
TCAD 2181

1

Abstract—We present a pipelining-aware router for FPGAs.

The problem of routing pipelined signals is different from the
conventional FPGA routing problem. The two terminal ND
pipelined routing problem is to find the lowest cost route between
a source and sink that goes through at least N (N ≥≥≥≥ 1) distinct
pipelining resources. In the case of a multi-terminal pipelined
signal, the problem is to find a Minimum Spanning Tree that
contains sufficient pipelining resources such that pipelining
constraints at each sink are satisfied. In this work, we first
present an optimal algorithm for finding a lowest cost 1D route.
The optimal 1D algorithm is then used as a building block for a
greedy two terminal ND router. Next, we discuss the development
of a multi-terminal routing algorithm (PipeRoute) that effectively
leverages both the 1D and ND routers. Finally, we present a pre-
processing heuristic that enables the application of PipeRoute to
pipelined FPGA architectures. PipeRoute’s performance is
evaluated by routing a set of benchmark netlists on the RaPiD
architecture. Our results show that the architecture overhead
incurred in routing netlists on RaPiD is less than 20%. Further,
the results indicate a possible trend between the architecture
overhead and the percentage of pipelined signals in a netlist.

Index Terms—Design automation, Field programmable gate
arrays, Reconfigurable architectures, Routing

I. INTRODUCTION

ver the last few years, reconfigurable technologies have
made remarkable progress. Today, state-of-the-art

devices [1], [19] from FPGA vendors provide a wide range of
functionalities. Coupled with gate-counts in the millions, these
devices can be used to implement entire systems at a time.
However, improvements in FPGA clock cycle times have
consistently lagged behind advances in device functionality
and capacities. Even the simplest circuits cannot be clocked at
more than a few hundred megahertz.

Manuscript received February 7, 2005. This work was supported by grants

from the National Science Foundation (NSF). Scott Hauck was supported in
part by an NSF Career Award and an Alfred P Sloan Fellowship.

 Akshay Sharma is with the Electrical Engineering Department, University
of Washington, Seattle WA 98195 USA (email akshay@ee.washington.edu).

Carl Ebeling is with the Computer Science and Engineering Department,
University of Washington, Seattle WA 98195 USA (email
ebeling@cs.washington.edu).

 Scott Hauck is with the Electrical Engineering Department, University of
Washington, Seattle WA 98195 USA (email hauck@ee.washington.edu).

A number of research groups have tried to improve clock
cycle times by proposing pipelined FPGA architectures. Some
examples of pipelined architectures are HSRA [16], RaPiD [3]
– [4], and the architecture proposed in [13]. The main
distinguishing feature of a pipelined FPGA is the possible
location of registers in the architecture. While both pipelined
and conventional FPGA architectures provide registers in the
logic structure, pipelined FPGAs also provide register sites in
the interconnect structure. The registers in the interconnect
structure are used to supplement the registers in the logic
structure. Applications mapped to pipelined FPGAs are often
retimed to take advantage of a relatively large number of
registers in the logic and interconnect structures.

The subject of this paper is the development of an algorithm
called PipeRoute that routes application netlists on pipelined
FPGA architectures. PipeRoute takes a netlist and a pipelined
FPGA architecture as inputs, and produces an assignment of
signals to routing resources as the output. To the best of our
knowledge, PipeRoute is the first algorithm that is capable of
routing netlists on pipelined FPGA architectures. Furthermore,
the strength of the PipeRoute algorithm lies in the fact that it is
architecture-independent. The algorithm is capable of routing
pipelined signals on any FPGA architecture that can be
abstracted as a graph consisting of routing and pipelining
nodes.

The rest of this paper is organized as follows. In Section II,
we survey pipelined FPGAs and the techniques used to
allocate pipelining registers during the physical design phase.
The pipelined routing problem is introduced and formalized in
Section III. In sections IV, V and VI we present PipeRoute
[10] – [12], a greedy heuristic search algorithm for routing
signals on pipelined FPGA architectures. Section VII discusses
a pre-processing heuristic that takes advantage of registered IO
terminals and interconnect sites that provide multiple registers.
In Section VIII, we briefly describe the techniques we used to
make PipeRoute timing aware. The target architecture that we
used in our experiments is described in Section IX, while
Section X explains the placement algorithm we developed to
enable our routing approach. We describe our experimental
setup and test strategy in Section XI, followed by results in
Section XII. In Section XIII, we conclude this paper.

II. PIPELINED FPGAS AND MAPPING HERISTICS

In this section we briefly survey examples of pipelined

PipeRoute: A Pipelining-Aware Router for
Reconfigurable Architectures

Akshay Sharma, Student Member, IEEE, Carl Ebeling, Member, IEEE and Scott Hauck, Senior
Member, IEEE

O

TCAD 2181

2

FPGA architectures, and the heuristics used to allocate
pipelining registers during physical design.

A. Fixed-frequency Architectures
HSRA [16] and SFRA [17] are two examples of fixed-

frequency architectures that guarantee the execution of an
application at a fixed frequency. HSRA has a strictly
hierarchical, tree-like routing structure, while SFRA has a
capacity depopulated island style routing structure.
Applications mapped to HSRA and SFRA are aggressively C-
slowed to reduce clock cycle times. An important consequence
of C-slowing is that the register count in a netlist increases by
a factor of C. Since an FPGA has limited resources, finding
pipelining registers in the interconnect and/or logic structure
without adversely affecting the routability and delay of a
netlist is a difficult problem. Both HSRA and SFRA
circumvent this problem by providing deep retiming register-
banks at the inputs of logic blocks, as well as registered
switch-points.

Since fixed-frequency FPGAs provide register-rich logic
and routing structures, there is no need to efficiently locate
pipelining registers during placement and routing.
Consequently, the place & route flows developed for SFRA
and HSRA are unaware of pipelining registers. However, the
area overhead incurred by these architectures due to their
heavily pipelined structure is high. HSRA incurs
approximately a 2X area overhead, while SFRA takes a 4X
area hit. While these overheads might be justifiable for certain
classes of applications (those that are amenable to C-slowing
and/or heavy pipelining), they are prohibitive for conventional,
general-purpose FPGAs.

B. General-purpose FPGA Architectures
A number of researchers have attempted to integrate

pipelining with place and route flows for general-purpose
FPGAs. The techniques presented in [8] use post place-and-
route delay information to accurately retime netlists mapped to
the Virtex family of FPGAs. To preserve the accuracy of
delay information, the authors do not attempt to re-place-and-
route the netlist after the completion of the retiming operation.
Since the logic blocks (called ‘slices’) in Virtex devices
have a single output register, the edges in the retiming graph
are constrained to allow no more than a single register. This
constraint might be overly restrictive, especially for
applications that might benefit from a more aggressive
retiming approach like C-slowing.

In [18], a post-placement C-slow retiming technique for the
Virtex family of FPGAs is presented. Since C-slowing
increases the register count of a netlist by a factor of C, a post-
retiming heuristic is used to place registers in unused logic
blocks. A search for unused logic blocks is begun at the center
of the bounding box of a net. The search continues to spiral
outward until an unused register location is found. When an
unused register location is found, it is allocated. This process
is repeated until all retiming registers have been placed. A
significant shortcoming of this heuristic is its dependence on

the pre-retiming placement of a netlist. If the placement of the
netlist is dense, then the heuristic may not be able to find
unused register locations within the net’s bounding box.
Instead, unused locations that are far removed from the net’s
terminals may be allocated. The resultant routes between the
net’s terminals and the newly allocated registers might become
critical and thus destroy the benefits of C-slowing.

An alternative approach to locate post-placement retiming
registers is presented in [15]. The newly created registers are
initially placed into preferred logic blocks even if the logic
blocks are occupied. A greedy iterative improvement
technique then tries to resolve illegal overlaps by moving non-
critical logic blocks to make space for registers. The cost of a
placement is determined by the cumulative illegality of the
placement, overall timing cost, and wirelength cost. The timing
cost is used to prevent moves that would increase critical path
delay, while the wirelength cost is used to estimate the
routability of a placement.

The retiming-aware techniques for general-purpose FPGAs
presented so far use heuristics to place retiming registers in the
logic blocks of the FPGA. An alternative to placing registers in
the logic structure of a general-purpose FPGA is to allocate the
registers in the routing structure. In [14], the authors propose a
routing algorithm that attempts to move long (and hence
critical) routes onto tracks that have registered routing
switches. The algorithm exploits the planarity of the target
architecture to permute the routes on a registered /
unregistered track with those on a compatible unregistered /
registered track. An architecturally constrained retiming
algorithm is coupled with the routing step to identify tracks
that are used by critical routes. All routes on a given critical
track are then permuted with a compatible registered track, so
that critical routes can go through registered routing switches.
After the completion of retiming-aware routing, a final
retiming step is performed to achieve a target clock period.

