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Abstract 
While most of the electronics industry is dependent on the ever-decreasing size of 
lithographic transistors, this scaling cannot continue indefinitely.  Nano-electronics 
(circuits built with components on the scale of 10nm) seem to be the most promising 
successor to lithographic based ICs.  Molecular scale devices including diodes, bistable 
switches, carbon nanotubes, and nanowires have been fabricated and characterized in 
chemistry labs.  Techniques for self-assembling these devices into different architectures 
have also been demonstrated and used to build small scale prototypes.  While these 
devices and assembly techniques will lead to nanoscale electronics, they also have the 
drawback of being prone to defects and transient faults.  Fault tolerance techniques will 
be crucial to the use of nano-electronics.  Finally, changes to the software tools that 
support the fabrication and use of ICs will be needed to extend them to support nano-
electronics.  This survey introduces nano-electronics and reviews the current progress 
made in research in the areas of technologies, architectures, fault tolerance, and 
software tools.   

1. Introduction  
Moore's law cannot hold forever.  In 1975 Gordon Moore, cofounder of Intel, predicted 
that the number of transistors that could be placed on a chip would double every two 
years [Moore65].  Chip manufacturers have relied on the continued scaling down of the 
transistor size to achieve the exponential growth in transistor counts, but the scaling will 
soon end.   Three obstacles stand in the way: the rising costs of fabrication, the limits of 
lithography, and the size of the transistor.  For example, parts of the latest transistors are 
only a few atoms thick, and shrink with the scaling of transistors.  Thus, when these reach 
the limit of 1-2 atoms thick, the scaling will have to cease and a new technology will 
have to be adopted.  One possible heir to lithography based integrated circuits is 
nanotechnology and the nano-scale electrical devices.  
 
Process scaling is fundamental to most of the benefits achieved by modern electronics.  
For some applications, scaling allows for more devices to be integrated on a single die, 
and thus provide greater functionality per chip.  For example, increasing integration 
levels allow microprocessor designers to include things such as larger caches to speed up 
memory accesses and floating-point units to speed up floating point operations.  Scaling 
also allows the same circuit to be smaller, cheaper, faster, and consume less power, thus 
driving new applications such as the cheap mobile electronics we now take for granted. 
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Ultimately, the goal of scaling is to build an individual transistor that is smaller, faster, 
cheaper, and consumes less power.  Unfortunately, the scaling down of lithographically 
patterned transistors cannot continue forever, but nano-electronics may be able to 
continue the scaling when transistors hit their limit.  Before we discuss nano-electronics, 
we first cover the structure and operation of MOSFETs, the building block of modern 
digital electronics.  This will provide the necessary background to understand the issues 
that complicate the continued scaling of MOSFETs and provide a contrast to the nano-
devices that will be surveyed later in this paper.  

1.1 MOSFET Basics 
The metal oxide semiconductor field-effect transistor (MOSFET) has been the building 
block for most computing devices for the last several decades.  A MOSFET is a four-
terminal device made up of a drain, source, gate and bulk (see Figure 1).  In digital 
circuits, the MOSFET is essentially used as a switch.  The source and drain are two ends 
of the switch, with the channel being turned on and off under the control of the gate.  The 
gate controls the conduction through the channel through an electric field and is insulated 
from the channel by a thin of layer of silicon dioxide.   
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Figure 1:  Illustration of a generic metal oxide semiconductor field-effect transistor (MOSFET).  

 
There are two types of MOSFETs, nMOS and pMOS, differing in the voltages that turn 
on the switch.  The type is dependent on element used to dope the silicon.  
Semiconducting materials such as silicon are not good conductors, so they are doped with 
other elements that either contain extra electrons (n-type) or are missing an electron (p-
type).  When the doping material has an extra electron, the majority carrier are electrons. 
When the dopant is missing an electron, the majority carrier is called a “hole”.  The extra 
holes and electrons are called carriers because they are the charged particles that allow 
current to flow.  An nMOS transistor is a MOSFET with the drain and source heavily 
doped with an n-type material such as phosphorous, and the channel is lightly doped with 
a p-type material such as boron.  A pMOS transistor on the other hand has p-type source 
and drains and an n-type bulk and channel. 
 
The operation of a p-type MOSFET (where the drain and source are p-type 
semiconductors and the channel is n-type) is illustrated in Figure 2.  Figure 2a shows a 
MOSFET in the “off” state, where no current it present in the channel.  With no voltage 
potential across the gate and bulk, a depletion region forms around the drain and source 
blocking any current flow.  A depletion region forms at a p-n junction when holes from 
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the p-type material (source and drain in Figure 2) and electrons from the n-type material 
(channel in Figure 2) combine around the interface to create a region void of any free 
carriers.  As the gate voltage drops, the electrons in the bulk are “pushed” away from the 
gate.  When the voltage drops enough (beyond the threshold voltage), and enough 
electrons have left, the region just below the gate inverts to become p-type material (more 
holes than free electrons).  There is now a continuous band of p-type material from the 
source to drain.  This, along with an electric field set up from source to drain, causes 
electrons to move from hole to hole, creating a current.  
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Figure 2:  Illustration of the operation of a p-type MOSFET.  (a)  With no potential difference 
between the gate and bulk, a depletion region forms around the source and drain blocking current 
flow.  (b) When the gate voltage drops a threshold voltage (Vth) below Vdd, the bulk just below the 
gate inverts to p-type, allowing current flow from the source to drain. 

 
In addition to its ability to perform logic, the MOSFET also isolates the input from the 
output (gate to source or drain), which allows the transistor to exhibit gain.  Gain is the 
ability for output voltage to reach the maximum operating voltage, even if the input to the 
gate is slightly less than the maximum operating voltage.  This is important because a 
signal can go through thousands of transistors, and if a little voltage were lost at each the 
final signal would be severely degraded.  Another key feature of MOSFETs is the ability 
to use them to build more complex structures.  Complementary metal-oxide-
semiconductor (CMOS), the most common logic family, uses complimentary nMOS and 
pMOS transistors to build logic gates such as inverters and NAND gates. 
 
The MOSFET has been the primary building block of integrated circuits for more than 
forty years.  The advances in electronics have been driven primarily by the ability to scale 
down the size of the MOSFETs used in integrated circuits.   This scaling achieves 
improvements on many fronts.  Smaller transistors allow more to be put on the same size 
chip, which has allowed integrations levels to rise from the hundreds of transistors when 
Moore made his prediction in 1965 to hundreds of millions of transistors today.  
Shrinking the feature size also makes each transistor faster and consume less power (This 
should not be confused with lower chip power, since the number of transistors per chip 
generally increases faster the than power per transistor decreases).  The increase in speed 
comes from two factors: decreased capacitance and increased current.  The capacitance of 
wires and gates lowers as these elements decrease in size, so the amount of charge a 
transistor has to place on a wire or gate decreases.  The increase in current can be seen 
from the current flow equation for a transistor when the gate voltage is at its highest 



4 

value.  A first order approximation of the current through the channel is given by the 
equation [Jaeger97]: 
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The important part of equation (1) shows how different parameters of the MOSFET 
affect its performance.  As the gate oxide thickness decreases, Cox increases, which leads 
to higher current.  A smaller feature size also means that the length of the channel (L) 
also decreases, which reduces the channel resistance.  However, as the transistor scales 
down, VGS (voltage gate to source) and Vth (threshold voltage that turns “on” transistor) 
are reduced.  Up until recently, engineers have been reaping the benefits of the scaling 
down transistors without any significant disadvantages.  That is beginning to change as 
the feature size (1/2 of the minimum distance between two adjacent gates)  is reduced to  
tens of nanometers. 
 

1.2 Issues around MOSFET scaling 
The current projections by the International Technology Roadmap for Semiconductors 
(ITRS) say that the end of the road on MOSFET scaling will arrive sometime around 
2018 with a 22nm process [ITRS05].  Even getting to 22nm presents some major 
unsolved hurdles.   Among these are increasing power consumption, particularly through 
leakage currents, less tolerance for process variation, and increasing cost.  Each of these 
issues are described in the following sections. 

Leakage currents 
An ideal transistor only has current flow when it is “on”; when the channel is “off” there 
is no current.  This means that the transistor should consume no power if it is “off”.  
Unfortunately, transistors are not ideal and, as they get smaller, they get less ideal.  
Leakage current, the flow of electrons through paths that should not conduct in an ideal 
transistor, now constitutes almost half of the power consumed by a chip [ITRS05].  
Leakage currents come from two primary sources.  Gate oxide leakage occurs when 
electrons jump (“tunnel”) from the gate to the channel through the gate oxide.  Scaling 
reduces the thickness of the oxide, and the thinner the oxide, the higher the leakage due to 
tunneling becomes.  Subthreshold leakage occurs when a current between the drain and 
source is present even though the gate voltage is below Vth and the channel should be 
“off”.  Subthreshold leakage becomes worse as Vth is lowered and as the channel length 
is decreased, both of which generally occur when a transistor is scaled down. 

Total Chip Power  
With the advent of portable computing devices, power consumption is becoming a 
primary focus of IC manufacturers.  Power is the product of current and voltage.  The 
voltage is set by the fabrication process, so power is essentially dependent on the current 
levels in a device.  Currents are considered in two separate areas; dynamic and static 
currents (the leakage current discussed above is a portion of static current).  Dynamic 
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current, and thus dynamic power, occurs when transistors are actively switching.  
Dynamic power per transistor is reduced with scaling, as less current is required to switch 
the transistor.  However, the static currents, and thus static power, are increasing with 
scaling because of the leakage currents discussed above.   Overall, power consumption is 
rising because of the increase in leakage currents, as well as the integration of more and 
more transistors.  For example, the Intel Itanium 2 processor (90nm process) consumes 
about 177Watts at peak usage while the Intel Pentium (250nm process) consumes about 
15Watts [Intel05].  Besides decreasing battery life of portable devices, power 
consumption creates heat, which degrades the chips’ performance and must be dissipated.  
With increasing transistor density, localized heating can become a large problem.  Heat 
increases the resistance of a transistor, thus decreasing its performance.  This sets up the 
risk of thermal runaway, which can destroy a chip.  Thermal runaway is a destructive 
cycle of increasing resistance causing increasing power consumption (heat generation), 
which in turn further increases the resistance.  

Process Variation 
Another drawback of scaling down the transistors is the decreased ability to handle 
fabrication process variations.  As transistors and wires become smaller, fewer atoms 
make up the individual parts.  For example, the gate oxide is currently only about five 
atoms thick.  If merely a single atom is out of place, the gate oxide thickness varies by 
20%.  This lack of predictability significantly complicates the design process, and it will 
only become worse as scaling continues. 

Costs 
Probably the largest hurdle to further scaling of the MOSFET is simple economics.  The 
cost of a fabrication facility is growing exponentially, along with the exponential growth 
of the number of transistors per chip.  Currently (in 2005), a new fabrication facility costs 
around 3 billion US dollars [ITRS05] to construct, and this is rising exponentially.  The 
exponential increase in cost is a direct result of the increase in mechanical precision 
required to fabricate the integrated circuits.  Since the cost of the fabrication plant is 
spread across the cost of each chip, this drives up either the cost-per-chip, or the number 
of chips that must be produced. 
 

1.3 Nano-electronics 
Given the history of the semiconductor industry, most of these issues can probably be 
solved with current processes. However, there are two significant exceptions.   Physical 
size limitations and astounding costs may require a shift in the fundamental way 
integrated circuits are fabricated.  Many researchers believe this shift will be to nano-
electronics.  With a mix of chemistry, physics, biology and engineering, nano-electronics 
may provide a solution to increasing fabrication costs, and may allow integrated circuits 
to be scaled beyond the limits of the modern transistor. 
 
The largest change in a shift to nano-electronics is the method of fabrication.  Individual 
wires, diodes, field effect transistors (FETs), and switches can be created abundantly and 
cheaply in a test tube.  All of these devices are only a few nanometers in size, and may 
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reach a level of integration not possible with conventional ICs.  It is estimated that nano-
electronics will be able to integrate 1012 devices per cm2, while the ITRS [ITRS05] 
estimatesp that at the end of the roadmap in 2018 manufacturers will only be able to 
achieve 1010 MOSFET transistors per cm2.   
 
This level of integration will be difficult to achieve due to the components’ miniscule 
dimensions.  It might be impossible to individually pattern the small components of the 
nano-electronics in the ways that current fabrication processes allow.  While current ICs 
can have almost any arbitrary pattern, nano-electronics will likely have a regular structure 
generated by a stochastic self-assembly process. Unlike deterministic self-assembly, 
stochastic self-assembly means that chips will be fabricated with methods that allow 
components to guide each other in constructing a structure with little or no outside 
intervention.  This is often referred to as a “bottom up” method, because the individual 
parts are built and then assembled into an architecture, and the use of the architecture is 
based on available resources.  This is in contrast to a “top down” method used in current 
IC fabrication, where designs are conceived at a high level and the necessary components 
are put together to implement the design.  The lack of outside intervention means that 
fabrication is more prone to defects and no single part can be absolutely relied on to be 
functional.  In current lithography based electronics, the most popular model for handling 
defects is to reject any chip with even a single defect.  This model will no longer work 
with nano-electronics because their defect densities will mean that no chip will be totally 
defect free.  This suggests that nano-electronics will likely need to be reconfigurable like 
an FPGA in order to function in spite of defects.  
 
In this paper, we consider the major research efforts for nano-electronics by surveying 
proposed technologies for replacing the transistor, possible chip architectures, techniques 
for handling defects, and software implications.  We focus on the higher-level electronic 
aspect of these topics, though we provide references for readers interested in further 
details of the quantum mechanics, chemistry, and statistical analysis involved. 

