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The ability to evaluate new FPGA architectures is inherently limited by the ability of 

software tools to support them.  This motivated the development of Independence, an 

architecture-adaptive FPGA placement tool.  Previous work demonstrated that 

Independence adapts to a variety of architectures without significant degradation in 

required area when compared to placement tools targeting these architectures.  

Independence achieves this by using a routing-driven cost function that includes a 

congestion estimate as well as wirelength.  This thesis compares Independence on the 

Triptych architecture to a custom Triptych placement tool that uses the cost function 

presented in [Ebeling95].  Unlike the tools previously compared to Independence, this 

cost function accounts for congestion.  The new custom placer is shown to produce 

placements of similar required area to the original [Ebeling95] tool.  Compared to this 

custom placement tool, Independence requires 15.6% more area for 3-input RLB 

architectures and 17.8% more area for 4-input architectures. 
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1 Introduction 

Digital systems designers have a wide variety of hardware to select from to perform their 

required tasks.  In many cases, a general-purpose microcontroller or microprocessor is an 

attractive option; implementing the system may simply require writing software.  In 

others, the performance advantage of an application-specific integrated circuit (ASIC) 

may justify its lengthy design time and high cost.  In still other cases, Field 

Programmable Gate Arrays (FPGAs) offer the right mix of performance and cost. 

 

As the name implies, FPGAs are integrated circuits composed of digital logic resources 

and an interconnect structure linking those logic resources together.  The logic function 

computed by the array is user-programmable with the help of software tools.  The amount 

and type of logic resources, as well as the size and composition of the interconnect 

structure, vary widely between different FPGA architectures.  Some FPGAs have a fine-

grained architecture, comprised of a large number of relatively small logic resources.  

Others are coarse-grained, containing fewer, larger logic units.  Still others take a hybrid 

approach, offering both coarse-grained and fine-grained structures on the same chip.  For 

example, the Xilinx Virtex-4 family of commercial FPGAs boasts, among other features, 

up to two on-chip PowerPC CPU cores and up to 200,000 configurable logic blocks 

[Xilinx06].  Indeed, there is sufficient variety in size, composition, and cost of FPGAs 

that one must determine whether a given FPGA is a good fit for the target application. 

 

Implementing a circuit on an FPGA follows a somewhat analogous design flow to ASIC 

design.  Circuits are designed and verified using a hardware description language (HDL) 

and simulation software.  Synthesis software performs logic optimization on the HDL 

representation and then maps the optimized circuit into blocks corresponding to the 

available logic resources on the FPGA.  The result of this mapping is a netlist.  A 

placement tool must then choose how to physically arrange the netlist on the FPGA.  A 

routing tool determines what routing resources are used to connect the blocks and 

produces the data required to program the FPGA with the desired circuit.  Finally, 
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programming software configures the FPGA’s logic blocks and interconnect structure 

with the data supplied by the routing tool. 

 

Because software tools are used in nearly every phase of the design process, the quality 

of these tools becomes an important factor in the quality of the final circuit.  A poor 

synthesis tool may fail to optimize the circuit sufficiently to allow it to fit within the 

limited hardware resources of the target FPGA.  A poor placement tool might produce a 

netlist arrangement that cannot be routed given the routing resources available.  A poor 

routing tool might not find a routing solution that meets circuit delay requirements even 

though one exists. 

 

In addition to tool quality, tool portability is an important issue.  Many FPGA software 

tools target a specific architecture.  As new architectures are developed, new tools must 

be developed as well, whereas it would be preferable to reuse existing tools if possible.  

Previous work to address this issue in FPGA placement led to the development of 

Independence [Sharma05], an FPGA placement tool that is portable across a wide range 

of FPGA architectures.  Instead of targeting specific architectures, Independence adapts 

to an architecture specified by the user by performing placement in a highly routing-

aware fashion.  Independence’s adaptability has been demonstrated on three different 

FPGA architectures by comparing its performance to placement tools targeting those 

architectures.  The placement tools that Independence has been benchmarked against to 

date have had relatively limited routing awareness [Sharma05].  This paper evaluates 

Independence on a fourth architecture, Triptych, by comparing its performance to a 

routing-aware custom placement tool targeting that architecture. 

 

Further background on the variety exhibited in FPGA architectures and placement 

software is provided the next section.  Section three presents Independence and 

comments briefly on the results obtained to date.  Section four presents the Triptych 

architecture and the placement tool developed for it.  Finally, section five shows the 

performance of Independence versus the Triptych placer, and discusses the results. 
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2 FPGA Background 

A brief overview of different FPGA architectures is presented next.  This is followed by 

background on FPGA place-and-route software, with particular attention to algorithms 

used in Independence and the Triptych placer. 

 
2.1 FPGA Architectures 

FPGAs come in a wide range of sizes and architectures, but all of them contain some 

repeated arrangement of logic resources and routing resources.  The configuration of the 

resources is typically programmed into small, local SRAMs.  The SRAMs are used to 

store logic functions by implementing them as lookup tables.  They may also store 

configuration options by driving multiplexer select bits.  These options might include 

whether a D Flip flop is used in a given subcircuit, which routing channels drive a given 

logic resource, or any other configurable aspect of the FPGA.  To better illustrate how 

this works, a popular class of FPGA architectures, island-style, is examined in some 

detail.  Other architectures are then presented briefly to give some idea of the variety of 

FPGAs available today. 

 

2.1.1 Island-Style FPGAs. 

Island-style architectures are the most prevalent class of commercial FPGA.  The 

architecture derives its name from the notion that its logic resources, referred to as 

Configurable Logic Blocks (CLBs), are islands in a sea of routing resources.  The CLBs 

are arranged in a regular array structure and surrounded by both vertical and horizontal 

routing channels.  At the intersections of the vertical and horizontal channels, 

switchboxes offer the option for data to change direction [Sharma01].  This structure is 

illustrated in Figure 1. 
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Figure 1:  Representation of an island-style FPGA [Sharma05].  The white boxes denote CLBs.  
Vertical and horizontal lines show routing channels.  The Xs indicate points within a switchbox 
where data can change direction. 

 

Each CLB is a self-contained configurable device.  In a simple architecture, the CLB 

could be nothing more than a lookup table (LUT) plus a flip-flop and a multiplexer, as in 

Figure 2.  The lookup table may then be programmed to compute an arbitrary logic 

function of n inputs.  A popular choice for n historically has been four.   

Figure 2:  Block diagram of a simple island-style CLB.  This CLB contains a four-input LUT whose 
output is connected to a D flip-flop and a multiplexer input.  The flip-flop output is also connected to 
the mux so that the CLB output can be configured to be either combinational or sequential.  Wires 
used to program the CLB are not shown. 

 

 
LUT 

(SRAM) 
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As island-style architectures have grown in complexity, the CLB’s complexity has often 

grown as well.  Support for larger logic functions might be added.  Special features that 

accelerate popular logic functions, such as paths intended specifically to chain together 

CLBs for fast addition, might also be included.  Figure 3 shows a hypothetical example 

of what a more advanced CLB might contain.  This style of CLB, containing multiple 

LUTs and programmable connectivity between them, is similar to that of the Xilinx 

Spartan II family [Xilinx04].  In addition to increasing size, CLB flexibility also often 

increases as well. 

Figure 3:  A more advanced hypothetical CLB.  The overall CLB accepts eight arbitrary inputs and 
produces two outputs.  One additional input (top) and one additional output (bottom) are shown to 
represent dedicated carry-in/carry-out lines to be used when the CLB is configured for fast addition.  
The two leftmost LUTs can be configured to be used separately to compute two four-input functions 
or combined with the third LUT on the right to compute one eight-input function.  Optional flip-flop 
storage is provided for each. 