There are two important shortcomings of the retiming-aware
routing algorithm presented in [14]. First, the process of
permuting routes on to registered tracks may be overly
restrictive, since all routes on a registered track must go
through registered routing switches. While long routes may
benefit from an assignment to a registered routing track, other
less-critical routes on the track will use up registered switches
unnecessarily. Second, the routing algorithm relies on planar
FPGA architectures to enable track permutation.
Consequently, the algorithm cannot be used to route netlists on
non-planar FPGA architectures that have registered routing
switches.

In summary, it is clear from sub-section II-A that the area
overhead incurred in eliminating the problem of locating
pipelining registers is high. At the same time, the heuristic
techniques described in II-B are architecture-specific solutions
that might not be applicable to a range of architecturally
diverse pipelined FPGAs. The subject of this paper is the
development of an architecture independent pipelining-aware
FPGA routing algorithm called PipeRoute. The primary

TCAD 2181

3

sig
S

K1

K2

K3

Fig. 1. A multi-terminal pipelined signal.

strength of the PipeRoute algorithm lies in the fact that it is
architecture-independent. The algorithm may be used to route
netlists on any FPGA architecture that can be abstractly
represented as a graph consisting of routing and pipelining
nodes. Unlike the techniques presented in this section,
PipeRoute does not rely on specific architectural features or
heuristics to successfully route signals. PipeRoute’s
architecture adaptability is a direct result of using Pathfinder
[6] as the core routing algorithm.

III. PROBLEM BACKGROUND

The traditional FPGA routing problem is to determine an
assignment of signals to limited routing resources while trying
to achieve the best possible delay characteristics. Pathfinder
[6] is one of the most widely used FPGA routing algorithms. It
is an iterative algorithm, and consists of two parts. The signal
router routes individual signals based on Prim’s algorithm,
which is used to build a Minimum Spanning Tree (MST) on an
undirected graph. The global router adjusts the cost of each
routing resource at the end of an iteration based on the
demands placed on that routing resource during that iteration.
During the first routing iteration, signals are free to share as
many routing resources as they like. However, the cost of
using a shared routing resource is gradually increased during
later iterations, and this increase in cost is proportional to the
number of signals that share that resource. Thus, this scheme
forces signals to negotiate for routing resources. A signal can
use a high cost resource if all remaining resource options are in
even higher demand. On the other hand, a signal that can take
an alternative, lower cost route is forced to do so because of
competition for shared resources. Circuits routed using
Pathfinder’s congestion resolution scheme converge quickly,
and exhibit good delay characteristics.

In the case of retimed netlists, the routing problem is
different from the conventional FPGA routing problem. This is
because a significant fraction of the signals in a netlist are
deeply pipelined, and merely building an MST for a pipelined
signal is not enough. For example, consider the pipelined
signal sig in Fig. 1 that has a source S and sinks K1, K2 and
K3. The signal is pipelined in such a way that sink K1 must be
delayed 3 clock cycles relative to S, sink K2 must be 4 clock
cycles away, and sink K3 must be 5 clock cycles away. A route
for sig is valid only if it contains enough pipelining resources
to satisfy the clock cycle constraints at every sink. Due to the
fact that there are a fixed number of sites in the interconnect

where a signal can go through a register, it can be easily seen
that a route found for sig by a conventional, pipelining-
unaware FPGA router may not go through sufficient registers
to satisfy the clock cycle constraint at every sink. Thus, the
routing problem for pipelined signals is different from that for
unpipelined signals. For a two-terminal pipelined signal, the
routing problem is stated as:

Two-terminal ND Problem: Let G=(V,E) be an undirected
graph, with the cost of each node v in the graph being wv >=
1. The graph consists of two types of nodes: D-nodes and R-
nodes. Let S, K∈V be two R-nodes. Find a path PG(S,K) that
connects nodes S and K, and contains at least N (N ≥ 1)
distinct D-nodes, such that w(PG(S,K)) is minimum, where

�
∈

=
K)(S,P v

vG

G

w K))(S,w(P

Further, impose the restriction that the path cannot use the
same edge to both enter and exit any D-node.

We call a route that contains at least ‘N’ distinct D-nodes an

‘ND’ route. R-nodes represent interconnect wire-segments and
the IO pins of logic units in a pipelined FPGA architecture,
while D-nodes represent registered switch-points. A registered
switch-point (from this point on, we will use the terms
‘registered switch-points’ and ‘registers’ interchangeably) can
be used to pick up 1 clock cycle delay, or no delay at all.
Every node is assigned a cost, and an edge between two nodes
represents a physical connection between them in the
architecture. The cost of a node is a function of congestion,
and is identical to the cost function developed for Pathfinder’s
NC algorithm [6]. Under this framework, the routing problem
for a simpler two-terminal signal is to find the lowest cost
route between source and sink that goes through at least N (N
≥ 1) distinct D-nodes (N is the number of clock cycles that
separates the source from the sink). Note that in this version a
lowest cost route can be self-intersecting i.e. R-nodes can be
shared in the lowest cost route. In Appendix A of this paper,
we show that the two terminal ND problem is NP-Complete via
a reduction from the Traveling Salesman Problem with
Triangle Inequality.

IV. ONE-DELAY (1D) ROUTER

In the previous section, we pointed out that the problem of
finding the lowest cost route between a source and sink that
goes through at least N distinct D-nodes is NP-Complete. We
now show that a lowest cost route between a source and sink
that goes through at least one D-node can be found in
polynomial time. On a weighted undirected graph, Dijkstra’s
algorithm is widely used to find the lowest cost route between
a source and sink node. The remainder of this section
evaluates several modifications of Dijkstra’s algorithm that
can be used to find a lowest cost 1D route. Our first
modification is Redundant-Phased-Dijkstra. In this algorithm,
a phase 0 wavefront is launched at the source. When the phase
0 exploration hits a D-node, it is locally terminated there (i.e.

TCAD 2181

4

the phase 0 exploration is not allowed to continue through the
D-node, although the phase 0 exploration can continue through
other R-nodes and runs simultaneously with the phase 1
search), and an independent phase 1 wavefront is begun
instead. When commencing a phase 1 wavefront at a D-node,
we impose a restriction that disallows the phase 1 wavefront
from exiting the D-node along the same edge that was used to
explore it at phase 0. This is based on the assumption that it is
architecturally infeasible for the D-node that originates the
phase 1 wavefront to explore the very node that is used to
discover it at phase 0. When a phase 1 wavefront explores a D-
node, the D-node is treated like an R-node, and the phase 1
wavefront propagates through the D-node.

If the number of D-nodes that can be explored at phase 0
from the source is ‘F’, up to F independent phase 1 wavefronts
can co-exist during Redundant-Phased-Dijkstra. The search
space of the phase 1 wavefronts can overlap considerably due
to the fact that each R-node in the graph can be potentially
explored by up to F independent phase 1 wavefronts.
Consequently, the worst-case run-time of Redundant-Phased-
Dijkstra is F+1 times that of the conventional Dijkstra’s
algorithm. Since F could potentially equal the total number of
interconnect registers in a pipelined FPGA, the worst-case run-
time of Redundant-Phased-Dijkstra may get prohibitive.

An alternative to Redundant-Phased-Dijkstra that can be
used to find a lowest cost 1D route is Combined-Phased-
Dijkstra. This algorithm attempts to reduce run-time by
combining the search space of the phase 1 wavefronts that
originate at D-nodes. The only difference between Redundant-
Phased-Dijkstra and Combined-Phased-Dijkstra is that the
latter algorithm allows each R-node to be visited only once by
a phase 1 wavefront. As a consequence, the run-time of
Combined-Phased-Dijkstra is only double that of Dijkstra’s
algorithm. In both Redundant-Phased-Dijkstra and Combined-
Phased-Dijkstra, the phase 1 search begins at a cost equal to
the path up to the D-node that starts the wavefront. The final
route is found in two steps. In the first step, the phase 1
segment of the route is found by backtracing the phase 1
wavefront to the D-node that initiated the wavefront. The
phase 0 segment of the route is then found by backtracing the
phase 0 wavefront from the D-node back to the source.