2.  Technologies  
The fundamental element of any nano-electronic circuit is the devices used to build it.  
For current VLSI systems these include silicon transistors and copper wires.  For nano-
electronics, it appears that the copper wires will be replaced by either carbon nanotubes 
(CNT) or silicon nanowires (SNW).  The move to CNT or SNW is because they can be 
chemically assembled at much smaller sizes than copper wires can be patterned with 
lithography.  There are a number of technologies that could replace the transistor as the 
basic logic device, these include negative differential resistors, nanowire or carbon 
nanotube transistors, quantum cellular automata, and reconfigurable switches.  These 
devices offer sizes of a few nanometers, can be self-assembled.   
 
2.1 Carbon Nanotubes 
Carbon nanotubes (CNT) are cylindrical carbon molecules (Figure 3) that exhibit unique 
properties, making them potentially useful in areas including nano-electronics, materials, 
and optics.  Their structure gives the nanotubes extraordinary strength, which is attractive 
for materials use, and can also increase the durability of a nano-electronic circuit over 
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other materials.  Nanotubes also possess electrical properties that make them attractive as 
nano-electronics wires and devices: they can behave as metallic wires or as 
semiconductors, depending on their structure. 

 
Figure 3:  Illustrations of a single wall carbon nanotube. 

 
Fabrication 
CNTs were discovered in 1991 as a byproduct of an arc discharge experiment to create 
C60 buckyballs [Iijima91].  Since their discovery, two other fabrication methods have 
been discovered; laser ablation, and catalyst enhanced chemical vapor deposition 
(CCVD) [Graham05].  Arc discharge involves placing two carbon rods end-to-end about 
1mm apart in an inert gas.  An arc is induced between the two rods that vaporizes one of 
the rods.    The vaporized carbon then reforms into nanotubes.  Laser ablation uses the 
same mechanisms, but instead of using an arc to vaporize a carbon rod, a laser is used.  
Laser ablation produces purer CNTs than arc discharge.  One drawback to both of these 
methods is that they also produce carbon sheets, fullerenes, and random carbon structures 
in addition to nanotubes, requiring a separate purification step to extract the nanotubes 
from the collection of carbon structures. This purification step is typically done in a 
solvent, and depositing the purified nanotubes on a substrate results in a random 
placement of the tubes.  CCVD tackles the problem of nanotube placement by growing 
the nanotubes at a desired final location.  In CCVD a catalyst particle is placed on a 
silicon wafer using photolithography or a random method, and  carbon gas is passed over 
the wafer.  The catalyst induces the growth of the nanotube.  Besides growing the tubes in 
place, CCVD has the advantage of not producing other stray carbon structures.   
 
Many different CNT structures can be produced with each method, and the properties of 
the nanotube are dependent on its structure [McEuen00].  CNTs behave as a metal or 
semiconductor depending on their chirality.  The chirality is the amount of “twist” 
present in the tube.  If you think of CNTs as a rolled-up graphene sheet made up of 
hexagons (see Figure 4), the chirality is how far the axis of the tube (line down center of 
tube) is from being parallel to one side of the hexagons (y-axis in Figure 4) [Raja04].  If 
the tube axis is parallel, the CNT will be semiconducting.   
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Figure 4:   Illustration of the chirality of a CNT.  If the nanotube is rolled up around the x-
axis, the nanotube will be a metal.  If the nanotube is rolled up around the y-axis, it will 
behave as a semiconductor.  [McEuen00] 

 
A second property of nanotubes that affects their electrical properties is the number of 
walls.  Figure 3 shows nanotubes in two different configurations; single-walled and 
multi-walled.  The main difference between the two varieties is the diameter of the tubes.  
The diameter of single-wall carbon nanotubes (SWCNT) are generally between .7nm and 
2nm while multi-wall carbon nanotubes (MWCNT) are typically between 10nm and 
20nm, depending on the number of walls [Graham05]. 

 
The bandgap energy is inversely proportional to the diameter of the nanotube 
[Graham05].  The bandgap energy is “the minimum energy required to break a covalent 
bond in the semiconductor crystal, thus freeing an electron for conduction” [Jaeger97].  
In other words, the lower the band gap energy, the better a conducting material.  The 
diameter of single wall nanotubes puts their band gap energy at levels that are good for 
transistor or diode applications.  The larger diameter of MWCNTs decreases their band 
gap energy so low that they behave like metals regardless of their chirality.   
 
CNT electrical devices  
Currently, the most promising use of semiconducting CNTs is as a transistor component.  
As can be see in Figure 5, carbon nanotube field effect transistors (CNTFET) appear very 
similar to MOSFETs, with the silicon channel replaced with a CNT.  Most of the CNT 
transistors have been fabricated with SWCNTs [Graham05, Bachtold01, Martel98] 
because their band gap energy is in the range of a semiconductor.  One group, however, 
found that MWCNTs could be used if the nanotubes were collapsed or crushed 
[Martel98].  This is probably impractical for large-scale systems, since each nanotube 
would have to be individually collapsed or selected amongst many “normal” nanotubes.  
Two varieties of CNT transistors have been fabricated.  Figure 5a shows an illustration of 
a CNT transistor with a back gate (gate placed under the channel instead of over it), 
which uses the silicon substrate to control the conduction through the CNT.  The use of a 
back gate is easier to fabricate, but it has the disadvantage of not being able to control the 
individual transistor because the substrate is shared between all transistors.  This 
configuration is good for research, but is probably not a realistic candidate for 
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commercialization.  The other variety uses a gate that is over the top of the CNT, as in 
Figure 5b [Graham05, Wind02].  These so-called second-generation CNT transistors 
have two advantages over their counterparts with a back gate [Wind02, Kanwal03].  The 
most obvious advantage is the ability to individually control the FETs because the gates 
are isolated.  The gate on top also allows for a thinner gate oxide, which means that the 
controlling voltage can be lower.  Also, CNTs are intrinsically p-type, but they can be 
altered to behave as an n-type semiconductor [Nosho05]; however, exposing an n-type 
CNT to oxygen will cause it to revert back to its native p-type.  Covering the CNT with 
the gate is a good means to isolate it from oxygen.  Individual gating and the formation of 
both p-type and n-type allows for CNT transistors to be arranged in complementary pairs 
much like current CMOS.  Unfortunately, it is much more difficult to fabricate these 
transistors with a top gate. 
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Figure 5:  Carbon nanotube FET (a) with a back gate [Martel98] and (b) a top gate 
[Wind02].  A back gate uses the substrate to control the conduction through the CNT, while 
a top gate uses a conventional gate that covers the CNT (channel). 

 
CNT based transistors have promising enough characteristics to prompt companies such 
as Intel, NEC and IBM to investigate them as replacements fot modern transistors.  The 
first advantage is the small size of the CNT.  The small diameter of the CNT means that 
all parts of the channel are close to the gate, and they are easier to control.  Another 
advantage of using CNTs is that they exhibit ballistic transport of electrons because of the 
tube structure.  Since all of the atoms in the tube are bonded to the same number of 
neighbors, there is no electron backscattering.  This is in contrast to a wire made of a 
crystal, which has irregular bonds at the surface.  Ballistic electron transport means that 
transistors with CNTs will exhibit higher on currents that will not be affected by the 
length of the transistor channel.  For MOSFETs, the current decreases as the channel 
length (distance between the source and drain) increases.  An unsolved problem with the 
use of CNTs for the transistor channel is increasing the width of the channel.  For 
MOSFETs increasing the width of the channel (dimension into the page on Figure 1) 
increases the current drive capabilities of the transistor, which is absolutely critical for 
circuit design.  With CNT transistors, the only way to achieve this would be to “lay” 
CNTs side by side, since the tube dimension is set.  Unfortunately, there is currently no 
technique for performing this.    
 
Although CNT transistors and the MOSFETs discussed in section 1.1 behave alike and 
appear very similar in structure, the operational physics are very different.  The CNT is 
not in contact with the bulk to transfer carriers, as is done with MOSFETs.  The transistor 
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behavior arises from Schottky barriers at the source/CNT interface [Appenzeller02] and 
its interaction with applied electric fields.  Schottky barriers are formed when a metal and 
a semiconductor are joined together, and there is an energy difference between the Fermi 
level (Ef) of the metal and the energy level of the carrier (holes or electrons) of the 
semiconductor.  The Fermi level is the top energy state possible for an electron in the 
metal at 0 Kelvin.  When the Fermi level of the metal is between the conduction (Ec) and 
valence (Ev) band of the semiconductor, carriers have to acquire energy to move between 
the source and the semiconductor.  In order to clarify the process of how the transistor is 
turned on and off, an example of a p-type CNTFET is given in Figure 6.  Figure 6a shows 
the band energies of the CNTFET without any voltage stimulation.  The Fermi levels of 
the source and drain are different because the positive voltage on the source lowers the 
energy level and raises the Fermi level of the drain.  When there is no bias on the gate, 
the Fermi level of the source is higher than the energy level of the holes in the valence 
band of the CNT.  This barrier means that very few electrons can move from the holes in 
the CNT to the source even though an electric field exists between the source and drain. 
(even though holes are carriers in p-type transistors, it is electrons moving between the 
holes in the valence band that actually create the current).  When a negative bias is placed 
on the gate in Figure 6b, the valence and conduction bands are raised.  Except for a small 
portion near the source/CNT interface, the valence band is above the Fermi level of the 
source.  This means that the Schottky barrier is very low and electrons easily tunnel from 
the CNT valence band to the source because they are in a higher energy state for most of 
the valence band.  The process is the same for an n-type transistor, except that now the 
electrons move through the conduction band, the Schottky barrier would be on the drain 
side of the diagrams in Figure 6, and a positive bias on the gate would lower the 
conduction and valence bands in Figure 6b. 
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Figure 6:  Band structure diagram of a p-type carbon nanotube field effect transistor.  (a)  With no 
bias on the gate, a large Schottky barrier exists between the valence band on the CNT and the Fermi 
level (Ef) of the source.  A positive bias on the source lowers the Fermi level of the source and raises 
the level of the drain.  (b)  A negative bias on the gate raises the conduction and valence band of the 
CNT.  The shift in bands lowers the Schottky barrier at the source/CNT interface and allows holes to 
be transported from the source to the valence band of the CNT. 
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Another promising application that takes advantage of CNTs strength properties instead 
of their electrical properties is as non-volatile memory devices.  The first proposal was an 
array of SWCNTs with contacts at one end of each CNT (see Figure 7) [Rueckes00].  
One layer of CNTs sits on the substrate while the other layer is suspended over the first 
layer by a spacer.  To write to the memory, opposite charges are placed on two 
orthogonal CNTs.  The opposite charges causes the two CNTs to be attracted to one 
another.  Once the two CNTs make contact, molecular bond forces called van der Waals 
forces keep them together, even if the opposite charges are released.  The two contacting 
CNTs now have a non-infinite resistance between each other, and are considered on or 
‘1’.  Locations where the CNTs have not been bent, and thus there is no connection 
between the perpendicular CNTs, are a ‘0’.  To read a cell, current is sent down one 
CNT; if current is detected on the output of the orthogonal CNT, the two CNTs are 
making contact.  A like charge can be placed on two contacting CNTs to separate them 
and erase a ‘1’.  Mechanical forces will keep the two CNTs separated when the like 
charges are removed.  The fact that the CNTs stay in their configuration without 
electrical charge due to van der Waals or mechanical forces makes this memory non-
volatile.   
 

‘1’ ‘0’‘1’ ‘0’

 
Figure 7:  A three dimensional view of four memory cells of a CNT non-volatile RAM. 
[Rueckes00] 

 
The RAM in Figure 7 requires two layers of CNTs, with a placement of the top layer over 
the spacers.  This is a difficult task with CNTs, so the design was modified to only have 
one layer of CNTs, which are suspended over metal electrodes (see Figure 8) [Ward04].  
The metal electrodes are arranged in long troughs, and the CNTs are placed orthogonally 
over the troughs, eliminating the need for exact placement.  To increase the robustness of 
the memory, each cell contains multiple CNTs connected to a contact.  The read/write 
procedure is identical to the above architecture.   
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Figure 8:  Cross-section view of a CNT memory cell with metal electrodes. [Ward04]. 

 
Despite the many good qualities of CNTs, many hurdles must still be overcome before 
devices built with this technology are feasible. Most of these issues surround the 
fabrication of the CNTs [Graham05].  One problem is that while it is possible to bias the 
process to produce more of more of one kind of CNT (semiconducting or metallic), all 
methods of fabrication produce some of both.  A method has been developed to separate 
the two varieties [Krupke03], but requires suspending the CNTs in a solution.  This will 
not work for CNTs that are grown in place with CCVD, and since CCVD is likely the 
best solution for getting CNTs arranged into some kind of structure, putting the CNTs 
into solution seems impractical.  Other aspects of fabrication that are not currently 
controllable include the diameter and the chirality of the nanotube.  Since chirality and 
diameter affect the electrical properties of the nanotubes, and uniform device 
characteristics are critical to circuit design, it is very important to devise a method for 
obtaining consistent nanotubes.    

2.2 Semiconducting Nanowires 
Semiconducting nanowires (NWs), like CNTs, can be used as interconnect wires to carry 
signals as well as be used as an active device.  While one CNT is either an active device 
or a wire, a single NW can be both an active devices and an interconnect wire.   NWs are 
long thin wires made up of semiconducting materials, such as silicon or germanium that 
have been fabricated with a diameter as small as 3nm[Cui01a, Morales98] and a length of 
up to hundreds of micrometers [Wu00].  The diameter is about eight times smaller than 
lithographic-based fabrication methods will likely ever be able to achieve.   

