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ABSTRACT

Machine learning (ML) is becoming an increasingly important component of
cutting-edge physics research, but its computational requirements present sig-
nificant challenges. In this white paper, we discuss the needs of the physics
community regarding ML across latency and throughput regimes, the tools and
resources that offer the possibility of addressing these needs, and how these can
be best utilized and accessed in the coming years.
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1 Introduction

The field of machine learning (ML) has exploded in the last decades. Many of the ad-
vances in the field have come hand in hand with advances in computing as algorithms have
become increasingly complex, and ML is now in use across a wealth of research domains
and industries. In physics, specifically, ML has become a widely used tool for applications
ranging from event classification to particle identification to energy regression. New ML
algorithms have improved both the performance and scope of these algorithms, but at the
cost of algorithm complexity. This evolution results in algorithms that can become compu-
tationally intensive or slow, potentially to an extreme degree. As more complex algorithms
are developed, and as the ML needs of physics research grow in the next decade, it will
be vital for the physics community to be prepared with the computing tools and resources
necessary to handle this growth.

Just as no single ML architecture is most appropriate for all problems, no single tool
or resource for performing inference will address every physics use case effectively. Indeed,
as technologies and fields evolve so too will the methods most adapted to each use. The
goal of this white paper is not to lay out exactly how ML should be done for every physics
application, but instead to present ideas that are capable of collectively addressing the
needs of current and future physics experiments across frontiers. These options come in
many forms. Hardware that can be faster and more efficient than traditional CPUs for
inference is one possibility for reducing the overall computing load of ML. Indeed in some
cases specialized hardware is the only possible way to perform inference fast enough to
be used effectively. Other options for improved inference come in the form of software
and computing paradigms. These tools can improve the overall latency and throughput
of inference and also reduce the computing complexity, significantly lowering the cost for
users to develop optimized workflows. Finally, there are multiple resource groups capable of
enabling access to make use of these tools. Cloud computing and in-house clusters are both
options, as are high-performance computing (HPC) centers. For environments that require
microsecond-scale inference latencies, specialized resources for heavily leveraging FPGAs
are necessary. Taken together, and used effectively, these tools and resources can enable
the novel ML that we believe will help drive the field of physics forward in the next decade.

The layout of this white paper is as follows. Section 2 discusses the needs for ML
in different frontiers, including colliders, neutrinos, and astrophysics. Section 3 presents
the different hardware and software tools that are available for accelerated ML and their
advantages. The necessary resources to properly utilize these tools for different use-cases are
examined in Section 4, and some potential exciting applications are presented in Section 5.
A summary and outlook is provided in Section 6.

2 Needs

The ML needs of every experiment are inherently different. These needs are dictated by
many factors, such as the data formats, the system latencies, and the existing resources and
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Figure 1: Plot of the streaming data rate in bytes per second and latency requirements in
seconds for various experiments. Points of comparison from industry and other scientific
fields are also included. The size of the bubbles represents the total per year data volume.
Taken from Ref. [1].

workflows. In order to frame the discussion of tools and resources we present the ML needs
in three distinct fields (collider physics, neutrino physics, and astrophysics). In each case
ML has already begun to be widely adopted in certain contexts, and the needs are only
expected to grow in the future. A summary of the approximate data rates and latencies for
experiments across these frontiers is shown in Fig. 1.

2.1 Collider Physics

Data acquisition at collider experiments roughly fall into three separate tiers where recon-
struction is applied at varying levels. At each tier the latency and throughput demands of
the reconstruction are quite different making the deployment of machine learning algorithms
also quite different. Moreover, the computing hardware between the different reconstruction



tiers is also quite different. The combination of both of these demands make it such that
the deployment of ML algorithms, and both the size and usage of ML algorithms varies
greatly across reconstruction tier.

In the first tier of reconstruction at a collider experiment, data is often collected at an
incredible rate. At the Large Hadron Collider (LHC), collisions occur at a rate of 40 MHz.
With a single collision carrying several megabytes of raw information, overall data rates can
approach a petabit per second. As a result of the large data rate and the harsh collision
environment, the full event information can only be stored for roughly 10 microseconds [2, 3].
As a result, an interconnected set of field-programmable gate arrays (FPGAs) are required
to allow for the reconstruction of full events within the 10 microsecond window. This stage
of reconstruction is known as the Level-1 trigger (L1T). As a result of these constraints,
ML algorithms that are developed for this tier of reconstruction need to be small, and,
depending on the reconstruction tier, to involve only local information. Furthermore ML
algorithms are required to run within the strict latency constraints, typically less than a
microsecond.

By selecting, on average, the most interesting collision amongst one hundred, the first
tier of reconstruction reduces the overall data rate by two orders of magnitude. The second
tier of reconstruction at a collider experiment, known as the high-level trigger (HLT), then
takes this data and performs a much more thorough event reconstruction. Data selected for
the HLT are shipped from the detector to a computing farm [4, 5]. As a result, the data are
not stored in electronics subject to the harsh collider collision environment. These conditions
along with the reduced data rate allow for a loosening of the latency constraint from a fixed
10 microseconds to roughly 1 second or less in some cases. Furthermore, the lower data
rate allows for the use of more conventional CPUs and graphics processing units (GPUs)
to perform the reconstruction. The larger latency and access to conventional processing
hardware allows for a large array of ML algorithms, provided they can be run within the
latency constraints. Since these constraints are softer, algorithms can batch inputs together
to process many collisions in parallel, allowing for the possibility of additional throughput
gains when deploying these algorithms.