A step-by-step illustration of how Combined-Phased-
Dijkstra works is shown in Figs. 2(a) through 2(e). For the
sake of simplicity, assume all nodes in the example graph have
unit cost. The source S is explored at phase 0 at the start of the
phased exploration. The number 0 next to S in Fig. 2(a)
indicates that S has been explored by a phase 0 wavefront. In
Fig. 2(b), the neighbors of S are explored by the phase 0
wavefront initiated at S. The 2nd-level neighbors of S are
explored by phase 0 in Fig. 2(c), one of which is D-node D1.
Note that we make a special note of D1’s phase 0 predecessor
here, so that we do not explore this predecessor by means of
the phase 1 wavefront that is commenced at D1. In Fig. 2(d),
the neighbors of D1 (excluding R1) are explored at phase 1.
The phase 0 exploration also continues simultaneously, and

S

R1

R3

R2

R5

R4

R6

D1

D2

R7

R8

K

0

(a)

S

R1

R3

R2

R5

R4

R6

D1

D2

R7

R8

K

0

0

0

0

(b)

S

R1

R3

R2

R5

R4

R6

D1

D2

R7

R8

K

0

0

0

0

0

0

(c)

S

R1

R3

R2

R5

R4

R6

D1

D2

R7

R8

K

0

0

0

0

0

0
0

prevR5

1
0

1

0

0

(d)

S

R1

R3

R2

R5

R4

R6

D1

D2

R7

R8

K

0

0

0

0

0

0

0
prevR1

0
prevR5

1
0

1

0

0

1

1

1

1

1

(e)
Fig. 2. (a) Phase 0 exploration commences at node S. (b) The neighbors of S
are explored at phase 0. (c) 2nd – level neighbors of S are explored at phase 0,
and in the process D-node D1 is discovered. (d) D1 starts a phase 1
exploration. The phase 0 exploration continues simultaneously, and D2 is
discovered. (e) K is explored by phase 1 wavefront commenced at D1.

TCAD 2181

5

note how both phase 0 and phase 1 wavefronts have explored
nodes R4 and R7. Finally, in Fig. 2(e), the sink K is explored
by the phase 1 wavefront initiated at D1. The route found by
Combined-Phased-Dijkstra is shown in boldface in Fig. 2(e),
and is in fact an optimal route between S and K.

Unfortunately, Combined-Phased-Dijkstra fails to find a
lowest cost route on some graph topologies. An example of a
failure case is shown in Fig. 3. Here the node S is both the
source and sink of a signal, and each node is unit cost.
Combined-Phased-Dijkstra will fail to return to S at phase 1
because R-nodes on each possible route back to S have already
been explored by the phase 1 wavefront. In effect, Combined-
Phased-Dijkstra isolates nodes S, R1, R2, D1 and D2 from the
rest of the graph, thus precluding the discovery of any route
back to S at all.

The reason for the failure of Combined-Phased-Dijkstra is
that a node on the phase 1 segment of the lowest cost route is
instead explored by a phase 1 wavefront commenced at
another D-node. For example, in Fig. 3 we consider the route
S-R1-D1-R3-R5-R4-D2-R2-S to be lowest cost. Node R4 is
explored by the phase 1 wavefront commenced at D2, thus
precluding node R4 from being explored by the phase 1
wavefront started at D1. However, if we slightly relax
Combined-Phased-Dijkstra to allow each node in the graph to
be explored by at most two phase 1 wavefronts that are
independently started at different D-nodes, then the phase 1
wavefronts started at D1 and D2 will now be able to overlap,
thus allowing the lowest cost route to be found.

An important consequence of the nature of the transition
from phase 0 to phase 1 at a D-node is shown in Fig. 4. In this
case, S is the source of the signal, and K is the sink. Observe
that a phase 0 exploration explores D1 from R1. Consequently,
the phase 0 exploration is precluded from exploring D1 from
R4. This prevents the optimal 1D route to K from being found.

S

R1

R2

D1

D2

R3

R4

R5

0

0

0

0

0

1

1

1

Fig. 3. A case for which phased exploration fails. Observe how the phase 1
exploration has got isolated from the phase 0 exploration.

S

R1

R2

D1

R3

R5

0

0

0

0

0

K

0

Fig. 4. D1 is explored at phase 0 from R1, thus precluding the discovery of
the 1D path to the sink K.

To address this problem, we allow any D-node to be explored
at most two times at phase 0. In Fig. 4, D1 can be explored at
phase 0 from R1 and R4, thus allowing the optimal 1D path S-
R2-R3-R4-D1-R1-K to be found.

Fig. 5 shows pseudo-code for the algorithm 2Combined-
Phased-Dijkstra that finds an optimal 1D route between
a source S and sink K. At the start of the algorithm, a phase 0
exploration is commenced at the source by initializing the
priority queue PQ to S at phase 0. The phase 0 wavefront is
expanded in a manner similar to that of Dijkstra’s algorithm.
Each time a node lnode is removed from PQ, its phase is
recorded in the variable phase. The cost of the path from S
to lnode is stored in path_cost. The variable
node_type indicates whether lnode is an R-node or D-
node. The fields lnode.num_ex0 and lnode.num_ex1
record the number of times lnode has been explored at phase
0 and 1 respectively, and are both initialized to 0. A node is
marked finally_explored at a given phase when it is no
longer possible to expand a wavefront through that node at the
given phase. For each lnode that is removed from PQ, the
following possibilities exist:

�� phase==0 and node_type is R-node: R-nodes
can be explored at phase 0 only once, and thus
lnode is finally_explored if x0==1.
AddNeighbors(PQ,lnode,path_cost,p) is
used to add the neighbors of lnode to PQ at phase
p, where p==0 in this case.

�� phase==0 and node_type is D-node: D-nodes
can be explored at phase 0 twice, and thus lnode is
marked finally_explored if x0==2. A phase 1
exploration is begun at this D-node by adding its
neighbors to PQ at phase 1.

�� phase==1: Since both R-nodes and D-nodes can be
explored twice at phase 1, lnode is marked
finally_explored at phase 1 if x1==2. If we
are not done (i.e. lnode is not the sink K) the
neighbors of lnode are added to PQ at phase 1.

A. Proof Of Optimality
The optimality of 2Combined-Phased-Dijkstra can

be demonstrated by means of a proof by contradiction in which
we show that 2Combined-Phased-Dijkstra will
always find an optimal 1D path between S and K, if one exists.
Before presenting a sketch of the proof, we introduce some
terminology. 2Combined-Phased-Dijkstra explores
multiple paths through the graph via a modification to
Dijkstra's algorithm. We state that the algorithm explores a
path "P" up to a node "N" if the modified Dijkstra's search, in
either phase 0 or phase 1, reaches node "N" and the search
route to this node is identical to the portion of the path P from
the source to node N. Further, a path A is “more explored”
than path B if the cost of the path on A from the source to A's
last explored point is greater than the cost of the path on B

TCAD 2181

6

2Combined-Phased-Dijkstra(S,K){
Init PQ to S at phase 0;
LOOP{
Remove lowest cost node lnode from PQ;
if(lnode == NULL){
1D path between S and K does not exist;
return 0;

}
if(lnode is finally_explored at phase 0 and phase 1)
continue;

path_cost = cost of path from S to lnode;
phase = phase of lnode;
node_type = type of lnode;
if(phase == 0){
lnode.num_ex0++;
x0 = lnode.num_ex0;

}
else{
lnode.num_ex1++;
x1 = lnode.num_ex1;

}
if(phase == 0){
if(node_type == R-node){
if(x0 == 1)
Mark lnode finally_explored at phase 0;

AddNeighbors(PQ,lnode,path_cost,0);
}
else{
if(x0 == 2)
Mark lnode finally_explored at phase 0;

AddNeighbors(PQ,lnode,path_cost,1);
}

}
else{
if(lnode == K)
return backtraced 1D path from S to K;

else{
if(x1 == 2)
Mark lnode finally_explored at phase 1;

AddNeighbors(PQ,lnode,path_cost,1);
}

}
}END LOOP

}

AddNeighbors(PQ,lnode,path_cost,p){
Foreach neighbor neb_node of lnode{
neb_cost = cost of neb_node;
neb_path_cost = neb_cost + path_cost;
Add neb_node to PQ with phase p at cost neb_path_cost;

}
}

Fig. 5. Pseudocode for 2Combined-Phased-Dijkstra.

from the source to B's last explored point. For purposes of the
proof sketch, we define the "goodness" of a path in the
following way:

1. If the cost of one path is lower than another’s, it is
"better" than the other. Thus, an optimal path is
always better than a non-optimal path.

2. If the costs of two paths C and D are the same, then C
is "better" than D if C is more explored than D.

From these definitions, the “best” path is an optimal path. If
there is more than one optimal path, the best path is the most
explored optimal path.

Initial Assumption: Assume that Fig. 6 shows the most
explored optimal 1D path between S and K. In other words, the
path shown in the figure is the best 1D path between S and K,
with a single clock-cycle delay picked up at D-node DL. Note
that there are no D-nodes on the path S-DL, although there
could be multiple D-nodes on DL-K. This is because we
assume that in case the best 1D path between S and K goes
through multiple D-nodes, then the D-node nearest S is used to

S KDL
Fig. 6. The initial assumption is that the most explored lowest cost 1D route
between S and K goes through D-node DL.

S KDL

R

Fig. 7. Representation of a path from S to node R shown in gray.

S KDL

R

Fig. 8. The path from S to R could actually intersect with the paths S-DL and
DL-K.