Fabrication 
The growth of NWs has been achieved by methods such as laser ablation [Morales98], 
chemical vapor deposition [Wu01], and Vapor-Liquid-Solid (VLS) synthesis [Morales98, 
Wu00], or a combination of a couple of these methods.  These methods are also 
employed to produce carbon nanotubes, except that instead of carbon, a semiconductor is 
used for the raw material.  If a nanowire is going to be used as a semiconductor, the 
method of growth should have enough control that the dopant levels of the nanowire can 
be controlled along its length.  One such method of controlled growth is VLS (see Figure 
9).  VLS growth is a method of growing crystalline structures using a liquid catalyst or 
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seed such as gold or iron.  The catalyst is in a chamber with vaporized nanowire materials 
(silicon or germanium plus a possible dopant).  All of this is done in a heated chamber, 
where the temperature is kept high enough that the catalyst remains a liquid.  The liquid 
catalyst absorbs the vaporized materials until it becomes supersaturated, at which point a 
solid crystal begins to form.  The nanowire will continue to grow until the catalyst is 
cooled and becomes solid, or the vaporized crystalline material is used up.   
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Figure 9:  A proposed silicon nanowire growth method.  Laser ablation is used to vaporize 
an iron and silicon target.  The hot vapor condenses in a liquid catalyst, and the temperature 
is kept such that the iron/silicon seed remains liquid.  The silicon nanowire grows as the 
catalyst absorbs more silicon and becomes saturated. [Morales98] 

 
The size of the catalyst determines the diameter of the nanowire [Cui01a].  The catalysts 
are composed of metals such as gold or iron, and can be created with laser ablation 
[Morales98] of a target that contains both the metal and the nanowire material.  Laser 
ablation has been shown to create very uniform diameter catalysts, which in turn creates 
uniform diameter nanowires.  This provides relatively uniform electrical characteristics.   
 
When dopant materials such as boron or phosphorus are added to the vapor, the nanowire 
will become semiconducting.  It can act as a p-type or n-type conductor, depending on 
the dopant [Cui00].  In addition, the NWs can be so heavily doped that they begin to 
conduct like a metal [Cui00].  The controlled growth of the nanowires also allows for the 
doping to be varied along the length of the nanowire.  This is done by controlling the type 
and amount of dopant material present in the vapor at specific time intervals.   Nanowires 
can also be coated with different materials after fabrication [Lauhon02], resulting in a 
wire with a semiconducting core and an insulative covering.  To form this covering, once 
the nanowire is made, a new material is vaporized so that it will bind to the whole wire, 
leading to a thin, uniform sheath.  If this sheath is composed of an insulative material 
such as silicon dioxide, it can electrically isolate the NW.  This can insulate overlapping 
wires from one another, or it can separate parallel wires [Whang03b] to help form an 
array (section 3.1).    

Nanowire electrical devices 
By controlling the doping profile along the length of the NW, active devices can be 
integrated into a NW.  A field effect transistor (FET) can be created if a nanowire has a 
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small section that contains fewer carriers than the rest of the wire [Gudiksen02].  
Lowering the concentration of the dopant atoms in the growing atmosphere for a period 
of time can make this lesser-doped region. If another wire is placed over the top of this 
region, with an insulator separating the two wires, a FET is created.  To control the 
current, a charge is place on the top wire to deplete the carriers in the FET regions of the 
lower wires [Huang01b].  The rest of the wire is not affected because its concentration of 
carriers is high enough that it is not depleted.   Another way to create a device, which 
doesn’t require another controlling wire, is to create a p-n junction diode.  This can be 
done in two different manners; the easiest is to simply cross one p-type and one n-type 
semiconducting NWs, creating a connection [Cui01b].  Where the two wires contact each 
other, a p-n junction is formed.  The other way to create a p-n diode with a nanowire is to 
create one on a single wire [Gudiksen02].  This is done by growing part of the nanowire 
with a p-type dopant, and then switching to an n-type dopant for the remainder of the 
nanowire growth.   
 
There have also been experiments using nanowires as the channel in a more conventional 
FET, similar to what is done with CNTs [Cui03] (as in Figure 5).  NW FETs have a few 
advantages over CNT FETs.  One is that NWs will remain n-type and p-type when 
exposed to oxygen, while CNTs will revert from n-type to p-type.  A much larger 
advantage is the ability to control the doping, and therefore the semiconducting properties 
of the NW during construction.  Recall that with CNTs, the conduction is dependent on 
the chirality of the tube, which cannot currently be controlled during fabrication. 
 
The ability to grow NWs hundreds of micrometers long makes them attractive as 
interconnect wires as well as devices.  Due to their size, nanowires show unusual 
electrical properties.  Unlike CNTs, which exhibit ballistic conduction, nanowire 
conduction is influenced by edge effects.  The tube structure of carbon nanotubes dictates 
that all atoms are fully bonded to other atoms (in a defect-free structure). However, NWs 
are a solid wire, and therefore atoms on the edge are not completely bonded.  While the 
core of the NW is metallic, and thus conducting, the atoms on the outside of the wire 
lower the conductivity of the wire because they often contain defects in the crystalline 
structure.  As the nanowire shrinks, the atoms on the surface of the wire represent more 
and more of the overall structure.  The edge effects become more prominent, worsening 
the overall conduction of the NW. 
 
At first glance, NWs and CNTs seem to be very similar.  Both are capable of forming 
active devices and interconnect wires with dimensions of a few nanometers.  However, 
there are some differences that make NWs more promising than CNTs.  While CNTs are 
physically strong, and their metallic form has excellent conduction properties, the 
inability to grow CNTs with desired properties is a major obstacle to their large-scale 
usage.  Current methods for creating CNTs produce both semiconducting and metallic 
structures, and their semiconducting characteristics even vary from tube to tube.  On the 
other hand, the doping levels of NWs, and thus their conduction properties, can be very 
tightly controlled.  The doping levels can also be varied along the length of a NW, while 
a CNT is either all semiconducting or all metallic.  As discussed previously, this control 
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provides many more active device possibilities for NWs.  Also, techniques for creating 
regular arrays are much more developed for NW’s (section 3.1) than those for CNTs.   
 

2.3 Molecular Devices 
Even though NWs and CNTs can be used as active devices as well as wires in nano-
electronics, there is also a set of molecules that could be used as the active devices.  
These molecules behave as diodes or programmable switches that can make up the 
programmable connections between wires.  Chemists have designed these carbon-based 
molecules to have electrical properties similar to their solid-state counterparts.   
Molecular devices have one huge advantage over solid-state devices: their size.  
Thousands of molecules can be sandwiched between two crossing micro-scale wires to 
create an active device that takes up very little area.  Current VLSI crosspoints made of 
pass transistors are 40-100 times larger than a wire crossing or via [Butts02].  Since 
molecular devices fit between the wires, large area savings could be achieved.  For 
example, it has been estimated that the use of nanowires and molecular switches could 
reduce the area of an FPGA by 70% over a traditional SRAM based design at a 22nm 
process [Gayasen05].  In addition to being very small, molecular devices tend to be non-
volatile: the configuration of the molecules remains stable in the absence of electrical 
stimulation.  In the presence of electrical stimulation, programmable molecular device 
can be turned “on” and “off”, which can be used to perform logic.   

Molecular diodes  
Diodes are devices that generally act as a one-way valve, allowing current to flow in only 
one direction.  Modern diodes are built by mating n-type and p-type semiconducting 
material.  Diodes are generally not used as logic devices because they are static devices 
that consume lots of power.  Static devices cannot be turned “on” and “off”; they simply 
conduct under a positive voltage bias and do not conduct otherwise.  If a diode could be 
turned “off” so it does not conduct even with a positive voltage bias, they would have 
greater use.  This is essentially what researchers have developed with diodes made out of 
molecules. 
 
One such diode is a molecular resonant tunneling diode (RTD). Molecular RTDs exhibit 
negative differential resistance (NDR) that can be turned on and off [Chen99, Chen00].   
Devices that exhibit NDR have a region of their I-V curve that has a negative slope 
known as the NDR region (see Figure 10).  A negative slope indicates that the current 
reduces as the voltage increases.  The I-V curve has two important voltage points: the 
peak and the valley.  The peak voltage is the point of highest current value, and the valley 
voltage is the point where the current is the lowest when the voltage is above the peak 
voltage.  The important metric of an RTD is the ratio of the peak current versus the valley 
current (PVR).  The larger the ratio, the easier it is to differentiate between the two states.  
PVRs of 1000:1 have been observed at cold temperatures, but at room temperature, the 
PVR decreases to 1.5:1 [Chen00]. 
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Figure 10:  I-V curve of a molecule that exhibits negative differential resistance. 
[Husband03] 
 
The NDR region is important because it allows negating logic to be built with these 
devices [Ellenbogen00].  Figure 11 shows an example of an XOR gate implemented with 
molecular rectifying diodes and a resonant tunneling diode.  If one of the inputs (A or B) 
is high, while the other is low, the voltage across the RTD will be at the peak of the I-V 
curve.  Thus, a high current will be present in the RTD, and the output will be high.  If 
both of the inputs are high, the voltage will put the operating region of the RTD in the 
valley of the I-V curve, where there is very little current conduction.  The lack of current 
will result in a low voltage on the output.  Likewise, if both inputs are low, there will be 
no current through the RTD so the output will be low. 
 

A

B

out
RTDA

B

out
RTD

  
Figure 11:  Molecular XOR gate made up of molecular rectifying diodes and a molecular 
resonant tunneling diode (RTD). [Ellenbogen00] 

 
As previously mentioned, an important characteristic of molecular RTDs is that they can 
also be turned “on” and “off”.  The molecule has two different stable configurations.  In 
its “on” state it conducts electricity, while in the “off” state it has a very high resistance 
and conducts very little current, even if a large voltage is place across the diode.  
Applying a voltage above a certain threshold changes the configuration of the molecule.  
For the RTD molecule in Figure 10 the thresholds are 1.75 and -1.75 Volts to turn the 
molecule “on” and “off” respectively.  Once the molecule is configured, it is operated 
with a voltage (~.5V) [Whitaker88] that is less than the threshold to avoid switching the 
configuration.  The configuration of this molecule has been shown to be stable for up to 
15 minutes [Reed01]. 
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Molecular RTDs have also been used to build a latch [Goldstein02, Mathews99].  A 
molecular latch uses two RTDs; one designated the drive RTD and the other the load 
RTD (see Figure 12).  There are three “equilibrium” values of Vref where the current 
through the two RTDs is equal.  This means that in the absence of any input current, the 
data node between the two RTDs will be in equilibrium.  Two of these states are stable.  
These are indicated as “0” and “1” in Figure 12, and represent the state of the latch 
accordingly.  The third equilibrium state is not stable.  When the latch is in this state any 
shift left or right will result in a large increase in current through one RTD, and a 
decrease in the current through the other, thus changing the data node voltage. 
 
To store a new value in the latch, V is lowered to Vmono, as shown in Figure 12.  Once the 
latch has reached the new steady state, V is raised back to Vref while the input current is 
applied to the in node.  If the input current is above a certain threshold, Vout will be high 
and the latch will stabilize in the “1” state.  Likewise, if the input current is low, Vout will 
be low, and the latch will settle in the “0” state.  These latches have been used to make 
memory cells where Vref is a clock signal and the latch is refreshed on each clock cycle 
[Rose03]. 
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Figure 12:  (a) Circuit diagram of a molecular latch using molecular RTDs. (b) Line load current 
diagram for molecular latch as a function of the output node voltage. [Goldstein02] 

 
While the previous diodes have non-linear current-voltage characteristics, in is important 
in some architectures to restrict current to one direction.  In semiconductor electronics, 
this is achieved by a rectifying diode.  Researchers have been able to build rectifying 
diodes with molecules as well [Metzger97].  Although these devices cannot be switched 
“on” and “off” like the RTDs discussed above, they still may have a place in molecular 
electronics.  They can be used in logic, as shown in Figure 11.  They also can be used to 
control the direction of current flow in an array structure (section 3.1).     
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Figure 13:  (a) Schematic symbol of a rectifying diode and its (b) I-V curve. 

Molecular switches 
In addition to molecular diodes, there are also molecules that behave like simple 
switches.  The most widely-known molecular switches are from a group of molecules 
called rotaxanes and catenanes.   Rotaxanes and catenanes are molecules that are made up 
of two or more components that are mechanically linked [Kay03].  This means that the 
components can move in relation to one another without breaking covalent bonds.  
Catenanes are made up of two or more interlocking rings, as shown in Figure 14a.  
Rotaxanes consist of at least one ring (called a macrocycle) that is trapped on a rod that 
has two bulky ends, which prevents the ring from “sliding” off (see Figure 14b).   
 

