
Offset Pipelined Scheduling: Conditional Branching for CGRAs

Aaron Wood

Department of Electrical Engineering

University of Washington

Seattle, WA USA

arw82@uw.edu

Scott Hauck

Department of Electrical Engineering

University of Washington

Seattle, WA USA

hauck@uw.edu

Abstract— Coarse Grained Reconfigurable Arrays (CGRAs)

offer improved energy efficiency and performance over

conventional architectures. However, modulo counter based

control of these devices limits efficiency for applications with

multiple execution modes. This work presents a new type of

architecture that adds support for branching control flow to

CGRAs. The pipelined program counter CGRA framework

blends the high parallelism of traditional CGRAs with the

flexibility of commodity processors. Offset Pipelined

Scheduling (OPS) is the basis of an enhanced CGRA tool chain

targeting these devices. OPS is shown to provide an average

1.94x speed up for benchmarks that are resource limited when

modulo scheduled.

Keywords- CGRA, scheduling, software pipelining

I. INTRODUCTION

Coarse grained reconfigurable arrays (CGRAs) [1] offer
improved energy efficiency and performance compared to
commodity architectures. When well utilized, they combine
high density, performance and energy efficiency. They
embrace features of standard FPGAs while moving away
from bit oriented resources towards larger logic blocks and
correspondingly wider interconnect. Such architectures are
register rich using pipelined interconnect and time
multiplexed resources to maximize potential utilization.
CGRAs are capable of greater parallelism than commodity
processors and have lower area and performance overheads
compared to FPGAs.

The time multiplexed control of a CGRA is managed by
a global modulo counter. Each counter value selects a
configuration of the logic and routing resources on the
device to execute in a cyclic sequence. A modulo schedule
is well matched to a single loop body, but managing more
complex control flow becomes costly. An application
consisting of a sequence of loop bodies will have wasted
issue slots for predicated operations in addition to phi
operations to merge control flow on a CGRA.

Very long instruction word (VLIW) processors avoid this
issue by stitching together modulo scheduled blocks into a
larger application with additional prologue and epilogue
code. This is challenging in a CGRA due to limited
instruction memory and difficulty propagating control
information across the device. Compared to a VLIW
processor, CGRAs have much larger per cycle instruction
memory requirements to configure both logic resources and
interconnect.

To transition from one mode of execution to another
suggests a branching capability comparable to that of a
conventional processor. However, filling and draining the
execution pipeline can be costly for applications with high
latency or relatively few iterations between mode transitions.
Moreover, the ability to branch brings the additional
difficulty of broadcasting the change in control flow across
the device.

In this paper we introduce Offset Pipelined Scheduling
(OPS). Our approach provides a branching mechanism to
broaden the scope of applications that can be efficiently
scheduled on CGRAs. Execution of resources across the
device is staggered to provide the time needed to send
changes in control flow. In OPS, one resource domain acts
as a leader, performing operations from a given mode as well
as computing loop or branch conditions to determine the next
mode to initiate. Other domains follow the leader, receiving
the same program counter value from the leader, but delayed
by a fixed offset number of cycles. In this way, the resource
domains in the system form a pipeline.

OPS draws inspiration from iterative modulo scheduling
(IMS) [2]. It generates schedules that execute in a cyclic
fashion similar to IMS. The primary distinction between a
modulo schedule and our approach is that a modulo schedule
allows operations to be scheduled into time slots modulo the
initiation interval, while time slots in OPS represent their
specific cycle. Fig. 1 illustrates this key difference. An
operation in a modulo schedule might be scheduled at a
latency greater than the initiation interval (II). OPS requires
that operations be scheduled on an explicit time slot and does
so by adjusting time windows of the various resources to
achieve this. While this constraint puts OPS at a

0

1 1

2

Offsets

0

1

2

3

4

Cycle (+ k * II)

0

1

2

3

4

Cycle

Figure 1. Modulo time slots of IMS (left) vs fixed slots of OPS (right).

disadvantage for a single loop body relative to IMS, it aids in
the support of applications with multiple modes. By
explicitly staggering compute resources, OPS facilitates the
transition between phases of a computation and broadcast of
control information.

II. EXECUTION ON BRANCHING CGRAS

The following subsections detail features of offset
pipelined schedules and the target enhanced CGRA
architectures.

