
FPGA-Based Pulse Parameter Discovery for 
Positron Emission Tomography. 

M. Haselman, Member IEEE, S. Hauck, Senior Member IEEE, T.K. Lewellen, Fellow IEEE,  
R.S. Miyaoka, Member IEEE,  

 
Abstract-Modern Field Programmable Gate Arrays (FPGAs) are 
capable of performing complex digital signal processing 
algorithms with clock rates well above 100MHz.  This, combined 
with FPGA’s low expense and ease of use make them an ideal 
technology for a data acquisition system for a positron emission 
tomography (PET) scanner.  The University of Washington is 
producing a series of high-resolution, small-animal PET scanners 
that utilize FPGAs as the core of the front-end electronics. For 
these next generation scanners, functions that are typically 
performed in dedicated circuits, or offline, are being migrated to 
the FPGA. This will not only simplify the electronics, but the 
features of modern FPGAs can be utilizes to add significant 
signal processing power to produce higher resolution images. In 
this paper we report how we utilize the reconfigurable property 
of an FPGA to self-calibrate itself to determine pulse parameters 
necessary for some of the pulse processing steps.  Specifically, we 
show how the FPGA can generate a reference pulse based on 
actual pulse data instead of a model.  We also report how other 
properties of the photodetector pulse (baseline, pulse length, 
average pulse energy and event triggers) can be determined 
automatically by the FPGA. 

I.   INTRODUCTION 

E are developing a second-generation data acquisition system 
to support several positron emission tomography (PET) 

designs being developed at the University of Washington [1]. It is 
based on our experience with the original MiCES electronics 
concepts [2].  Along with the development of the hardware, we are 
also developing algorithms for the field programmable gate array 
(FPGA) that will make up the core of the front-end electronics.  In 
previous work, we have developed algorithms for statistical event 
location [3] and coincidence timing [4]. 

One goal of our previous work was to produce an all-digital 
FPGA-based timing algorithm that could achieve a resolution that is 
suitable for small-animal scanners with current serial ADC sampling 
rates (<100MHz).   The other design criteria were that timing 
resolution should scale with technology improvements of ADCs and 
that the algorithm should eventually outperform the analog version, 
given a fast enough sampling period for the ADC.  The results from 
that study [4] reported that the two goals were met, but the algorithm 
relies on information about the system that may difficult to obtain, 
may change over time and/or vary between photodetectors.   
Specifically, our algorithm utilizes a reference pulse with the same 
shape as the sampled pulses from the photodetector.  1 
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The algorithm also utilizes the pulse length, baseline restoration, 
and event triggers that are very close to the baseline.  Our research 
has indicated that some parameters can vary between photodetectors 
(reference pulse shape and pulse length) and over time (event triggers 
and baseline).  In this work, we have developed tools and algorithms 
for the FPGA to automatically determine each of these parameters.  
This will allow the FPGA to tune itself to each sensor, as well as 
adjust to the system as it changes over time.  

One complication of our timing algorithm, as well as any that use 
a reference pulse [5], is the need to accurately determine or discover 
a good reference pulse.  Previous timing work [5] used exponentials 
as models for the photodetector pulse.  Our experiments found that 
models based on exponentials did not fit the data as well as models 
derived from the actual photodetector pulses.  One reason for this is 
the inability to accurately model the electronics between the 
photodetector and the FPGA.  All components of this chain 
(amplifier, low-pass filter, ADC, FPGA input pads, printed circuit 
board) affect the shape of the final pulse.  Additionally, we found 
that for MAPDs, each pixel can produce a different shaped pulse.  
All of these factors indicate that a solution where the FPGA builds 
reference pulses using sampled data may produce the best possible 
timing results. 

To exploit this, we have developed an algorithm that utilizes 
amplitude normalization and a timing lookup technique to build and 
refine a reference pulse.  The process is to reconfigure the FPGA to 
capture and store many event pulses that are sampled at the ADC 
period (~15ns).  These pulses will then be used to form the reference 
pulse that is defined at a much finer time step (60ps).  