(a) (b)(a) (b)  
Figure 14:  Illustration of (a) [2]catenane and (b) [2]rotaxane molecules. [Kay03] 

Certain rotaxane and catenane molecules have been shown to behave as molecular 
switches that can be programmed on and off [Collier99, Collier00, Brown00].  
[2]Rotaxane [Collier99, Stewart04] (the “[2]” is common chemistry nomenclature for the 
number of components in the molecule) and [2]catenane [Collier00, Brown00] are 
molecules that have been fabricated and shown to exhibit hysteretic I-V characteristics 
(see Figure 15) with two stable states.  Hysteresis in this case means that the device turns 
on and off at different voltages.  This is illustrated in Figure 15 where the molecule starts 
conducting (turns on) at about 1 volts and stops conducting (turns off) at about -1.5 volts. 
The molecules are switched “on” and “off” with high voltage, and operated with lesser 
voltages.  For example, [2]catenane is switched on with 2 volts, off with -2 volts, and is 
read with ~0.1 volts [Collier00].  These molecules are mechanically switched “on” and 
“off” when one component is moved in relation to the other by either oxidation (removal 
of electrons) or reduction (addition of electrons).  For [2]catenane, one ring rotates 
through the other, and for [2]rotaxane the ring slides back and forth on the rod.  These 
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molecules are essentially variable resistors that can be switched between two resistance 
values.  For example, [2]rotaxane has a 200X difference in resistance between its “on” 
and “off” state.  Since they are resistors, current can pass both ways through the 
molecule, as shown in Figure 15, as opposed to the diode discussed above.  Note that 
some of the references show molecular switches behaving as diodes, but this is an artifact 
of the material that the molecules are connected to for testing, rather than the molecular 
switch itself [Collier00].   
 
 

 
Figure 15:  I-V curve of a [2]rotaxane molecule cycled on and off multiple times.  The curve is 
linear when the molecule is “on”, but the current drops off when it reaches the “off” threshold, 
around -1.5 volts.  It turns back “on” at about 1 volt. [Stewart04] 

Since these molecules conduct current in both directions, this may limit the applications 
which molecular switches can be used in.  Although architectures based on these 
molecular switches have been proposed [Snider05b], resistors alone are not ideally suited 
for performing logic because of signal degradation.   These switches will have to be 
incorporated with other devices to create logic (section 3).  Molecular switches are 
probably better suited for memory devices where only one transistor is encounter per 
memory read. 
 
Even though these molecules conduct in both directions, it is important to orient these 
molecules.  This is important because if molecules are arranged in both “directions”, an 
attempt to turn “off” the molecules will turn “off” some but will also turn “on” others.  
This is accomplished by engineering different characteristics for each end of the 
molecule.  For example, making one end hydrophobic (repels water) and the other end 
hydrophilic (attracts water) could be used to help align the molecules in that same 
direction during assembly.   
 

3. Architectures  
All of the devices discussed above have been fabricated and tested to differing degrees.  
However a crucial step is to integrate these devices into an architecture that takes 
advantage of their strengths and overcomes their limitations.  An efficient architecture is 
strongly dependent on the available devices and manufacturing capabilities.  With current 
transistors and lithography, essentially any circuit can be created and manufactured with 
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high reliability. This level of control is unlikely to be possible for nano-electronics.   
Because of their small size, nano-electronic devices will likely not be able to be 
deterministically placed.  Researchers have been able to manipulate components with 
atomic force microscopes, but this will be impractical for full chips.  Even if advances in 
manufacturing allow other ways to manipulate at this scale, the tolerances required will 
likely make the costs prohibitive.  Current approaches to these problems include three 
major ideas:   

1) Let the circuits assemble themselves (self-assembly).  
2) Manipulation at a higher level (i.e. guide a group of wires so they line up in the 

same direction).  
3) Use a totally random process (i.e. place enough elements until statistics imply that 

things should work).   
This is a significant departure from micro-scale fabrication, where carefully-controlled 
lithographic processes dictate the placement of each individual element.  There are some 
consequences to this bottom-up approach to assembly [Stan03, Goldstein01].   

1) Defects are inevitable and must be handled (section 4). 
2) Three-terminal devices will be hard to fabricate.  While a two-terminal connection 

can be established merely by overlapping two wires perpendicularly, the 
stochastic nature of the assembly means that the probability of aligning three 
things will be very low.  Two-terminal devices such as nanowire FETs, diodes, 
and molecular switches will be preferred.  

3) Wire to wire connections will need to be achieved by orthogonal overlapping of 
the two wires.  The inability to manipulate individual wires means that it will 
likely be impossible to assure two parallel wires will line up end-to-end or even 
overlap. 

4) Nanoscale to microscale connections will have to be sparse, and should be done 
with orthogonal overlapping.  Similarly to point 3 above, it will likely be 
impossible to assure an end-to-end connection of microscale and nanoscale wires.  
Even if connection could be assured, the microscale wire pitch would greatly 
spread out the nanowires, negating the area savings of nanowires.  Also, because 
of the size difference, nanoscale elements will be slow when driving microscale 
devices.   

 
 

3.1 Array-based 
Currently, the most popular architecture for nano-electronics is array-based design with 
nanowires or nanotubes overlapped to make a grid.  The reason for their popularity is that 
techniques for creating them are well established, and such arrays address many of the 
issues discussed above.  It is impossible to select individual junctions of an array to 
contain switches, so arrays will likely be full crossbars.  This full crossbar nature makes it 
easy to avoid defects since any line can be replaced by another line with the same 
orientation (horizontal or vertical) [Naeimi04].  The positions where two wires overlap 
can create many two-terminal devices, including ohmic contacts[Rueckes00], 
programmable switches[Collier99, Stewart04, Collier00, Brown00], and diodes[Chen99, 
Chen00, Metzger97].  Finally, as we will discuss, parallel nanoscale wires attach more 
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easily to microscale wires than trying to line up two wires end-to-end [DeHon03a, 
Williams01, Snider05a].   
 
Array creation 
There are several methods that can align nanowires and nanotubes into parallel rows 
several nanometers apart; the Langmuir-Blodgett flow is one such technique [Whang03a, 
Huang01a, Whang03b].  Irving Langmuir and Katherine Blodgett discovered this 
technique in the early 1900s for depositing a single layer of molecules on a film.  The 
nanowires or nanotubes are suspended in a liquid that flows over a substrate.  As the 
liquid flows over a Langmuir-Blodgett trough the wires are compressed in order to line 
them up (see Figure 16).   
 

 
Figure 16:  Illustration of the Langmuir-Blodgett technique to create parallel nanowires or 
nanotubes [DeHon05b].  A random assembly of nanowires (dark lines) is progressively 
squeezed in the x-direction, while fluid is flowed in the y direction, to create a parallel set of 
wires. 

 
A layer of oxidation grown around the wires (see section 2.2) controls how closely the 
wires can be packed together (their pitch).  Once one layer of wires is deposited on a 
substrate, another flow can be performed and deposited at a right angle to the first layer, 
thus creating a grid.  Notice that while this technique can control the alignment of most of 
the wires in the direction of the flow to within a few degrees [Huang01a], there is no 
control over where the end of a wire will line up, or where any particular wire is 
deposited in the array.  This lack of precise control will have large implications when 
circuits are fabricated with this technique.  This technique has been able to deposit 
nanowires with an average pitch of 90nm [Whang03b], but it is believed that pitches 3-4x 
smaller will be achievable. 
 
Nanoimprint lithography is also a well-established technique for producing aligned 
nanowires [Chou96, Chen03].  Nanoimprint lithography is similar to conventional 
lithography, except instead of using light to etch a pattern, this technique uses a mold.  
The first step is to create a mold in the pattern of the desired array.  This is done with 
electron beam lithography.  Electron beam lithography can achieve significantly smaller 
feature sizes than current lithographic processes.  Current technologies use light and a 
mask to pattern VLSI circuits.  The light is “shined” on the mask, which has cutouts of 
the desired pattern, and the light passes through the cutouts to create a pattern on the 
photoresist.  This method is quick because the whole pattern is etched at once, but it has a 
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resolution limit of about 45nm [ITRS05] due to the mask causing the light to diffract.  
Electron beam lithography uses an electron beam to pattern a circuit.  The electron beam  
draws out the desired pattern on the photoresist directly instead of using a mask.  This 
method can achieve a resolution of about 10nm [Chou96], but it is a slow process.  This 
time consuming process is acceptable for nanoimprint lithography though because it only 
has to be done one per mold.  That mold can be copied countless times [Schulz00], and 
those copies can be used to make imprints very rapidly. 
 
The second step in nanoimprint lithography is to press the mold into a layer of resist over 
a substrate (see Figure 17a).  After the mold is removed (Figure 17b), some resist remains 
in the compressed channels.  This extra resist is etched away with a process called 
reactive ion etching (RIE) to reveal the substrate (see Figure 17c).  The final step is to 
deposit metal onto the pattern to fill in the channels and create the wires.  Even though 
this process has been used to create a one-kilobit memory at a 30nm half-pitch (half the 
distance between two lines) [Wu05], there is some doubt about how small a pitch is 
achievable, and whether multiple molds will be able to be aligned [Chou96, Stan03].   
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Figure 17:  An illustration of the nanoimprint lithography process [Chou96].  A mold is 
pressed into resist that sits on top of a substrate (a) and then removed (b).  An etching 
process is then used to remove the compacted resist and create the pattern (c). 

 
 
Array Based Logic 
An array of nanowires or nanotubes alone is not enough to create most electrical circuits.  
These nanowires or nanotubes need to be integrated with computation elements for the 
array to do something useful.  There are several ways to integrate these devices into an 
array.  One is to place molecule devices (section 2.3) between two wires at junction 
points where one wire crosses over another.  Another method to create a device is to 
selectively dope a section of a nanowire (section 2.2) to create a field effect transistor 
(FET), provided another wire is placed across the FET to control conduction (this cannot 
be done with CNTs currently).   
 
One design that uses both molecular switches and FETs is the nanoPLA [DeHon03b, 
DeHon04b, DeHon05c, DeHon05d]. NanoPLA is a programmable logic array (PLA) that 
uses a combination of nanowires, configurable molecular switches, and nanowire FETs 
(Figure 18).    A PLA is a reconfigurable logic architecture that directly implements a two 
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level sum-of-products computation.  It does this with a programmable AND plane that 
leads to a programmable OR plane (created by NOR-NOR planes in NanoPLA).  The 
input NOR plane in nanoPLA is accomplished by programmable diode crosspoints (OR 
plane in Figure 18) that perform a wired-OR, followed by an array of nanowire FETs.  
The nanowire FETs provide signal restoration or signal inversion of the OR-terms.  The 
signal restoration is accomplished by precharging the buffer array output lines to Vdd.  If 
the input from the OR plane is a ‘1’ the line will stay charged, and if the input is a ‘0’ the 
output nanowire will be pulled down through the evaluation transistor.  The signal 
inversion works the same way except the line is precharged low.  The inversion is needed 
to create the NOR function because the OR function is not universal logic.  The buffer 
plane is needed for signal restoration (when inversion is not needed for logic) because the 
molecular switches in the OR plane provide no gain.  The outputs from the buffer or 
inversion planes then go through another OR plane, and then an inversion or buffer plane 
(not shown in Figure 18).  
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Figure 18:  Organization of a nanoPLA block. [DeHon04b] 

 
The nanoPLA uses nanowire FETs to achieve signal restoration.  Another way to achieve 
gain is to use conventional CMOS gates, nanowire connections, and molecular devices all 
in a single circuit.  One example, CMOL consists of an array of nanowires that is placed 
on top of a CMOS circuit (Figure 19) [Strukov05].  Nanoscale devices occur at each of 
the nanowire junctions.  Notice that in Figure 19 the nanowire array is patterned at an 
angle to the microscale array.  This angle accomplishes two things.  First, this 
compensates for the inability to place the nanowires exactly over the interface pins to the 
microscale circuit.  If the two grids were parallel and misaligned (which is likely), only a 
few pins would be connected.  The angle means that a slight shift in the nanowire grid, 
due to assembly imperfections, allows nanowires to contact the microscale pins. The 
angle also compensates for the difference in pitch of the two arrays.  Even if the nanowire 
array could be placed over the microscale grid perfectly, the pitch of the microscale wires 
would have to be a multiple of the nanoscale wire.  
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The CMOS cells can contain a variety of circuits in order to make the CMOL circuit 
behave as a memory or as a logic circuit.  In order to harness the logic density of nano-
electronics, the main tasks of the underlying CMOS elements/circuits are to address the 
nanowires and accompanied devices, configure the nanoscale devices, and to provide the 
signal restoration and inversion that cannot be done with these nanoscale devices. 
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Figure 19:  CMOL architecture (a) basic cell with CMOS inverter and pass gages (only two 
nanowires are shown for clarity) and (b) nanowire interconnect with four basic cells. 
[Strukov05]] 

 
Array Based Memories 
While the logic circuits proposed above pose interesting possibilities, the first viable 
nano-electronic devices will probably be memories.  This is because memories are well 
suited to very regular arrays, which are the only structures to be fabricated to date (2006).  
In fact, HP Labs has already built a 64-bit [Chen03] and a 1-kilobit [Wu05] memory 
using the method shown in  Figure 20.  In these devices after the bottom set of wires are 
created using nanoimprint lithography (see Figure 17), a Langmuir-Blodgett flow 
process, similar to the one used to align nanowires, can be used to deposit a single layer 
of rotaxane molecules [Wu05].  To protect the molecules during the construction of the 
upper layer wires, a layer of metal is deposited over the whole chip.  To create the top 
layer of wires, resist is deposited over the metal, followed by the imprint steps show in 
Figure 17.  After the top wires are produced, they can be used as a mask to etch the metal 
layer protecting the molecular devices.  Even though rotaxane molecules are deposited 
over the whole bottom layer, only those molecules sandwiched between two metal wires 
will be used. 
 



