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Abstract— Coarse Grained Reconfigurable Arrays (CGRAs) 

offer improved energy efficiency and performance over 

conventional architectures.  However, modulo counter based 

control of these devices limits efficiency for applications with 

multiple execution modes.  This work presents a new type of 

architecture that adds support for branching control flow to 

CGRAs.  The pipelined program counter CGRA framework 

blends the high parallelism of traditional CGRAs with the 

flexibility of commodity processors.  Offset Pipelined 

Scheduling (OPS) is the basis of an enhanced CGRA tool chain 

targeting these devices.  OPS is shown to provide an average 

1.94x speed up for benchmarks that are resource limited when 

modulo scheduled. 
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I. INTRODUCTION 

Coarse grained reconfigurable arrays (CGRAs) [1] offer 
improved energy efficiency and performance compared to 
commodity architectures.  When well utilized, they combine 
high density, performance and energy efficiency.  They 
embrace features of standard FPGAs while moving away 
from bit oriented resources towards larger logic blocks and 
correspondingly wider interconnect.  Such architectures are 
register rich using pipelined interconnect and time 
multiplexed resources to maximize potential utilization.  
CGRAs are capable of greater parallelism than commodity 
processors and have lower area and performance overheads 
compared to FPGAs. 

The time multiplexed control of a CGRA is managed by 
a global modulo counter.  Each counter value selects a 
configuration of the logic and routing resources on the 
device to execute in a cyclic sequence.  A modulo schedule 
is well matched to a single loop body, but managing more 
complex control flow becomes costly.  An application 
consisting of a sequence of loop bodies will have wasted 
issue slots for predicated operations in addition to phi 
operations to merge control flow on a CGRA. 

Very long instruction word (VLIW) processors avoid this 
issue by stitching together modulo scheduled blocks into a 
larger application with additional prologue and epilogue 
code.  This is challenging in a CGRA due to limited 
instruction memory and difficulty propagating control 
information across the device.  Compared to a VLIW 
processor, CGRAs have much larger per cycle instruction 
memory requirements to configure both logic resources and 
interconnect. 

To transition from one mode of execution to another 
suggests a branching capability comparable to that of a 
conventional processor.  However, filling and draining the 
execution pipeline can be costly for applications with high 
latency or relatively few iterations between mode transitions.  
Moreover, the ability to branch brings the additional 
difficulty of broadcasting the change in control flow across 
the device. 

In this paper we introduce Offset Pipelined Scheduling 
(OPS).  Our approach provides a branching mechanism to 
broaden the scope of applications that can be efficiently 
scheduled on CGRAs.  Execution of resources across the 
device is staggered to provide the time needed to send 
changes in control flow.  In OPS, one resource domain acts 
as a leader, performing operations from a given mode as well 
as computing loop or branch conditions to determine the next 
mode to initiate.  Other domains follow the leader, receiving 
the same program counter value from the leader, but delayed 
by a fixed offset number of cycles.  In this way, the resource 
domains in the system form a pipeline. 

OPS draws inspiration from iterative modulo scheduling 
(IMS) [2].  It generates schedules that execute in a cyclic 
fashion similar to IMS.  The primary distinction between a 
modulo schedule and our approach is that a modulo schedule 
allows operations to be scheduled into time slots modulo the 
initiation interval, while time slots in OPS represent their 
specific cycle.  Fig. 1 illustrates this key difference.  An 
operation in a modulo schedule might be scheduled at a 
latency greater than the initiation interval (II).  OPS requires 
that operations be scheduled on an explicit time slot and does 
so by adjusting time windows of the various resources to 
achieve this.  While this constraint puts OPS at a 
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Figure 1.  Modulo time slots of IMS (left) vs fixed slots of OPS (right). 



disadvantage for a single loop body relative to IMS, it aids in 
the support of applications with multiple modes.  By 
explicitly staggering compute resources, OPS facilitates the 
transition between phases of a computation and broadcast of 
control information. 