The final tier of reconstruction, typically referred to as offline reconstruction, takes in
collisions selected by the HLT at a rate of a few kHz. At this tier, there is no latency
requirement, and algorithms can take up to seconds per collision to run. ML algorithms
thus have no constraints. Furthermore, recent developments in offline computing have
allowed for the possibility of GPUs or other heterogeneous computing to be deployed for
ML inference [6].

New generations of collider experiments are starting to pursue variations on these ML
approaches. In particular, the LHCb experiment has largely eliminated the first tier of
reconstruction and instead built a significantly larger HLT [7]. Additionally, future nuclear
physics experiments are pursuing “full-streaming” readout, whereby they aim to read out
all of the data in its raw form without a trigger, and then reconstruct the data offline
over a substantially longer timescale [8]. These variations limit the need for FPGA-based
or readout-based ML, at the cost of demanding more complicated, higher throughput ML
computing downstream.



2.2 Neutrino Physics

In neutrino physics, ML and in particular applications of image recognition for neutrino
identification have been growing [9-11], due to the increasing use of large, high-resolution
tracking calorimeters as neutrino detectors. Deep learning applications now span the full
extent of data processing for neutrino experiments, including data acquisition [12-15], final
data analysis (see, e.g. Ref. [16-18]), and in particular data reconstruction (see, e.g. Ref. [19-
21)).

A detector technology ideally suited for computer vision applications in neutrino physics
is that of liquid argon time projection chambers (LArTPCs)—employed by the future
DUNE [22], current MicroBooNE [23], and upcoming SBN [24] experiments. These de-
tectors function as stereoscopic image streaming devices, offering the possibility of direct
application of image recognition at as early as the data acquisition stage, for triggering
purposes. For the time being, however, applications of deep learning algorithms for these
experiments have predominantly been focused on data reconstruction and final analysis
tasks (see, e.g. Ref. [25-34]). Beyond LArTPC experiments, other neutrino experiments
such as NOvA [35], MINERvVA [36], Daya Bay [37], KamLAND-Zen [38], KM3NeT [21],
and IceCube [39, 40] are also making extensive use of ML for reconstruction and analysis
purposes.

Event record sizes for neutrino detectors can be as large as 100 TB (for a supernova
burst in the DUNE far detector), and typically of order of < 1 GB for the current generation
of LArTPC experiments, challenging data reconstruction work flows. With the use of
increasingly larger and higher-resolution detectors, and the need for continuous readout
for off-beam, rare-event physics searches, data readout and trigger challenges for neutrino
experiments also begin to approach those of current collider experiments. For example,
the future DUNE [41] will be generating raw data rates of several terabytes per second,
and plans to be operated for at least a decade and with a 100% live-time in order to be
sensitive to supernova neutrinos and other rare and stochastic beam-unrelated signals. New
developments in ML applications for neutrino physics target GPU-accelerated ML inference
as-a-service (see Sec. 3.2) for computing in neutrino experiments for data reconstruction
purposes (see, e.g. Ref. [42]), as well as GPU- or FPGA-based acceleration of ML algorithms
such as 1D or 2D CNNs in real-time or online processing of raw LArTPC data at the data
acquisition and trigger level [12-14].

2.3 Astrophysics

The growing number of astronomical instruments, including both ground- and space-based
observatories, e.g. the Zwicky Transient Facility [43], the Submillimeter Array [44], the
Very Large Array [45], the Neutron star Interior Composition Explorer (NICER) [46], the
Neil Gehrels Swift Observatory [47, 48], amongst many others all across the electromagnetic
spectrum, and starting recently also in gravitational waves [49], are challenging the existing
data analysis paradigms.

So far, the usage of CPU and GPU clusters, combined with some level of human su-



pervision, has been generally sufficient to perform the required source detection, classifi-
cation, and parameter estimations. However, there are several considerations that call for
a paradigm shift. These include the exponential growth of data sets provided by the in-
struments, the interconnections between observations with all messengers (light, neutrinos,
and gravitational waves), and the intrinsic timescales over which violent transient astro-
physical sources with multi-messenger signatures develop, all of which make unattainable
any human supervision/human-in-the-loop models, including requiring O(1s) latencies for
processing data and disseminating results within the broader community for follow-up.

Some areas of transient astronomy have long been using machine learning techniques, e.g.
Ref. [50]. However, newly established gravitational-wave astronomy with the ground-based
km-scale interferometers like Advanced LIGO [51], Advanced Virgo [52], and KAGRA [53]
need a general infrastructure where ML models can be trained, deployed, and used for data
analysis in a transparent way for the end-user, while factoring out the data acquisition
and packaging protocols used in interferometry (see Ref. [54] for a summary of the various
applications). Altogether, it is the combination of providing accessibility and enabling ML
algorithms with dedicated hardware that will yield the necessary automation, scalability,
and latencies to meet the challenges and discovery potential of multi-messenger astronomy
and astrophysics.

3 Tools

The needs of physics experiments for fast and large-throughput ML inference will require a
range of tools to address. These tools are emerging from both industry and within physics.
We divide them into two categories: hardware and software. The first category encompasses
specialized hardware that is capable of improved performance with respect to traditional
CPUs, as well as the software that exists for enabling the deployment of algorithms to
run on these specialized processors. The second category encompasses software capable of
integrating ML inference into existing workflows and supporting at-scale computing of ML
inference. We also present lessons from the deployment of ML in industry. We note that,
although some tools for ML in industry may differ from those that are most useful in physics
research, there is still much that can be learned.