25 

wires

(a)

(b)

(c)

rotaxane

metal

(d)

(e)

wires

(a)

(b)

(c)

rotaxane

metal

(d)

(e)

 
 

Figure 20:  Fabrication process of a nano-scale memory built by HP.  (a) Step one uses 
nanoimprint lithography to create nanowires.  (b)  The nanowires are then covered with a 
rotaxane molecule.  (c)  Metal is then deposited over all of the molecules to protect them.  (d) 
Nanoimprint lithography is used again to create a set of orthogonal nanowires.  (e)  The 
nanowires are then used as a mask to etch away the protecting metal. 

 Another proposed memory is shown in Figure 21 [DeHon05b].  The memory contains 
row and column decoders that are used for memory addressing.  Inside the memory array 
itself there is a configurable diode at each nanowire junction, similar to the HP memories 
discussed above.  When the diode is conducting it means it holds a ‘1’, and when it is off 
it means it holds a ‘0’.  To read the memory, a high voltage is placed on a column via the 
column decoder.  The row decoder will select the row; if current is detected, then a ‘1’ is 
read, while no current means a ‘0’.  Notice that when a column is charged, it charges all 
rows to which it has a ‘1’ stored.  This is why it is important that the devices are diodes.  
If the devices were switches that conducted in both directions, rows that are charged 
could then charge other columns that were not charged with the column decoder.  These 
other charged columns could then charge the output row erroneously.   
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Figure 21:  Circuit diagram of a nanoscale memory [DeHon05b]. 

When the CMOL circuit in Figure 19 is fabricated as a memory, nanoscale devices are 
used as the memory cell to achieve a high density, while the microscale infrastructure is 
used to configure the molecular switches (write operation) and to read the memory.  
While this has a density advantage over standard lithographic memories, since the 
memory bits themselves are essentially free in area, the use of lithographic wires inside 
the array make this device much larger than most potential nanowire-based devices.  
However, the simplicity makes these devices much easier to fabricate.   
 
Nanoscale memories, if realized, will drastically change the current memory model.  The 
memories will be very compact, because the area required to store a bit is only the cross 
point of two wires.  This memory would also be non-volatile because the molecular 
switches do not lose their state without power.  This means that it may be possible to 
have memory as fast as DRAM, but non-volatile like FLASH. 
 
Interfacing Nano-scale to Micro-scale 
For at least the first couple generations of nano-electronics, lithography-based nano-scale 
electronics will probably be required for things such as I/O, signal restoration and 
Vdd/Gnd distribution. The importance of this is illustrated by two memory designs 
discussed above.  HP memories attached microscale wires directly to each nanoscale wire 
to access the memories.  While this is adequate for proof-of-concept for the small array, 
this is impractical for large memory or logic devices since the microscale wires will 
dominate the area.  Thus, there cannot be an input/output pin for each wire in the array.  
This problem is addressed in the memory in Figure 21 with a decoder to connect 
microscale wires to nanoscale wires [DeHon03a].  If microscale wires and nanoscale 
wires were attached end to end, the pitch of the microscale wires would set the pitch of 
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the nanoscale wires, eliminating many of the area gains of nanoscale electronics.  The 
alternative is to cross the two sets of wires at a right angle to one another (see Figure 22). 
 

insulator

FET

m
ic

ro
w

ire
s

nanowires

Vdd

insulator

FET

m
ic

ro
w

ire
s

nanowires

Vdd

 
Figure 22:  Decoder to interface microscale wires to nanoscale wires [DeHon03a]. 

 
DeHon’s proposed decoder uses microscale wires to control the FETs in the nanowires.  
The nanowires are coded with a (n/2)-hot scheme, where n is the number of possible 
controllable regions (number of microscale wires).  This means that each nanowire has 

(n/2) FETs that are controllable, and there can be ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2n

n
 uniquely coded nanowires.  For 

example, in Figure 22 n equals six, so each nanowire has three controllable p-type FETs, 
and there can be 20 unique codes.  In order to make a nanowire conduct, 0’s are driven 
over each FET of that wire, while 1’s are driven on all other (n/2) wires to stop all other 
nanowires from conducting.  There are many issues that make this decoder complicated.  
One concern is that there is no way to control how the FETs of a nanowire will line up 
with the microscale wires.  In fact, there is no assurance that the FETs will line up with 
the microscale wires at all - they may all end up above or below the microscale wires.  To 
address this, the codes (sequence of FETs) are repeated over the length of the nanowire.  
By placing many copies of the code along the length of the nanowire, a shift up or down 
will simply place different FETs over the microwires. This works because if a FET is 
uncontrolled (not covered by a microscale wire) it will always conduct.  The uncontrolled 
FET conducts because the nanowires are made of all p-type or n-type semiconductor, and 
the controllable regions are also the same type (p-type or n-type), but with a lower doping 
level, so they are easier to deplete than the rest of the wire.   
 
A second concern with the decoder is that there is no way to individually place 
specifically coded nanowires on the decoder.  This is because all of the nanowires with 
all of the needed codes are placed in a solution which is used in a Langmuir-Blodgett 
flow to deposit the nanowire over the microwires.  Unfortunately, it is impossible to 
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create a solution that contains exactly one wire of each needed code, and even it that was 
possible, the inability to control vertical alignment would essentially change codes. For 
example, the two nanowires on the right side in Figure 22 have the same code, but 
because they are not “placed” in the same location, they have different addresses.  If a 
solution with many copies of the needed codes was created, the likelihood that multiple 
copies of the same code being deposited on the decoder is very high.  To overcome this 
uncertainty, DeHon proposes using more codes than are required to address the set of 
nanowires [DeHon03a].  With enough different codes, and many copies of each code, the 
required number of nanowires needed for the decoder will be randomly “selected” with a 
high probability that each wire’s code will be unique.  This means that not all of the 
addresses will be used in each decoder, and there will have to be more microscale wires 
than would be required if an ideal decoder could be created.  DeHon showed that 
⎡ ⎤(N)2.2log2 +11 address (micro) wires are needed to address N nanowires with a 99% 
chance that all nanowires will have a unique code.  This represents a substantial overhead 
over an ideal decoder.  For example, if the decoder had 20 microwires, it could address 
184,756 nanowires using and ideal (n/2)-hot scheme decoder.  To address this many 
nanowires with the non-ideal decoder would require 50 microwires.  Finally, since not all 
addresses will be present in each decoder, the working addresses must be discovered 
before the decoder can be used.   
 
An alternative method was proposed to randomly scatter gold nanoparticles over the 
decoder region [Williams01].  Ideally, half of the possible junctions will get a 
nanoparticle deposited on them to create connections between the nanowires and the 
microscale wires.  This is similar to the (n/2)-hot scheme used in the decoder discussed 
previously.  The main difference is that the gold particles act as a resistor instead of a 
FET.  This means that the wire to be selected will have all contacts conducting, and the 
output will be at full voltage.  Other lines will have some 1’s and some 0’s, making a 
voltage divider circuit, so they will be at an intermediate voltage. This is acceptable as 
long as the two voltages can be differentiated.  With this method, addresses will also have 
to be discovered in the same manner as the decoder discussed above.  
 
A problem with both of these decoders is that the addresses are stochastic.  In an ideal 
memory, addresses are sequential and all possible addresses work.  With the above 
proposed decoders, only a small subset of possible addresses work, and the working 
addresses are randomly placed in the address space.  This means that 2n addresses need to 
be checked for functionality, since any combination of connections is possible.  Also, 
once a working memory is discovered, it must be stored in order to be subsequently used.  
To deal with storage of working addresses, an addition to the decoder has been proposed 
to generate deterministic addresses [DeHon05e].  If programmable FETs are added to the 
decoder, stochastic addresses can be converted to deterministic addresses (see Figure 23).  
To discover working stochastic addresses, the programmer starts at address zero (on 
microwires a-d in Figure 23) and increases the address until one that is working is found.  
Working means that one of the microwires is charged up.  When a working stochastic 
address is discovered through the stochastic decoder, it is assigned a deterministic or 
known address by configuring the programmable FETs.  The FETs are programmed to be 
either controlling or not controlling, using a (n/2)-hot scheme again.  For example, in 
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Figure 23, if the nanowire was p-type, when the address on micorwires a-d is 0101, the 
nanowire will be discovered to conduct.  If the next deterministic address to be 
programmed is 0011, the programmable FETs over microwires 1 and 2 will be 
configured as controlling while microwires 3 and 4 will be configured non-controlling.  
Now only the address 0011 will allow the nanowire to conduct because any other address 
in a (n/2)-hot scheme will have a ‘1’ on microwire 1 or 2. Once the FETs are 
programmed, only the deterministic addresses are used and the controlling wires for the 
stochastic decoder are set such that the nanowires conduct through that region.  This 
converts addresses that are randomly placed in the address space into know addresses.  
Two suitable technologies for the programmable FETs have been proposed [Salvo01, 
Huang01b].   
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Figure 23:  Programmable address line to create a deterministic address decoder.   The 
nanowire corresponds to a nanowire in Figure 22. [DeHon05e] 

 
Another proposed decoder also uses a (n/2)-hot scheme, but approaches the need for 
deterministic addressing and fault tolerance very differently [Snider05c].  The decoder in 
Figure 24 uses a combination of a CMOS address encoder and an nanowire crossbars to 
“turn on” a single nanowire with a deterministic address.  The deterministic addresses are 
expanded to a sparse, redundant code by the address encoder.  The sparse code has three 
parameters that can be tuned to change the number of output lines and the ability to 
tolerate errors.  These parameters are the code length, the weight, and Hamming distance 
(6, 3, and 4 respectively in Figure 24).  The code length is the number of lines coming out 
of the address encoder.  The weight of the code is the number of 1’s in the code.  Each 
output of the encoder always has the same weight.  The Hamming distance is the number 
of bit flips required to go from one address to another.  This limits the number of possible 
addresses, but it also is the mechanism for fault tolerance.  Notice in Figure 24 that if the 
decoder is defect-free then one output nanowire is at full voltage, while the rest are at 
some lesser voltage.  Assuming only stuck-open defects, a fault in a molecular switch or 
wire for the targeted line will still result in a full voltage output.  If the fault is on a 0 V 
line for an output line that is not intended to be charged, the voltage will increase, but 
there is still enough of a difference between the two output lines to determine which line 
is being selected as it takes multiple faults to create an error.   
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Figure 24:  Micro-scale wire to nano-scale wire decoder [Snider05c].  The 2-bit input address is 
expanded by the address encoder to a redundant 6-bit address that selects one output nanowire.  

Although in Figure 24 it appears that it would be better to just connect the output lines 
directly to the CMOS circuits, there are several reasons that this is not the case.  One is 
that many more output lines can be controlled as the number of address lines out of the 
address encoder increases.  For example, 237 output lines can be controlled with only 22 
address lines [Snider05c].  Another advantage is that if one of the address nanowires is 
broken, this scheme still works.  This decoder does have some pieces that will not be easy 
to fabricate.  One difficult part would be the need to place the programmable molecular 
switches at certain nanowire-nanowire junctions.  Current techniques for depositing 
molecules, such as the Langmuir-Blodgett flow, distribute a layer of molecules, and can’t 
place individual molecules.  There is also no discussion of how the vertical nanowires 
would be connected to the CMOS address encoder. 
 
Each of these three encoders has their strengths and weaknesses.  While the first decoder 
has a digital output (ideally only one output has any voltage), it has many different parts, 
which may be difficult to achieve in nano-electronics. The last two are simpler 
approaches, but they have outputs that are controlled by voltage divider circuits.  This 
means that the connecting circuitry has to be designed to handle intermediate voltage 
values properly.  The last two decoders also have the advantage of not having to use high 
impedance semiconducting nanowires.  Finally, the last decoder does not require the 
discovery of addresses, as the first two decoders do. 

3.2 Random structures  
In contrast to the regular structure of an array, there are a few architectures that are much 
more random.  One example, Nanocell [Husband03] is a block that has a random network 
of molecules that act as negative differential resistors (NDR) (see Figure 25).  The 
network is created by randomly depositing very small conductive particles 
(nanoparticles) of gold or platinum onto a substrate.  The NDRs are then put onto this 
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substrate, and the ends of each molecule attach to a nanoparticle, creating a random 
network.  The NDRs are put in a random state (on/off), and a genetic algorithm is used to 
program the device.  The genetic algorithm starts with several nanocells with random 
configurations of NDRs, some of which are ‘on’ and some that are ‘off’.  The 
configuration of each nanocell is encoded as a binary string that represents the state of 
each switch in the cell, with ‘1’ indicating the switch is ‘on’, and ‘0’ indicating it is ‘off’. 
The two fittest “parent” cells are then selected to “mate” by recombining their binary 
strings.  A cell is more fit than another if it behaves more like the desired function.  The 
recombining is done by uniform crossover, which goes though both parents’ binary 
strings one bit at a time and determines with a coin toss which of the two offspring get 
which parent’s bit.  The offspring then replace the parents in the population.  This 
continues until a cell functions as desired (OR, NAND, etc).   
 
 

 
Figure 25:  Diagram of a nanocell block. The black boxes on the periphery are microscale 
I/O terminals for connecting to other blocks [Husband03]  

This network functions as a current device,  meaning  that a cell functions correctly by 
having a current level below a certain threshold for a ‘0’ and higher than a certain 
threshold for a ‘1’.  For example, an OR function would produce “high” current levels 
when a ‘1’ is placed on any of the inputs, and a “low” current when a ‘0’ is placed on the 
inputs.  With omnipresent control over switches (able to configure switches individually 
without using I/O pins), an inverter, NAND and a 1-bit adder were able to be 
programmed.  The intent is to configure a block to perform a certain function such as 
AND or NOR and then tile the blocks together to implement a circuit.   
 