S KDL

R

G
Fig. 9. The case in which an R-node on the path S-DL gets explored at phase
0 along some other path.

S KDL

G2

R2

G1

Fig. 10. DL gets explored at phase 0 along paths S-G1-DL and S-G2-R2-DL.

pick up one clock-cycle delay.

Although it appears that the paths S-DL and DL-K in Fig. 6
are non-intersecting, note that the R-nodes on the path S-DL
can in fact be reused in the path DL-K. In all diagrams in this
section, we use the convention of showing paths without
overlaps (Fig. 7), even though they may actually overlap (Fig.
8). Our proof does not rely on the extent of intersection
between hypothetical paths (which are always shown in gray)
and the known best 1D path.

There are three distinct cases in which 2Combined-
Phased-Dijkstra could fail to find the best path S-DL-K
shown in Fig. 6:

�� CASE 1: An R-node on the path S-DL gets explored
at phase 0 along a path other than S-DL.

�� CASE 2: The D-node DL gets explored at phase 0
along two paths other than S-DL.

�� CASE 3: A node on the path DL-K gets explored at
phase 1 along two paths other than DL-K.

Fig. 9 shows why CASE 1 can never occur. For CASE 1 to
occur, the cost of the gray path S-G-R would have to be less
than or equal to the cost of path S-R. In this case, the path S-
G-R-DL-K would be better than the known best path, which is
a contradiction of our initial assumption.

Fig. 10 shows an instance of CASE 2. The cost of each of
the paths S-G1-DL and S-G2-R2-DL is less than or equal to the
cost of path S-DL. In this case, the path S-G1-DL-R2-K would

TCAD 2181

7

S KDL

D

G1

G2

R1
X

Fig. 11. Node X can get explored at phase 1 along either S-G2-D-X or S-G1-
R1-D-X.

S K

D11

D21

D22

D31

D32

Fig. 12. Building a 3D route from 1D routes.

be better than the known best path S-DL-K, thus contradicting
our initial assumption.

Fig. 11 illustrates an example of CASE 3, in which a node
X on the path DL-K gets explored at phase 1 along two paths
other than DL-K. There are two possibilities here:

�� The cost of path S-G1-R1-D-X is less than or equal to
the cost of the path to X along the known best path. In
this case, the path S-G1-R1-D-X-K would be better
than the known best path, which is a contradiction of
our initial assumption.

�� The cost of path S-G2-D-X is less than or equal to the
cost of the path to X along the known best path. This
means that the path S-G2-D-X-K is better than the
known best path, which contradicts our initial
assumption.

A more detailed case-by-case analysis of the proof of
optimality of 2Combined-Phased-Dijkstra can be found in
[11]. In this study, we enumerate all the possible sub-cases of
CASE 1, CASE 2 and CASE 3 and separately show that each
of the sub-cases contradicts our initial assumption.
Consequently, none of CASE 1, CASE 2 or CASE 3 can
occur, implying that 2Combined-Phased-Dijkstra is optimal.

V. N-DELAY (ND) ROUTER

In this section, we present a heuristic that uses the optimal
1D router to build a route for a two terminal ND signal. This
heuristic greedily accumulates D-nodes on the route by using
1D routes as building blocks. In general, an ND route is
recursively built from an (N-1)D route by successively
replacing each segment of the (N-1)D route by a 1D route and
then selecting the lowest cost ND route. Fig. 12 is an abstract
illustration of how a 3D route between S and K is found. In the
first step, we find a 1D route between S and K, with D11 being
the D-node where we pick up a register. At this point, we
increment the sharing cost [6] of all nodes that constitute the

route S-D11-K. In the second step, we find two 1D routes,
between S and D11, and D11 and K. The sequence of sub-
steps in this operation is as follows:

�� Decrement sharing cost of segment S-D11.
�� Find 1D route between S and D11 (S-D21-D11). Store

the cost of route S-D21-D11-K.
�� Restore segment S-D11 by incrementing the sharing

cost of segment S-D11.
�� Decrement sharing cost of segment D11-K.
�� Find 1D route between D11 and K (D11-D22-K).

Store the cost of route S-D11-D22-K.
�� Restore segment D11-K by incrementing the sharing

cost of segment D11-K.
�� Select the lowest cost route, either S-D21-D11-K or

S-D11-D22-K.
Suppose the lowest cost 2D route is S-D11-D22-K. We rip

up and decrement sharing due to the segment D11-K in the
original route S-D11-K, and replace it with segment D11-D22-
K. Finally, we increment sharing of the segment D11-D22-K.
The partial route now is S-D11-D22-K. The sequence of sub-
steps in step three is similar. Segments S-D11, D11-D22 and
D22-K are successively ripped up, replaced with individual 1D
segments, and for each case the cost of the entire 3D route
between S and K is stored. The lowest cost route is then
selected. In Fig. 12, the 3D route that is found is shown in dark
lines, and is S-D11-D31-D22-K.

The number of 1D explorations launched for the 3D route
that we just discussed is 1 + 2 + 3 = 6. For the general ND
case, the number of 1D explorations launched is 1 + 2 + ... + N
= N(N+1)/2.

VI. MULTI-TERMINAL ROUTER

The previous section described a heuristic that uses optimal
1D routes to build a two-terminal ND route. The most general
type of pipelined signal is a multi-terminal pipelined signal. A
multi-terminal pipelined signal has more than one sink, and the
number of registers separating the source from each sink could
differ across the set of sinks. A simple example of a multi-
terminal pipelined signal sig was shown in Fig. 1. The sinks
K1, K2 and K3 must be separated from the source S by 3, 4
and 5 registers respectively. We will now demonstrate how a
route for a multi-terminal signal can be found by taking
advantage of the 1D and ND routers that were discussed in
Sections IV and V.

In a manner similar to the Pathfinder algorithm, the routing
tree for a multi-terminal pipelined signal is built one sink at a
time. Each sink is considered in non-decreasing order of
register separation from the source of the signal. The multi-
terminal router starts by finding a route to a sink that is the
least number of registers away from the source. Since finding a
route to the first sink is a two-terminal case, we use the two-
terminal ND router to establish a route between the source and
first sink. The remainder of this section examines the task of
expanding the route between the source and the first sink to
include all other sinks.

TCAD 2181

8

S K2

D1 D2

K3

(a)

S K2

D1 D2

K3

DA

P1

(b)

S K2

D1 D2

K3

P2

(c)

S K2

D1 D2

K3

DB

P3

(d)
Fig. 13. (a) 2D route to K2 using the two-terminal ND router. S-D1-D2-K2 is
the partial_routing_tree. (b) 1D route to K3. P1-DA-K3 is found by launching
a 1D exploration that starts with segment S-D1 at phase 0 and segment D1-D2
at phase 1. P1-DA-K3 is the surviving_candidate_tree. (c) 2D route to K3. P2-
K3 is now the surviving_candidate_tree. (d) P3-DB-K3 is the final
surviving_candidate_tree, and this tree is joined to the partial_routing_tree
S-D1-D2-K2 to complete the route to K3.

We explain the multi-terminal router via a simple example.
Assume a hypothetical signal that has a source S and sinks K2
and K3. K2 must be separated from S by 2 registers, whereas
K3 must be separated by 3 registers. Sink K2 is considered
first, and the ND router is used to find a 2D route between S
and K2. In Fig. 13(a), the route S-D1-D2-K2 represents the 2D
route between S and K2, and constitutes the
partial_routing_tree of the signal. In general, the
partial_routing_tree of a multi-terminal pipelined signal can
be defined as the tree that connects the source to all sinks that
have already been routed.

After a route to K2 is found, the router considers sink K3.
As was the case in the ND router, we accumulate registers on
the route to K3 one register at a time. Thus, we start by finding
a 1D route to K3, then a 2D route, and finally a 3D route to K3.
It can be seen that a 1D route to K3 can be found either from
the 0D segment S-D1 by going through another D-node, or
from the 1D segment D1-D2 directly. However, it is not
necessary to launch independent wavefronts from segments S-
D1 and D1-D2. This is because both wavefronts can be
combined into a single 1D search in which segment S-D1
constitutes the starting component of the phase 0 wavefront,
and segment D1-D2 constitutes the starting component of the
phase 1 wavefront. Setting up the 1D search in such a way
could find a 1D path from S-D1 or a 0-delay path from D1-D2,
depending on which is of lower cost. Assume that P1-DA-K3 is
the 1D route found to K3 (Fig. 13(b)). After the 1D route to K3
is found, the sharing cost of the nodes that constitute P1-DA-
K3 is incremented. The segment P1-DA-K3 is called the
surviving_candidate_tree. The surviving_candidate_tree can
be defined as the tree that connects the sink (K3 in this case)
under consideration to some node in the partial_routing_tree
every time an ND route (1≤N≤3 in this case) to the sink is
found. Thus, a distinct surviving_candidate_tree results
immediately after finding the 1D, 2D, and 3D routes to K3.