 

 
LUT 

 

 
LUT 

 

 
LUT 

 

carry out

carry in 
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While the vertical and horizontal routing channels surrounding the CLBs are simply 

wires, the switchboxes placed at their intersections must contain logic and connectivity to 

configure how intersecting wires may connect, or if they connect at all.  This is typically 

implemented by linking intersecting wires via a set of six pass transistors, as shown in 

Figure 4.  The gates of the pass transistors may then be programmed on to enable a 

connection between two wires or off to disable it.  In order to save area, not all 

intersection points are populated with pass transistors, meaning not all routing channels 

may be connected.  In general, however, there is at least one path from a routing channel 

on one side of the switch box to a channel on each of the three other sides of the 

switchbox [Chang96]. 

Figure 4:  Close-up look of a representative island-style FPGA switchbox.  The circles overlaying the 
array of wires each represent an intersection at which pass transistors have been arranged as shown 
to the right.  Turning on any one of the transistors creates a connection from one side of the 
switchbox to another.  If multiple transistors are turned on a signal may fanout to more than two 
sides of the switchbox. 

 

2.1.2 HSRA 

The Hierarchical Synchronous Reconfigurable Array (HSRA) architecture [DeHon99] 

differs from island-style architectures by organizing routing resources into a tree-based 

structure shown in Figure 5.  Logic resources consisting of a four-input lookup-table 

(LUT) and associated D flip-flop are positioned at the leaves of the tree, while central 

routing channels comprise the root of the tree.  Switchboxes provide intersections 

between different levels of hierarchy.  The number of total routing channels available 

increases going from the root to the leaves according to a specified growth rate. 

[DeHon99]. 
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Figure 5:  Example HSRA architecture.  Squares indicate LUTs.  Xs show connectivity between the 
lowest level of switchboxes and LUT inputs.  Here the base channel width is three, the growth rate is 
0.5, and there are four levels of interconnect.  The growth rate is achieved by alternating 
compressing switchboxes (ovals) and non-compressing switchboxes (triangles) [Sharma05]. 

2.1.3 RaPiD 

Whereas the island-style and HSRA architectures described previously constitute fine-

grained architectures, RaPiD is coarse-grained [Ebeling99].  Figure 6 shows a RaPiD-

Benchmark cell, a representative 16-bit implementation targeting digital signal 

processing applications.  It contains a variety of high-level functional units:  three ALUs, 

a multiplier, three 64-word RAMs, and six general-purpose registers (GPRs), A total of 
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14 routing tracks provide interconnect both within the cell and between adjacent cells 

[Ebeling99].   

 

Figure 6:  RaPiD-Benchmark cell.  Functional units are shown on top.  The routing tracks below are 
divided between short busses and long busses.  Long busses may be joined together via bus 
connectors, shown as small squares [Ebeling99]. 

 
2.2 FPGA Place-and-Route Software 

Placement and routing are by their nature closely related problems.  A placement that 

yields superior routing (fewer routing resources used, smaller delay) is also a superior 

placement.  Because the routing resources of an FPGA are fixed, FPGA placement can 

also involve evaluating whether a placement can be routed at all.  This makes routing 

considerations even more important in FPGA placement than otherwise. 

 

2.2.1 FPGA Placement 

Because routing is a computationally intensive process, many place-and-route tools use 

heuristic estimates to evaluate the quality of the routing yielded by a given placement.  

This takes the form of a cost function that includes parameters for the amount of routing 

resources used, delay, etc.  A lower-cost solution is deemed a superior solution:  For 

example, the leading-edge placer Versatile Place-and-Route (VPR) [Betz97], uses the 

cost function 
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For each net in the netlist, a two-dimensional bounding box (bbx, bby) for that net’s 

terminals is computed as an estimate of the wirelength (i.e. aggregate routing resources 

used) required to route the net.  Cav,x and Cav,y are the average routing channel capacities 

within the computed bounding box of the given net.  Scaling the bounding boxes by these 

values penalizes a net if it is routed in an area of the FPGA with fewer resources than 

elsewhere.  Doing so represents an attempt to reduce congestion, defined as the attempt 

of multiple nets to use the same routing channel.  q(n) is a parameter that increases 

gradually as the fanout of the net increases to compensate for the bounding box 

underestimating wirelength for nets with more than three terminals [Betz97].  Taken as a 

whole, the cost function attempts to evaluate routeability in terms of a combination of 

wirelength and congestion. 

 

For even a small circuit placed to a small FPGA, the number of possible placements is 

sufficiently large that the entire solution space cannot be exhaustively searched to find 

the placement with the lowest cost.  On the other hand, because all nets compete for the 

same routing resources, placing blocks incrementally is likely to produce poor solutions 

by failing to anticipate future congestion and/or wirelength requirement imposed by the 

placement of a given block.  Algorithms that are able to efficiently search the solution 

space of complete placements for low-cost results have thus provided the best balance of 

runtime and performance to date. 

 

The leader among such algorithms is simulated annealing, summarized in the pseudo-

code in Figure 7.  First, an initial placement is generated randomly, and the cost of the 

random placement is computed.  Based on the initial cost, a starting temperature is 

calculated.  A large number of random swaps of pairs of blocks in the netlist are 

performed, and the change in cost arising from each move is computed.  If the change is 

positive (i.e. the move degrades the quality of the placement), then the move is randomly 



10 

 

accepted or rejected.  The probability of acceptance is controlled by the temperature, and 

is initially almost one.  If the change in cost is negative (i.e. the move improves the 

quality of the placement) then the move is always accepted.  After all swaps are 

completed, the temperature is reduced according to formulas that collectively are referred 

to as the cooling schedule, and another series of swaps is performed with the new 

temperature controlling the probability that a bad move is accepted.  When the total 

fraction of moves accepted dips below some threshold, or a maximum number of 

temperature reductions is reached, the algorithm terminates. 

 

Figure 7:  Pseudo-code for the simulated annealing algorithm.  After creating an initial placement 
randomly and computing its cost, the quality of placement is gradually adjusted by repeatedly 
swapping two blocks.  Initially almost any swap is permitted, but as the temperature is lowered fewer 
and fewer moves that increase the cost are accepted. 

 

The algorithm’s effectiveness stems from several key properties.  Simulated annealing 

evaluates full placement solutions rather than placing blocks one-by-one.  This prevents 

the quality of the solution from depending upon the order in which blocks are placed.  

create_random_placement(); 
cost = compute_total_cost(); 
temp = compute_start_temp(); 
while ((frac_accepted > threshold) || (num_iterations < max) { 
 for (I = 1; I < movesPerIter; I++) { 
  blocksSwapped = swap_two_blocks(); 
  deltaC = compute_change_in_cost(blocksSwapped); 
  if (deltaC > 0) {  //it’s a bad move 
   If (accept_bad(temp) == false) { 
    unswap_two_blocks(blocksSwapped); 
   } 
   else { 
    //accept move 
    cost += deltaC; 
   } 

} 
else { //it’s a good move 
 cost += deltaC; 
} 

 } 
 temp = compute_new_temp(); 
} 
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Randomly accepting bad moves help ensure that a broader portion of the solution space is 

searched by discouraging convergence toward local minima.  Trying a large number of 

moves at each iteration helps search the solution space thoroughly, but can be tuned to 

provide a good balance between performance and runtime. 

 

VPR incorporates a number of optimizations demonstrated in previous work as well as 

some of its own.  Other placement tools implementing simulated annealing since have 

followed suit, including Independence and the Triptych placer implemented here.  Those 

common to all three include the following: 

• Initial Temperature:  VPR computes the initial temperature by performing N 

random moves, where N is the number of logic blocks plus IOs in the circuit, and 

then sets the initial temperature equal to 20 times the standard deviation of the 

change in cost of these moves. 