While random architectures are interesting because they have inherent fault tolerance and 
it harnesses the random nature of nanotechnology instead of trying to create some order 
with it, this and other current example have drawbacks.  One obvious disadvantage is the 
amount of resources required to implement a small circuit such as a NAND gate.  Also, 
because each cell needs to be configured separately, the circuit would probably not be 
reconfigurable once it is built.  The configurations so far have all been done in 
simulation, so it will be interesting to see if the programming of the switches can be 
accomplished from the I/O blocks, which would be required in a real system.  Scalability 
will also be a challenge for this design because it is a current output device.  Blocks 

nanoparticle 

molecular switch 
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cannot be simply placed together because the signal will be degraded to useless levels in 
just a few blocks.   

4.  Fault Tolerance  
Even though nano-electronics device fabrication is in its infancy, it is clear that defect 
and fault levels will be much higher than current CMOS technology.  The exact level of 
defect densities is unknown, but it is assumed that 1-15% of the resources on a chip 
(wires, switches FETs, ect.) will be defective [Chen03, Huang01a, Misha03].  These high 
number of defects are largely a consequence of how extremely small the devices will be.  
Although their size makes nano-electronics an attractive successor to VLSI, it also makes 
reliable manufacturing difficult for three main reasons: stochastic assembly, fragility due 
to small numbers of atoms, and less random skew tolerance.  First, the ability to 
deterministically place all of the parts of a circuit will likely no longer be possible for 
nano-electronics devices.   This means that stochastic assembly will be necessary.  The 
use of a stochastic process means that things such as the proper alignment of wires for 
connections over an active FET, or the population of molecular switches, cannot be 
guaranteed.  The second issue resulting from the use of devices that will be a few atoms 
in at least one dimension is that these devices will now be much more fragile.  They will 
be susceptible to wires breaking during manufacturing and during their lifetime.  They 
are also expected to be less tolerant to radiation, high temperatures, and electromagnetic 
interference.  Finally, as pointed out in [DeHon04a], these devices will no longer be able 
to rely on the Law of Large Numbers at the device level.  In current MOSFETs, even 
though electrons behave randomly, statistics tell us what the majority of electrons will be 
doing at any moment, and thus we can be assured of a certain amount of current flow.  
This will no longer be a proper assumption when dealing with only a few electrons, since 
only a few “stray” electrons could drastically change the timing of a gate.  We can 
probably only rely on the Law of Large Numbers above the device level for nano-
electronics. 
 
Before we review the many proposals on how to handle faults and defects in nano-
electronics, these two terms should be defined.  “Defects” include both manufacturing 
and post-manufacturing errors that are permanent, such as broken wires or missing 
switches.  These permanently change the behavior of the device.  “Faults” are errors in 
computations as a result of either defects or transient faults.  “Transient faults” occur due 
to events such as electromagnetic noise or radiation, and are not always reproducible.  
This distinction is important because some remediation techniques only handle faults due 
to defects, while some can remedy any fault.   
 
With defect rates for current VLSI processes in the range of 1 part per billion [Stan03], 
manufacturers can afford to discard any chip that is found to be defective.  Some FPGA 
and memory manufacturers add a small amount of redundancy that can replace a small 
amount of defective devices to increase yield.  But this strategy still relies on very small 
defect rates.  With defect rates of around 1-15% of all individual transistors and wires, 
neither of these techniques will prove effective for nano-electronics.  Because reliability 
will have to be handled at the architecture level instead of the device level, what was 
once a process engineering problem will now become an architectural dilemma.  Novel 
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techniques and architectures will have to be devised in order for nano-electronics to 
become a viable replacement for current VLSI processes.  Current research on fault 
tolerance has followed three tracks to solve this problem.  These are configuring around 
the defects, masking faults with redundancy or designs that are inherently fault tolerant. 

4.1 Configure around defects  
The first track relies on reconfiguring the device around the faults.  Since nano-
electronics devices will generally have to be built with a bottom up approach, they will 
likely have to be homogeneous at some level.  Since heterogeneous components such as 
ALUs and signal processing units may be impossible to build, configuration of the 
homogenous structure will have to be employed to realize such devices.  This 
configuration process can be leveraged to map around the defective parts of a chip.  For 
example, consider the Teramac configurable computing machine [Amerson95].  Teramac 
is a configurable hardware system with 1728 FPGAs built by Hewlett-Packard 
Laboratories in 1995.  To keep costs down, the designers of Teramac allowed for some of 
the devices to be defective.  Despite having a defect rate of almost 3%, Teramac was able 
to function properly by configuring around the defects.   

Defect discovery 
Before one can configure around the faults, they must first be discovered.  Since nano-
electronic researchers expect to be able to integrate 1012 devices on a single chip 
[Huang04], this will not be a trivial task.  Even though the number of devices for 
Teramac is six orders of magnitude less, the developers still faced many of the same 
issues [Culbertson 97].  These included not being able to probe each individual device 
and not knowing a priori which devices are functioning.  Each individual gate cannot be 
economically tested because of the low bandwidth for chip I/O and the large number of 
devices.  Also, since the testing circuitry is made up of the same defective fabric, there is 
no assurance that the testing circuitry is fault-free.  To handle this issue, devices are 
tested in clusters (see Figure 26) by configuring a signal generator into the units.  If the 
output pattern is correct, all of the devices in that test are deemed working.  Otherwise, 
all of the devices are assumed defective until another test says otherwise.  Each device is 
tested many times with separate devices to increase the probability that a good device, 
will eventually be tested with a set of other good devices and the bad devices will be 
isolated.  To facilitate faster testing, the testing on Teramac was bootstrapped.  That is, 
the system tests one part of the machine, maps its defects, and configures that part to test 
its neighbors.  Repeatedly applying this process eventually tests the whole machine. 
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Figure 26:  Resources are grouped together to be tested in the Teramac computer 
[Culbertson 97].  Multiple orthogonal tests are run, and the intersection of failing tests with 
common resources points out bad resources.  Note that this is just an illustration; many tests 
are run to isolate each defect. 

 
Unfortunately, this scheme will not translate directly to nano-electronics [Brown 04].  
One issue is the large number of devices foreseen.  A larger issue is the greater predicted 
defect density for nano-electronics.  The problem is that when there are so many 
defective devices, a good device has a low chance of ever being paired with a set of only 
good devices.  A simple solution to this would be to group fewer devices together for the 
test, but this increases the testing time to an unacceptable level.  A solution to the 
problem of too many devices and defects is to first determine the probability of a device 
being defective, and not testing devices with a high probability of being defective 
[Mishra03, Goldstein03].  Instead of running enough test vectors to isolate defective 
devices, a smaller set of test vector returns either none, some, or many faults.  To 
accomplish this, a block is configured into a LFSR.  If the LFSR returns the correct 
signature, then the result is none.  If the signature is incorrect, then the block is broken up 
into smaller LFSRs and rerun.  If more than half of the smaller LFSRs are defective, then 
many defects is the result.  Otherwise, the result is some.  Once this first step is 
completed, each device is analyzed to determine how many circuits it was in and how 
many faults were detected in these circuits.  Bayesian analysis is then used to determine 
the probability that a device is defective.  All of the devices with a high probability of 
being defective are discarded.  The defect rate of the remaining devices should now be 
low enough to do defect detection similar to Teramac. 
 
Another method to detect the faults eliminates the need to store the fault map externally 
[Brown 04].  This is a significant advantage given the number of devices predicted to be 
integrated on a chip and the time required to get the fault map off chip.  Built in self test 
(BIST) is a classic VLSI testing technique that uses dedicated on-chip testing circuitry to 
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test the chip, saving time by removing the I/O overhead of external testers.  Of course, 
the testing circuit must be defect-free, so BIST will not directly work with nano-
electronics.  However, the reconfigurable nature of the architecture can be leveraged to 
facilitate the testing.  Testing of the NanoFabric architecture (section 3.1) involves a 
modified BIST algorithm that uses the reconfigurable blocks to do the testing.  This is 
accomplished by first testing block 1 in Figure 27 with and external tester.  
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Figure 27:  NanoBlocks are tested by each other in groups of threes [Brown 04].  An arrow 
indicates one block testing another.   Three bits in each block are for its three neighbors in 
the order of right, diagonal and down. 

 
Block 1 is then configured from an external source to test blocks 2, 4 and 6.  Blocks  2, 4 
and 6 are all given the same test vector, and the blocks under test are configured so that 
the output patterns are identical to the input patterns.  This means that each testing block 
only has to compare the output to the input test vector to see if they are identical.  
Whether a nanoblock is capable of implementing a k-bit comparator (where k is the 
number of vertical or horizontal wires) is not clear [Wang 05].  Block 1 then stores one 
bit for each block it tested, indicating whether it has a fault or not.  This testing continues 
in a wave diagonally across the chip until all blocks are tested.  This scheme will also 
indirectly test the switch blocks and wires.  Notice in Figure 27 that block 8 is tested by 
blocks 3, 5 and 7.  Block 3 indicates block 8 is defective while block 5 and 7 indicate that 
block 8 is defect-free.  This indicates that the resources between blocks 3 and 8 are 
defective.  All blocks are considered defective until proven otherwise.  This could lead to 
underutilized blocks.  For example, if block 6 is a defective block, 11 must be assumed 
defective since block 11 is only tested by block 6 and therefore cannot be proven 
otherwise.  Because the configuration stream always goes through blocks that have been 
tested, the defect map does not need to be exported to the external tester.  A block that 
has a defective neighbor configures the switch block not to route to the defective block.  
It was shown that more than 99% of the defect-free blocks could be identified if such a 
“scan” was performed from each of the four corners.   
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It may also be possible to use BIST to test the entire fabric in parallel instead of the 
wavelike pattern proposed above [Wang 05].  Blocks are grouped together in clusters of 
three with one block being the test pattern generator (TPG), one being the block under 
test (BUT), and the last being the output response analyzer (ORA).  The clusters are 
regrouped three times such that each block is configured as a TPG, BUT, and ORA so 
that a BUT is not marked as defective because the TPG or the ORA is faulty.  The testing 
is set up to test for stuck-at faults, so that the defect-free response from the BUT is all 1’s 
or 0’s, which can be checked with a simple AND or OR gate (see Figure 28).  Testing 
could possibly be done quickly if a chip could configure itself, but how this would be 
done is not clear since operating voltages are much less than programming voltages. 
 

 
 

Figure 28:  Configuration of a nanoBlock to perform an AND and OR output response 
analyzer (ORA) for a built in self test of nanoFabric [Wang 05]. 

For the nanoPLA [DeHon03a, DeHon04, DeHon05a] and nanoscale memory 
[DeHon05b], the working resources are discovered instead of the defective resources 
[DeHon03a].  Because the decoder used to address nanowires from microwires (section 
3.1) is stochastically built, it is not known a priori which addresses are working.  All 
possible addresses must be tested to see if they can configure a cross point.  With the 
memory in Figure 21, first the row output microwires are all turned on so that if any 
column is energized by a particular address it will be detected.  Once the column 
addresses are discovered, then the row addresses can be discovered with the known 
column addresses.  This is accomplished by first configuring all of the crosspoint 
junctions for a known column address to be on.  Then all of the output or row addresses 
can be read.  Any address that produces a high output is a working address.  Note that 
every row address has to be checked every known column address as it can’t be assumed 
that all crosspoints are functional.  An address may not function because it does not exist 
or the nanowire it addresses has a fault somewhere (broken wire, missing switch, etc.).   
One drawback for stochastic addressing is that the working addresses may have to be 
stored.  For the nanoscale memory, this will require O(N log(N)) bits of storage for a 
memory that can store O(N2) bits.  A monolithic memory to store the table of working 
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addresses is not compact enough to store in lithographic memories, so future work is 
needed to develop multistage nanoscale address mapping architectures.   
  
An algorithm to detect the faults in nano-electronics is going to be dependent on the 
architecture, but there will probably be some common characteristics among all of them.  
The first characteristic is the use of an external tester or a reliable CMOS circuit to do the 
initial testing [Culbertson97].  This is done because none of the resources in a 
nanoelectric device can be assumed to be defect-free.  Once some portion of the chip is 
found to be defect-free, the testing will need to be bootstrapped.  That is, some portions 
of the chip that are determined to be defect-free are used to test the rest of the chip.  This 
is essential to speed up the testing so that the large number of devices can be tested in a 
reasonable amount of time.  One large issue remaining to be thoroughly addressed is the 
vast amount of data a defect map will contain, and how to efficiently handle it.  If a chip 
has 1012 devices on it with a defect rate of 10%, then there will be 1011 defects to map.   
 

Mapping around defects 
When defects are discovered, the defect map must be used to avoid defects on the chip in 
order to create a functioning circuit.  This will likely add a step to the CAD flow for 
configuring the device.  Considering that 1011 defective components have to be handled, 
this will not be a trivial problem.  One simple solution is to simply remove the defective 
device from the list of available resources, just as if it was pre-assigned to logic in the 
placement phase [Amerson95].  This solution worked for the Teramac computer because 
of the sparseness of the defects.  When a LUT (computing block) was determined to 
contain a defect, it could be thrown out because there were many other LUTs that were 
defect-free.  It will probably be impossible to build a defect-free LUT with nano-
electronics, so a solution will have to be found that maps around defects at a fine-grain 
level. 
 