3.1 Hardware

While CPUs represent the core technology for computing, they are not particularly efficient
for ML inference. In order to enable low latency and high throughput inference alternative
hardware will be a crucial addition to computing workflows. A summary of the most
common hardware is shown in Fig. 2. GPUs are the most well-known hardware capable of
performing ML inference faster than CPUs. Other alternative architectures like FPGAs,
application-specific integrated circuits (ASICs), and new neuromorphic architectures (tensor
processing units (TPUs) [55], intelligence processing units (IPUS) [56], and more) have also
become popular more recently due to their low power usage and speed.



ASICs

Figure 2: Silicon alternatives from most flexible (left) to most efficient (right), including
CPUs, GPUs, FPGAs, and ASICs. TPUs (not pictured) are a relatively new development,
which have flexibility similar to GPUs, but may have higher efficiency for ML inference.
Figure adapted from Ref. [57].

3.1.1 GPUs

GPUs are specialized electronic circuits designed to rapidly manipulate and alter memory
to accelerate the creation of images in a frame buffer intended for output to a display
device. Figure 3 shows the architecture differences between CPUs and GPUs. Compared
with CPUs, which are composed of a few cores with lots of cache memory good for serial
processing, GPUs are composed of thousands of cores. This enables GPUs to perform
parallel operations on very large sets of data with much lower power consumption. While
individual CPU cores are faster and more flexible, the large number of GPU cores and
massive amount of parallelism make up for the single-core speed difference. GPUs are
therefore well-suited for repetitive and highly parallel computing tasks.

Core Core

L1 Cache L1 Cache

Core Core

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache

L2 Cache

DRAM

CPU GPU

Figure 3: Architecture difference between CPUs and GPUs. Figure taken from Ref. [58].

Inference, as well as training, of ML models essentially consists of a large amount of
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Figure 4: Simplified view of an FPGA architecture with programmable logic blocks and
programmable interconnects. Figure adapted from Ref. [66]

complicated matrix operations. These operations are a very good fit for GPUs, especially
when large batch sizes can be enabled. In the latest MLPerf inference benchmarks [59],
the throughputs on NVIDIA A100 GPUs are about O(100) times faster than Intel Xeon
CPUs. The inference latency is typically around O(1) ms to O(10) ms per batch, well below
the HLT latency requirement (O(100) ms). Accelerating both HLT and offline productions
with GPUs is therefore a very promising direction.

Currently widely-used GPU programming languages include CUDA [60], OpenCL [61],
and OpenACC. Major ML frameworks are well-supported on GPUs, such as Tensorflow [62],
PyTorch [63], and ONNX [64]. Besides quantization and pruning (discussed in the following
section), there are also well-established and supported tools to optimize and accelerate ML
inference on GPUs, such as TensorRT [65]. These tools have the potential to dramatically
increase the throughputs and reduce the cost.

3.1.2 FPGAs

Field-programmable gate arrays (FPGAs) are digital integrated circuits that contain con-
figurable (i.e., programmable) blocks of logic along with configurable interconnects between
these blocks as shown in Fig. 4. Algorithm designers can program such devices to per-
form an array of tasks. Modern FPGAs also feature high bandwidth I/O connections and
specialized components for multiplications (DSPs) or storing memory (block RAM).

Relative to CPUs, FPGAs can achieve much lower latencies for certain algorithms. In
particular given the latency demands of Level-1 trigger systems at the LHC [2, 3, 67, 68],
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which are of order microseconds, an FPGA-based design is necessary. Certain changes need
to be made to the ML algorithms to enable efficient processing on an FPGA. Namely, these
are: quantization [69-73], or the use of reduced precision operations, e.g. 16-bit fixed-
point precision instead of 32-bit floating point precision, and compression [74-77], or the
removal of unnecessary or redundant operations. As an example, a reference benchmark
autoencoder for anomaly detection runs on a CPU in 10 ms, whereas a modified version of
the same algorithm can be run on an FPGA in 9.6 us [78, 79].

Programming these devices requires highly specialized knowledge of register transfer-
level (RTL) languages, like Verilog or VHDL, and vendor tools. For this reason, custom
source-to-source compilers, also known as transpilers, have been developed that can lower
the barrier to entry for deploying ML algorithms on FPGAs by generating FPGA-ready
firmware directly from trained ML models. Many of these compilers leverage high-level
synthesis (HLS) [80-83], which is an alternative way of generating hardware modules from
code written in high-level programming languages like C/C++. Two such compilers are
hls4ml [84] and FINN [85], although many others exist in the literature [86-94]. In partic-
ular, hls4ml has enjoyed wide usage within the particle physics community thanks to its
flexibility and ease of use, especially for L1 trigger applications [3]. Current applications
include binary and ternary neural networks [71], boosted decision trees [95], quantization-
aware training [72], convolutional neural networks [96], graph neural networks [97, 98], and
(variational) autoencoders [99].

Finally, FPGAs are not only applicable in the case of ultralow latency ML inference.
They also have use in datacenters for high-throughput inference tasks [100, 101], such as
for processing of large experimental datasets. This is discussed further in Sec. 3.2.2.

3.1.3 ASICs

For many particle physics experiments, the on-detector “front end” electronics consist of
one or more ASICs working together to perform tasks such as data readout, calibration, and
compression. Often an ASIC is the only choice for these tasks, due to strict requirements
on power consumption, radiation tolerance, and latency. As detectors of the near future
will generate data at unprecedented rates, these custom chips must be relied on to perform
increasingly sophisticated processing in order for total recorded data volumes to be kept
manageable, making ML algorithms a natural choice.