• Cooling Schedule:  VPR computes the next temperature by multiplying the 

current temperature by a scaling factor chosen according to the fraction of moves 

accepted at the current temperature.  The value chosen is specified in Table 1. 

Table 1:  VPR Cooling Schedule Temperature Scaling Factors [Betz97] 

Fraction Accepted Temperature Scaling Factor 

Less than 0.15 0.8 

0.15-0.8 0.95 

0.8-0.96 0.9 

Greater than 0.96 0.5 

 

• Distance Limit:  It was shown in [Lam88,Swartz90] that it is desirable to 

maintain the fraction of moves accepted at 0.44 for as long as possible.  VPR 

achieves this by gradually reducing the range of moves that can be made when the 

fraction of moves accepted drops below 0.44.  Initially, any two blocks can be 

swapped.  At each temperature reduction, the maximum distance between blocks 

that can be swapped is recalculated according to 
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dlimitnew = dlimitold * (1 – 0.44 + frac_accepted) [Betz97] 

 

Assuming that the logic blocks are arranged in rectangular arrays (valid for most 

architectures), it can be measured as a vector sum of distances in logic blocks in 

the x and y directions.  Accordingly its initial and maximum value is the 

maximum distance between IOs in opposite corners of the array, and its minimum 

value is 1.  A check is thus included after computing the new distance limit to 

keep the value within its legal range [Betz97]. 

 

2.2.2 FPGA Routing 

As in placement, routing so far has proven a problem best solved with an iterative 

approach.  The most effective algorithm to date, and hence the most widely used, is 

Pathfinder [McMurchie95].  Pathfinder represents an FPGA’s routing resources as a 

directed graph.  This routing graph is formed by decomposing the architecture into nodes 

representing routing resources, and edges representing different ways to connect routing 

resources together.  Edges could thus indicate switchboxes that connect two different 

routing channels, logic elements that receive one routing channel as input and one as 

output, or any other configurable circuit element that controls the FPGA’s connectivity.  

Figure 8 shows an example decomposition of an FPGA logic block and its circuit 

elements into a routing graph. 
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Figure 8:  Example decomposition of FPGA logic and interconnect into a routing graph.  The top 
diagram shows a Triptych routing and logic block (RLB).  Below is the routing graph representation 
of the RLB.  Nodes 1, 2, and 3 represent the three input wires to the RLB.  Node 4 represents the 
input terminals to the LUT itself; this node thus has a capacity of three, corresponding to the LUT 
having three inputs.  Since the input nets terminate at the LUT, node 4 is termed a sink node.  Nodes 
five and six are termed source nodes, representing the outputs of the LUT and D flip-flop selectable 
by the mux.  Node 7 represents the output of the mux, and nodes 8-10 represent the three RLB 
outputs.  Because RLB inputs may be routed directly through to RLB outputs, edges connect nodes 
1-3 to nodes 8-10. 
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Each node in the routing graph has an associated cost and a capacity.  The cost value is 

arbitrary, provided that the relative costs of nodes are meaningful.  The capacity defines 

how many nets may be routed through a given node.  In a typical representation of a 

routing fabric the capacity of each node is one, but this is not strictly necessary. 

 

An initial routing is computed for each net by traversing the routing graph using 

Djikstra’s algorithm.  During this initial routing, previous nets are ignored when routing 

subsequent nets, allowing all nets to take their own preferred path and permitting any 

resulting congestion.  Based on this result, the cost of each node is increased according to 

its congestion, using the equation 

 

nnnn phbc *)( +=  

 

where bn is the base cost of the node, pn is a factor proportional to the number of nets 

sharing the node, and hn is determined by the history of congestion on that node across all 

previous routing iterations.  All nets are rerouted using Djikstra’s algorithm with the 

updated node costs, and the process is repeated until a maximum number of iterations is 

reached or the routing completes with zero congestion. 

 

Increasing the cost of a node in a manner proportional to the number of nets attempting to 

use it results in popular resources becoming more expensive.  As this change takes place, 

it prevents nets from searching for paths with less wirelength but greater congestion by 

assigning such paths a higher cost.  On the other hand, if a net’s preferred path does not 

increase in cost, there is no mechanism restricting it from choosing the same route on 

successive iterations.  This ensures that nets benefiting the most from using a particular 

routing resource are given priority to use it.  The history cost term discourages nets from 

returning to previous areas of high congestion by ensuring that routing resources that 

became expensive in a previous routing iteration remain at least somewhat expensive in 

subsequent routing iterations. 
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3 Independence 

Independence [Sharma05] is an FPGA place-and-route tool that is architecture adaptive.  

Instead of tuning its approach to place-and-route to a particular architecture, 

Independence uses cost functions for placement that are directed by user-specified 

architecture data.  This is explained in greater detail below. 

 

3.1 Independence Placer 

Because it has been demonstrated to one of the best overall algorithms for placement, 

Independence uses the simulated annealing algorithm, borrowing many features from 

VPR that have made the latter a leading-edge placement tool.  The key difference 

between Independence and other placement tools based on annealing is that it performs 

routing during placement to direct its cost function. 

 

The pseudo-code shown below in Figure 9 points out the key distinctions in 

Independence’s implementation of simulated annealing.   
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Figure 9:  Independence pseudo-code based upon the generic simulated annealing pseudo-code of 
Figure 7.  The highlighted portions indicate steps Independence performs to maintain a fully routed 
netlist used to compute cost, and point out the dependence of the cost function on the routing results. 

 

Like VPR, Independence is driven by a cost function that seeks to reduce wirelength and 

congestion.  Instead of using a generic heuristic estimate, Independence infers these 

parameters from the target architecture’s routing graph.  Using the information supplied 

by the routing graph, Independence calculates cost by fully routing the circuit and using 

its routed solution to sum the wirelength and congestion for the entire circuit.  To keep 

the amount of computation required manageable, complete routing and cost calculations 

are performed only after initial random placement and after each reduction in 

temperature.  The cost is updated incrementally after each placement, according to the 

equation 

 

 

create_random_placement(); 
routes = route_netlist(); 
cost = compute_total_cost(routes); 
temp = compute_start_temp(); 
while ((frac_accepted > threshold) || (num_iterations < max) { 
 for (I = 1; I < movesPerIter; I++) { 
  blocksSwapped = swap_two_blocks(); 
  routes = rip_up_and_reroute(blocksSwapped); 
  deltaC = compute_change_in_cost(blocksSwapped, routes); 
  if (deltaC > 0) {  //it’s a bad move 
   If (accept_bad(temp) == false) { 
    unswap_two_blocks(blocksSwapped); 
    routes = restore_old_routes(blocksSwapped); 
   } 
   else { 
    //accept move 
    cost += deltaC; 
   } 

} 
else { //it’s a good move 
 cost += deltaC; 
} 

 } 
 temp = compute_new_temp(); 
 update_history_costs(); 
 routes = route_netlist(); 
}



17 

 

NormcongestionCostcongestionstprevWireCowireCostC /*/ Δ+Δ=Δ λ  

 

wireCostΔ is the change in wire cost associated with the current move.  stprevWireCo is 

the total wire cost associated with the placement prior to the move.  CostcongestionΔ is 

the change in congestion associated with the current move.  congestionNorm is a 

normalization factor for the congestion cost [Sharma05].  The total congestion cost is 

computed as 

 

∑ −=
allNodes

i

ii capacityoccupancyCostcongestion )0),max((  

 

occupancy is the number of nets currently using a given node in the routing graph, and 

capacity is the number of nets allowed to use it.  Congestion for underutilized or unused 

nodes is defined to be zero.  Since congestionCost should converge to zero as the 

placement becomes fully routable, a previous congestion cost cannot be used as a 

normalization term; currently congestionNorm is set equal to prevWireCost.  The 

parameter λ weights the importance of reducing wirelength against the importance of 

reducing congestion.  Experiments have shown that the best value for λ varies from 

architecture to architecture [Sharma05]. 