To map around faults in a crossbar-based architecture one can use a technique based on a 
bipartite graph B = (U,V,E) [Huang04], where the vertices U and V represent the input 
and output nanowires respectively, and the edges E represent the programmable switches 
between the wires (see Figure 29).  The input vertices make up one partition of the graph, 
while the output vertices make up the other partition.  A maximum flow algorithm can be 
used to find a maximum matching of the inputs to outputs, but first the graph must be 
modified to incorporate the errors.  Stuck open faults, where a switch cannot be 
programmed to close, means that the affected edge is removed from the graph.  For stuck 
closed faults, where the switch cannot be configured to be open, all of the affected 
resources are removed from the graph.  However, it should first be noted that the 
removed group can be used to route one signal.  For nanowire break faults, the 
corresponding vertices are simply removed from the graph (notice in Figure 29 that it 
appears that i4 can still connect to o1 and o2, but the authors are assuming that the wires 
will be precharged, so all of i4 is defective).  For nanowire bridging faults, where two 
nanowires are shorted together, all but one of the affected wires is removed from the 
graph.  One thing to note is that some of the errors such as bridge and stuck closed faults 
might not be useable because they are not a reliable connection.  In this case all of the 
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affected resources would need to be removed from the graph.  Once the graph is 
constructed, it can be used to represent the crossbar to configure around the defects. 
 

i1

i2

i3

i4

o1 o3 o4o2

= good switch
= stuck open switch

= stuck closed switch
= bridge

i1

i2

i3

i4

o1

o2

o4

o3

= removed resource

U V
i1

i2

i3

i4

o1 o3 o4o2

= good switch
= stuck open switch

= stuck closed switch
= bridge

i1

i2

i3

i4

o1

o2

o4

o3

= removed resource

U V

 
Figure 29:  How a bipartite graph is built with defects to facilitate mapping circuits to a 
defective crossbar architecture.   

 
Another use of the bipartite graph is to construct the graph based on whether a certain 
output wire will support a certain function given a set of faults in a crossbar architecture 
[Naeimi04, DeHon05a].  Given a set of product terms (Figure 30a) and a crossbar with 
all defects mapped (Figure 30b), a bipartite graph can be constructed that represents all 
possible assignments of functions to output wires (o1-o4) (Figure 30c).  Once the graph 
has been constructed, a maximum flow algorithm can be used to come up with a solution 
(Figure 30d).   
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Figure 30:  (a)  OR term functions to be mapped to crossbar.  (b)  Crossbar with defective 
switch points.  (c)  Bipartite graph of how functions can map to output wires.  (d)  Possible 
assignment. [Naeimi 04]. 

One problem with this solution for nano-electronics is that the large number of resources 
on a chip will make constructing this graph a very time consuming process that will 
require an enormous amount of data.  However, if a greedy algorithm is used instead of a 
maximum flow algorithm, then the graph does not have to be built [Naeimi 04].  The 
greedy algorithm is a two-step process.  Conceptually, step one is to select the function 
that has the least number of options for output lines to use (f1 in Figure 30a).  This is 
represented in the graph (Figure 30c) as the node fi with the least number of edges or 
least degree.  Then select a random output node (oi), until one that has an edge to the 
function is found.  To avoid building the graph, the first step can be accomplished by 
noticing that the functions that have the least degree have the most inputs.  Also, without 
a graph it is not possible to check for an edge between a function and a random output 
wire.  This is circumvented by selecting a random output wire and only testing the cross 
points that will be needed for the given function. 
 
Since it appears that nano-electronics will be assembled with homogeneous structure and 
configured post-fabrication to perform a given circuit, it seems logical that the 
reconfigurable nature should be leveraged to handle the defects.  Even though 
reconfiguring around defects has been shown to give the greatest chip reliability for a 
given redundancy level [Nikolic 02], there are some deficiencies intrinsic to this method.  
The main drawback is that the fault map is static.  This means that it cannot handle 
transient faults because they often will not show up during defect testing.  Defects that 
arise during use will also cause errors until the faults are remapped and the device 
reconfigured.  One other drawback is that the configuration stream for each device must 
be unique due to the unique nature of a chip’s fault map.  This means that it will no 
longer be possible for a design to be compiled once and shipped out.  Designs will have 
to be shipped and compiled by the end user after they have a fault map for each device.  

4.2 Run time fault tolerance  
There are some fault tolerance techniques that can handle both defects and transient 
faults.  This is accomplished mostly through hardware redundancy.  This approach means 
that defects are characterized on a statistical level instead of specifically mapped.  In 
other words, for a given technique, it is known that a given percentage of faults can be 
mitigated whenever they may occur. In the 1950’s computers were unreliable in large 
part because the valves that made up the switches were prone to burning out.  This 
prompted John von Neumann to study the task of building reliable computers with 
unreliable components [von Neumann 56].  Specifically, von Neumann developed two 
hardware redundancy schemes, NMR and multiplexing, to achieve reliability.  With the 
invention of the silicon transistor and the subsequent advances in manufacturing, these 
two techniques were somewhat forgotten.  However, they are still used in very critical 
hardware that cannot afford an upset due to radiation or some other random event.  Now 
that it is evident that nanotechnology will also be unreliable, these ideas have received 
renewed interest. 
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Triple Modular Redundancy 
Triple modular redundancy (TMR) is a technique where each computational unit is 
duplicated three times, run in parallel, and the outputs are “voted” on with dedicated 
circuitry to determine the correct output (see Figure 31).  The idea is that at least two of 
the outputs will be correct, and that one may be incorrect.  The voting circuit will pick the 
two correct outputs, essentially ignoring any errors.  NMR is a general form of TMR 
where there are N copies (N must be odd to avoid ties) instead of three. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 31:  Triple module Redundancy with three copies of logic (U1-U3) and a voting 
circuit (V) [Graham04]. 

 
TMR is often used in current VLSI designs to assure correct circuit functionality when 
errors have drastic consequences or when circuits will be subject to high levels of 
radiation.  Current implementations guard against transient faults such as those caused by 
radiation, rather than against defects since defective chips are discarded.  There are two 
issues with this technique.  The first issue is that TMR assumes that at most one of the 
three (or (N/2 –1) for NMR) will contain a fault.  If more units contain faults, then the 
faulty response may appear to be the correct response to the voting circuits.  For 
nanotechnology, where fault levels will be quite high, NMR would have to be done at a 
very fine grain level or with lots of redundancy (large N) to assure a high probability that 
less than half of the logic units will be defect-free.  This means that NMR will probably 
not be a solution to whole chip fault tolerance.  In fact, it has been shown that in order to 
get a 90% probability of a chip with 1012 devices working with NMR, that even with a 
defect probability (probability of an individual device being defective) of 10-7, that N 
would have to be 1000 [Nikolić02].  A defect probability of 10-9 is about what is being 
achieved with the state-of-the-art (2006) VLSI processes [ITRS05]. The second issue is 
the requirement that the voting circuit must be fault free.  As discussed previously, there 
should not be any single component in nano-electronics that must be fault-free in order 
for a chip to be functional. 

Von Neumann multiplexing 
Von Neumann multiplexing (see Figure 32) is very similar to NMR, but it removes the 
reliance on a single voting circuit.  As in NMR, the logic units and inputs are duplicated 
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N times, but instead of voting on the outputs to produce a single output, all of the outputs 
are kept.  If all of the inputs are correct and all of the logic gates are defect-free, then all 
of the outputs will be correct.  However, if some of the inputs are incorrect (errors from a 
previous stage) or there are faults in the logic, some of the outputs will be incorrect.  The 
outputs are considered true if N)1( Δ−  or more signals are true, and false if NΔ or less 
signals are false, where Δ  is a predetermined threshold )5.0( <Δ< .  If the distribution of 
the outputs lie between these two values then the circuit is considered to have 
malfunctioned.  Figure 32 shows that there are two stages in a multiplexing circuit: the 
execution and restoration stages.  The execution stage is where the desired function is 
performed.  The purpose of the restoration stage is to correct any “degradation” of signal 
caused by the execution stage.  A degraded signal is when the output bundle from the 
execution unit contains more errors than any of the input signals.  An example will show 
how a multiplexer can resolve faults.   
 
Von Neumann gave examples using NAND and majority gates (this is why this technique 
is often called NAND or majority multiplexing).  A majority gates example is shown in 
Figure 32.  If N = 5 and =Δ 1/5 then at least four lines need to be true for a bundle of lines 
to be considered true.  The inputs come in as bundles that consist of the same signal 
duplicated N times.  In Figure 32 two of the input bundles have only four of the five lines 
stimulated (logic ‘1’) due to an error in a prior stage, and the other bundle has no 
stimulated lines (all 0’s).  The output of the execution stage has only three stimulated 
lines because the random permutation unit (block U in Figure 32) groups inputs to the 
majority gates (block M in Figure 32) so each majority gate has a random input from 
each of the three input bundles.  In this case, the execution stage degraded the signal 
because it outputs two 0’s and only three 1’s.  If you follow the signals through the 
restoration unit, and again assume that the “random” permutation unit does not pair wires 
from the same bundle together or create the same permutation for more than one majority 
block (ie. pairing the output from the first three execution majority blocks into the first 
two restoration majority blocks), then four of the five lines will be stimulated and sent on 
to the next stage as a “true” bundle.  It is also possible for a given permutation to output a 
“false” bundle, but This scheme can be done with NAND or NOR gates in place of the 
majority gates in Figure 32, except two restoration stages are needed because of the 
inverting nature of NAND and NOR.  Since NAND and NOR are universal logic gates, 
any circuit could be transformed to be multiplexed.  One issue with this scheme is what 
happens to the final output.  Conceivably, the bundled signals could be used throughout 
the whole circuit and external circuitry such as CMOS could “vote” on the output. 
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Figure 32:  Majority multiplexing example that shows the function of the restoration stage.  
Block U is a random permutations unit and block M is a majority gate. 

 
It has been shown that NAND multiplexing could be a viable fault tolerance technique 
for nano-electronics, but only at high levels of redundancy [Roy05, Bhaduri04, Han02, 
Norman04, Han05, Qi05].  Simulations have determined that with a fault rate of 10-3 per 
device, a redundancy level (number of times circuit is replicated) 105 is need to assure 
90% of the chips will work correctly [Nikolić02].  This means that a chip with 1012 
devices will actually function as a chip with 107 devices.  It should be noted that some of 
the redundancy is in the form of extra stages in the restoration stage.  Figure 32 was 
shown with only one restoration stage for simplicity but, it has been shown that multiple 
stages increases the reliability of a design [Bhaduri04, Han02, Norman04, Qi05]. 
 
4.3 Inherently fault tolerant architectures 
Some proposed architectures are inherently fault tolerant because of the manner in which 
they are configured.  Nanocells (section 3.2) use a genetic algorithm to “train” cells to 
perform a certain function [Husband03, Tour03].  By using a genetic algorithm to create 
the configuration stream on the actual hardware, any defects are avoided.  This is very 
similar to reconfiguration, but the faults are not mapped.  It is also less susceptible to 
transient faults because the output of a cell is determined by a current ratio.  This means 
that if a switch malfunctions, it may not change the output current enough to change the 
output logic state  
 
4.4 Fault tolerance conclusion 
Fault tolerance has come full circle since the pioneering work by John von Neumann, but 
with a much different outlook and scope.  During the time of von Neumann, the scale of 
the problem was much smaller and there was the expectation that reliable devices would 
soon be manufactured, making fault tolerance unnecessary.  The likelihood that 
nanotechnology will become reliable enough to make fault tolerance obsolete is small.  
Even if high reliability becomes achievable, it will undoubtedly be very expensive, which 
goes against a main goal of nanotechnology.  As can be seen from the previous 
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discussions, each technique has its strengths and weaknesses.  While reconfiguration 
requires the least amount of redundancy [Nikolić02] (see Figure 33) it cannot handle 
transient faults or defects that arise during use (at least until it is reconfigured).  It is also 
time-consuming to detect and map around faults.  The fault-tolerant techniques based on 
hardware redundancy (NMR and multiplexing) can, in theory, mitigate any faults.  The 
main drawback is that much more redundancy is required at a given defect rate, as shown 
in Figure 33.  These techniques are also based on probabilities, which means that some 
level of chips will not work.  For example, in TMR the probabilities can indicate that 
there is only a 0.1% chance that two duplicated parts will contain faults, but when two 
parts do contain faults, the chip will fail.  To further increase the fault tolerance problem 
complexity, nano-electronics will probably be susceptible to transient faults as well as 
manufacturing defects.  Therefore any good fault tolerance solution will probably have to 
use both reconfiguration and hardware redundancy.  
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Figure 33:  Simulation results for three fault-tolerant techniques applied to a theoretical chip 
with 1012 devices.  The curves show the required level of redundancy required to ensure a 
90% probability a chip will work for a given individual device defect probability.  The level 
of redundancy is effectively the number of times a circuit has to be replicated. [Nikolić02] 

5. Software tools 
A transition to nano-electronics will require modifications and additions to current 
computer aided design (CAD) flows to accommodate the unique properties of nano-
electronics.  CAD software tools for integrated circuits have been the subject of intense 
research for many years.  These tools leverage the power of computers to assist circuit 
designers in implementing a circuit.  The level of assistance can vary from completely 
implementing a circuit from a high-level language description to merely providing a GUI 
for implementing a circuit by hand.  CAD tools are becoming more important as designs 
increase in size and complexity.  The number of devices and presence of defects expected 
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in nano-electronics will only increase their importance.  While many parts of current 
FPGA CAD flows can be directly migrated to tools for nanotechnology, there are unique 
challenges that will require additions and changes to the current tools.  Before we discuss 
the unique challenges of CAD for nano-electronics, the traditional FPGA flow will be 
discussed to give an indication of what parts will be migrated and what needs to be 
added. 
 