II.   FPGA TIMING 

The data acquisition electronics that we are developing will have 
an Altera StratixIII S200 FPGA as the main processing component.  
A single FPGA will process all 64-detector channels supported by 
each board.  Processing this many channels on a single board 
prohibits the use of a discrete timing circuit for each channel. 
Another implication of this architecture is that serial ADC’s must be 
used in order to meet the I/O constraints of the FPGA.  This currently 
limits the sampling period of the ADC to around 100MHz.  This has 
lead us to develop an all digital timing technique that can produce 
high resolution coincidence timing based only on the sampled 
photodetector pulse. 

The timing technique that we developed is a leading edge detector 
with pulse amplitude normalization.  Using the leading edge is 
preferable because it is composed of photons that travel directly to 
the photodetector while the tail of the pulse is composed of photons 
that have reflected in the scintillator before reaching the 
photodetector.  This means that the leading edge will be much more 
consistent (ignoring depth of photon interaction).  One issue with 
leading edge discriminators is the phenomenon known as time walk.  
This refers to the time difference for pulses of differing amplitudes to 
reach a given voltage as shown in Fig. 1.  In other words, a pulse 
with lower amplitude will take longer to reach a threshold voltage 
than a pulse with higher amplitude.  This time differences will 
introduce jitter into the coincidence timing if it is not corrected.    
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Fig. 1.  Illustration of the timing jitter introduced by time walk when two 

pulsed have varying amplitudes. 

We have developed an FPGA timing technique motivated by these 
two concepts.  First, in order to get the most accurate timing 
information, the threshold to determine the start of a pulse is put as 
close to the baseline as possible without being triggered by noise.  
Once a pulse is detected, the amplitude is normalized to a preset 
value.  This is accomplished by normalizing the area under the pulse 
or the summation of all of the samples that compose the pulse.  This 
works because all of the pulses from a single photodetector have 
similar exponential shape with varying amplitudes so normalizing the 
area (integral of exponential) also normalizes the amplitude.  After 
normalization, the data from the leading edge is used for determining 
the start time of the pulse.  Previous research [4] indicated that the 
best timing resolution was achieved when just the first sample above 
the threshold was used for timing.  A lookup table is used to convert 
the voltage of this first sample to a pulse start time.  The input to the 
lookup table is the voltage of the sample, and the output is the time is 
takes for the reference pulse to reach that voltage on the leading 
edge.  The reference pulse is a pre-computed curve that has the same 
shape as the incoming photodetector pulses but is defined at a much 
higher resolution (every 60ps in this work).  The reference pulse also 
has the same amplitude that the incoming pulses are normalized to.  
The output of this lookup table is subtracted from the course grain 
time (counter based on ADC rate) to produce the timestamp.  The 
course grain time is the count of the first sample above the threshold. 

To determine the resolution of this timing algorithm, pulses were 
acquired from a Zecotech Photonics MAPDN with an LFS-3 
scintillator using a 25GSPS oscilloscope.  The pulses were imported 
into Matlab and subsampled to the ADC rate of interest.  The 
coincidental timing for a 65MHz subsampling is 2.5ns.  With a 
125MHz subsampling, the timing improves to 1.4ns.  This simulation 
indicates that the timing resolution of this algorithm is suitable for 
our small animal PET scanner.   

However, when this algorithm was implemented in an FPGA, the 
timing resolution was more than 2X worse [7].  This large 
discrepancy is mostly due to the inability to calculate an accurate 

reference pulse for the voltage to time lookup table and the amplitude 
normalization function.   For the implementation experiment, 
photodetector pulses were collected with a 25GSPS oscilloscope 
connected between the low-pass filter and the ADC in Fig. 2 (closest 
possible connection to the FPGA without modifying FPGA 
development board).  These pulses were then imported into Matlab, 
averaged to determine a reference pulse and then imported into the 
FPGA.  The main problem with this approach is that the affect the 
ADC, FPGA I/O and the printed circuit board have on the shape of 
the photodetector pulses is not captured when pulses are sampled 
before the ADC.  An alternative method to determine the reference 
pulse is mathematically deriving the reference pulse.  Previous work 
[5] has modeled the pulses as two exponentials, but our research 
indicated that while exponentials are a close fit, they are not accurate 
enough for our needs.  Moreover, the inaccuracy is largest at the 
initial portion of the pulse where the most accurate timing 
information is.  Furthermore, if a mathematical function is used, an 
accurate model of the data acquisition chain in Fig. 2 must be 
calculated in order to determine how it will influence the shape of the 
pulse that reaches the FPGA core.  This model is difficult to get 
correct and would have to be performed for each photodetector of a 
scanner.  