II. EXECUTION ON BRANCHING CGRAS 

The following subsections detail features of offset 
pipelined schedules and the target enhanced CGRA 
architectures. 

A. Expanding the Scope of CGRA Code 

Software pipelining by modulo scheduling was originally 
envisioned for VLIW machines where functional units must 
be statically scheduled to provide maximum utilization.  
Modulo scheduling for CGRAs is a logical extension with 
modulo counter control and a focus on inner loop 
parallelism.  In this paper we broaden the scope of 
application code mapped to CGRAs, including allowing 
multiple loops to coexist on the same device. 

B. Modes 

A mode is a partition of the target code that will be run 
exclusively until a transition to another mode.  It is a subset 
of the code mapped to the CGRA.  Consider two successive 
loop bodies which can be logically divided into two separate 
modes and executed in isolation.  Such a distinction matters 
little in the context of a conventional processor since 
branching to move between blocks of code is trivial.  For a 
CGRA where each cycle of a schedule is essentially a very 
long instruction word, efficient utilization of the hardware 
and program length become important considerations. 

K-means clustering provides an example of modal 
behavior in an application.  The algorithm logically breaks 
into two modes; assigning observations to clusters, and 
updating cluster centroids.  A conventional CGRA must 
execute both modes on every iteration or face reconfiguring 
the device at each transition, either way generating a sizeable 
overhead. 

C. Pipelined Program Counter Architecture 

The key architectural feature leveraged by OPS is the 
pipelined distribution of control information.  Program 
counters are spread throughout the device, with each 
receiving its instruction pointers from a neighbor in the 
array.  Each program counter controls a small group of 
resources, including ALUs, LUTs, memories and 
interconnect comprising a domain.  An application mapped 
by OPS includes offset assignments for the domains.  A 
domain can be thought of as a small VLIW machine with its 
own program counter managing controlling resources.  OPS 
harnesses the collection of domains into a single unit to 
efficiently execute the target code. 

D. Offsets 

The lead domain is defined to have an offset of 0 while 
other domains have offsets measured relative to the lead.  
The offset is simply the cycle latency of receiving a program 
counter value from the lead domain.  The leader issues all 

control flow decisions which cascade through the domains.  
The organization of the domain offsets factors into the 
placement of operations on the device and is beyond the 
scope of this paper.  Each domain is assigned an offset that is 
shared across all modes of the target application. 

III. OFFSET PIPELINED SCHEDULING 

The goal of OPS is to generate a legal, high performance 
schedule for the target application.  There are three 
components of the resulting schedule: 

- Initiation interval assignments for each mode 
- Offset assignment for each domain 
- Time slot assignment for each operation 
Smaller initiation intervals are desirable as this 

corresponds to a faster application.  Offsets are assigned to 
provide issue slots necessary to cover all operations.  
Operations must be assigned to available time slots based on 
the offsets and II assignments.  The pseudo code in Fig. 2 
outlines the algorithm. 

The general approach is to schedule the application using 
a given II and offset assignment, and then adjust those 
parameters as necessary to achieve a legal schedule.  The IIs 
and offsets determine the arrangement of issue slots available 
stored in a structure called the offset reservation table (ORT) 
an example of which is shown in Fig. 3.  Here we have two 
domains and three modes.  The modes have IIs 2, 1 and 3 
from left to right and the domain offsets are 0 and 2.  Note 
that for a given domain, the same offset is shared among all 
modes. 