A CAD tool’s primary goal is to create the most efficient implementation of a design 
within the constraints of the target technology.  Thus, the steps shown in Figure 34 are 
largely dependent on that technology.  FPGAs represent a premade chip technology, 
where a flexible chip architecture is programmed to implement a user’s design.  This is 
similar to how nano-electronics are expected to be used. 
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Figure 34.  CAD flow for FPGAs. 

 
The first step in the CAD flows is to convert the user’s description of a circuit into a 
format that can be implemented on the targeted technology.  This is done in two parts; 
logic synthesis and technology mapping.  Logic synthesis is a general step that takes a 
high level description (often written in HDL) and converts it to a netlist of logic gates 
with interconnections.  For example, if/else statements are changed into multiplexers and 
a+b is implemented with a specific adder.  In theory, logic synthesis can create a generic 
implementation, not targeted towards any technology or architecture.  In practice 
however, having knowledge of the underlying technology can provide better 
implementations.   
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The technology mapping step is responsible for implementing the circuit netlist in the 
components that are available in the target.  The basic logic element in most modern 
FPGAs is an SRAM based look-up table (LUT) that can perform any arbitrary N-to-1 
logic function (N is normally between 4 and 6, depending on the manufacturer).  Most 
modern FPGAs contain dedicated resources such as multipliers, memories and carry 
chains for fast addition.  Technology mapping for FPGAs takes the netlist produced by 
logic synthesis and decomposes it into LUTs and the dedicated resources.  Optimizations 
for power, area, and performance can be made in technology mapping by making 
economic use of an FPGA’s resources.  For example, if many 4-LUTs are used for two or 
three input functions, the area will be larger than necessary. 
 
For nano-electronics, logic synthesis and technology mapping will closely resemble the 
algorithms for FPGAs, because both nano-electronics and FPGAs contain very regular 
structures.  The main difference will be customizing to logic resources such as crossbars 
and diodes instead of LUTs.  Technology mapping may be easier for nano-electronics 
because of their homogeneous nature.  Most of the proposed architectures have only one 
or two methods for performing logic, eliminating the need to target embedded 
multipliers, carry chains, etc.  The impact of possible defects at this stage depends on the 
architecture and fault tolerance scheme used.  For example, if the architecture is a PLA-
based design, and a fault in the PLA is handled by reducing the amount of inputs, 
outputs, and/or product terms available, the technology mapper will need to be aware of 
the reductions.  An algorithm may decompose the logic into a range of PLA sizes and let 
the next step find PLAs that meet the requirements.  On the other hand, if the architecture 
is LUT based and entire LUTs are thrown out if a defect is present, then the technology 
mapper will not need to be concerned with defects. 
 
Placement,  the next step in the CAD flow, decides exactly what components on the chip 
will be used to implement each logic function.  While technology mapping determines 
whether a function should go into a 4-LUT, the placer determines exactly which 4-LUT 
on the FPGA to use for that function.  The goal of placement is to minimize the 
communication costs by keeping cells that communicate with each other close.  This step 
can save area, power, and delay by minimizing the length of interconnect wires.   
 
The most popular placement algorithm is simulated annealing [Sechen85], which was 
inspired from metallurgical annealing.  The idea in metallurgy annealing is to slowly cool 
the metal so that crystals (which represent the lowest energy state) can form.  In order for 
this to occur, molecules must gain energy in the form heat to escape from their local 
minimum configuration.  In placement, this equates to accepting some moves that 
actually make the placement worse so that the placement can escape any local minimum 
created if a greedy algorithm was used.  The first step of simulated annealing is to create 
a random feasible placement.  The next step is to swap two random blocks of the circuit 
(LUTs in FPGAs).  If the new placement is better than the previous, then the move is 
accepted.  The unique feature of simulated annealing is that along with accepting the 
good moves, a certain percentage of bad moves are accepted.  The rate at which bad 
moves are accepted is a function of the temperature, so that as the placement progresses 
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and the temperature is lowered, fewer bad moves are accepted.  The most difficult and 
important part of a simulated annealing algorithm is determining what “better” is.  Better 
is determined by a cost function that takes into account parameters such as critical path 
delay, signal congestion, and overall wire length needed to route the placement. 
 
For most proposed nano-electronics, the problem of placement will be similar to FPGA 
placement.  However, while a placer will still try to minimize communications costs, it 
must now be aware that some parts are defective and cannot be used in a placement.  
There may also be additional constraints, depending on the architecture.  For example, 
nanowires and nanotubes tend to be short, so long distance communications may be very 
costly. 
 
After placement, routing selects the interconnect resources to carry signals from their 
source to their destinations within the chip.  The main goal of routing is to reduce delay 
without overusing any routing channel.  FPGAs have a fixed number of wires in the rows 
and columns between the logic, which means that congestion can occur.  Congestion is 
when the optimum routing solution places more signals in a row or column than there are 
wires.  The crux of most routing algorithms is to start a systematic search for paths from 
the signal source.  For FPGAs, extra steps may be required because of congestion.  To 
handle congestion, the signals are rated by their criticality (how close the signal delay is 
to the longest delay path) and the signals that are less critical are forced to route 
somewhere else.   
 
Routing of nano-electronic circuits again will be similar to FPGAs, since most 
nanoelectronic systems have prefabricated routing channels that are customized to a 
specific application.  However, the router must be defect-aware to avoid using defective 
interconnect resources.  This can be accomplished by removing the defective resources 
from the routing graph. 
 
In addition to the steps above, an additional step must be added to a nano-electronic CAD 
flow to handle faults.  The most effective way of mitigating defects is to test and 
configure around them.  This requires a step before the placement so that no defective 
parts are used.  As discussed in section 4.1, this will be difficult and time intensive, given 
the number of possible devices.  On the other hand, if software-iserted redundancy is 
used for fault tolerance, some additions to the front end of the CAD flow will be needed 
to add that redundancy.  A step at the start of the flow will need to add the required 
redundancy automatically, along with any needed voting circuitry.  The technology 
mapping will then be able to map the circuit, including the redundancy and voting 
circuits, just like any other circuit. 
 
After a design is routed, it can be deployed.  This is where FPGAs and nano-electronics 
are different from other chips.  For custom integrated circuits, each chip is tested to check 
for fabrication errors, and any defective parts are thrown out, while the working chips are 
deployed.  This is possible because the probability of a device being defective is about 
10-9, while there are on the order of 108 devices per chip [ITRS05].  FPGAs must be 
tested by the manufacturer, but their homogeneity and reprogrammability mean defective 
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chips might still be deployed with a few defects.  Some manufacturers put in extra 
resources that can be permanently swapped in for any defective hardware [Altera06].  
This is possible because the LUTs are identical and can be swapped, and defects are rare.  
It is safe to assume that once a chip is verified defect free, it will remain defect free for 
many years, and the transient faults will be too rare to cause concern.   
 
While the FPGA manufacturer tests that the device can support any user design, the user 
actually configures the chip for their desired computation.  Fortunately, once a design is 
finalized and compiled, the same configuration file can be used to configure many 
identical chips.  If a design works on one chip, it is safe to assume it will work on all 
other chips of the same family and size with the same timing and power characteristics.  
This makes the configuration and deployment of large numbers of chips fast and 
inexpensive. 
 
Unfortunately, the deployment method for nano-electronics chips will not be as 
straightforward.  This is due to the random nature of faults that will be present.  Like 
FPGAs, chips will be customized after fabrication.  However, unlike FPGAs, each chip 
will have a unique set of defects.  This means that it will be difficult to generate one 
configuration file to configure multiple chips.  Defect detection and defect-aware 
configuration will likely be a part of fault tolerant schemes.  This means that perhaps 1011 
faults will need to be discovered and stored.  This will be an enormous task if a 
manufacturer ships millions of chips, and could be a hurdle to wide spread use of nano-
electronics.  If a manufacturer shipped millions of functionally identical chips, each one 
would need to be tested, their fault map created, and the CAD flow run on each using that 
fault map.  This would be prohibitive, in time and cost, for a device manufacturer. One 
possible solution is to bootstrap the devices to test and configure themselves.  However, 
we must still handle faults that arise during use.  If nano-electronics are to become a 
replacement for ASICs, the deployment method must become similar to that of an ASIC:  
chips must be shipped working, and require no user intervention to keep working. 
 
If nano-electroinc circuits are going to be used more like FPGAs, with them configured 
by the end user, there are other possible methods for deploying the fault map.  The map 
may be kept in software.  This could put the responsibility of mapping the faults on the 
end user as a part of the normal CAD flow.  Alternatively, since nano-electronic arrays 
seem to be well suited to memories, putting the map in memory on the chip may be a 
viable option.   
 
Overall, many parts of the FPGA CAD flow will be useful for nano-electronics, but there 
will have to be some non-trivial additions.  Technology mapping, placement, and routing 
will not be very different after the faults are discovered and mapped, except for the 
problem size.  Given that current projections are for nano-electronics to be three or four 
orders of magnitude more devices than current ICs, their size cannot be ignored.  Their 
size, along with the need for additional steps of defect detection and deployment, will 
make nano-electronics CAD difficult.   
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6. Conclusion  
The invention of the transistor in 1947 is one of the most important inventions of the 20th 
century.  Since its inception, the transistor has been reduced so that now modern devices 
are orders of magnitude smaller than their earliest counterparts.  Unfortunately, the 
scaling down must eventually end.  Increasing power, capital costs, and ultimately 
theoretical size limitations, are poised to halt the process of continually shrinking the 
transistor.  Nano-electronics show promise as a technology to continue the 
miniaturization of ICs.  However, whether nano-electronics will be a replacement for 
conventional ICs, or as a complimentary technology, is yet to be determined.  What has 
already been shown is that components such as wires and molecular switches can be 
fabricated and integrated into architectures.  It is also known that these devices will be 
prone to defects and that fault tolerance schemes will be an integral part of any 
architecture.  Finally, the preliminary research indicates that while existing parts of the 
CAD tools will be useful for nano-electronics, there will need to be some additions and 
changes made. 
 
The greatest progress has been made in the research of the components that may make up 
nano-electronics.  Chemists have been able to fabricate molecules that have two states, 
such that the molecules can be switched “on” and “off”.  Some of these molecules have 
shown the functionality of diodes or variable resistors.  Chemists have also been able to 
fabricate silicon nanowires and carbon nanotubes.  Both of these technologies can be 
used as wires or devices, and in some cases both.  Nanoimprint lithography, probably the 
most promising wire fabrication technique, has been used to produce working memories 
on the nanometer scale. While all of these devices have been demonstrated, more lot of 
research is required to reliably produce these devices, and to create better devices.  
 
One of the big questions for the future nano-electronics is whether nano-scale devices can 
be reliably assembled into architectures.  Some small-scale successes have been 
achieved, but the benefit of nano-electronics is the enormous integration levels they may 
be able to achieve.  The most promising architectures to date are array based.  This is 
because arrays have a regular structure which is easier to build with self-assembly.  
Arrays also make good use of the available devices (nanowires, carbon nanotubes, and 
molecular electronics), and they are easy to configure in the presence of defects.  There 
are other more random architectures that would require even less stringent fabrication 
techniques, but there is some doubt about how they will scale to larger systems.  Overall, 
it is difficult to evaluate architectures as the underlying components are not fully 
understood nor developed yet.  One thing that seems clear is that nano-electronics will, at 
least for the first few generations, need the support of conventional lithography based 
electronics for things such as I/O, fault tolerance, and even simple signal restoration. 
 
Fault tolerance is another big problem for nano-electronics.  It seems evident that the 
manufacturing techniques may never be able to produce defect free chips, so fault 
tolerance will be key to the success of nano-electronics.  For manufacturing defects, 
detecting and configuring around the defects is the most economical technique, since 
nano-electonics will be configurable devices.  The hard problems are detecting the 
defects among 1012 devices in an economical manner, and how to best manage the large 
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defect map.  It also appears that transient faults will be a problem with nano-electronics 
due to their small size and low current levels.  To handle transient faults, a hardware 
redundancy method such as multiplexing or NMR will have to be used to dynamically 
detect and repair faults.  Unfortunately, these methods would require too much 
redundancy to handle the number of manufacturing defects expected.   
 
One aspect of nano-electronics that resembles current technologies is their CAD flow.  
Much of the software for utilizing nano-electronics will resemble that of FPGAs.  A 
nano-electronic CAD flow will still have technology mapping, placement and routing to 
produce configuration files, plus some additional steps.  The additions will be a routine to 
detect the defects before placement, and some kind of backend step to handle the unique 
circumstances surrounding deployment.  The big issue is how to deploy a circuit on a 
nano-electronic chip when each chip is unique.  With current reliable devices, one design 
can be used to produce millions of chips.  If nano-electronics are to become more than a 
niche computing tool, a deployment model must be developed that doesn’t burden the 
end user or cost the manufacturer excessive testing time. 
 
As can be seen, a substantial amount of research has been conducted on nano-electronics.  
Many working devices have been designed and fabricated, along with a number of small-
scale memory chips, but there are some big hurdles to overcome.  These hurdles include 
lowering defect levels to a point that reasonable redundancy levels can be used, 
integrating billions of devices, and developing software tools to complement the new 
technologies.    However, the prospect of cheaply integrating 1012 devices per chip is a 
powerful incentive to overcome the challenges.  With a little more than 10 years before 
the projected end of scaling for lithography based circuits, answers to these questions will 
hopefully come within the decade.  
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