Next, we attempt to find a 2D route to K3. Before explaining
specifics, it is important to point out here that while finding an
ND route to a sink we try two options. The first is to alter the
surviving_candidate_tree to include an additional D-node as
was done in the two terminal ND router. The second option is
to use the ND and (N-1)D segments in the partial_routing_tree
together to start a 1D exploration. The lower cost option is
chosen, and this becomes the new surviving_candidate_tree.

For finding a 2D route to K3, we first modify P1-DA-K3 to
include another D-node much in the same way that a two
terminal 2D route is built from an already established 1D route
(Section V). The segments P1-DA and DA-K3 are each
separately replaced by optimal 1D routes, and the lowest cost
route is stored. To evaluate the second option, we rip up the
segment P1-DA-K3 (Fig. 13(b)) and launch a 1D search using
segments D1-D2 at phase 0 and D2-K2 at phase 1. The cost of
the resultant 1D route is also stored. The lower cost route
amongst the two options is chosen, and the sharing cost of the
nodes that constitute this route is incremented. This selected
route becomes the new surviving_candidate_tree. In Fig.

TCAD 2181

9

Multi-Terminal-Router (Net){
PRT = φ; CRT = φ;
Sort elements of SK in non-decreasing order
of Dnode-separation from SrcNet;

Use the two-terminal ND-Router to find
route R from SrcNet to SK[1];

Add R to the partial routing tree PRT;
Foreach i in 2…|SK| {
ki = SK[i];
di = num Dnodes between SrcNet and ki;
Foreach j in 1…di {
Use the two-terminal ND-Router to find
a jD route called RNj by altering the
(j-1)D route contained in CRT;

Use 2Combined-Phased-Dijkstra to build

a jD route called RDj from the (j-1)D
and jD segments of the route contained
in PRT;

if cost(RDj) < cost(RNj) {
CRT = RDj;

}
else {
CRT = RNj;

}
}
Add surviving candidate tree CRT to partial
routing tree PRT;

}
return the route contained in PRT;

}

Fig. 14. Pseudocode for the multi-terminal routing algorithm.

13(c), assume that the lower cost route that is selected is the
segment P2-K3 shown in gray.

Finally, the segment P2-K3 is ripped up and a 1D
exploration from the segment D2-K2 is launched at phase 0 to
complete the 3D route to K3 (Fig. 13(d)).

Fig. 14 presents pseudo-code for the multi-terminal routing
algorithm. Net is the multi-terminal signal that is to be routed.
Without loss of generality, we assume that Net has at least
two sinks, and each sink is separated from Net’s source by at
least one D-node. PRT contains the partial_routing_tree during
the execution of the algorithm, and CRT contains the
surviving_candidate_tree. SrcNet is the source of the signal
Net, while SK is an array that contains Net’s sinks. ND-
Router is the N-Delay router presented in Section V.

VII. MULITPLE REGISTER SITES

The PipeRoute algorithm described in Sections IV, V and
VI assumes that register sites (D-nodes) in the interconnect
structure can only provide zero or one register. Also, the
algorithm does not address the fact that the IO terminals of
logic units may themselves be registered. Since a number of
pipelined FPGA architectures [3] – [4], [16] do in fact provide
registered IO terminals and multiple-register sites in the
interconnect structure, we developed a greedy pre-processing
heuristic that attempts to maximize the number of registers that
can be acquired at registered IO terminals and multiple-
register sites. We present the details of this heuristic in three
parts:

S 1 1 1 1 1

S

S

K1 K2

1 1 1 1 1

K1 K2

1 1 1

K1 K2

Fig. 15. Assuming that S can provide up to three registers locally, both the
registers between S and K1 can be picked up at S.

S 1 1 1 1 1

S

S

K1 K2

1 1 1 1 1

K1 K2

1 1

K1 K2

Fig. 16. Assuming that the sinks K1 and K2 can locally provide up to three
registers, both registers between S and K1 and three of the five registers
between S and K2 can be picked up locally at the respective sinks.

A. Logic Units with Registered Outputs
We try to greedily pick up the maximum allowable number

of registers at the source of each pipelined signal. The
maximum number of registers that can be picked up at the
source is capped by the sink that is separated by the least
number of registers from the source. Consider the example in
Fig. 15. The pipelined signal shown has a source S and two
sinks K1 and K2 that must be separated from S by two and
five registers respectively. Assuming that up to three registers
can be turned on at S, both registers that separate S and K1 can
be picked up at S itself, thus eliminating the need to find a 2D
route between S and K1 in the interconnect structure. Instead,
we now only need to find a simple lowest-cost route from S to
K1, and a 3D route to K2.

B. Logic units with Registered Inputs
In this case, we push as many registers as possible into each

sink of a pipelined signal. In Fig. 16, if we again assume that
each sink can provide up to three registers locally, both
registers between S and K1 can be moved into K1, while three
registers between S and K2 can be moved into K2. This leaves
us with the task of finding a simple lowest-cost route to K1

TCAD 2181

10

S 1 1 1 K1 1 1 1 1 1

S 3 K3 3

Fig. 17. Finding a 9D route between S and K can effectively be transformed
into a 3D pipelined routing problem.

S 1 1 1 1 1 1 1 1

K1 K2 K3 K4 K5 K6 K7 K8

1 1 1 1

K1 K2 K3 K4 K5 K6 K7 K8

Long, unpipelined track segment

S

Fig. 18. Pushing registers from the interconnect structure into functional unit
inputs sometimes results in long, unpipelined track segments.

and a 2D route to K2.

C. Multiple-Register Sites in the Interconnect Structure
Multiple-register sites in the interconnect structure provide

an opportunity to significantly improve the routability of
pipelined signals. In Fig. 17 for example, if we assume that
each register site (D-node) in the interconnect can provide up
to three registers, the task of finding a two terminal 9D route
simplifies to finding a route that with at least three D-nodes.
For a multi-terminal pipelined signal, every time an ND route
to the new sink is to be found, we use all existing ND, (N-1)D,
(N-2)D, and (N-3)D segments in the current partially built
routing tree to start an exploration that finds a single D-node.
Since each D-node can be used to pick up between zero and
three registers, we use all segments within the current, partially
built routing tree that are less than or equal to three registers
away from the new sink.

The intuition behind the development of the greedy heuristic
in sub-sections VII-A, VII-B and VII-C is to aggressively
reduce the number of register-sites that need to be found in the
interconnect structure. The heuristic is clearly routability-
driven, since reductions in the number of interconnect registers
favorably impact the routability of pipelined signals. Due to
the finite nature of an FPGA’s interconnect structure, any
place-and-route heuristic must consider routability to ensure
that a placement can be successfully routed.

A shortcoming of the greedy heuristic is that long segments
of a pipelined signal may get unpipelined because of the
removal of registers from the interconnect structure. This
phenomenon is illustrated in Fig. 18. Assume that a maximum
of four registers can be picked up at the sinks K1 – K8. In this
case, one interconnect register will be moved into K1, two into
K2, three into K3, and four into K4-K8. This process
effectively unpipelines a long segment, which in turn may

S KD D

D

D

D

D

D

D

D

Routing iteration ‘i’

Routing iteration ‘i+1’

Routing iteration ‘i+2’
Fig. 19. The route between source S and sink K of a signal may go through
different D-nodes at the end of successive routing iterations. Also, since each
D-node on the route is used to pick up a register, different segments on the
route may be at different criticalities.

increase the critical path delay of a netlist.

To balance register-to-register interconnect delay, it might
be necessary to perform a post-routing register redistribution
step. Specifically, if the number of interconnect register-sites
in the route for a two-terminal pipelined signal is greater than
the minimum required, then the pipelining registers may be
reallocated along the route to balance path delays.

VIII. TIMING-AWARE PIPELINED ROUTING

Since the primary objective of pipelined FPGAs is the
reduction of clock cycle time, it is imperative that a pipelined
routing algorithm maintains control over the criticality of
pipelined signals during routing. In making PipeRoute timing
aware, we draw inspiration from the Pathfinder algorithm.
While routing a signal, Pathfinder uses the criticality of the
signal in determining the relative contributions of the
congestion and delay terms to the cost of routing resources. If
a signal is near critical, then the delay of a routing resource
dominates the total cost of that resource. On the other hand, if
the signal’s criticality is considerably less than the critical
path, the congestion on a routing resource dominates.

In the case of pipelined routing, the signal’s route may go
through multiple D-nodes. Consequently, the routing delay
incurred in traversing the route from source to sink may span
multiple clock cycles. Also, the location of D-nodes on the
route may be different across routing iterations. This is
because PipeRoute may have to select different routes between
the source and sink of a signal to resolve congestion. In Fig. 19
for example, the 2D route between S and K may go through
different D-nodes at the end of iterations i, i+1 and i+2
respectively.