 

wireCostΔ and CostcongestionΔ are calculated by ripping up all routes of nets affected 

by the move and rerouting them based on the new locations of their terminals.  In the case 

of multi-terminal nets, if the net is an input only the branches of the route affected by the 

move are ripped up, while for outputs the entire net is rerouted [Sharma05].  After 

completing this process the cost of the new routes can be calculated and subtracted from 

the cost of the routes that were ripped up to obtain the change in cost for the move. 

 

The routing algorithm used during this process is based on Pathfinder.  However, an 

adjustment is made to the history cost calculation to account for the fact that the history 
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of congestion on a node loses relevance as the placement changes over time [Sharma05].  

This is handled in two ways.  First, history costs are adjusted only when the temperature 

is reduced, not after each placement move.  Second, the history cost of a node is allowed 

to decay over multiple routing iterations if it has no congestion.  The exact equation is 

Currently α =0.9 and β = 0.5 [Sharma05]. 

 

3.2 Previous Benchmark Results 

Independence has previously been tested on island-style, HSRA, and RaPiD architectures 

against placers targeting these architectures.  In each case Independence’s performance 

was comparable or better to that of the custom placer [Sharma05] 

 

if (shared) 

historyCosti = α * historyCosti-1 + β 

else 

historyCosti = α * historyCosti-1 
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4 Triptych Architecture 

The Triptych architecture [Borellio95] provides an excellent contrast to island-style, 

HSRA, and RaPiD.  Like island-style and HSRA, it is fine-grained.  However, it differs 

from all three architectures in two major ways:  its routing resources are more 

asymmetric, and some of them are integrated with the logic resources.  The overall 

Triptych architecture is described in greater detail next. 

 

4.1 Triptych Logic Resources 

A Triptych Routing and Logic Block (RLB) contains a three input LUT to perform 

arbitrary logic functions of three or fewer inputs.  The LUT's output is connected to a D 

flip-flop to provide data storage.  A multiplexer configures whether the flip-flop is 

actually used.   

 

A local routing fabric surrounds the LUT and latch and provides the interface between 

adjacent RLBs and shared vertical routing channels.  Each RLB has two inputs that may 

each come from one of two adjacent RLBs, and one that may come from either the 

vertical channels or the output of the D-latch.  Similarly, two of the three RLB outputs 

are connected to two adjacent RLBs each, and the third output connects to vertical 

routing channels.  Each of the three outputs may be driven by any one of four nets--one 

of the three inputs or the output of the mux mentioned above.  This structure is 

summarized in Figure 10 [Borellio95]. 
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Figure 10:  Triptych RLB.  Two inputs receive data from one of two neighboring RLBs.   The middle 
input receives data either fed back from the RLB’s D flip-flop or from one of seven routing tracks in 
a vertical routing channel.  Any input may be routed to any output, as may the output of the three-
input LUT or the D latch [Borellio95]. 

 
4.2 Triptych Interconnect 

Outside the RLBs, Triptych’s routing fabric is divided between two components--

diagonal wires connecting adjacent RLBs, and segmented vertical channels connecting 

RLBs at greater distances from one another.  Figure 11(a) shows how five neighboring 

RLBs provide data flow diagonally and to the right through connections between 

diagonal inputs and outputs.  To provide data flow to the left, another set of RLBs is 

interwoven with the right-going RLBs as shown in Figure 11 (b).  The resulting RLB 

structure is a checkerboard-patterned array of right-going and left-going cells.  Wires 

connecting outputs to cells directly above and directly below them provides data flow 

between right- and left-going cells.  This option is configured via a mux as shown in 

Figure 11 (c), and the overall diagonal interconnect is shown in Figure 11 (d).  At the top 

and bottom of the array, connections that would be made to RLBs above and below, 

respectively, are made to cells to the left and right instead, as shown in Figure 14. 
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Figure 11:  Triptych diagonal interconnect.  In (a), data flow is shown going to the right between 
adjacent RLBs.  (b) shows how left-going cells, shown in gray, overlap the right-going cells in a full 
Triptych array.  (c) shows how each RLB diagonal may be configured to receive data from a 
neighboring right-going or left-going cell.  (d) shows the complete diagonal interconnect. 

 

In between each column of RLBs are two vertical channels--one providing data flow to 

the right, and one providing data flow to the left.  The channels are identical structures 

each containing seven routing tracks. One track is dedicated to an input pin.  The other 

six facilitate longer-range routing between RLBs.  Two tracks are divided into 8 RLB-

high segments, two into 16-RLB segments, and two into 32-RLB segments.  This 

structure is shown for a single channel in  

Figure 12; the overall structure is shown in Figure 13.   

(a) (b) 

(c) (d) 
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Figure 12:  Triptych vertical channel representation.  There are two staggered segmented routing 
tracks in each of three lengths:  8, 16, and 32 RLBs.  A seventh routing track is unsegmented and 
dedicated for top/bottom chip input pins [Borellio95]. 

 

 

Figure 13:  Vertical channel connectivity to RLBs.  Right-going vertical channels connect right-going 
cells in adjacent rows (left).  Like the RLBs themselves, the vertical channel structure is reversed and 
overlain to integrate with the checkerboard of RLBs, as shown on the right. 

 
At the borders of the array, left-going and right-going cells are connected to each other 

via external vertical channels to allow data to loop back into RLBs moving data in the 

opposite direction.  This is shown in Figure 14. 



23 

 

 

Figure 14:  Side IO and boundary connections for Triptych RLB diagonals.  Side IOs are 
bidirectional, able to act as output pins by receiving RLB outputs and as input pins driving RLB 
inputs.  RLBs on the boundary have their output diagonals move laterally rather than diagonally, 
enabling all RLBs in the array to receive data from one of two neighbors.  A single vertical channel is 
provided between IOs and the outer RLB columns to loop data back into the array, as shown in gray. 

 

Triptych's I/O structure follows naturally from the RLB and interconnect structure.  At 

the top and bottom of the array, input-only pins connect to the vertical channels.  On the 

left side of the array, there are right-going cells with no RLBs to receive inputs from, and 

left-going cells with no RLBs to connect their outputs to.  Instead, these connections are 

made to I/O pins.  Each pin receives one output from a left-going cell and drives an input 

of one right-going cell except at the corners, where both connections are made to the 

same RLB.  This structure is shown in Figure 14.  A completely analogous structure is 

also formed on the right side of the array. 

 

4.3 Alternate Triptych Architecture Styles 

Most FPGA architectures feature four-input LUTs as the smallest logical unit in their 

array of logic resources.  Triptych chooses three-input LUTS instead because the area 

penalty incurred for mapping a circuit to a larger number of LUTs is made up for by the 

IO 

IO 
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improved RLB density that can be achieved by using 3-input LUTs instead of 4-input 

LUTs [Borellio95].   

 

In an attempt to balance RLB density with the improved routeability that can be achieved 

with 4-input RLBs, a 4-input RLB with a 3-input LUT was proposed.  Figure 15 shows 

the structure of the 4-input RLB.  The input diagonals’ connectivity is unchanged from 

the 3-input RLB architecture except that multiplexing is now required to select whether 

they are used in computing the logic function.  The extra input is obtained from the 

vertical channels.  In order to keep the multiplexing of the outputs at 4:1 and to provide 

full flexibility for the output diagonals, each of the middle inputs is restricted in choice to 

one diagonal and one of the middle outputs.  Additionally, the feedback path from the D 

latch to the middle input is eliminated to accommodate selection between four vertical 

channel tracks for both middle inputs. 

