigning pipelining 
registers.  

The netlists are routed using timing-aware PipeRoute that 
can handle multiple-register IO and interconnect sites. A 
netlist is declared unrouteable on an architecture of a given 
size (where size is the number of RaPiD cells that constitute 
the architecture) if PipeRoute fails to route the netlist in 32 
tracks. 

XII. RESULTS 

The objective of our first experiment (Experiment 1) was 
to quantify the area overhead incurred in routing the 
benchmark netlists on an optimized RaPiD architecture [12]. 
The logic units in this architecture have registered input 
terminals (the original RaPiD architecture in Section IX has 
registered output terminals), and between 0 – 3 registers can 
be acquired at each input terminal and BC. Also, unlike the 
original RaPiD architecture, the optimized RaPiD architecture 
in [12] has nine GPRs in every RaPiD cell. 
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Fig. 21.  Unpipelining a pipelined signal. 
 

We acquired area numbers by running the entire set of 
benchmarks through two place-and-route flows. The first is a 
pipelining-unaware flow that treats netlists as if they were 
unpipelined. Specifically, all pipelined signals in a netlist are 
treated like normal, unpipelined signals (Fig. 21). The 
pipelining-unaware placement tool attempts to reduce only 
maximum and average cutsize (Section X). The pipelining-
unaware router attempts only connectivity routing, since there 
are no registers to be found in the interconnect structure. The 
pipelining-unaware place and route flow provides a lower-
bound on the size of the smallest architecture needed to 
successfully route the benchmark netlists. This is because the 
best area that we can expect from a pipelining-aware flow 
would be no better than a pipelining-unaware flow that ignores 
pipelining altogether. 

The second flow is the pipelining-aware flow described in 
this paper. Netlists are placed using the algorithm described in 
Section X, and routed using purely congestion-driven 
PipeRoute. For both approaches, we recorded the area of the 
smallest architecture required to successfully route each netlist. 
Table III lists the smallest areas found for each benchmark 
netlist using both pipelining-aware and pipelining-unaware 
flows. The area overhead varied between 0% (for the netlists 
fft16, matmult4 and sobel) and 44% for the netlist firsymeven. 
Overall, the geometric mean of the overhead incurred across 
the entire benchmark set was 18%. We regard this a 
satisfactory result, since a pipelining-aware flow incurs less 
than a 20% penalty over a likely unachievable lower-bound. 

The objective of our second experiment (Experiment 2) 
was to investigate the performance of timing-aware PipeRoute 
vs. timing-unaware PipeRoute. For both approaches, we 
separately obtained the post-route critical path delays of 
benchmark netlists routed on the smallest possible RaPiD 
architecture. Table IV shows the results that we obtained. 
Across the entire benchmark set, timing-aware PipeRoute 
produced an 8% improvement in critical path delay compared 
to timing-unaware PipeRoute. 

Our final experiment (Experiment 3) was to study whether 
there is any relationship between the fraction of pipelined 
signals in a benchmark netlist and the area overhead incurred 
in successfully routing the netlist on a minimum size 
architecture. The area overhead is a measure of the pipelining 
‘difficulty’ of a netlist and is quantified in terms of the  

TABLE III. 
EXPERIMENT 1 – AREA COMPARISON BETWEEN PIPELINING-AWARE AND 

PIPELINING-UNAWARE PLACE AND ROUTE FLOWS. 
 

PIPELINING PIPELINING
UNAWARE AREA AWARE AREA

NETLIST (um2) (um2)
sort_g 3808215 5183743
sort_rb 3808215 5752143

fft16 5712322 5712322
imagerapid 6664376 8025125
firsymeven 6897972 9949143

firtm 7257201 7616430
matmult4 7616430 7616430
cascade 7616430 8753230

sobel 9039119 9039119
GEOMEAN 6247146 7347621  

 
TABLE IV. 

EXPERIMENT 2 – DELAY COMPARISON BETWEEN TIMING-AWARE AND 
TIMING-UNAWARE PIPEROUTE. 

 
TIMING-

NETLIST AWARE (ns)
firtm 6.73 6.63

matmult4 8.27 8.57
sort_rb 9.65 12.61

firsymeven 10.97 9.96
sort_g 11.44 6.07
fft16 13.14 11.6
sobel 14.24 13.25

imagerapid 14.36 12.62
cascade 15.45 15.42

GEOMEAN 11.2112 10.29194

TIMING-
UNAWARE (ns)

 
 
following parameters: 

�� AL – The area of the smallest architecture required to 
successfully route the netlist using a pipelining-
unaware place and route flow. 