A. Expanding the Scope of CGRA Code

Software pipelining by modulo scheduling was originally
envisioned for VLIW machines where functional units must
be statically scheduled to provide maximum utilization.
Modulo scheduling for CGRAs is a logical extension with
modulo counter control and a focus on inner loop
parallelism. In this paper we broaden the scope of
application code mapped to CGRAs, including allowing
multiple loops to coexist on the same device.

B. Modes

A mode is a partition of the target code that will be run
exclusively until a transition to another mode. It is a subset
of the code mapped to the CGRA. Consider two successive
loop bodies which can be logically divided into two separate
modes and executed in isolation. Such a distinction matters
little in the context of a conventional processor since
branching to move between blocks of code is trivial. For a
CGRA where each cycle of a schedule is essentially a very
long instruction word, efficient utilization of the hardware
and program length become important considerations.

K-means clustering provides an example of modal
behavior in an application. The algorithm logically breaks
into two modes; assigning observations to clusters, and
updating cluster centroids. A conventional CGRA must
execute both modes on every iteration or face reconfiguring
the device at each transition, either way generating a sizeable
overhead.

C. Pipelined Program Counter Architecture

The key architectural feature leveraged by OPS is the
pipelined distribution of control information. Program
counters are spread throughout the device, with each
receiving its instruction pointers from a neighbor in the
array. Each program counter controls a small group of
resources, including ALUs, LUTs, memories and
interconnect comprising a domain. An application mapped
by OPS includes offset assignments for the domains. A
domain can be thought of as a small VLIW machine with its
own program counter managing controlling resources. OPS
harnesses the collection of domains into a single unit to
efficiently execute the target code.

D. Offsets

The lead domain is defined to have an offset of 0 while
other domains have offsets measured relative to the lead.
The offset is simply the cycle latency of receiving a program
counter value from the lead domain. The leader issues all

control flow decisions which cascade through the domains.
The organization of the domain offsets factors into the
placement of operations on the device and is beyond the
scope of this paper. Each domain is assigned an offset that is
shared across all modes of the target application.

III. OFFSET PIPELINED SCHEDULING

The goal of OPS is to generate a legal, high performance
schedule for the target application. There are three
components of the resulting schedule:

- Initiation interval assignments for each mode
- Offset assignment for each domain
- Time slot assignment for each operation
Smaller initiation intervals are desirable as this

corresponds to a faster application. Offsets are assigned to
provide issue slots necessary to cover all operations.
Operations must be assigned to available time slots based on
the offsets and II assignments. The pseudo code in Fig. 2
outlines the algorithm.

The general approach is to schedule the application using
a given II and offset assignment, and then adjust those
parameters as necessary to achieve a legal schedule. The IIs
and offsets determine the arrangement of issue slots available
stored in a structure called the offset reservation table (ORT)
an example of which is shown in Fig. 3. Here we have two
domains and three modes. The modes have IIs 2, 1 and 3
from left to right and the domain offsets are 0 and 2. Note
that for a given domain, the same offset is shared among all
modes.

IIs begin at the minimum possible given recurrence or
resource constraints and offsets begin at zero. Operations are

 1 initializeIIs()

 2 do {

 3 initializeOffsets()

 4 resetSchedulingCache()

 5 do {

 6 buildOffsetReservationTable()

 7 if ASAPschedule()

 8 return SUCCESS

 9 offsetsUpdated = offsetAdjustment()

10 } while (offsetsUpdated)

11 iisUpdated = incrementIIs()

12 } while (iisUpdated)

Figure 2. Top level OPS algorithm

22

00 0

2

Mode 0 Mode 1 Mode 2

Domain 0

Domain 1

Issue Slots

Offset

II

Figure 3. Offset Reservation Table

scheduled into the ORT in an as-soon-as-possible fashion.
In general, this process will fail due to some operations
lacking legal issue slots. In this case, offsets are increased to
make issue slots available where they are needed. If offset
adjustment does not lead to a successful scheduling, a mode
II is incremented to provide additional slack. The scheduling
is successful once all operations have a legal issue slot.