Here as in the case of FPGAs, specialized tools are required to port models trained with
standard methods to a hardware design, specified in RTL. However, recent capabilities of
certain transpilation tools to specifically target ASIC architectures has enabled the use of
similar toolkits such as hls4ml to specify completely custom circuits [102]. In particular,
this HLS flow enables quick prototyping so that designers can understand tradeoffs between
model performance and the total chip area needed and estimated power consumption for
their design.

Finally, the complete customizability of the ASIC provides for interesting options to
allow for future flexibility of the ML model even once the final ASIC has been fabricated.
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Ref. [103] illustrates an intermediate choice in which the CNN architecture is fixed, while
weights may be reset via 12C registers, enabling reconfigurability to adapt to changing
conditions over the lifetime of the experiment. For applications requiring radiation tol-
erance, triplication of these weight parameters can ensure robustness to single-event ef-
fects [104, 105].

3.1.4 1IPUs

Intelligence Processing Units (IPUs) are massively parallel processors developed by Graph-
Core, with the design aim of efficient executions of fine-grained operations across a relatively
large number of parallel threads [106]. In contrast to GPUs, IPUs offer “Multiple Instruction
Multiple Data” (MIMD) parallelism and adapt well to fine-grained, irregular computations
that exhibit irregular data access. Fig. 5 provides a simplified view of an MK2 GC200 IPU
architecture. Each IPU contains 1472 processing elements (“tiles”); each tile consists of
one computing core and around 600KB of local memory. IPU tiles communicate among
themselves via links and with CPU-based hosts via ezchange.

IPU-Tiles™ .
1472 independent IPU-Tiles™ each with an H
IPU-Core™ and In-Processor-Memory™

IPU-Core™

1472 independent IPU-Core™
8832 independent program threads
executing i parallel

In-Processor-Memory™

'900MB In-Processor-Memory™ per IPU * ——in
|
475TB/s memory bandwidth per IPU = |

I
|
|
I
I
|
I
|
|
|
| IPU-Exchange™
— R P
==4 8T8/s all to all IPU-Exchange™
| Non-blocking, any communication pattern
|
|
|

PCle

PCl Gend x16
64 GB/s bidirectional bandwidth to host

E 1 IPU-Links™

10 x IPU-Links,
320G8/s chip to chip bandwidth

Figure 5: Simplified view of an IPU architecture. Figure taken from Ref. [56].

IPU programming is based on the Poplar SDK [107], co-designed with the IPU hard-
ware. Currently the popular ML frameworks, such as Tensorflow [108], PyTorch [63], and
ONNX [64], are well-supported with Poplar on IPUs. In the latest benchmark results re-
leased by GraphCore [109] on the training and inference of various popular ML models with
different frameworks, IPUs outperform the state-of-art GPUs with higher throughputs and
lower costs. Similar to GPUs, IPUs can potentially contribute to ML algorithm acceleration
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for both HLT and offline computing in HEP.

3.1.5 Other specialized processors

Other next-generation processor technologies are starting to emerge that could potentially
dramatically improve the ability to perform ML computations. By restricting the proces-
sor technology to target these computations, optimized processors can be developed that
explicitly target ML operations. One intriguing future possibility comes from optical based
ML processors [110-112]. Optical ML processors can operate at THz frequencies, leading
to the possibility of running deep neural network inference within one nanosecond. Recent
developments have allowed manufacturing these processors with conventional CMOS tech-
nology. Current optical-based technology is capable of running neural network interference
with small networks (O(1,000) weights). Newer innovations could potentially allow for
running inference for larger deep learning algorithms.

Tensor processing units (TPUs) are another type of optimized processor, designed by
Google particularly for use with TensorFlow [55]. Like many other specialized processors,
they make heavy use of quantization techniques to reduce latency and resources. TPUs are
capable of processing hundreds of thousands of operations in a single clock cycle [113], and
are optimized to perform operations like large matrix multiplications for training neural
networks and image-based network inference, especially for very large networks. While
TPUs are extremely performant at these tasks, these tasks do not represent a significant
component of expected ML inference needs for physics.

3.2 Software

The architectures discussed above are capable of major performance improvements over
standard CPU workflows, but achieving these performance improvements can be difficult.
Industry tools have been designed in many cases to provide fast inference for single processes
and maintaining this performance across the potential range of architectures and system
designs is difficult. As a result of the popularity of GPUs, many industry tools are designed
especially to make use of GPUs, but other tools exist from industry and in physics to
make use of other architectures. Integrating these tools and architectures into existing
workflows can be non-trivial, and as a result methods to simplify this process are vital,
particularly at production scale. Paradigm shifts in computing such as the as-a-service
model can enable more effective workflows not only for heterogeneous computing but also
for CPU-only inference.

3.2.1 Integration into existing workflows
In a traditional computing model, a given CPU is responsible for processing the entirety

of a given workflow, with each CPU capable of processing data in parallel to the others.
The integration of alternative architectures, or coprocessors, into this paradigm can take

13



multiple different forms. The simplest option conceptually is to connect a coprocessor to
each CPU, and to use existing tools to offload part of the workflow to the coprocessor. In
the case that ML inference is a significant component of the workflow in terms of latency,
the offloading of the inference to the coprocessor can provide a large reduction in the overall
processing time. While this is effective for smaller systems, its use in larger systems with
many CPUs requires many coprocessors. This can incur significant costs and also make it
difficult to make full use of each coprocessor. An alternative paradigm, called computing
“as-a-service” (aaS), attempts to overcome these limitations by eliminating the need for
direct connection between each CPU and coprocessor [114-116]. In the aaS paradigm,
coprocessors are connected to CPUs known as servers, and other CPUs known as clients
communicate with the server CPUs over a network connection. Clients directly perform
the non-accelerated components of the workflow and send the inputs necessary to perform
the accelerated components to the server. This paradigm allows the management of the
coprocessor to be separated from the clients, which can alleviate conflicts between the needs
of ML inference and the needs of an existing system and workflow. Additionally, the aaS
paradigm simplifies the addition or removal of coprocessors from the workflow, which can
be extremely beneficial as architectures improve or are phased out of service.