To address these problems, we treat D-nodes like normal
registers during the timing analysis at the end of a routing
iteration. Once the timing analysis is complete, we are faced
with making a guess about the overall criticality of a pipelined

TCAD 2181

11

signal. Note that different segments of a pipelined signal’s
route could be at different criticalities (Fig. 19). Our solution
is to make a pessimistic choice. Since we know the individual
criticalities of signals sourced at each D-node, we make the
criticality of the pipelined signal equal to the criticality of the
most critical segment on the route. Thus, when the pipelined
signal is routed during the next iteration, the most critical
segment of the signal’s previous route determines the delay
cost of routing resources.

IX. TARGET PIPELINED ARCHITECTURE

In this section we describe features of the pipelined FPGA
architecture (RaPiD [3] – [4]) that we used in our experiments.
The RaPiD architecture is targeted to high-throughput,
compute-intensive applications like those found in DSP. Since
such applications are generally pipelined, the RaPiD datapath
and interconnect structures include an abundance of registers.
The 1-Dimensional (1-D) RaPiD datapath (Fig. 20) consists of
coarse-grained logic units that include ALUs, multipliers,
small SRAM blocks, and general purpose registers (hereafter
abbreviated GPRs). Each logic unit is 16 bits wide. To support
pipelining in the logic structure, a register bank is provided at
each output of a logic unit. The output register bank can be
used to acquire between 0 – 3 registers.

The interconnect structure consists of 1-D routing tracks
that are also 16 bits wide. There are two types of routing
tracks: short tracks and long tracks. Short tracks are used to
achieve local connectivity between logic units, whereas long
tracks traverse longer distances along the datapath. In Fig. 20,
the uppermost five tracks are short tracks, while the remaining
tracks are long tracks. A separate routing multiplexer is used to
select the track that drives each input of a logic unit. Each
output of a logic unit can be configured to drive multiple
tracks by means of a routing demultiplexer.

The long tracks in the RaPiD interconnect structure are
segmented by means of bus connectors (shown as empty boxes
in Fig. 20 and abbreviated BCs). BCs serve two roles in the
RaPiD interconnect structure. First, a BC serves as a buffered,
bidirectional switch that facilitates the connection between two
long-track segments. Second, a BC serves the role of an
interconnect register site or D-node. RaPiD provides the
option of picking up between 0 – 3 registers at each BC. The
total number of BCs determines the number of registers that
can be acquired in the interconnect structure.

While BCs are used as registered, bidirectional switches that
connect segments on the same long track, GPRs can be used to
switch tracks. A GPR’s input multiplexer and output
demultiplexer allow a connection to be formed between
arbitrary tracks. At the end of a placement phase, all
unoccupied GPRs are included in the routing graph as
unregistered switches. The ability to switch tracks provides an
important degree of flexibility while routing netlists on the
RaPiD architecture.

G
P

R

G
P

R

R
A

M

R
A

M

M
U

L
T

A
L

U

G
P

R

A
L

U

G
P

R

G
P

R

R
A

M

A
L

U

G
P

R

Fig. 20. An example of a RaPiD architecture cell. Several RaPiD cells can be
tiled together to create a representative architecture.

X. PLACEMENT ALGORITHM

The placement of a netlist is determined using a Simulated
Annealing [5], [7] algorithm. The cost of a placement is
formulated as a linear function of the maximum and average
cutsize, where cutsize is the number of signals that need to be
routed across a vertical partition of the architecture for a given
placement. Since the RaPiD interconnect structure provides a
fixed number of routing tracks, the cost function must be
sensitive to changes in maximum cutsize. At the same time,
changes in average cutsize also influence the cost of a
placement. This is because average cutsize is a direct measure
of the total wirelength of a placement.

Pipelining information is included in the cost of a placement
by mapping each pipelining register (a pipelining register is a
register that must be mapped to an interconnect register) in the
netlist to a unique BC in the interconnect structure. Our high-
level objective in mapping pipelining registers to BCs is to
place netlist components such that the router is able to find a
sufficient number of BCs in the interconnect structure while
routing pipelined signals. A more detailed discussion of the
placement algorithm can be found in [9], and [11].

Since pipelining registers are explicitly placed, it might be
possible to solve the register allocation problem during
placement. In general, the pipelining registers in a netlist could
be mapped to registered switch-points in the architecture, and
a simulated annealing placement algorithm could determine a
placement of the pipelining registers. After the placement
phase, a conventional FPGA router (Pathfinder) could be used
to route the signals in the netlist. While this approach is
attractive for its simplicity and ease of implementation, it has a
serious shortcoming. A placement of a netlist that explicitly
maps pipelining registers to registered switch-points eliminates
portions of the routing graph. This is because a registered
switch-point that is occupied by a particular pipelining register
cannot be used by signals other than the signals that connect to
that pipelining register. As a consequence, the search space of
a conventional FPGA router is severely limited, and this
results in solutions of poor quality.

To validate our hypothesis, we ran an experiment on a
subset of the benchmark netlists. The objective of the
experiment was to find the size of the smallest RaPiD array
needed to route (using a pipelining-unaware router Pathfinder)
placements produced by the algorithm described in this

TCAD 2181

12

TABLE I.
OVERHEAD INCURRED IN USING A PIPELINING-UNAWARE ROUTER

(PATHFINDER) TO ROUTE NETLISTS.

NETLIST NORM. AREA
firtm 1
sobel 1
fft16 1.6

imagerapid FAIL
cascade FAIL

matmult4 FAIL
sort_g FAIL
sort_rb FAIL

firsymeven FAIL

section. Note that pipelining registers were explicitly mapped
to BCs in the interconnect structure, and the post-placement
routing graph was modified to reflect the assignment of
pipelining registers to BCs.

Table I presents the results of this experiment. Column 1
lists the netlists in our benchmark set. Column 2 lists the
minimum-size array required to route each netlist using
Pathfinder. The entries in column 2 are normalized to the
minimum-size RaPiD array needed to route the netlists using
PipeRoute. A “FAIL” entry in column 2 means that the netlist
could not be routed on any array whose normalized size was
between 1.0 – 2.0. Table I shows that Pathfinder was unable to
route a majority of netlists on arrays that had double the
number of logic and routing resources needed to route the
placements using PipeRoute. This result clearly showed that
pipelining register allocation is best done during the routing
phase.

XI. EXPERIMENTAL SETUP AND BENCHMARKS

The set of benchmark netlists used in our experimentation
includes implementations of FIR filters, sorting algorithms,
matrix multiplication, edge detection, 16-point FFT, IIR
filtering and a camera imaging pipeline. While selecting the
benchmark set, we included a diverse set of applications that
were representative of the domains to which the RaPiD
architecture is targeted. We also tried to ensure that the
benchmark set was not unduly biased towards netlists with too
many or too few pipelined signals. Table II lists statistics of
the application netlists in our benchmark set. Column 1 lists
the netlists, column 2 lists the total number of nets in each
netlist, column 3 lists the percentage of nets that are pipelined,
column 4 lists the maximum number of registers needed
between any source-sink terminal pair in the netlist (this
number is similar to the latency of the application), and
column 5 lists the average number of registers needed across
all source-sink terminal pairs in the netlist.

While the size of the netlists in Table II might seem small,
remember that a single pipelined signal represents multiple
routing problems. An example of a pipelined signal in the
netlist sort_rb has 38 sinks. The number of registers that

separate the 38 sinks from the source is evenly distributed
between 0 registers and 35 registers. Although this signal is

TABLE II.
BENCHMARK APPLICATION NETLIST STATISTICS.

NUM % MAX AVG
NETLIST NETS PIPELINED DEPTH DEPTH

firtm 158 3 16 5.5
fft16 94 29 3 0.74

cascade 113 40 21 3.88
matmult4 164 44 31 4.62

sobel 74 44 5 1.44
imagerapid 101 51 12 3.46
firsymeven 95 54 31 6.98

sort_g 70 65 35 4.98
sort_rb 63 71 35 5.42

counted as a single signal in Table II, finding a route for this
signal may require hundreds of individual routing searches.
Thus, routing the pipelined signals in the benchmark netlists
clearly represents a problem of reasonable complexity. Also
note that RaPiD is a coarse-grained architecture. Thus, a single
net represents a 16-bit bus.

Applications are mapped to netlists using the RaPiD
compiler [3], and the architecture is represented as an
annotated structural Verilog file. Area models for the RaPiD
architecture are derived from a combination of the current
layout of the RaPiD cell, and transistor-count models. The
delay model is extrapolated from SPICE simulations. Each
netlist is placed using the algorithm presented in Section X.
The placement algorithm places pipelining registers into BC
positions in order to model the demands of pipelining.
However, the BC assignments are removed before routing to
allow PipeRoute full flexibility in assigning pipelining
registers.