 

 

Figure 15:  4-input RLB structure.  The extra input is accepted from the vertical channels.  
Multiplexing is provided to select which three of the four inputs will be used in the logic function.  
Routing paths are provided for the diagonals to all four outputs and for the two middle inputs to one 
diagonal and one middle output each. [Hauck 95a]. 

 

[Borellio95] does not explicitly discuss the connectivity of the 4-input RLBs to the 

vertical channels, the number of routing tracks in each channel, or the connectivity (if 

any) of top and bottom pins to the channels.  A reasonable hypothesis based upon the 
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structure of the RLB itself, and the one used in this work, is that the top and bottom pins 

are eliminated and that the vertical channel is expanded from seven to eight routing 

tracks.  The logical extension of the six non-pin tracks’ segment size suggests giving the 

additional tracks a segment size of 64 RLBs in length.  This was implemented for testing 

4-input RLB architectures. 

 

4.4 Triptych Placement Software 

The original placement tool for Triptych [Ebeling95] was not available for use in this 

experiment.  For this reason a new placer using the original cost function was written.  

Writing a new placer had the additional advantage that the implementation of the 

simulated annealing algorithm used could be kept similar to that of Independence so that 

the cost function itself was the primary difference between the two tools.  Thus, like 

Independence, the Triptych placer uses a starting temperature calculation, cooling 

schedule, and distance limit calculation similar to that of VPR (see section 2.2.1). 

 

The cost function developed in [Ebeling95] addresses several issues in wirelength 

estimation that are peculiar to the Triptych architecture.  The asymmetry of Triptych’s 

routing resources in an XY plane means that conventional distance estimations such as 

Manhattan distance or VPR’s bounding box model are not useful for Triptych 

[Ebeling95].  Placement software for Triptych thus requires a wirelength calculation that 

accounts for the composition and direction of its interconnect.  Additionally, because a 

portion of the interconnect is embedded within the RLBs, placement quality will be 

sensitive to how the RLBs were utilized.  Congestion thus plays a more crucial role in 

placement to Triptych than to architectures that do not have integrated logic and routing 

resources.  The overall cost function is 

 

TotalCost  = A * wireCost + B * pegCost + C * localRouteCost 

 

Where A, B, and C are weighting terms, one of which may always be chosen to be one.  
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WireCost, pegCost, and localRouteCost are explained each in turn below.  [Ebeling95] 

also provides a term for delay.  Because Independence lacks a delay parameter in its cost 

function, this term was omitted.  This allowed for a more direct comparison between the 

wirelength and congestion factors in each placer’s cost function. 

 

wireCost is the sum of the wirelength estimates for each net in the netlist.  For single 

destination nets, the wirelength can be taken as the distance from source to sink.  This 

distance is determined using a lookup table that provides a shortest-path cost to travel 

from one RLB to another, taking the cost to travel to an adjacent RLB via a diagonal to 

be one, and taking the cost to travel a distance of 2 RLBs along a vertical channel to be 

one.  This scaling of vertical channel distance was chosen experimentally in [Ebeling95].  

It reflects the fact that for nearby connections, it is preferable to use diagonal 

interconnect, while for distant connections it is somewhat preferable to use the vertical 

channels. 

 

For multi-destination nets, some metric is needed to combine the distances from the 

source to each sink into a single cost term.  For Triptych, this is 

 

wirelength = 0.9*(semiperimeter) + 0.1*(avg_distance) 

 

semiperimeter is a measure of the smallest bounding box needed to enclose the source 

and all sinks, and thus for Triptych is the sum of the longest distance in each of the four 

diagonal directions.  avg_distance indicates the average distance from the source to each 

of the sinks.  Giving this a small weighting in the overall wirelength accounts for the fact 

that a wirelength estimate with a larger semiperimeter but a lower average distance might 

yield a better quality placement [Ebeling95]. 

 

pegCost is a measure of the density of RLB inputs used for logic functions.  It is useful in 

evaluating the quality of a placement since as more inputs per RLB are used for logic, 

fewer are available for local routing.  Thus, the number of inputs used for logic (pegs) is 
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counted within every unique 3x3 window of RLBs, including those at chip boundaries for 

which not all RLBs in the window actually exist.  If the number of pegs per RLB in a 

given window exceeds a certain threshold, dubbed the peg threshold, then the 

contribution to pegCost for that window is the amount above the threshold squared; 

otherwise the contribution is set to zero.  By imposing such a stiff penalty for exceeding a 

threshold, placement moves that distribute the logic somewhat sparsely are rewarded.  

Because there are routing resources internal to the RLBs, doing this also tends to improve 

congestion [Ebeling95]. 

 

localRouteCost is a penalty given to nets that can be identified as unrouteable purely 

from local context.  A pair of adjacent RLBs with a left-going cell on the left and a right-

going cell on the right share diagonal connections to their inputs coming from the two 

RLBs directly above them and the two RLBs below them, as shown in Figure 16.  By 

assuming that vertical channels can provide routes if necessary, a check of whether all of 

the inputs to the pair of RLBs can be simultaneously provided either by the four 

diagonals or by vertical channels is equivalent to checking whether the placement to the 

six cells being examined has caused a net to be unrouteable, i.e. the placement has 

blocked a required route.  Similar checks can also be made at the array boundaries by 

correctly isolating groups of RLB pins and I/Os that share common neighbors 

[Ebeling95]. 
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Figure 16:  Cells A (left-going) and B (right-going) are the only two cells driven by the output 
diagonals of the cells directly above and below them.  These wires can thus be easily checked for 
conditions that result in the inputs of A and B being unroutable. 

 

A 
 

B 
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5 Triptych Placer Results 

Since this placement algorithm has been implemented previously, but none of the code 

was available for reuse, the Triptych placer was recoded from scratch.  It was then 

necessary to determine values for the weighting parameters A, B, and C presented in the 

previous section.  It was also necessary to experimentally determine the pegs per RLB 

threshold for contribution to the peg cost, discussed previously.  After determining these 

parameters, the new Triptych placer’s performance was then compared against that 

reported [Ebeling95] to verify that it was a “good” implementation.   

 

Independence also has a tunable weighting parameter, λ, discussed in section 3.1.  The 

best value for λ was experimentally determined as well.  Both tools were then compared 

based upon the results after all optimizations were made. 

 

5.1 Determining the Triptych Placer’s Parameters 

To evaluate performance for a given parameter combination, the array size (in RLBs) was 

parameterized with a fixed row-to-column ratio of 8:1.  To create an analogous metric to 

that of [Sharma05] (to be reused when comparing against Independence), the minimum 

number of columns required to produce a routable netlist was used for comparison.  In 

order to account for the random nature of simulated annealing, each placement trial was 

conducted ten times using different seeds for the random move generator.  An array size 

that produced any routable placements in the ten runs was considered successful.  For 

runtime considerations the maximum number of columns allowed before declaring the 

netlist “unrouteable” was 16.  All tests were conducted on the ILSW93 netlists used for 

benchmarking in [Ebeling95].  The best value for a given parameter was chosen 

according to which value produced the minimum sum of the number of columns required 

to route all netlists in the benchmark suite, with netlists that failed to route assigned a 

score of 17. 
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Figure 17 shows the results of varying the peg cost threshold.  The threshold value was 

varied from 0.1 to 2.5 pegs per RLB.  Because all parameter testing was done in parallel, 

nominal values were used for the weighting parameters:  A = 1, B = 0.1, and C = 72 

corresponding to roughly equal weighting of each term in the cost function following 

initial placement of the smaller benchmark netlists.  Peg cost threshold values of 0.8 and 

0.9 produced the same minimum sum, although the minimum column size was not the 

same for every netlist (see Table 8 in Appendix). 
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Figure 17:  Determination of best pegs per cell threshold for the peg cost term in the Triptych placer 
cost function.  The y axis shows the sum of the number of RLB columns needed to route the netlist, 
while the x axis shows the pegs per cell threshold.  Values of 0.8 and 0.9 produced the best results. 