IIs begin at the minimum possible given recurrence or 
resource constraints and offsets begin at zero.  Operations are 

 1 initializeIIs() 

 2 do { 

 3    initializeOffsets() 

 4    resetSchedulingCache() 

 5    do { 

 6       buildOffsetReservationTable() 

 7       if ASAPschedule() 

 8          return SUCCESS 

 9       offsetsUpdated = offsetAdjustment() 

10    } while (offsetsUpdated) 

11    iisUpdated = incrementIIs() 

12 } while (iisUpdated) 

 

Figure 2.  Top level OPS algorithm 

22

00 0

2

Mode 0 Mode 1 Mode 2

Domain 0

Domain 1

Issue Slots

# Offset

II

 
Figure 3.  Offset Reservation Table 



scheduled into the ORT in an as-soon-as-possible fashion.  
In general, this process will fail due to some operations 
lacking legal issue slots.  In this case, offsets are increased to 
make issue slots available where they are needed.  If offset 
adjustment does not lead to a successful scheduling, a mode 
II is incremented to provide additional slack.  The scheduling 
is successful once all operations have a legal issue slot. 

A. Offset Adjustment 

Offsets are adjusted both through a deterministic shaping 
process and a heuristic exploration process.  In either case, 
offsets are only allowed to increase for given II settings.  
Deterministic adjustment moves offsets as late as strictly 
necessary based on the current schedule.  Since all operations 
are scheduled as-soon-as-possible and offsets begin at zero, 
when an operation has no issue slot, there must be one vacant 
earlier in the ORT.  Moving this issue slot is accomplished 
by increasing an offset.  More specifically, each offset is 
examined from largest to smallest.  For each mode M, the IIM 
latest operations are assigned to the domain for all of its 
resources.  By applying this concept to all offsets, a profile 
of the latest necessary offsets is recovered.  This process 
alone may force operations that were scheduled early to 
move later to fill a legal issue slot.  However, if no 
deterministic moves can be made, the heuristic approach 
tries incrementing an offset to ensure progress towards a 
legal schedule. 

B. Incrementing IIs 

If the offset adjustment process does not yield a legal 
schedule, OPS falls back on increasing IIs to add flexibility 
to the scheduling.  While IMS only has one II to increment, 
OPS must choose which mode II will be degraded.  Priority 
information is based on profiling the application.  The 
overhead is the product of mode priority and the ratio of 
current mode II to the minimum mode II calculated at 
initialization. 

The algorithm prefers to increment the lowest overhead 
mode since this will minimize the impact on overall 
application performance.  This preference is capped at 2x the 
overhead of any other mode, heuristically selected to avoid 
skewing the IIs too far. 

IV. EVALUATION 

Offset Pipelined Scheduling is evaluated in comparison 
to iterative modulo scheduling.  The first section describes 
the target architecture.  The benchmarks are introduced and 
results are presented to provide insight into OPS behavior. 

A. Architecture 

The target architecture consists of control domains 
comprised of two 32-bit ALUs, two 4-input LUTs, a memory 
block, and a stream port.  Each domain also contains a 
program counter unit for managing the flow of execution.  
The selected CGRA configuration is based on optimized 
architectures developed in [3].  This paper focuses strictly on 
scheduling; placement and routing will be considered in 
future papers. 

While the target architecture is designed for use with 
OPS, it is also used for the modulo scheduling baseline.  In 
this case, the device has the same resources but is configured 
to mimic a simple modulo counter. 

B. Benchmarks 

The applications used for evaluation are listed in Table 1 
with a brief description.  They represent a cross section of 
signal processing algorithms typically targeted to CGRAs.  
In order to compare performance between the OPS and IMS 
implementations, the cycles are normalized to the recurrence 
limited cycles of the corresponding IMS implementation.  
This provides insight into the performance of OPS relative to 
IMS and allows the applications to be compared to each 
other. 

C. Results 

Fig. 4 summarizes the results showing the ratio of IMS to 
OPS normalized cycles to provide a speed-up metric.  The 
geometric mean is also included, aggregating across all 
applications.  As we provide more resources, the IMS 
implementation eventually reaches its recurrence limit and 
OPS provides no additional benefit in terms of performance.  
OPS can achieve the same performance with fewer 
resources, or better performance can be achieved with the 
same number of resources when operating in a resource 
limited area of the curve. 