The netlists are routed using timing-aware PipeRoute that
can handle multiple-register IO and interconnect sites. A
netlist is declared unrouteable on an architecture of a given
size (where size is the number of RaPiD cells that constitute
the architecture) if PipeRoute fails to route the netlist in 32
tracks.

XII. RESULTS

The objective of our first experiment (Experiment 1) was
to quantify the area overhead incurred in routing the
benchmark netlists on an optimized RaPiD architecture [12].
The logic units in this architecture have registered input
terminals (the original RaPiD architecture in Section IX has
registered output terminals), and between 0 – 3 registers can
be acquired at each input terminal and BC. Also, unlike the
original RaPiD architecture, the optimized RaPiD architecture
in [12] has nine GPRs in every RaPiD cell.

TCAD 2181

13

K1

1 1 1 1 1S

K2

K1

S

K2

Fig. 21. Unpipelining a pipelined signal.

We acquired area numbers by running the entire set of
benchmarks through two place-and-route flows. The first is a
pipelining-unaware flow that treats netlists as if they were
unpipelined. Specifically, all pipelined signals in a netlist are
treated like normal, unpipelined signals (Fig. 21). The
pipelining-unaware placement tool attempts to reduce only
maximum and average cutsize (Section X). The pipelining-
unaware router attempts only connectivity routing, since there
are no registers to be found in the interconnect structure. The
pipelining-unaware place and route flow provides a lower-
bound on the size of the smallest architecture needed to
successfully route the benchmark netlists. This is because the
best area that we can expect from a pipelining-aware flow
would be no better than a pipelining-unaware flow that ignores
pipelining altogether.

The second flow is the pipelining-aware flow described in
this paper. Netlists are placed using the algorithm described in
Section X, and routed using purely congestion-driven
PipeRoute. For both approaches, we recorded the area of the
smallest architecture required to successfully route each netlist.
Table III lists the smallest areas found for each benchmark
netlist using both pipelining-aware and pipelining-unaware
flows. The area overhead varied between 0% (for the netlists
fft16, matmult4 and sobel) and 44% for the netlist firsymeven.
Overall, the geometric mean of the overhead incurred across
the entire benchmark set was 18%. We regard this a
satisfactory result, since a pipelining-aware flow incurs less
than a 20% penalty over a likely unachievable lower-bound.

The objective of our second experiment (Experiment 2)
was to investigate the performance of timing-aware PipeRoute
vs. timing-unaware PipeRoute. For both approaches, we
separately obtained the post-route critical path delays of
benchmark netlists routed on the smallest possible RaPiD
architecture. Table IV shows the results that we obtained.
Across the entire benchmark set, timing-aware PipeRoute
produced an 8% improvement in critical path delay compared
to timing-unaware PipeRoute.

Our final experiment (Experiment 3) was to study whether
there is any relationship between the fraction of pipelined
signals in a benchmark netlist and the area overhead incurred
in successfully routing the netlist on a minimum size
architecture. The area overhead is a measure of the pipelining
‘difficulty’ of a netlist and is quantified in terms of the

TABLE III.
EXPERIMENT 1 – AREA COMPARISON BETWEEN PIPELINING-AWARE AND

PIPELINING-UNAWARE PLACE AND ROUTE FLOWS.

PIPELINING PIPELINING
UNAWARE AREA AWARE AREA

NETLIST (um2) (um2)
sort_g 3808215 5183743
sort_rb 3808215 5752143

fft16 5712322 5712322
imagerapid 6664376 8025125
firsymeven 6897972 9949143

firtm 7257201 7616430
matmult4 7616430 7616430
cascade 7616430 8753230

sobel 9039119 9039119
GEOMEAN 6247146 7347621

TABLE IV.

EXPERIMENT 2 – DELAY COMPARISON BETWEEN TIMING-AWARE AND
TIMING-UNAWARE PIPEROUTE.

TIMING-

NETLIST AWARE (ns)
firtm 6.73 6.63

matmult4 8.27 8.57
sort_rb 9.65 12.61

firsymeven 10.97 9.96
sort_g 11.44 6.07
fft16 13.14 11.6
sobel 14.24 13.25

imagerapid 14.36 12.62
cascade 15.45 15.42

GEOMEAN 11.2112 10.29194

TIMING-
UNAWARE (ns)

following parameters:

�� AL – The area of the smallest architecture required to
successfully route the netlist using a pipelining-
unaware place and route flow.

�� AP – The area of the smallest architecture required to
successfully route the netlist using a pipelining-aware
place and route flow.

�� PIPE-COST – The ratio AP / AL. This is a quantitative
measure of the overhead incurred.

Fig. 22 shows a plot of PIPE-COST vs. the fraction of
pipelined signals in a netlist. The eight data points represent
the PIPE-COST of each netlist in the benchmark set. It can be
seen that an increase in the percentage of pipelined signals in a
netlist tends to result in an increase in the PIPE-COST of that
netlist. This observation validates our intuition that the fraction
of pipelined signals in a netlist roughly tracks the combined
architecture and CAD effort needed to successfully route the
netlist.

XIII. CONCLUSIONS

The main focus of this work was the development of an
algorithm that routes logically retimed netlists on pipelined
FPGA architectures. We developed an optimal 1D router, and

TCAD 2181

14

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FRACTION PIPELINED SIGNALS

A
R

E
A

 O
V

E
R

H
E

A
D

A
R

E
A

 O
V

E
R

H
E

A
D

Fig. 22. Experiment 3 – The variation of PIPE-COST vs. fraction pipelined
signals.

used it in formulating an efficient heuristic to route two-
terminal ND pipelined signals. The algorithm for routing
general multi-terminal pipelined signals borrowed from both
the 1D and ND routers. Congestion resolution while routing
pipelined signals was achieved using Pathfinder. Our results
showed that the architecture overhead (PIPE-COST) incurred
in routing netlists on the RaPiD architecture was 18%, and that
there might be a correlation between the PIPE-COST of a
netlist and the percentage of pipelined signals in that netlist.

The formulation of the pipelined routing problem, and the
development of the PipeRoute algorithm, proceeded
independently of specific FPGA architectures. In the quest for
providing programmable, high-throughput architectures, we
feel that the FPGA community is going to push towards
heavily retimed application netlists and pipelined architectures.
When pipelined architectures do become commonplace,
PipeRoute would be a good candidate for routing retimed
netlists on such architectures.

APPENDIX

A proof that the two-terminal ND Routing Problem
(abbreviated here as 2TND) is NP-Complete via a reduction
from the Traveling-Salesman Problem with Triangle Inequality
(abbreviated here as TSP-TI):

Traveling-Salesman Problem with Triangle Inequality:
Let G = (V,E) be a complete, undirected graph that has a
nonnegative integer cost c(u,v) associated with each edge
(u,v)∈E. We must find a tour of G with minimum cost.
Furthermore, we have the triangle inequality, that states for
all vertices u,v,w∈V, c(u,w) � c(u,v) + c(v,w).

We consider only problems where |V|>2, since all other
cases are trivially solvable. To simplify things, we will convert
the original problem to one with strictly positive costs by
adding one to each edge cost. Since all solutions to the original
problem go through exactly |V| edges, with a solution cost of
say ‘C’, all solutions to the new problem will also have |V|
edges, a cost of C+|V|, and correspond exactly to a solution in
the original problem. Thus, this transformation is allowable.
Note that the triangle inequality holds in this form as well.

A

B C DB DC

RA

R3

R1 R22 3

4

0

32

0 0
4

Fig. A1. Example TSP-TI (left) with edge weights, and the corresponding
2TND (right), with node weights. TSP-TI node A is chosen as the source and
the sink, and N = 2.

As stated in [2], TSP-TI is NP-Complete. We can reduce
TSP-TI to 2TND by transforming all TSP-TI nodes to D-
nodes, and converting the edge-weights of TSP-TI to R-nodes
(Fig. A1). Specifically, let GTSP=(VTSP,ETSP) be the input graph
to TSP-TI, and G2TND=(V2TND,E2TND) be the corresponding
graph we construct to solve TSP-TI with 2TND. Let STSP be an
arbitrary node in VTSP. For each node MTSP∈VTSP, create a
corresponding node M2TND in V2TND, with cost 0. This node is
an R-node if MTSP=STSP, and a D-node otherwise. For each
edge (u,v) ∈ ETSP, let x and y be the nodes in V2TND that
correspond to u and v respectively. Create a new R-node z in
V2TND with cost c(u,v). Also, create edges (x,z) and (z,y) in
E2TND. Solve 2TND with N=|VTSP|-1, and S & K = S2TND, the
node corresponding to STSP.