 
For selection of the weighting parameters, the parameter A weighting wirelength cost 

was fixed at one.  B and C were varied independently.  B was tested in parallel with A, 

consequently nominal values for peg threshold of 1.0 and C=72 were used.  Parameter 
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testing for C was done after other parameter testing; consequently best-choice values for 

peg threshold and B were used in determining C. 

 

Figure 18 shows the results for tuning the peg cost weighting parameter B.  The nominal 

value of B = 0.1 proved slightly superior to other choices in a similar range, while 

making B either very large or very small proved ineffective. 
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Figure 18:  Determination of weighting parameter B.  Within the range 0.05-0.2 the total number of 
columns remains very similar; the best choice for B found proved to be the nominal value of 0.1, 
corresponding to roughly equal weighting with wirelength. 

 

Figure 19 shows the results for the local route cost weighting parameter C.  The 

performance is highly similar over a wide range of nonzero values (see also Table 10 in 

Appendix), although a value of C=1.125 was shown to be slightly superior to both larger 
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and smaller values.  When C=0, performance degrades severely (number of columns 

required = 228), indicating that while this cost term need not be weighted heavily it 

cannot be ignored. 
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Figure 19:  Determination of weighting parameter C.  Note that for C=0 that many of the netlists are 
not routeable.  The value of C = 1.125 proved to be the best among those tried. 

 
5.2 Quality Versus Original Triptych Placer 

The placement algorithm described above was originally implemented in [Ebeling95] and 

verified on a Triptych architecture using four-input RLBs.  The array size was fixed at 64 

rows by 8 columns.  Verification was performed by selecting all ILSW93 netlists of size 

150-300 RLBs with 128 or fewer I/Os, i.e. few enough to fit on the 64x8 array.  The 

largest netlist successfully placed at this array size was 235 RLBs. 
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The same ILSW netlists were used to verify this implementation of the Triptych placer.  

However, the synthesis method used could not be reproduced; consequently the circuits 

tested were noticeably larger (185-457 logic blocks) than their published size in 

[Ebeling95].  Additionally, there is some ambiguity in [Borellio95] as to the exact 

connectivity of the vertical channels in the 4-input RLB scheme as discussed in section 

4.3.   

 

Table 2 shows the benchmark netlists placed and routed in [Ebeling95] to a 64x8 array.  

The first column shows the netlist name.  The second shows its size in RLBs as 

synthesized for [Ebeling95], while the third column shows the size in RLBs as 

synthesized for this work.  Whether [Ebeling95] successfully routed the netlist to a 64x8 

array is shown in the fourth column.  As will be shown in section 5.4, only keyb was 

successfully routed to a 64x8 array in this thesis. 

 

Table 2:  Comparison of RLB count between [Ebeling95] synthesis and synthesis performed for this 
work. 

Netlist RLBs, [Ebeling95] RLBs Current Synthesis [Ebeling95] Routed? 

ex1 150 220 YES 

keyb 150 185 YES 

C880 152 356 YES 

clip 155 260 YES 

C1908 159 258 YES 

mm9b 163 447 YES 

bw 169 232 YES 

s832 173 243 YES 

s820 176 212 YES 

x1 192 242 YES 

s953 220 372 YES 

s1423 235 428 YES 

styr 295 410 NO 

planet 296 457 NO 

planet1 297 457 NO 
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As Table 2 suggests, comparing the same benchmark netlists with such disparate RLB 

counts serves little purpose.  Thus, to get additional insight as to how the quality of the 

new implementation compared to the original, benchmark netlists were reselected based 

upon logic block count under the synthesis scheme used for this work.  Once again 

netlists with IO counts that exceeded the number available on a 64x8 array were rejected.  

Table 3 shows the results for each netlist meeting these criteria, the logic block count of 

each, and the number of columns required to route each netlist.  As can be seen, the 

largest netlist that could be placed to a 64x8 array contained 187 logic blocks.  It is 

unknown whether this performance gap is due to problems with the placement tool, 

issues arising from the difference in synthesis, or due to differences in the 4-RLB 

architecture implementation compared to the original implementation.  It is also possible 

that the custom router developed for [Ebeling95] is superior to Independence’s router for 

routing Triptych.  Given that Independence implements Pathfinder for its router, 

however, this seems unlikely.  Of all possible sources for the performance gap, 

architecture implementation differences seem most likely. 

Table 3:  Performance of Triptych Placer with 4-input RLBs on netlists with 150-300 logic blocks 
and less than 128 I/Os. 

Netlist 
Number of 
RLBs 

Minimum Number 
of Columns to 
Route 

s641 150 7 
Tbk 152 7 
Pma 155 7 
Sao2 158 7 
Cse 160 7 
Term1 162 7 
apex7 173 8 
s510 174 8 
9symml 176 7 
mult32a 184 8 
Keyb 185 8 
dk16 187 7 
example2 207 10 
s820 212 9 
ex1 220 9 
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Table 3 (continued) 
Bw 232 9 
C432 232 9 
x1 242 10 
s832 243 9 
9sym 254 9 
C1908 258 11 
Clip 260 10 
s838 270 10 
rd84 273 11 

 

5.3 Tuning Independence 

The parameter λ weighting the congestion cost relative to the wire cost in Independence 

was varied between 1 and 32 and tested in the same manner as the Triptych placer 

parameter tests on the same netlists.  Figure 20 shows a graph of the sum of minimum 

columns vs. λ for 3-input RLB and 4-input RLB architectures; the data for 3-input RLBs 

is provided in tabular form in the Appendix, Table 11, and the data table for 4-input 

RLBs is provided as Table 12. 
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Figure 20:  Graph of minimum number of columns required to route benchmarks vs. congestion 
weighting parameter λ.  The upper line indicates results for 3-input RLB architectures, while the 
lower line indicates results for 4-input RLB architectures. 

 
From these results, we can see that λ = 4 is about right for placing to Triptych.  The 

overall shape of the curves for both architecture variations is similar to results for the 

architectures tested in [Sharma05], although it appears that Triptych benefits from 

slightly higher weighting of congestion.  This is consistent with the intuition that because 

Triptych is a routing-poor architecture it will be more sensitive to routing congestion than 

a routing-rich architecture.  Additionally, it was found that λ = 4 roughly corresponded to 

giving equal weight to wirelength and congestion in initial placement costs for smaller 

benchmarks, which is consistent with the equal weighting that wirelength and peg cost 

receive in the Triptych custom placer. 
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5.4 Comparison to Independence 

All tests comparing Independence to the Triptych placer were tested on both 3-input and 

4-input architectures using the test methodology described in section 5.1.  For both 

placement tools the best values for the tuning parameters found in the tests of previous 

sections were used—B = 0.8 and C= 4.5 for the Triptych placer, and λ = 4 for 

Independence 

 

Table 4 shows the results for each of the ILSW93 netlists tested on the 3-input RLB 

architecture.  The second and third columns indicate the number of inputs and outputs in 

the netlist, respectively.  The fourth column shows the number of logic blocks.  The 

minimum number of columns needed for the Triptych placer to produce a routable netlist 

is shown in the fifth column, while the sixth column shows the same for Independence. 

Table 4:  Benchmark results for Triptych placer vs. Independence, 3-input RLBs.  Netlists that failed 
to route were assigned a value of 17 for computing the sum. 

