
Dynamic Communication in a Coarse Grained Reconfigurable Array

Robin Panda, Scott Hauck

Dept. of Electrical Engineering

University of Washington

Seattle, WA 98195

{robin, hauck}@ee.washington.edu

Abstract - Coarse Grained Reconfigurable Arrays (CGRAs)

are typically very efficient for a single task. However all

functional units are required to perform in lock step, wasting

resources and making complex programming flows difficult.

Massively Parallel Processor Arrays (MPPAs) excel at

executing unrelated tasks simultaneously, but limit the amount

of resources dedicated to a single task. We propose an

architecture with an MPPA’s design flexibility and a CGRA’s

throughput, capable of processing and transferring data in a

pre-compiled schedule, with dynamic transfers between

components. Alternative interconnect strategies are compared

for silicon area cost and power utilization.

Keywords - CGRA; MPPA; flow control; interconnect

I. INTRODUCTION

Field programmable gate arrays (FPGAs) have long

been used for accelerating compute intensive applications

without the cost and difficulty of custom ASICs. However,

their ability to be programmed for any logic function at the

granularity of individual bits is unnecessary for many

applications. If we limit primarily to standard logic

operations performed on entire words of data, logic units

can be used instead of LUTs. If the routing also operates on

a word granularity, area can be saved by not storing or

processing redundant configuration information.

Coarse Grained Reconfigurable Arrays (CGRAs)

attempt these word optimizations with a sea of ALUs

connected with a FPGA-like interconnect that operates on a

word’s worth of data at a time. The reduction in

configuration information allows for time-multiplexing

several configurations onto the same hardware, increasing

hardware utilization. An alternate method of wiring

computational elements together is a Massively Parallel

Processor Array (MPPA). This is a network of more

independent processors and their memory which

communicate by passing messages.

CGRAs are good at using many processors for a single

task, but the need for the whole device to operate in lock

step is inefficient for control and handling multiple tasks in

an application. MPPAs are great for control and a large

number of tasks or applications, but are less efficient for

pipelined tasks and cannot automatically spread operations

across hardware. Our goal is to design an architecture that

combines the benefits of both.

II. WHAT IS A CGRA

Our base CGRA [1] is composed of word-width

functional units, including ALUs, shifters, or other special-

purpose processing elements, connected with a word-

oriented interconnect. It also includes LUTs and single bit

communication channels to form a basic FPGA within the

architecture for control and bitwise logic. Memory is local

like in an FPGA with no native coherency mechanisms for

shared memory. Block memories are managed by the

application code, while registers required for timing and

synchronization are managed by the CAD tools.

Each cycle, the configuration of the functional units’

opcodes and addresses to be requested from register banks is

sent to the functional units. These opcodes are scheduled by

the compiler using modulo scheduling [2] for automatically

pipelining user code. The ALUs in a CGRA cannot change

contexts independently. In addition to sharing the context

selection mechanism with other hardware, they must all

follow the same schedule to ensure the proper

synchronization of operations. This limits independence of

separate threads and therefore the thread level parallelism

that can be used. It is still a very good architecture for the

parallelism and pipelining extracted by the compiler.

The interconnect, is handled similarly. Switchboxes

(Fig. 1) connect 32-bit buses to other switchboxes and

processing elements. An incoming bus (A) will fan out to

multiplexers (B, C) in all other directions. Configuration

memories (D) cycle through the configurations to select the

appropriate inputs to the multiplexer B. After passing

through the multiplexer, the bus is registered before being

driven across the long wires to the next switchbox.

Figure 1. Switchbox schematic

A CGRA’s cyclic schedules waste hardware because

they must use predication instead of branching with data

dependent instructions. When executing multiple

applications, all tasks are locked to the same execution rate,

slowing down some tasks and wasting more hardware on

others. Some tasks may process data at significantly

different rates [3], requiring careful optimization by the

programmer.

III. MPPAS

In the Ambric MPPA [4], the ALUs from the CGRA are

replaced with small processors with full, independent

branching. This makes it well suited for small control tasks.