3.2.2 Services for Optimized Network Inference on Coprocessors

Services for Optimized Network Inference on Coprocessors (SONIC) is a software design pat-
tern to integrate a client-server approach for inference as a service into experiment software
frameworks (which are usually based on C++). It offers useful abstractions to minimize
dependence on specific features of the client interface provided by a given server technology.
SONIC has been implemented in the CMS software [6, 100, 101] and in LArSoft for pro-
toDUNE [42]; it is being explored by other experiments including ATLAS. Asynchronous,
non-blocking calls are the most efficient approach [117], because the communication between
the client and the server proceeds in parallel with other work continuing on the local CPU,
therefore hiding the impact of transmission latency. However, synchronous, blocking calls
may still provide significant speedups if a workflow is dominated by ML algorithm infer-
ence that can be offloaded to faster coprocessors. Here, we provide a brief overview of the
advantages of SONIC. More details can be found in the aforementioned references, which
also provide performance results showing speedups by more than an order of magnitude for
a variety of ML algorithms.

e Flexibility: Allowing multiple clients to connect to multiple coprocessors enables
many arrangements to ensure optimal usage of all devices.

e Cost-effectiveness: Related to flexibility, using coprocessors optimally reduces the
number of coprocessors that must be purchased to support algorithm inference.

e Symbiosis: SONIC facilitates the use of existing industry tools and developments
(see Section 3.2.3), rather than requiring HEP software developers to reimplement
common tasks such as ML algorithm inference repeatedly for different ML frameworks,
coprocessors, etc.
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e Simplicity: SONIC modules only implement conversions of input and output data,
which reduces the amount of code necessary to develop and maintain in order to
perform ML algorithm inference.

e Containerization: The client-server model keeps the ML frameworks separate from
the experiment software framework, which eliminates the significant workload needed
to integrate two software systems that each have their own complicated dependencies.

e Portability: SONIC enables experiment software workflows to swap between CPUs,
GPUs, FPGAs, and other coprocessors such as IPUs without any code changes. In
some cases, even the choice of ML framework can be changed with no other modifi-
cations.

It should be understood that the flexibility of SONIC is solely an advantage, in that it
provides options, but does not require them to be used. In particular, SONIC facilitates
the use of co-located or remote (e.g. cloud) coprocessor resources that may not be directly
connected to worker CPUs. However, many of the other advantages of SONIC can still
be realized even if it is just used as an abstraction to interact with directly-connected
coprocessors. SONIC can also offload non-ML algorithms, but this may lack the advantage
of automatic portability that comes with ML. While the use of separate servers and/or
separate inference processes does add some complexity to experiment workflows, this is of
a similar magnitude as, for example, conditions databases or remote data access protocols
that are already widely used.

3.2.3 Industry tools

Existing implementations of SONIC [6, 42] focus on the open-source Triton inference server
from Nvidia [118]. It offers a number of useful features, including:

e Support for all modern ML frameworks

e Support for non-ML algorithms and even non-Nvidia coprocessors via custom back-
ends loaded by the server

e Standardized protocols, http or gRPC [119], to communicate between the client and
the server

e Load balancing for multi-GPU servers

e Dynamic batching: combining multiple requests for the same algorithm to be pro-
cessed more efficiently in GPU memory

e Usage of shared memory for faster communication with directly-connected processors
(CPU or GPU)

e Input/output compression to conserve bandwidth

15



e Tools to optimize algorithm deployment on the server

The extensible nature of the server, with its standardized protocols and custom backends,
has already been used to deploy servers that conduct inference on FPGAs or IPUs rather
than Nvidia GPUs. This enables the automatic portability that is a key advantage of the
SONIC approach. Previous implementations of SONIC have used the Microsoft Brainwave
API [120] as well as wrapping the TensorFlow C++ API. In the future, other client-server
technologies such as the interprocess communication (IPC) provided by Apache Arrow [121]
could be considered.

The use of industry client-server technologies enables, though it does not require, the use
of commercial cloud resources and associated software tools. All major providers—Google
Cloud, Amazon Web Services, and Microsoft Azure—have been used successfully to host
coprocessor servers that provide GPUs or FPGAs. The option to use cloud computing is
also useful to test new devices such as IPUs [122]. Kubernetes [123] is an extremely powerful
and versatile tool to orchestrate these cloud servers, and it is therefore worth investigating
seriously for HEP-specific grid computing centers as well.

3.3 Lessons from industry

Significant effort in industry has been dedicated to developing software frameworks, com-
puting and networking systems, and hardware accelerators to meet the broad range of
demands for ML solutions in various fields. These range from smart Internet of Things
(IoT) domains (e.g., smart city, smart manufacturing, wearable healthcare devices, and se-
curity surveillance) to computer vision (e.g., autonomous driving, unmanned aerial vehicles,
and augmented/virtual reality) to data analytics applications (e.g., those encountered in
particle physics for scientific discovery). Many industry tools focus on ease of use, and as
such development flows have been streamlined and been made highly efficient. The impor-
tance of these easy-to-use frameworks and tools such as PyTorch [63], TensorFlow [62, 108],
and ONNX [64] remaining open source is of vital importance to the physics community.
Tools that are not open source can be difficult to use due to a lack of ability to adapt to
the specifics of physics workflows.