Netlist Inputs Outputs Logic Blocks Triptych Independence 

Keyb 8 2 185 9 11 

s820 19 19 212 10 11 

ex1 9 19 220 10 12 

Bw 5 28 232 10 11 

x1 51 35 242 11 13 

s832 19 19 243 10 12 

C1908 33 25 258 12 14 

Clip 9 5 260 11 13 

C880 60 26 356 14 FAIL 

s953 17 26 372 14 16 

Styr 10 10 410 14 FAIL 

s1423 18 5 428 15 FAIL 

mm9b 13 9 447 16 FAIL 

Planet1 8 19 457 15 FAIL 

Planet 8 19 457 16 FAIL 

SUM    186 215 
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Table 5 shows the same data for the 4-input RLBs. 

Table 5:  Benchmark results for Triptych placer vs. Independence, 4-input RLBs 

Netlist Inputs Outputs Logic Blocks Triptych Independence 

Keyb 8 2 185 8 9 

s820 19 19 212 9 10 

ex1 9 19 220 9 10 

Bw 5 28 232 9 10 

x1 51 35 242 10 11 

s832 19 19 243 9 11 

C1908 33 25 258 11 13 

Clip 9 5 260 10 11 

C880 60 26 356 13 15 

s953 17 26 372 13 15 

Styr 10 10 410 13 16 

s1423 18 5 428 13 FAIL 

mm9b 13 9 447 14 FAIL 

Planet1 8 19 457 14 FAIL 

Planet 8 19 457 14 FAIL 

SUM    169 199 

 

In each architecture variation the Triptych placer requires fewer columns than 

Independence for every netlist in the benchmark.  Additionally some netlists could not be 

routed to an array with 16 or fewer columns using Independence’s placements.  Because 

the sums in each table for Independence assign netlists that fail to route a value of 17, the 

total columns reported for Independence represent a lower bound on the actual number 

required.  Thus, Independence requires at least 15.6% more columns than the Triptych 

placer for 3-input RLBs, and at least 17.8% more columns than the Triptych placer for 4-

input RLBs. 

 

Because previous results for Independence compared to previous placers had yielded 

similar or superior performance, this result merited further investigation.  In all tests run 

on all benchmarks, there were five cases in which an Independence placement came 
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within one routing violation of placing to a smaller array than the smallest one it was able 

to route to successfully.  For these five test cases, the placement cost of the final 

placement was computed using both tools’ cost functions.  The costs of the placements 

produced by the Triptych placer were then computed for the same five test cases.  Note 

that in all five cases the Triptych placer’s placement routed successfully. 

 

Table 6 shows the placement costs calculated by Independence.  The first column 

indicates the netlist.  The second column indicates the array size.  The third and fourth 

columns show the wire cost and congestion cost (unweighted) calculated for the 

Independence placements.  The fifth and sixth columns show the wire cost and 

congestion cost calculated for the Triptych placer placements.  The results obtained 

indicate that sometimes the calculated cost for the Triptych placer placements is in fact 

higher than that of the Independence placements despite the fact that they route 

successfully and the Independence placements do not.  Overall, however, the average 

cost of each placer’s placements as calculated by Independence are about the same.  It is 

important to note that because these calculations were performed treating the placement 

as an initial placement, the history term of the congestion cost is zero.  The congestion 

costs shown below thus are purely based upon Independence’s initial attempt at routing 

the placement. 

 

Table 6:  Independence placement cost calculations for selected benchmark test cases 

  Independence Triptych Placer 

Netlist Array Size Wirelength Congestion Wirelength Congestion 

ex1 88x11 2915 1039 2848 990 

Clip 96x12 3199 1207 3383 1212 

Styr 128x16 5991 2260 5698 1996 

C880 Case 1 128x16 5453 1849 5639 1896 

C880 Case 2 128x16 5383 1869 5741 1896 

 

Table 7 shows the placement costs calculated by the Triptych placer.  The third through 

fifth columns break down the cost of each Independence placement, while the sixth 
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through eighth columns break down the cost of each Triptych placer placement.  In each 

case the wire cost of the Independence placement is at least twice that of the 

corresponding Triptych placement.  It can also be seen that while the Triptych placer 

ultimately reduces the peg cost and local route cost of each placement to zero, 

Independence does not necessarily achieve this.  This is particularly important for the 

local route cost since in general a nonzero local route cost implies that the placement is 

not routeable. 

Table 7  Triptych placement cost calculations for selected benchmark test cases 

  Independence Triptych Placer 

Netlist Array 

Size 

Wire Cost Peg 

Cost 

Local 

Route 

Wire Cost Peg 

Cost 

Local 

Route 

ex1 88x11 14.124 2.201 0 5.611 0 0 

Clip 96x12 12.120 1.681 0 6.058 0 0 

Styr 128x16 16.303 1.658 0 6.223 0 0 

C880 

Case 1 

128x16 16.425 1.558 0.010 6.427 0 0 

C880 

Case 2 

128x16 16.915 0.861 0.20 6.579 0 0 

 

Taken together, the results shown in Table 6 and Table 7 demonstrate that the Triptych 

placer’s cost function is better able to discern placement quality than that of 

Independence.  In particular, the importance of the local routing violation check is again 

clear as it was in testing the Triptych placer by itself.  Figure 21displays the area 

surrounding the location of the single local routing violation for Independence’s 

placement of the C880 netlist denoted Case 1 in the above tables.  In this case, the routing 

violation occurred because cell 423gat_155_ with three required inputs was placed 

adjacent to an IO pin for which it produced the required output.  Because there is only 

one route to the output pin, it is impossible to route the netlist given this placement.  A 

local routing check by the Triptych placer detects this type of violation. 
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Figure 21:  An example of a local routing violation produced by an Independence placement.  In this 
case, net _90_gat_22_ and net _423gat_155 are both trying to use the empty cell’s upper diagonal.  
Because cell 423gat_155_ requires inputs to all three pins, and none of these inputs is the net being 
routed to output out:_423gat_155, it can be determined purely from this context that the netlist is not 
routeable. 

 

A more generic type of local routing violation occurred in Independence’s placement of 

C880, denoted Case 2 in the tables, and is shown in Figure 22.  In this case, logic blocks 

have been placed to both RLBs in an RLB pair, shown in the middle.  Each block has 

three inputs, and so all four diagonal inputs must be used to route this placement.  As can 

be seen in Figure 22, the cell [254]’s diagonal cannot be used in routing any of the input 

nets to the middle RLBs because none of its input or output nets match those required.  

This also would be detected by the Triptych placer’s local routing violation check. 
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Figure 22:  A second example of a local routing violation produced by Independence.  In this case, six 
different nets need to be routed to the RLB pair [210] and [243].  This means that all four adjacent 
RLBs who have diagonals connecting to this pair must be used to route the six required nets.  
Because cell [254] has three input nets and an output net that are not required by [210] or [243], its 
upper diagonal cannot be used in routing and the netlist is therefore guaranteed to be unrouteable. 

 

The need for this check underscores the importance of localized routing and congestion 

to Triptych placements.  With this already in mind, it is then also clear why the peg cost 

calculation, which essentially measures local congestion across the entire array, might 

have advantages over the congestion calculation of Independence, which in general 

reflects congestion in a more global sense. 
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6 Conclusion 

The new Triptych placement tool demonstrated superior performance in terms of area to 

Independence.  Independence required 15.6% more columns to route the benchmark 

netlists to 3-input RLB architectures and 17.8% more columns to route the benchmark 

netlists to 4-input RLB architectures.  Investigation of selected test cases demonstrates 

the Triptych placer cost function’s higher sensitivity to both wirelength and congestion 

compared to Independence, as shown in Table 6 and Table 7.  Wirelength estimates 

calculated by Independence were similar for test cases in which Independence failed to 

produce a routable placement but the Triptych placer succeeded.  The peg cost heuristic 

for measuring routing density appears to have advantages over Independence’s 

congestion estimate for evaluating placement quality on the Triptych architecture.  