A. Offset Adjustment

Offsets are adjusted both through a deterministic shaping
process and a heuristic exploration process. In either case,
offsets are only allowed to increase for given II settings.
Deterministic adjustment moves offsets as late as strictly
necessary based on the current schedule. Since all operations
are scheduled as-soon-as-possible and offsets begin at zero,
when an operation has no issue slot, there must be one vacant
earlier in the ORT. Moving this issue slot is accomplished
by increasing an offset. More specifically, each offset is
examined from largest to smallest. For each mode M, the IIM
latest operations are assigned to the domain for all of its
resources. By applying this concept to all offsets, a profile
of the latest necessary offsets is recovered. This process
alone may force operations that were scheduled early to
move later to fill a legal issue slot. However, if no
deterministic moves can be made, the heuristic approach
tries incrementing an offset to ensure progress towards a
legal schedule.

B. Incrementing IIs

If the offset adjustment process does not yield a legal
schedule, OPS falls back on increasing IIs to add flexibility
to the scheduling. While IMS only has one II to increment,
OPS must choose which mode II will be degraded. Priority
information is based on profiling the application. The
overhead is the product of mode priority and the ratio of
current mode II to the minimum mode II calculated at
initialization.

The algorithm prefers to increment the lowest overhead
mode since this will minimize the impact on overall
application performance. This preference is capped at 2x the
overhead of any other mode, heuristically selected to avoid
skewing the IIs too far.

IV. EVALUATION

Offset Pipelined Scheduling is evaluated in comparison
to iterative modulo scheduling. The first section describes
the target architecture. The benchmarks are introduced and
results are presented to provide insight into OPS behavior.

A. Architecture

The target architecture consists of control domains
comprised of two 32-bit ALUs, two 4-input LUTs, a memory
block, and a stream port. Each domain also contains a
program counter unit for managing the flow of execution.
The selected CGRA configuration is based on optimized
architectures developed in [3]. This paper focuses strictly on
scheduling; placement and routing will be considered in
future papers.

While the target architecture is designed for use with
OPS, it is also used for the modulo scheduling baseline. In
this case, the device has the same resources but is configured
to mimic a simple modulo counter.

B. Benchmarks

The applications used for evaluation are listed in Table 1
with a brief description. They represent a cross section of
signal processing algorithms typically targeted to CGRAs.
In order to compare performance between the OPS and IMS
implementations, the cycles are normalized to the recurrence
limited cycles of the corresponding IMS implementation.
This provides insight into the performance of OPS relative to
IMS and allows the applications to be compared to each
other.

C. Results

Fig. 4 summarizes the results showing the ratio of IMS to
OPS normalized cycles to provide a speed-up metric. The
geometric mean is also included, aggregating across all
applications. As we provide more resources, the IMS
implementation eventually reaches its recurrence limit and
OPS provides no additional benefit in terms of performance.
OPS can achieve the same performance with fewer
resources, or better performance can be achieved with the
same number of resources when operating in a resource
limited area of the curve.

The applications eventually reach their recurrence limit
with enough resources. In these cases, despite unused issue
slots, the application can still be scheduled for maximum
performance. However, for the various device sizes where

TABLE I. APPLICATIONS

Application Description

Bayer Bayer filtering, includes threshold and black
level adjustment

DCT 8x8 discrete cosine transform

DWT Jpeg2000 discrete wavelet transform

K-means K-means clustering with three channels and eight
clusters

PET Positron emission tomography event detection
and normalization

Figure 4. IMS vs OPS performance summary

applications are resource limited, OPS provides an average
speed up of 1.94 times over a modulo scheduled solution.

OPS provides significantly better performance when
resources are limited, but when only considering scheduling
there comes a point where IMS can reach the same
performance as OPS (the intrinsic recurrence loops). Since
this IMS solution would be significantly larger than the
corresponding OPS solution, IMS will likely have greater
difficulty when placement and routing are considered. Those
steps will be addressed in future work.

It is also important to note that the hardware needed to
support IMS and OPS schedules are relatively similar. In
fact, an OPS device can be converted to run full-fledged IMS
schedules simply by forcing all domains to perform a single
loop. Thus, a single design suite could use OPS for
resource-constrained modal computations, and use IMS for
single-mode designs, or designs without resource constraints.

OPS runtime did not exceed approximately 10 seconds
for any of the schedules generated in this work.

V. CONCLUSION

When considering word-oriented FPGAs and FPGA-like
systems, architectures have split into massively parallel
processor array (MPPA) and CGRA style devices. CGRAs
provide a huge amount of parallelism, and have automatic
mapping tools that can spread a computation across a large
fabric, but their restriction to modulo-counter style control
significantly limits their ability to support applications with
more complex control flow. MPPAs provide an array of
full-fledged processors, with a great deal of fine-grained
parallelism, but they are much less tightly coupled than
CGRAs and generally must be programmed via explicitly
parallel programming techniques.