 

 
Fig. 2.  Typical data acquisition chain for a PET scanner. 

III.   REFERENCE PULSE DISCOVERY 
Alternatively, the FPGA can form a reference pulse from the 

sampled pulses.  To do this, the FPGA must be able to build an 
accurate reference pulse defined at a higher resolution (every 60ps in 
this work) from pulses that are sampled at the ADC rate (~15ns).  
This method has multiple advantages.  The first is that the acquisition 
chain in Fig. 2 no longer needs to be modeled, as any affect the chain 
has on the shape of the final pulse is already present in the pulses the 
FPGA processes.  The other main advantage is that this automates 
the discovery of the reference pulse as well as other pulse 
parameters.  This allows for each channel to have it’s own reference 
pulse without going through the tedious process of acquiring pulses 
from each channel with an oscilloscope and generating the reference 
pulse offline.  Using the oscilloscope approach for a whole scanner 
would be very impractical.  Furthermore, if any components in the 
acquisition chain are upgraded (e.g. different low-pass filter, faster 
ADC) a new reference pulse has to be calculated.  The automation of 
the FPGA reference pulse discovery allows for easy investigation of 
optimum filtering, new detectors or any other changes in the 
acquisition chain.   

 

 
Fig. 3.  Block diagram of the overall reference pulse discovery algorithm.



The overall algorithm is shown in Fig. 3.  As samples arrive from 
the ADC, the first thing that is calculated is the baseline value.  
Solid-state photodetectors have a non-zero baseline voltage that is 
present in the absence of any photon interactions.  With the baseline 
removed, the following general statistics are determined in the order 
as shown. 

1) event trigger threshold voltage 
2) average pulse length 
3) average pulse energy 
After these statistics are calculated, pulses can be detected and 

processes.  Pulses are detected by looking for four contiguous 
samples over the event trigger threshold voltage.  Once a pulse is 
detected, the amplitude is normalized so that all of the pulses utilized 
to make the reference pulse have the same amplitude.  The next step 
is to determine the start time of the pulse in order to line them up in 
time.  The start time is then used to sort the pulses into the higher 
resolution array that is used in the final step to calculate the reference 
pulse.  The final step of calculating the reference pulse is done after 
8192 pulses are collected. 

A. Baseline Restore 
An issue seen in systems that utilize solid-state photodetectors is a 

non-zero baseline for event pulses due to the dark currents.  This 
baseline can shift over time, so to calculate the most accurate energy 
and timing values the baseline should be calculated constantly during 
runtime.  Unfortunately, there is too much noise in the baseline to use 
a single point just before the pulse.  Additionally, there is no 
guarantee that the points before a pulse are not a tail of another pulse, 
so averaging a small number of samples before the pulse may give 
incorrect results as well.  Given these constraints, any baseline 
restore algorithm should fulfill these two requirements: 

1) able to react to baseline moves but not noise 
2) can not be affected by pulses 

We have developed a solution that accurately calculates the baseline 
and adheres to these requirements. 