�� AP – The area of the smallest architecture required to 
successfully route the netlist using a pipelining-aware 
place and route flow. 

�� PIPE-COST – The ratio AP / AL. This is a quantitative 
measure of the overhead incurred. 

Fig. 22 shows a plot of PIPE-COST vs. the fraction of 
pipelined signals in a netlist. The eight data points represent 
the PIPE-COST of each netlist in the benchmark set. It can be 
seen that an increase in the percentage of pipelined signals in a 
netlist tends to result in an increase in the PIPE-COST of that 
netlist. This observation validates our intuition that the fraction 
of pipelined signals in a netlist roughly tracks the combined 
architecture and CAD effort needed to successfully route the 
netlist. 

XIII. CONCLUSIONS 

The main focus of this work was the development of an 
algorithm that routes logically retimed netlists on pipelined 
FPGA architectures. We developed an optimal 1D router, and  
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Fig. 22.  Experiment 3 – The variation of PIPE-COST vs. fraction pipelined 
signals. 
 
used it in formulating an efficient heuristic to route two-
terminal ND pipelined signals. The algorithm for routing 
general multi-terminal pipelined signals borrowed from both 
the 1D and ND routers. Congestion resolution while routing 
pipelined signals was achieved using Pathfinder. Our results 
showed that the architecture overhead (PIPE-COST) incurred 
in routing netlists on the RaPiD architecture was 18%, and that 
there might be a correlation between the PIPE-COST of a 
netlist and the percentage of pipelined signals in that netlist. 

The formulation of the pipelined routing problem, and the 
development of the PipeRoute algorithm, proceeded 
independently of specific FPGA architectures. In the quest for 
providing programmable, high-throughput architectures, we 
feel that the FPGA community is going to push towards 
heavily retimed application netlists and pipelined architectures. 
When pipelined architectures do become commonplace, 
PipeRoute would be a good candidate for routing retimed 
netlists on such architectures. 

APPENDIX 

A proof that the two-terminal ND Routing Problem 
(abbreviated here as 2TND) is NP-Complete via a reduction 
from the Traveling-Salesman Problem with Triangle Inequality 
(abbreviated here as TSP-TI): 

Traveling-Salesman Problem with Triangle Inequality: 
Let G = (V,E) be a complete, undirected graph that has a 
nonnegative integer cost c(u,v) associated with each edge 
(u,v)∈E. We must find a tour of G with minimum cost. 
Furthermore, we have the triangle inequality, that states for 
all vertices u,v,w∈V, c(u,w)  �  c(u,v)  +  c(v,w). 

We consider only problems where |V|>2, since all other 
cases are trivially solvable. To simplify things, we will convert 
the original problem to one with strictly positive costs by 
adding one to each edge cost. Since all solutions to the original 
problem go through exactly |V| edges, with a solution cost of 
say ‘C’, all solutions to the new problem will also have |V| 
edges, a cost of C+|V|, and correspond exactly to a solution in 
the original problem. Thus, this transformation is allowable. 
Note that the triangle inequality holds in this form as well. 

A

B C DB DC

RA

R3

R1 R22 3

4

0

32

0 0
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Fig. A1.  Example TSP-TI (left) with edge weights, and the corresponding 
2TND (right), with node weights. TSP-TI node A is chosen as the source and 
the sink, and N = 2. 
 

As stated in [2], TSP-TI is NP-Complete. We can reduce 
TSP-TI to 2TND by transforming all TSP-TI nodes to D-
nodes, and converting the edge-weights of TSP-TI to R-nodes 
(Fig. A1). Specifically, let GTSP=(VTSP,ETSP) be the input graph 
to TSP-TI, and G2TND=(V2TND,E2TND) be the corresponding 
graph we construct to solve TSP-TI with 2TND. Let STSP be an 
arbitrary node in VTSP.  For each node MTSP∈VTSP, create a 
corresponding node M2TND in V2TND, with cost 0. This node is 
an R-node if MTSP=STSP, and a D-node otherwise. For each 
edge (u,v) ∈ ETSP, let x and y be the nodes in V2TND that 
correspond to u and v respectively.  Create a new R-node z in 
V2TND with cost c(u,v).  Also, create edges (x,z) and (z,y) in 
E2TND.  Solve 2TND with N=|VTSP|-1, and S & K = S2TND, the 
node corresponding to STSP. 