In this paper we have taken a step toward merging these
two styles of devices. By providing a new program counter
model that keeps communication local yet can support more
complex looping styles, we can support a much richer set of
applications. The integration of conditional branch and
complex control flow operations significantly increases the
computational density and range of target applications,
supportable by these systems.

The scheduling algorithm for these devices automatically
schedules issue slots, determines individual domain offsets,
and sets mode IIs to achieve a high-performance and dense
implementation. In future work we will extend these efforts
to include placement and routing tools for this new style of
coarse-grained computational resource.

VI. RELATED WORK

Related architectures primarily fall into two categories;
MPPAs and CGRAs. MPPAs such as Ambric [4] and Tilera
[5] are composed of discrete processors. They are less
tightly integrated than the proposed CGRA and must be
programmed using traditional parallel programming
techniques.

CGRAs such as Mosaic [6] and ADRES [7] are designed
for modulo scheduled execution. These architectures are
tightly integrated and offer tool support [8] to leverage the
array but are limited to modulo counters for control.

The Tabula [9] SpaceTime architecture is a commercial
product similar to a CGRA using a modulo counter
mechanism for time multiplexing. However, these devices
are fine grained and provide a conventional FPGA tool chain
abstraction for the underlying hardware.

A. Mapping Strategies

Algorithms for mapping applications to CGRAs have
been based on compiler tools for VLIW and FPGA
architectures. Scheduling specifically draws from modulo
scheduling work treating the device as a large VLIW style
processor. Modulo scheduling and IMS [2] in particular
inspire the software pipelined schedule and iterative nature
of OPS. Modulo scheduling with multiple initiation intervals
[10] explores more flexible execution similar to OPS. This
earlier work targets a more traditional VLIW machine with a
single program counter, very different from the goal of OPS
to help automate mapping to multiple control domains on an
enhanced CGRA.

ACKNOWLEDGMENT

NSF grant #1116248 supported this work. Special
thanks to Suzanne Wood for development of the K-means
benchmark.

REFERENCES

[1] A. Carroll, S. Friedman, B. Van Essen, A. Wood, B. Ylvisaker, C.
Ebeling, and S. Hauck, “Designing a Coarse-grained Reconfigurable
Architecture for Power Efficiency,” Department of Energy NA-22
University Information Technical Interchange Review Meeting, Tech.
Rep., 2007

[2] B. R. Rau. Iterative Modulo Scheduling: An Algorithm for Software
Pipelining Loops. In International Symposium on Microarchitecture,
pages 63–74, 1994.

[3] Brian Van Essen, Improving the Energy Efficiency of Coarse-
Grained Reconfigurable Arrays, Ph.D. Thesis, University of
Washington, Dept. of CSE, 2010.
http://www.ee.washington.edu/people/faculty/hauck/publications/diss
ertation-vanessen.pdf

[4] M. Butts, A. Jones, and P. Wasson. A Structural Object Programming
Model, Architecture, Chip and Tools for Reconfigurable Computing.
In Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines (FCCM'08), pages 55-64, April 2008.

[5] Tilera. http://www.tilera.com/

[6] Allan Carroll, Stephen Friedman, Brian Van Essen, Aaron Wood,
Benjamin Ylvisaker, Carl Ebeling,Scott Hauck, "Designing a Coarse-
grained Reconfigurable Architecture for Power Efficiency",
Department of Energy NA-22 University Information Technical
Interchange Review Meeting, 2007.

[7] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins.
ADRES: An Architecture with Tightly Coupled VLIW Processor and
Coarse-Grained Reconfigurable Matrix. In International Conference
on Field-Programmable Logic and Applications , volume 2778, pages
61–70, 2003.

[8] S. Friedman, A. Carroll, B. Van Essen, B. Ylvisaker, C. Ebeling, S.
Hauck, "SPR: An Architecture-Adaptive CGRA Mapping Tool",
ACM/SIGDA Symposium on Field-Programmable Gate Arrays, pp.
191-200, 2009.

[9] Tabula. http://www.tabula.com/

[10] Warter-Perez, N.J.; Partamian, N., "Modulo scheduling with multiple
initiation intervals," Microarchitecture, 1995., Proceedings of the 28th
Annual International Symposium on , vol., no., pp.111,118, 29 Nov-1
Dec 1995.