As each sample is read into the FPGA, the first step is to determine 
if the sample is a part of an event or a sample of the baseline.  If the 
sample is a part of an event pulse, it should not be included in the 
baseline calculation.  To exclude samples of an event pulse, a 
baseline window is calculated.  If a sample is inside the baseline 
window, it is determined to be a part of the baseline otherwise it is 
assumed to be a part of an event pulse.  The requirements for the 
baseline window are as follows: 

1) must include most values of the baseline including noise 
2) must be able to track baseline shifts 
3) must be able to expand or contract based on noise levels 

All of these requirements indicate that the baseline window cannot be 
static but must be capable of expanding and contracting.  The 
window also needs to be two sided in order to eliminate large noise 
spikes in the opposite direction of the event pulses.  To meet these 
requirements, the baseline window keeps track of how many samples 
have been inside of the window and how many have been outside of 
the window.  If 512 samples have been inside of the window, then 
the window contracts by one ADC least significant bit (lsb).  
Likewise, if there are 64 samples outside of the baseline window, the 
window expands by one ACD lsb.  In order to simplify control, the 
two counters only reset when 512 or 64 respectively is reached.  The 
window expands faster than it contracts because there are more 
baseline values than pulse values.  In this data set, the ratio is about 
4:1.  If the ratio were 1:1 then 50% of the samples would be outside 
of the window (instead of 20%).  This means that for this data set, 
30% of the samples would be misclassified as part of a pulse.  This 
ratio may have to change for different event rates and will likely be a 
user input, but will be uniform for the whole scanner.   

This scheme accomplishes many things.  First, if the noise level 
reduces, the window can contract closer to the baseline and reject 
more of each pulse.  Likewise, if the noise increases in amplitude, the 
window can expand.  The other thing that this scheme will handle is 
a shift in the baseline as shown in Fig. 4.  Notice that if a static 
baseline window were used, a quick shift in the baseline that is large 
enough to move it out of the baseline window would be a problem.  
The problem would be that none of the baseline values would be 
inside the baseline window, so they would erroneously be determined 
to be a part of an event pulse.  With the scheme discussed above, the 
baseline window would expand until the baseline is again inside the 
baseline window and then contract around the new baseline. 

 
Fig. 4. Illustration of a baseline shift greater than the baseline window.   

To calculate the baseline window, the window is initialized to +1 
and -1 ADC lsb.  The system runs until enough samples have been 
processed for the baseline window to move half of the ADC range.  
This assures that the baseline window will settle before the rest of the 
algorithm starts.   

With the baseline window settled, baseline values can be 
calculated.  In this algorithm, a new baseline value is calculated each 
cycle (ADC cycle).  To determine the baseline value while adhering 
to the requirements previously stated, a running average is utilized.  
A running average of the last 64 samples allows the baseline to 
move, but smoothes out the higher frequency noise.  When a sample 
is out of the baseline window, the current baseline value is inserted 
into the running average.  This simplifies the control of the FPGA 
implementation.   Notice, that at this point, pulses cannot be detected 
because the voltage threshold has not been determined.  All is known 
is whether a sample is inside our outside of the baseline window.   
The next steps will calculate the parameters necessary to detect 
pulses. 

B. General Statistics 
In order for this process to be fully automated and suitable to any 

detectors, all of the pulse parameters necessary for this algorithm and 
pulse timing need to be automatically calculated.  The parameters 
necessary for these algorithms are a voltage threshold to differentiate 
pulses from noise, the average pulse length, and the average pulse 
energy.   

It turns out that a good threshold is the baseline window (the half 
of the window in the direction of photodector pulses).  So after the 
baseline window has settled, 1024 successive baseline window levels 
are averaged to calculate the voltage threshold for detecting pulses.   

Once the threshold is calculated, the average pulse length can be 
determined.  The pulse length is designated as the number of samples 
above the threshold.  When eight consecutive ADC samples are 
above the threshold, the number of samples (including the initial 
eight) are counted until the voltage returns back below the threshold.  
This is again done for 1024 pulses and the average pulse length is 
calculated.  One possible pitfall to this method is the baseline shift as 
shown in Fig. 4.  If this occurs, two things will happen.  The pulse 
length counter will reach the max pulse length count, and this will 
repeat until the baseline window has expanded to recapture the 
baseline.  This will result in a large portion of the pulse length counts 
in the average being incorrect.  To guard against this, a new pulse is 
only processed every 65536 cycles.  This allows sufficient time for 



the baseline window to adjust between pulses that are counted for 
length.   