We must now show that the solution to the 2TND problem
gives us a solution to the TSP-TI problem. One concern is that
the 2TND solution may visit some nodes multiple times, either
from 0-cost nodes or because wandering paths can be as short
as more direct paths. For 2TND problems on the graphs
created from TSP-TI problems, we will define simplified
2TND solutions. Specifically, walk the 2TND solution path
from source to sink. The first time a given D-node is
encountered on this walk will be called the primary occurrence
of that node, and all additional encounters will be called repeat
occurrences. The occurrences of the source and sink node
(which are identical), will be considered primary, and all
others repeat. We now eliminate all repeat occurrences to
create a simplified 2TND. Specifically, let R2TND be any repeat
node on the path, and Pre2TND and Post2TND be the first D-node
or source node occurrence on the path before and after R2TND
respectively. RTSP, PreTSP, and PostTSP are the nodes in VTSP
that correspond to R2TND, Pre2TND, and Post2TND. The cost of
the path segment from Pre2TND to Post2TND is equal to the cost
of the two R-nodes on this path (since D-nodes and source
nodes have a cost of 0), which is equal to c(PreTSP,RTSP) +
c(RTSP,PostTSP). By the triangle inequality, this is no smaller
than c(PreTSP, PostTSP). Thus, without increasing the cost of the
path, or reducing the number of different D-nodes visited, we
can replace the portion of the path from Pre2TND to Post2TND
with the path Pre2TND → Rn2TND → Post2TND, where Rn2TND is
the node in E2TND corresponding to (PreTSP,PostTSP). By
recursively applying this process, we will get a simplified
2TND solution where each D-node appears at most once. Since

TCAD 2181

15

N=|VTSP|-1 is equal to the number of D-nodes in V2TND, this
means that the path visited each D-node exactly once. It also
only visits the source node STSP at the beginning and end of the
path. Finally, the cost of the path is no greater than the cost of
the original 2TND solution.

The simplified 2TND solutions turn out to be solutions for
TSP-TI, with the same cost. We can show this by showing
that the D-nodes traversed in the 2TND solution, plus the S2TND
node, are a tour in TSP-TI. A tour is a simple cycle visiting
all nodes in a graph exactly once. In our simplified 2TND
solution all D-nodes are visited exactly once. By converting
the path that starts and ends at S2TND into a cycle by fusing
together the ends, you also visit S2TND exactly once. The cost
of the simplified 2TND solution is equal to the cost of the R-
nodes traversed, which is equal to the cost of the edges
between the consecutive vertices in the tour of TSP-TI.

It also turns out that every solution to TSP-TI has an
equivalent simplified 2TND solution with the same cost.
Specifically, the tour in TSP-TI can be split at the STSP node,
thus forming a path. The nodes in TSP-TI corresponding to the
edges and vertices in the TSP-TI solution constitute a path
going through at least |VTSP|-1=the number of D-nodes in
V2TND, and thus fulfill most of the requirements of 2TND. The
only issue to worry about is the restriction in TSP-TI that you
cannot enter and exit a D-node on the same edge. However, if
|VTSP| > 2, then the vertices surrounding a vertex in the TSP-TI
path cannot be the same. Thus, TSP-TI never uses the same
edge to enter and leave a node, so the equivalent 2TND
solution will never violate the entry/exit rule of 2TND. Again,
the cost of the TSP-TI and 2TND solutions are the same, since
the edge weights of TSP-TI are identical to the node weights
encountered in the 2TND solution.

As we have shown, all solutions of TSP-TI have a
corresponding, equal cost solution in 2TND, and all simplified
2TND solutions have corresponding, equal cost solution in
TSP-TI. It is also easy to see that there is a polynomial-time
method for transforming TSP-TI into 2TND, then map the
results of 2TND to a simplified 2TND result, and finally
convert this into a solution to TSP-TI. Thus, since TSP-TI is
NP-Complete, 2TND is NP-hard.

It is also clear that we can check in polynomial time whether
N distinct D-nodes are visited, that the solution is a path
starting and ending at S and K respectively, and whether we
ever enter and leave a D-node on the same edge. We can also
check whether the path length is minimum via binary search on
a version requiring path lengths ≤ L. Thus, 2TND is in NP.
Since it is also NP-Hard, 2TND is therefore NP-Complete.

REFERENCES
[1] Altera Inc., “Stratix™ device family features”, available at

http://www.altera.com.
[2] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms,

MIT Press, Cambridge, MA:1990.
[3] D. Cronquist, P. Franklin, C. Fisher, M. Figueroa, and C. Ebeling,

“Architecture design of reconfigurable pipelined datapaths”, Twentieth
Anniversary Conference on Advanced Research in VLSI, pp 23-40,
1999.

[4] C. Ebeling, D. Cronquist, and P. Franklin, “RaPiD - reconfigurable
pipelined datapath”, 6th International Workshop on Field-
Programmable Logic and Applications, pp 126-135, 1996.

[5] S. Kirkpatrick, C. Gelatt Jr., and M. Vecchi, “Optimization by simulated
annealing”, Science, 220, pp. 671-680, 1983.

[6] L. McMurchie and C. Ebeling, “PathFinder: a negotiation-based
performance-driven router for FPGAs”, ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp 111-117, 1995.

[7] C. Sechen, VLSI Placement and Global Routing Using Simulated
Annealing, Kluwer Academic Publishers, Boston, MA: 1988.

[8] U. Seidl, K. Eckl, and F. Johannes, “Performance-directed retiming for
FPGAs using post-placement delay information”, Design Automation
and Test in Europe, pp. 770 – 775, 2003.

[9] A. Sharma, “Development of a place and route tool for the RaPiD
architecture”, Master’s Project, University of Washington, December
2001.

[10] A. Sharma, C. Ebeling, and S. Hauck, “PipeRoute: a pipelining-aware
router for FPGAs”, ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp 68-77, 2003.

[11] A. Sharma, C. Ebeling, and S. Hauck, “PipeRoute: a pipelining-aware
router for FPGAs”, University of Washington, Dept. of EE Technical
Report UWEETR-0018, 2002.

[12] A. Sharma, K. Compton, C. Ebeling, and S. Hauck, “Exploration of
pipelined FPGA interconnect structures”, ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp 13-22, 2004.

[13] A. Singh, A. Mukherjee, and M. Sadowska, “Interconnect pipelining in
a throughput–intensive FPGA architecture”, ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, pp 153-160, 2001.

[14] D. Singh, and S. Brown, “The case for registered routing switches in
Field Programmable Gate Arrays”, ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp 161-169, 2001.

[15] D. Singh, and S. Brown, “Integrated retiming and placement for Field
Programmable Gate Arrays”, ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp 67-76, 2002.

[16] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung, O. Rowhani,
V. George, J. Wawrzynek, and A. DeHon, “HSRA: high-speed,
hierarchical synchronous reconfigurable array”, ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 1999.

[17] N. Weaver, J. Hauser, and J. Wawrzynek, “The SFRA: a corner-turn
FPGA architecture”, ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pp. 3 – 12, 2004.

[18] N. Weaver, Y. Markovskiy, Y. Patel, and J. Wawrzynek, “Post-
placement C-slow retiming for the Xilinx Virtex FPGA”, ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pp. 185
– 194, 2003.

[19] Xilinx Inc., “VirtexII™ platform FPGA features”, available at
http://www.xilinx.com.

Akshay Sharma received the B.E. degree in Electronics and
Communications Engineering from the University of Delhi, New Delhi, India
in 1999. He received the M.S. degree in Electrical Engineering from the
University of Washington, Seattle, WA in 2001, where he is currently
pursuing a Ph.D. in Electrical Engineering. His research interests include
VLSI CAD algorithms, high-performance FPGA architectures, and
nanocomputing.

Carl Ebeling received the B.S degree in Physics from Wheaton College in
1971 and the Ph.D. degree in Computer Science from Carnegie-Mellon
University in 1986. He then joined the Department of Computer Science at
the University of Washington, where he is currently Professor of Computer
Science and Engineering. He has worked on special-purpose VLSI
architectures and CAD tools, including the Triptych FPGA architecture, the
Pathfinder routing algorithm and the RaPiD coarse-grained configurable
architecture. His current research is focused on programming and compiling
for coarse-grained configurable architectures. In a former life, he wrote the
Gemini layout-to-schematic comparison program and designed the Hitech
chess machine.

TCAD 2181

16

Scott Hauck is an Associate Professor of Electrical Engineering at the
University of Washington. He received the B.S. in Computer Science from U.
C. Berkeley in 1990, and the M.S. and Ph.D. degrees from the University of
Washington Department of Computer Science. From 1995-1999 he was an
Assistant Professor at Northwestern University. Dr. Hauck's research
concentrates on FPGAs, including architectures, applications, and CAD tools.
For these efforts he has received an NSF Career Award, a Sloan Fellowship,
and a TVLSI Best Paper award.