For low-latency solutions that may require FPGAs as hardware accelerators, the com-
mercial HLS tools from major FPGA vendors, such as AMD/Xilinx and Intel/Altera, are
of critical importance. The broad usage of FPGAs (and ASICs) for ML in physics is highly
dependent on these HLS tools. These vendors also offer ML-specific design flows. For
example, AMD/Xilinx offers the Vitis AI development environment for AI inference on
AMD/Xilinx hardware platforms, that contains optimized IP, tools, libraries, models, and
example designs. It also offers AT Model Zoo, which provides optimized and retrainable Al
models for fast deployment and high-performance accelerations. It is useful to note that
the low-latency regime for industry is typically focused on latencies of approximately 1 ms.
While these latencies are appropriate for many physics applications, there also exists cases
with latency needs in the sub-microsecond regime, far below the target of most industry
tools.
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Industry has seen much success through efforts coordinated between users, application
developers, hardware vendors, and computing and networking solution providers to help
create a highly functional ecosystem. This is essential for the fast growth of ML-driven
businesses. The scientific community can learn from this and carry out coordinated efforts
among researchers and practitioners in physics, computer science, engineering, and hardware
systems to achieve our ultimate research goals. We should also continue to develop dedicated
and customized HLS solutions, compilers, and hardware systems in order to achieve high
computation efficiency and low latency for the ML algorithms specific to our scientific
domains.

4 Resources

While some physics workflows have already begun to incorporate coprocessors, many are still
limited only to CPUs. The variety of resources for accessing coprocessors will be important
as ML inference and computing needs expand. While some experiments are able to make
use of more generic options, many applications will require special resources.

4.1 On- and off-detector real-time electronics

Machine learning integrated into the detector real-time electronics provides powerful data
reduction capabilities, particularly for very high data rate or low latency applications at
the LHC, DUNE, particle accelerators, and many more [124]. We are considering here ap-
plications ranging from on-detector data concentrator or aggregation in ASIC or FPGAs to
off-detector real-time trigger or filtering based on feature extraction of physics observables.
To consider such a wide range of custom requirements for each specific application—with
different bandwidths, latencies, interfaces, hardware platforms—makes developing common
resources challenging. Therefore we broadly consider two types of resources needed for the
development of custom electronics ML solutions: hardware platforms and electronic design
automation (EDA) tools.

Hardware platforms can vary from custom ASIC chips to custom FPGA systems to off-
the-shell electronics boards. Custom hardware solutions are tailored to specific experiments,
particularly in the case of ASICs, but there are some FPGA readout systems than can serve
multiple experiments such as OTSDAQ/CAPTAN [125, 126], RCE [127], and FELIX [128].
Beyond that, flexible off-the-shelf solutions for use-cases with less stringent requirements are
becoming increasingly popular. There are a wide range of examples that make compiling
a complete list challenging. They can range from commercially available system-on-chip
(SoC) or system-on-module (SoM) partial solutions that can be integrated into a larger
system—for example, an Arrial0 SoM [129] being explored for accelerator controls—to
development kits to complete solutions like the Alveo [130]. The Alveo is even available in
the cloud [131] and can be used for prototyping.

Resources for electronics synthesis and integration can be extremely expensive, including
maintaining licenses and also support more generally. In the previous section, we discussed
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tools for ML translation to hardware description language; however, integrating those al-
gorithms into FPGA or ASIC systems requires licenses for expensive EDA tools. FPGA
tools such as Vivado [132] and Quartus [133] are not relatively expensive compared to ASIC
tools, but are much more widely used, and university and laboratories need to reserve re-
sources to maintain licensing of those tools. For ASIC development, the cost can be an
order of magnitude or more greater for EDA tools (which can also synthesize designs for
FPGAs) from vendors like Cadence [134], Synopsys [135] and Siemens [136]. Two potential
paths that should be supported to reduce resources include: (a) joint agreements across
laboratories and universities and the vendors to reduce overall costs and (b) exploration of
open-source solutions. For (b) in particular, the trend towards open-source hardware both
for FPGAs and ASICs continues to grow with the development of tools like Symbiflow [137],
Yosys [138], and SkyWater SKY130 PDK [139].

4.2 Cloud providers

Perhaps the simplest way to acquire large-scale computing resources on a short timescale is
the utilization of cloud resources, such as Google Cloud Platform (GCP) [140] or Amazon
Web Services (AWS) [141]. By coordinating with the provider, it is straightforward to
acquire O(10,000) CPU threads and O(100) GPUs for use at a given time. There is also
flexibility to choose from a variety of CPU platforms and GPU types [142-144], change the
platform at will, and create custom images to deploy in all instances.

To manage these large-scale resources, one can use pre-existing paradigms, such as
HEPCloud [145], which emulates the HTCondor distributed computing system, dynamically
allocating and removing worker nodes in the cloud as needed. It is also possible to build a
custom SLURM workload manager in the cloud. The HEPCloud approach allows for greater
ease of access, as relatively little user-side expertise is needed, while the SLURM approach
allows for somewhat more control over resource configuration and the use of GPUs in worker
nodes, though a greater deal of user-side effort and knowledge is required to correctly
configure cluster networks and images.

While the cloud provides for quick large-scale access to computing resources, costs can be
prohibitive for long term running. Rates for CPU-only nodes are in the range of O($1—$10)
per day per thread, depending on the memory, disk, and platform specifics, and GPU-
enabled nodes cost O($1,000) per month for continual operation. The cost of CPU-enabled
nodes can be reduced by a factor of about 5 by using pre-emptible or ephemeral nodes
(which can be “taken” by other users with higher priority), though the feasibility of this
option depends on the use case.