Determining the average pulse energy is performed in a similar 
manner.  When a pulse is detected, all of the samples of the pulse are 
summed.  The average pulse length determined in the previous step is 
the number of samples summed for each pulse.  Again, this is done 
for 1024 pulses before the average energy is calculated.  As with the 
pulse length, only one pulse is processed per 65536 cycles so that an 
anomaly won’t be a significant portion of the calculation. 

C.  Reference Pulse Formation 
Once the statistics are calculated, pulses can be detected and 

processed to form the higher resolution reference pulse.  The first 
step in this process is to detect pulses from the free-running ADC. 
Just like in the previous steps, this is done by detecting when eight 
consecutive samples are above the threshold.  In addition to using the 
threshold, a narrow energy quantification around the average pulse 
energy is also used.  This is done by keeping a running sum of the 
last “average pulse length” samples.  The ADC samples are delayed 
by the same amount so when samples are detected over the threshold, 
the energy can be immediately checked.  The narrow energy window 
guards against piled-up pulses from being a part of the reference 
pulse.    

Once a pulse is detected, the amplitude must be normalized to a 
common amplitude.  This is accomplished by normalizing the sum of 
the samples of the pulse.  In other words, since the pulses have the 
same shape, if the area under the pulse is normalized, then the 
amplitudes will be normalized.  This is calculated by using a lookup 
table to eliminate the division.  The summation of the pulse is the 
input to the lookup table and the output is the ratio that the pulse is 
multiplied by in order to normalize it.  One complication with this 
lookup table is that in theory, it is required to cover all possible pulse 
summation inputs.  This would make this table prohibitively large.  
Recall though, that a narrow energy window is used so only a small 
portion of the table will be required, but which portion isn’t known 
until the average pulse energy is calculated.  There are two methods 
to produce the portion of the lookup table required.  The first is to 
store the whole table on off-chip memory and only read in the 
required portion.  The method we settled on is to use the NIOSII soft 
microprocessor to calculate the region on the fly. 

After the pulse amplitudes have been normalized, the next step is 
to line them up in time. In order to use the ADC samples to build a 
higher resolution reference pulse, the relative time of the sampling 
needs to be determined.  Notice that the free running ADC samples 
asynchronously to the start time of a pulse, so pulses will range from 
starting just after the ADC sample to starting just before the ADC 
sample.  As illustrated in Fig. 5, this will result in the first sample of 
the pulse having a range of voltages.  

 
Fig. 5.  Illustration of the range of possible sampling of photodetector 

pulses.   

To build the higher resolution reference pulse, each ADC sample 
interval is divided into 256 sub-intervals.  So the sampling interval of 
15.4ns (65MHz ADC) is broken up into 256 60ps steps.  An array 
with a length of 256 times the length of pulse in ADC samples is 
created to sort the sampled pulses into.  Locations 0, 256, 512, etc. in 
the array will be composed of samples from pulses that start just 

before an ADC sample while locations 255, 511, 767, etc. will be 
composed of pulses that started just after an ADC sample.  To 
determine which of the 256 sub-intervals to place the samples of a 
pulse in, the start time of the pulse needs to be determined.  
Unfortunately, the timing technique we normally use requires a 
reference pulse.  Since this algorithm is in the process of building 
this reference pulse, an alternative method must be used.  For this 
step, we utilized a linear interpolation.  For each pulse, the two 
samples on either side of the threshold are used to calculate a line 
and the time of threshold crossing is interpreted using that line.  In 
this case, we designate the crossing of the threshold to be the start 
time of the pulse.   

After 8192 pulses are placed in the array there will be on average 
32 samples in each 60ps bin.  It is imperative that this is the case, and 
that there is a linear distribution across the ADC sampling interval.  
If the samples are not evenly distributed across the ADC interval the 
shape of the reference pulse will be incorrect.  For example, if there 
are few or no samples in the upper intervals (e.g. 220-255) then the 
leading edge of the pulse will be too steep because the samples that 
are higher voltage and were suppose to be in those upper intervals 
were erroneously placed in the middle buckets.  Likewise, if samples 
that are suppose to be placed in the upper intervals are placed in the 
lower intervals of the next ADC interval the slope of the leading edge 
of the pulse will be too shallow.  Fig. 6 shows that we were able to 
get a linear distribution of the samples across the interval. Fig. 6 is a 
histogram of the first ADC interval with the x-axis being the 60ps 
bins and the y-axis indicating the number of samples in each 60ps 
bin.    