Additionally, two out of five test cases studied were found to have failed to route 

specifically due to local routing violations of the type the Triptych custom placer 

identifies.  By contrast, the Independence cost function calculations for the five test cases 

examined produced similar costs for placements produced by Independence that failed to 

route and placements produced by Triptych that routed successfully. 
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7 Future Work 

Although this thesis demonstrates that the reason for Independence’s poor performance 

compared to the Triptych custom placer stems from a lack of sensitivity in its cost 

function, the reasons for this deficiency have yet to be explored.  Future work in this area 

can be logically divided between examining wirelength and examining congestion.  An 

explanation is needed as to why Independence placements in the test cases considered 

had wirelength as measured by the Triptych wirelength heuristic of more than twice the 

value of Triptych placer placements to the same array size.  Similarly an explanation is 

needed as to why for the same test cases Independence produces similar wirelength 

estimates for each tool’s placements.  Further work could also look attempt to address 

two issues regarding Independence’s congestion.  The first is Independence’s seemingly 

limited ability to eliminate local routing violations.  The second is Independence’s 

inability to distinguish congestion of routable placements and unrouteable placements to 

the Triptych architecture.  Future work could investigate these issues by comparing cost 

calculations for test cases such as those presented here on a net-by-net or node-by-node 

basis to more precisely ascertain what place-and-route scenarios prevent Independence 

from performing similarly to the Triptych custom placer. 
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Appendix:  Data Tables for Triptych, Independence Tuning Parameters 
 
Table 8:  Minimum number of columns as a function of peg threshold.  Netlists that failed to route 
were assigned a value of 17 for computing the sum. 

 
Netlist 0.1 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.5 2.0 2.5 
ex1 11 11 10 10 10 10 10 10 10 FAIL FAIL FAIL
keyb 10 9 9 9 9 9 9 9 11 FAIL FAIL FAIL
C880 16 15 15 15 14 14 14 15 FAIL FAIL FAIL FAIL
clip 12 12 11 11 11 11 11 11 11 FAIL FAIL FAIL
C1908 13 13 13 13 12 12 15 FAIL FAIL FAIL FAIL FAIL
mm9b FAIL FAIL FAIL 16 16 16 16 FAIL FAIL FAIL FAIL FAIL
bw 11 10 10 10 10 10 10 10 10 FAIL FAIL FAIL
s832 11 11 11 11 11 11 11 11 11 FAIL FAIL FAIL
s820 11 10 10 10 10 10 10 10 10 FAIL FAIL FAIL
x1 12 12 12 12 11 11 11 12 15 FAIL FAIL FAIL
s953 16 15 15 15 14 15 15 FAIL FAIL FAIL FAIL FAIL
s1423 FAIL 16 16 15 15 15 14 14 14 FAIL FAIL FAIL
styr FAIL 16 16 15 15 15 15 15 FAIL FAIL FAIL FAIL
planet FAIL FAIL FAIL 16 16 16 16 16 FAIL FAIL FAIL FAIL
planet1 FAIL FAIL 16 16 16 15 15 16 FAIL FAIL FAIL FAIL
SUM 208 201 198 194 190 190 192 200 211 255 255 255
 
Table 9:  Minimum number of columns as a function of peg cost weighting parameter B.  Netlists 
that failed to route were assigned a value of 17 for computing the sum. 

Test 0.025 0.05 0.0625 0.075 0.1 0.1125 0.125 0.1375 0.2 0.4
ex1 10 10 10 10 10 10 11 10 10 11
keyb 11 9 9 9 9 9 9 9 9 9
C880 FAIL 15 15 14 14 14 15 14 15 16
clip 12 11 11 11 11 11 11 11 11 12
C1908 16 14 15 15 14 15 13 13 13 14
mm9b FAIL 16 16 16 16 16 16 16 FAIL FAIL
bw 10 10 10 10 10 10 10 10 10 11
s832 11 11 11 10 10 11 11 11 11 11
s820 10 10 10 10 10 10 10 10 10 11
x1 12 12 12 11 11 12 11 11 11 12
s953 FAIL FAIL 16 15 15 14 16 FAIL 15 15
s1423 14 14 15 14 14 15 14 15 15 15
styr FAIL 15 15 15 15 15 15 15 15 16
planet 16 15 15 16 15 16 16 16 16 FAIL
planet1 15 15 15 15 15 16 16 16 16 FAIL
 205 194 195 191 189 194 194 194 194 204
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Table 10:  Minimum number of columns as a function of routeability cost weighting parameter C.  
Netlists that failed to route were assigned a value of 17 for computing the sum. 

 
Netlist 0 0.28125 0.5625 1.125 2.25 4.5 9 18 36
ex1 FAIL 10 10 10 10 10 10 10 10
keyb 9 9 9 9 9 9 9 9 9
C880 FAIL 14 14 14 14 14 14 14 14
clip 12 11 11 11 11 11 11 11 11
C1908 FAIL 12 12 12 12 12 12 13 12
mm9b 16 16 16 16 16 16 16 16 16
bw 13 10 10 10 10 10 10 10 10
s832 FAIL 10 11 10 11 11 11 11 11
s820 13 10 10 10 10 10 10 10 10
x1 FAIL 11 11 11 11 11 11 11 11
s953 FAIL 14 14 14 14 14 14 14 14
s1423 14 14 14 15 14 15 15 14 14
styr 15 15 15 14 14 15 15 15 15
planet FAIL 16 15 15 15 15 15 16 15
planet1 FAIL 15 16 15 16 15 15 15 16
SUM 228 187 188 186 187 188 188 189 188
 
Table 11:  Minimum number of columns as a function of congestion weighting factor, 3-input RLBs.  
Netlists that failed to route were assigned a value of 17 for computing the sum. 

 
Netlist 1 2 4 8 16 32
ex1 16 12 12 11 12 13
keyb 14 12 11 10 11 11
C880 FAIL FAIL FAIL FAIL FAIL FAIL
clip FAIL 16 13 13 13 14
C1908 FAIL FAIL 14 14 15 16
mm9b FAIL FAIL FAIL FAIL FAIL FAIL
bw 14 12 11 11 12 12
s832 FAIL 14 12 12 13 14
s820 15 12 11 12 12 12
x1 16 14 13 13 14 16
s953 FAIL FAIL 16 FAIL FAIL FAIL
s1423 FAIL FAIL FAIL FAIL FAIL FAIL
styr FAIL FAIL FAIL FAIL FAIL FAIL
planet FAIL FAIL FAIL FAIL FAIL FAIL
planet1 FAIL FAIL FAIL FAIL FAIL FAIL
SUM 245 228 215 215 221 227
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Table 12:  Minimum number of columns as a function of congestion weighting factor, 4-input RLBs.  
Netlists that failed to route were assigned a value of 17 for computing the sum. 

 
Netlist 1 2 4 8 16 32
ex1 11 10 10 10 11 11
keyb 9 9 9 9 10 10
C880 FAIL 16 15 16 16 FAIL
clip 12 12 11 12 12 12
C1908 14 13 13 13 14 14
mm9b FAIL FAIL FAIL FAIL FAIL FAIL
bw 10 10 10 12 11 11
s832 12 11 11 13 11 12
s820 10 10 10 11 11 11
x1 13 12 11 13 12 13
s953 16 16 15 FAIL FAIL FAIL
s1423 FAIL FAIL FAIL FAIL FAIL FAIL
styr 16 16 16 16 FAIL FAIL
planet FAIL FAIL FAIL FAIL FAIL FAIL
planet1 FAIL FAIL FAIL FAIL FAIL FAIL
SUM 208 203 199 210 210 213
 