In spite of this high cost, there are certain cases that are very well-suited to the cloud.
Short-term development and testing can make effective use of the pool of heterogeneous
resources, without requiring full purchases of a resource before its potential is understood.
Several proof-of-principle studies have demonstrated the possibility of deploying heteroge-
neous computing platforms, such as GPU and FPGA coprocessors, in HEP software with an
innovative “as-a-service” approach [6, 101]. The SONIC software framework was developed
during these studies, which were made possible through large-scale heterogeneous cloud

18



resources, and the SONIC-based GPU- and FPGA-as-a-service toolkits have been released
as open source code. Scale-up tests of computing scenarios are another scenario for which
the cloud is an appealing option. The cloud can be used in these cases to make heavy use of
a huge amount of resources for a short period of time. For example, an initial test using a
small number of simulated ProtoDUNE events showed a viable, cost-effective way to use the
SONIC framework to solve the computing challenges facing the neutrino experiments [42].
In 2021, to take advantage of an improved machine learning model, the entire 7 million
ProtoDUNE beam data events were reprocessed using this framework. The acceleration
provided by GPUs accessed through Google Cloud reduced the total processing time by
half compared to the CPU-only approach. Similar tests have also shown the possibly of
large speed-ups for gravitational-wave data processing by using cloud resources [146].

In the future, it is likely that cloud computing costs will decrease. Cloud computing
providers are able—in principle—to procure computing resources at a fraction of our cost
due to the very large scale of their procurement processes. They also can benefit from
economies of scale in operation and development. Additionally, they rent computing power
in a free market (sized at more than $300 billion), competing with not only on-premises
resources but other cloud computing companies.

4.3 High Performance Computing (HPC) Centers

There are a number of large HPC centers supported by the National Science Foundation
and the Department of Energy. While many of these facilities are optimized for traditional
high-performance computing jobs (requiring low-latency communication between nodes),
they are also capable of executing high-throughput computing jobs (requiring little or no
intranode communication). Work is executed using a fair-share scheduler. There are several
challenges with federating these resources across multiple sites. The network connectivity
between the compute nodes and the outside world may be underprovisioned (or in some
cases, non-existent). Some systems are secured with multi-factor authentication and many
do not have API endpoints for workload submission available off-site. Many centers use an
annual proposal/review/award allocation model, which is not a good fit for HEP experi-
ments that can process data over the course of decades.

Some HPC facilities deploy significant numbers of GPUs (e.g. Summit Oak Ridge
National Laboratory, 27k NVIDIA V100 GPUs; Perlmutter NERSC, 6,000 NVIDIA A100
GPUs). Training of machine learning models, which can make efficient use of GPU to
CPU ratios of 2:1 (or significantly more, depending on the model), can be executed on the
machines using standard fair-share scheduling. However, processing data with the inference-
as-a-service model—which may only need GPU to CPU ratios of 1:300 or less [6]—requires
different co-scheduling of GPU and CPU resources. Addressing this difference may require
direct coordination with HPC staff and changes to the facility scheduling model.
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5 Applications

Although by no means a comprehensive summary, we offer a select few applications of ML
that can be enabled through the effective use of the tools and resources described above.
As in Section 2, we divide the applications by frontier.

5.1 Colliders

The stringent latency and resource constraints imposed by the L1 trigger at the LHC make
it an ideal target for applying innovative ML methods to embedded systems. There have
been several examples of the application of machine learning models based on high-level
synthesis tools [84, 95, 96, 147-149] from FPGA vendors for tasks such as the reconstruc-
tion and calibration of final objects or lower-level inputs like trajectories [98], vertices,
calorimeter clusters [3], and identification of long-lived particles [150]. Alternative ap-
proaches are being considered based directly on hardware description languages, such as
VHDL [151], for example, the real-time signal processing of the ATLAS Liquid Argon
calorimeter [152, 153]. Anomaly detection techniques such as autoencoders are being ex-
plored to efficiently suppress the SM background contribution without imposing stringent
kinematic constraints [99, 154-156]. Deploying such a triggering mechanism at L1 trigger
on FPGAs using the hls4ml tool can significantly enhance the sensitivity to new physics
and rare SM processes. Modern architectures such as graph neural networks (GNNs) are
being explored for the reconstruction of particle trajectories, showers in the calorimeter as
well as of the final individual particles in the event. Key GNN applications can only be
realized at scale with optimized hardware inference for GNNs, which is a innovative topic
within the field of ML algorithm-hardware co-design.

Accelerated ML can be used within the LHC HLT and offline computing workflows
via heterogeneous computing platforms for algorithms with longer latencies. The proof-
of-principle studies discussed in Section 4.2 provide an avenue toward “Big Data” science
computing with scalability, low software maintenance cost, and maximized hardware flexi-
bility. SONIC has been integrated into the CMS experiment software stack. The end-to-end
GPU- and FPGA-based workflows for processing data in real-time heterogeneous systems
is the practical approach to enable deployment of complexity algorithms needed for massive
data processing.

5.2 Neutrinos

Machine learning algorithms are becoming increasingly prevalent and performant in the
reconstruction of events in neutrino experiments. These sophisticated algorithms can be
computationally expensive especially for detectors on the Earth’s surface or close to a neu-
trino source where there are lots of activities inside the detector. In order to improve the
efficiency and speed of the inference of ML algorithms in a large-scale data processing,
GPU acceleration specifically for the ProtoDUNE reconstruction chain has been integrated
without disrupting the native computing workflow using SONIC [42] (as mentioned in Sec-
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tion 4.2). With the integrated framework, the most time-consuming task, track and particle
shower hit identification, is accelerated by a factor of 17. This results in a factor of 2.7 re-
duction in the total processing time when compared with CPU-only production. Future
developments are expected to include: optimizing ML algorithms for GPUs with TensorRT
using approaches such as quantization; studies using other hardware such as FPGAs, IPUs
(an initial test of an IPU in collaboration with GraphCore was shown to be very promising);
and exploring deployment at scale at the Feynman Computing Center (at FNAL), NERSC,
and other HPC centers.