 
Fig. 6.  Histogram of the distribution of pulse samples over one ADC 

interval (0-255) for the higher resolution pulse. 

To calculate the reference pulse from the array with multiple 
samples per 60ps bin is a two-step process.  The first step is to find 
the average value for each bin.  To save memory space, a two 
dimensional array is used to store all of the 8192 sorted pulses.  
When a sample is to be placed in a particular 60ps bin, the bin read 
from memory, the sample is added to the read value, and then the 
sum is written back.  A second memory is kept that tracks the 
number of samples in each bin.  When all 8192 samples have been 
collected, the average of each 60ps bin is calculated by dividing the 
summation in each bin by the number of samples indicated in the 
second memory.  After this step, the pulse is still very rough as 
shown in  Fig. 7(a).  To smooth the pulse, a moving average filter is 
used.  Each bin is recalculated using the smoothing equation 
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The averaging is done over 49 samples so there is the same number 
of samples on either side of the current point.  In the FPGA, the 
division by 49 is converted into a multiplication of the reciprocal.   
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Fig. 7.  Matlab plot of 12ns of the leading edge of the derived reference 
pulse (a) before smoothing and (b) after smoothing. 

One side effect of using a linear interpolation to determine the start 
time of the pulse is that the initial portion of the reference pulse (first 
ADC interval) becomes a line.  Also, a linear interpolation is not a 
very accurate timing model.  To alleviate this, the process is iterated 
three more times.  The only difference with these iterations is that 
instead of using a linear interpolation to determine the start time, the 
reference pulse formed from the previous iteration is used in the 
timing technique discussed in section II.  Note that the baseline 
window and general statistics do not need to be recalculated.  Each 
iteration collects a new set of 8192 pulses and forms a new reference 
pulse.  One subtle issue with using the reference pulse to interpolate 
the start time of the pulse is that if only one point is used as in our 
normal timing algorithm, the first section of the resulting reference 
pulse will be an exact match of the previous reference pulse.  To 
eliminate this issue, the first four pulses on the leading edge of the 
pulse are timed using the voltage to time lookup table.  The start time 
of the pulse is the average start time returned for each of the four 
samples.   

IV.   RESULTS 
To determine how well this method worked, two experiments were 

conducted.  The data sets for these experiments consisted of pulses 
sampled from four different Zecotech MAPDN photodetectors using 
LFS-3.  The pulses from a 511 KeV (22Na) source were collected 
with a 25GSPS oscilloscope and imported into Matlab.  Two 
reference pulses were computed for each data set (each separate 
detector).  One reference pulse was derived by using the data from 
the oscilloscope that was sampled at 25GHz.  The pulses where 
normalized for amplitude and then an average pulse was calculated.  
The other reference pulse was calculated using the algorithm 
discussed above with pulses that were down sampled from 25GHz to 
65MHz.  To test the ADC sampling rate affect on this algorithm, a 
reference pulse was also calculated using pulses down sampled to 
125MHz.   

The first experiment is a subjective comparison of the two 
reference pulses – the hand-tuned one from 25GHz oscilloscope data 
and the reference pulse derived from our algorithm.  Fig. 8 indicates 
that pulses can be derived from low-speed ADCs data using our 
algorithm.  The minor inconsistencies at the very start and end of the 
pulses are of very little consequence to the timing algorithm.  The 
differences at the start of the pulse are below the event threshold so 
no samples will be processed in that range.  The end of the pulse is 

only utilized in the area normalization step and again most of the 
differences are below the threshold and so they will not be included 
in the pulse energy summation.   

 
Fig. 8.  Matlab plot of two reference pulses.  The green pulse is derived 

from our algorithm while the blue pulse is derived from 25GHz oscilloscope 
data. 