We must now show that the solution to the 2TND problem 
gives us a solution to the TSP-TI problem.  One concern is that 
the 2TND solution may visit some nodes multiple times, either 
from 0-cost nodes or because wandering paths can be as short 
as more direct paths.  For 2TND problems on the graphs 
created from TSP-TI problems, we will define simplified 
2TND solutions.  Specifically, walk the 2TND solution path 
from source to sink.  The first time a given D-node is 
encountered on this walk will be called the primary occurrence 
of that node, and all additional encounters will be called repeat 
occurrences. The occurrences of the source and sink node 
(which are identical), will be considered primary, and all 
others repeat.  We now eliminate all repeat occurrences to 
create a simplified 2TND.  Specifically, let R2TND be any repeat 
node on the path, and Pre2TND and Post2TND be the first D-node 
or source node occurrence on the path before and after R2TND 
respectively. RTSP, PreTSP, and PostTSP are the nodes in VTSP 
that correspond to R2TND, Pre2TND, and Post2TND. The cost of 
the path segment from Pre2TND to Post2TND is equal to the cost 
of the two R-nodes on this path (since D-nodes and source 
nodes have a cost of 0), which is equal to c(PreTSP,RTSP) + 
c(RTSP,PostTSP). By the triangle inequality, this is no smaller 
than c(PreTSP, PostTSP). Thus, without increasing the cost of the 
path, or reducing the number of different D-nodes visited, we 
can replace the portion of the path from Pre2TND to Post2TND 
with the path Pre2TND → Rn2TND → Post2TND, where Rn2TND is 
the node in E2TND corresponding to (PreTSP,PostTSP).  By 
recursively applying this process, we will get a simplified 
2TND solution where each D-node appears at most once. Since 
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N=|VTSP|-1 is equal to the number of D-nodes in V2TND, this 
means that the path visited each D-node exactly once. It also 
only visits the source node STSP at the beginning and end of the 
path.  Finally, the cost of the path is no greater than the cost of 
the original 2TND solution. 

The simplified 2TND solutions turn out to be solutions for 
TSP-TI, with the same cost.  We can show this by showing 
that the D-nodes traversed in the 2TND solution, plus the S2TND 
node, are a tour in TSP-TI.  A tour is a simple cycle visiting 
all nodes in a graph exactly once.  In our simplified 2TND 
solution all D-nodes are visited exactly once.  By converting 
the path that starts and ends at S2TND into a cycle by fusing 
together the ends, you also visit S2TND exactly once.  The cost 
of the simplified 2TND solution is equal to the cost of the R-
nodes traversed, which is equal to the cost of the edges 
between the consecutive vertices in the tour of TSP-TI. 

It also turns out that every solution to TSP-TI has an 
equivalent simplified 2TND solution with the same cost.  
Specifically, the tour in TSP-TI can be split at the STSP node, 
thus forming a path. The nodes in TSP-TI corresponding to the 
edges and vertices in the TSP-TI solution constitute a path 
going through at least |VTSP|-1=the number of D-nodes in 
V2TND, and thus fulfill most of the requirements of 2TND.  The 
only issue to worry about is the restriction in TSP-TI that you 
cannot enter and exit a D-node on the same edge.  However, if 
|VTSP| > 2, then the vertices surrounding a vertex in the TSP-TI 
path cannot be the same.  Thus, TSP-TI never uses the same 
edge to enter and leave a node, so the equivalent 2TND 
solution will never violate the entry/exit rule of 2TND.  Again, 
the cost of the TSP-TI and 2TND solutions are the same, since 
the edge weights of TSP-TI are identical to the node weights 
encountered in the 2TND solution. 

As we have shown, all solutions of TSP-TI have a 
corresponding, equal cost solution in 2TND, and all simplified 
2TND solutions have corresponding, equal cost solution in 
TSP-TI.  It is also easy to see that there is a polynomial-time 
method for transforming TSP-TI into 2TND, then map the 
results of 2TND to a simplified 2TND result, and finally 
convert this into a solution to TSP-TI.  Thus, since TSP-TI is 
NP-Complete, 2TND is NP-hard.  

It is also clear that we can check in polynomial time whether 
N distinct D-nodes are visited, that the solution is a path 
starting and ending at S and K respectively, and whether we 
ever enter and leave a D-node on the same edge.  We can also 
check whether the path length is minimum via binary search on 
a version requiring path lengths ≤ L.  Thus, 2TND is in NP.  
Since it is also NP-Hard, 2TND is therefore NP-Complete. 
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