On the latency and throughput front, the future DUNE Far Detector represents a special
case, where information from any contiguous region of the detector, up to several GB per
region, must be processed in parallel, with millisecond latency, and selected or triggered on
with high accuracy. Due to the nature of neutrino interactions, computer vision algorithms
such as CNNs were the first to be explored for this task. Techniques such as network
quantization have been explored to further reduce latency and resource utilization for FPGA
deployment. It has been shown that a relatively simple CNN can be implemented with
reasonable FPGA resource utilization to select events with sufficiently low latency and
with accuracy as required by the DUNE physics program [12, 157]. Future developments
include demonstration of this application using real data, either at ProtoDUNE or the Short
Baseline Neutrino Detector (SBND).

5.3 Astrophysics

Recent work has made possible a novel implementation and deployment of a deep learning
inference infrastructure for real-time gravitational-wave data analyses pipelines [146]. This
model enables easy integration of ML algorithms that can be used for denoising [158] and
astrophysical source identification [159], including the ability to scale and incorporate hard-
ware acceleration. Noise regression in gravitational-wave detectors is a challenging task and
paramount to be performed as close to real-time as possible, since any denoising may di-
rectly improve astrophysical reach and thus discoveries that might require multi-messenger
follow-up. The ML approach to this problem enables the identification and removal of
subtle features in the data, going beyond linear couplings between the gravitational-wave
channel and the environment/interferometry as captured in a wealth of auxiliary witness
channels. Aside from denoising, ML algorithms for gravitational-wave source detection [159]
and parameter estimation [160] are being benchmarked for full deployment during upcoming
observing runs of the international network of gravitational-wave detectors. Use of ML ap-
proaches in traditional electromagnetic astronomy has a longer history than in gravitational
waves. Supervised and unsupervised approaches have been used for object classification,
including identification of artefacts, both at the pixel and light curve level. With the rate
at which data sets are growing, ML has become commonplace. The ability to seamlessly
incorporate ML models and further invoke hardware accelerators is expected to reduce the
resource footprint and attain intrinsic latencies at sub-second levels.
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6 Summary and Outlook

Machine learning is a powerful tool for research and offers real promise for many challenges
that will face physics experiments in the coming decade. However, ML algorithms can
become very expensive computationally, and while traditional CPU-based computing will
be sufficient in some cases, many others will require the use of alternative hardware to meet
power, throughput, and latency constraints. Of the options, it seems clear that GPUs will
be the choice for many needs, as they offer the most mature tools for usage and offer large
speedups for most medium to large models. FPGAs will also see use in certain situations,
particularly for smaller networks and low latency applications where they are the only option
such as the L1 trigger at the LHC. Although they are not expected to play a significant
role in most computing for ML in physics, the use of ASICs will be absolutely necessary
in some environments like those with high radiation that simply do not allow for the use
of FPGAs or GPUs. The field should also be prepared to adapt to new coprocessors such
as neuromorphic architectures like IPUs, optical chips, or future technologies which may
emerge as strong competitors to existing devices in the next decades.

In addition to the choice of hardware for ML applications, equally as important are the
modes of model deployment and access. Alternative architectures that require specialized
programming languages present a significant barrier to entry for most physics users. Com-
pilers and transpilers from industry reduce this barrier significantly, as well as allow more
efficient prototyping. Tools from inside physics will also be critical for uses that are distinct
from those targeted most by industry. Two such tools of note are hls4ml and SONIC.
hls4ml is already in wide use for applications with ultra-low latency requirements, and its
potential use cases are only expected to grow as the bounds of experiment capabilities are
pushed. SONIC and other tools to enable as-a-service computing are expected to be sig-
nificant components of large computational workflows comprised of both ML and non-ML
algorithms. These tools have many advantages that make them suited not only for single
physics applications but a wide range of experiments and use cases across the frontiers we
have highlighted. In all cases, both for tools from industry and from physics, it is very
important that tools remain open-source to allow for collaboration and development that
meets the specific needs of physics applications.

Access to the computing infrastructure necessary to execute these workflows will be
critical for future success. For specialized on- and off-detector real-time electronics, the ne-
cessity of dealing with commercial entities for licensing will necessitate communication and
collaboration between laboratories and universities or the exploration of open-source solu-
tions. This extends to the use of hardware solutions that can be shared across experiments
in the case of FPGA readout systems. As needs for experiments evolve, it is important to
consider how different resources are able to scale and meet these needs. Elastic computing
offered by cloud providers is clearly scalable; as we have noted, it is currently costly for
sustained usage, but costs may decrease in the future. Collaboration with HPC centers
will be important to ensure they can be utilized in ways most effective for experimental
workflows that may not require their baseline of 2:1 ratios of CPU to accelerator.

The next decade will present significant challenges to physics research, and ML will be
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a necessary component in overcoming some of these challenges. The tools and resources
necessary to enable these ML solutions will come both from physics and industry, and
will come in the form of both dedicated hardware and software and computing paradigms.
Continued collaboration with industry and HPC centers will be critical to handling the
rapidly changing landscape of ML. This can enable the not only the exciting applications
discussed here but also those that are to come in the future.
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