The second experiment was to compare the timing resolution for 
the data sets using the reference pulses derived in the two different 
manners.  The four data sets were paired up in all possible 
combinations and coincidental pairs where simulated by aligning 
pulses in each data stream.  Each stream was timed using the 
reference pulse derived from itself.  Fig. 9 shows the results of this 
experiment.  Two ADC sampling rates were investigated – 65MHz 
and 125MHz.  The blue bars indicate the timing resolution for our 
timing algorithm when the reference pulse is derived using the 
algorithm discussed above.  The grey bars indicate the timing 
resolution when the reference pulse is the hand-tuned pulse from 
25GHz data.  For the 65MHz group, the pulses being timed and the 
pulses used to form the reference pulse with our algorithm are sub-
sampled at 65MHz.  The hand-tuned reference pulse is still formed 
with 25GHz data.  Similarly, the 125MHz group used pulses sub-
sampled at 125MHz for the pulses to be timed and the input to the 
reference pulse discovery algorithm.  With a 65MHz ADC sampling 
rate, there is no difference in the timing resolution.  With a 125MHz 
there is a 5% degradation in timing resolution using the automated 
reference pulse.   

 

 
Fig. 9.  Result of coincidental timing for the hand-tuned reference pulse 

derived from 25GHz oscilloscope data (grey) and a reference pulse from out 
automated algorithm (blue).   

Finally, to determine how the accuracy of the reference pulse 
affects the timing resolution, an experiment was conducted using the 
“wrong” reference pulse.  A simulation was performed where the 
data sets were timed using reference pulses formed from other data 
sets.  The largest degradation in timing resolution was 35%.   This 
indicates that each detector will need to form its own reference pulse. 



V.   FPGA IMPLEMENTATION 
In order to determine the feasibility of an FPGA implementation, 

this algorithm was implemented in Verilog and compiled with 
Altera’s Quartus II design software.  The targeted FPGA was the 
Stratix III S200 (same FPGA that will be used in our new data 
acquisition electronics).  This algorithm uses about 10% of the logic 
and about 90% of the dedicated memory.  The high memory usage is 
due to the storage of the intermediate reference pulses.  Notice that 
two references pulses have to be stored – one for the reference pulse 
from the previous iteration and the one that is being formed during 
the current iteration.  Using most of the memory on the chip is not an 
issue because this is only a tuning circuit and does not need to be 
present on the FPGA during an acquisition scan.  While this work 
utilizes a larger FPGA, this algorithm would also work on smaller 
FPGAs with the use of external memory as the logic requirements 
are small and the throughput is not important as will be discussed 
next. 

The clock for the design can run up to 210MHz.  Even though the 
clock rate is sufficient to process the ADC samples in real time, it 
should be noted that the overall design couldn’t be pipelined 
sufficiently to process pulses in real time.  For example, when the 
sampled pulses are being written to the 60ps array, it takes one cycle 
to read the current sum in the array, another cycle to add the current 
sample to the sum and finally a third cycle to write the new value 
back to the array.  This low throughput is acceptable for two reasons.  
First, it is possible to drop pulses because this data is only used for 
tuning and not an image reconstruction.  Also, recall that our 
algorithm intentionally skips pulses to eliminate the possibility of a 
short anomaly corrupting a large portion of the data set used to build 
the reference pulse.   

VI.   DISCUSSION 
In this work, we have designed algorithms to automate the 
acquisition of the necessary pulse parameters for an FPGA-based 
data processing PET front-end electronics.  We have shown that it is  

possible to acquire the necessary pulse parameter to fully automate 
this discovery algorithm as well as the timing algorithm.  We have 
also demonstrated that an accurate higher resolution reference pulse 
that has the same shape of the photodetector pulses can be built out 
of lower resolution pulses.  We have also shown that this algorithm 
can reasonably be implemented on an FPGA.  This work will greatly 
reduce the need for operator calibration of the system.  Additionally, 
we believe that this method will produce better pulse parameters for 
our timing algorithm and future pulse-pileup correction algorithms.  
Particularly since the data that the FPGA processes contains all of the 
shaping information of the data acquisition chain.  Finally, these 
algorithms will aid in the research of new PET scanner hardware, as 
any changes in the system can be quickly calibrated with the FPGA.  
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