The applications eventually reach their recurrence limit 
with enough resources.  In these cases, despite unused issue 
slots, the application can still be scheduled for maximum 
performance.  However, for the various device sizes where 

TABLE I.  APPLICATIONS 

Application Description 

Bayer Bayer filtering, includes threshold and black 
level adjustment 

DCT 8x8 discrete cosine transform 

DWT Jpeg2000 discrete wavelet transform 

K-means K-means clustering with three channels and eight 
clusters 

PET Positron emission tomography event detection 
and normalization 

 

 
Figure 4.  IMS vs OPS performance summary 



applications are resource limited, OPS provides an average 
speed up of 1.94 times over a modulo scheduled solution. 

OPS provides significantly better performance when 
resources are limited, but when only considering scheduling 
there comes a point where IMS can reach the same 
performance as OPS (the intrinsic recurrence loops).  Since 
this IMS solution would be significantly larger than the 
corresponding OPS solution, IMS will likely have greater 
difficulty when placement and routing are considered.  Those 
steps will be addressed in future work. 

It is also important to note that the hardware needed to 
support IMS and OPS schedules are relatively similar.  In 
fact, an OPS device can be converted to run full-fledged IMS 
schedules simply by forcing all domains to perform a single 
loop.  Thus, a single design suite could use OPS for 
resource-constrained modal computations, and use IMS for 
single-mode designs, or designs without resource constraints. 

OPS runtime did not exceed approximately 10 seconds 
for any of the schedules generated in this work. 

V. CONCLUSION 

When considering word-oriented FPGAs and FPGA-like 
systems, architectures have split into massively parallel 
processor array (MPPA) and CGRA style devices.  CGRAs 
provide a huge amount of parallelism, and have automatic 
mapping tools that can spread a computation across a large 
fabric, but their restriction to modulo-counter style control 
significantly limits their ability to support applications with 
more complex control flow.  MPPAs provide an array of 
full-fledged processors, with a great deal of fine-grained 
parallelism, but they are much less tightly coupled than 
CGRAs and generally must be programmed via explicitly 
parallel programming techniques. 

In this paper we have taken a step toward merging these 
two styles of devices.  By providing a new program counter 
model that keeps communication local yet can support more 
complex looping styles, we can support a much richer set of 
applications.  The integration of conditional branch and 
complex control flow operations significantly increases the 
computational density and range of target applications, 
supportable by these systems. 

The scheduling algorithm for these devices automatically 
schedules issue slots, determines individual domain offsets, 
and sets mode IIs to achieve a high-performance and dense 
implementation.  In future work we will extend these efforts 
to include placement and routing tools for this new style of 
coarse-grained computational resource. 

VI. RELATED WORK 

Related architectures primarily fall into two categories; 
MPPAs and CGRAs.  MPPAs such as Ambric [4] and Tilera 
[5] are composed of discrete processors.  They are less 
tightly integrated than the proposed CGRA and must be 
programmed using traditional parallel programming 
techniques. 

CGRAs such as Mosaic [6] and ADRES [7] are designed 
for modulo scheduled execution.  These architectures are 
tightly integrated and offer tool support [8] to leverage the 
array but are limited to modulo counters for control. 

The Tabula [9] SpaceTime architecture is a commercial 
product similar to a CGRA using a modulo counter 
mechanism for time multiplexing.  However, these devices 
are fine grained and provide a conventional FPGA tool chain 
abstraction for the underlying hardware. 

A. Mapping Strategies 

Algorithms for mapping applications to CGRAs have 
been based on compiler tools for VLIW and FPGA 
architectures.  Scheduling specifically draws from modulo 
scheduling work treating the device as a large VLIW style 
processor.  Modulo scheduling and IMS [2] in particular 
inspire the software pipelined schedule and iterative nature 
of OPS.  Modulo scheduling with multiple initiation intervals 
[10] explores more flexible execution similar to OPS.  This 
earlier work targets a more traditional VLIW machine with a 
single program counter, very different from the goal of OPS 
to help automate mapping to multiple control domains on an 
enhanced CGRA. 
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