However, since the processors and network are no longer

executing in a lock-step manner, the rest of the architecture

is more complicated. The processors must be individually

programmed. The network routing can still be configured at

compile time, but special sets of registers (Fig. 2) are

needed to coordinate operations between different

processors. The interconnect is flow-controlled, which

allows processors to know when to operate on the data in

the channel and can retain data in flight if the processor or

network downstream is not ready to receive data.

Fig. 2 represents one stage of the communication

network. In the absence of congestion, data is sent from the

upstream stage via Data In/Valid In, held in register B, and

sent out via Data Out/Valid Out. If the downstream stage is

unable to receive data, it will deassert Ready In, and this

stage will maintain the data in B. It will alert the upstream

stage via Ready Out. However, since the upstream stage

may have already forwarded a new value, this stage includes

a second register C to hold this value.

Many applications do not easily break down into the

hundreds of sub-tasks required for an MPPA in a human-

comprehensible manner. Increasing throughput without

these sub-tasks requires either heavyweight processors or

dedicated hard blocks. Even when broken down,

communication overhead can be a problem [6] when

executing the tiny subtasks required for high throughput.

Since hard blocks go unutilized in many applications and

large, out-of-order processors are not efficient uses of die

area and power, another solution is required.

IV. ARCHITECTURES

Ideally, a CGRA could be divided into a few regions that

operate on different schedules called control domains. If at

least some of the control domains have the ability to

conditionally branch like MPPAs, control tasks could be

implemented in a compact manner and eliminate costly

predication within the main computation blocks. Multiple

tasks, from the same application or not, could operate

independently of one another, and each task would be

spread over its maximum utilizable area. This spreading can

be done automatically via CGRA-style tools, allowing the

computation to be written in a logical, integrated manner

that is easier for programmers to understand and compose.

Figure 2. Ambric register set for dynamic flow control (adapted from [5])

This hybrid will operate on a fixed schedule in large

processing blocks, but also have smaller control flow

oriented tasks that communicate dynamically with each

other and the computation blocks. Because the processing

blocks take up more area, most of the architecture will be

operating in the scheduled mode. To be most efficient, the

system will need to be able to allocate resources to large,

CGRA-style blocks or small, MPPA-style tasks on an

application-by-application basis.

For such a system, independent scheduled and flow-

controlled networks would be inefficient. Instead, there

should be flow controlled communications on underlying

scheduled resources, or scheduled communications on

underlying flow controlled resources. Since much of the

array is likely to be dedicated to CGRA-like computations,

having the underlying hardware be scheduled is likely to be

the most efficient. Because of this, this paper will explore

adapting a scheduled network for dynamic communication,

using the existing single bit resources for implementing the

data valid and backpressure signals.

A. Dedicated and borrowed storage

The most straightforward way to shoehorn the

handshake circuit of Fig. 2 into the switchbox of Fig. 1 is by

adding dedicated shadow registers in parallel with each

existing register like gray register at A in Fig. 3. However,

there are already more registers conveniently located in the

same switchbox that might be borrowed. Each wire entering

the switchbox fans out to multiplexers headed in every

direction. For example, Fig. 3 shows a track from the West

fanning out to the North and East. Each multiplexer is

followed by a register, which can store the extra data during

a stall if its mux is programmed properly. By adding the

gray wire from B’s register to A, the data captured a B

during a stall can be recovered during normal operation.

Figure 3. Fanout inside a switchbox

This design should be more efficient than putting in

special purpose shadow registers. When dedicating registers

to the task, the register overhead of supporting the

handshaking will be paid by every channel with shadow

registers of this capability, even if not used. This is very

inefficient when the handshaking is used little. When

borrowing registers from another channel, the primary

overhead when the handshaking capability is unused comes

from adding the additional input to each multiplexer and the

logic gates for the handshake. However, each channel

actually using handshaking will be wasting a set of

perpendicular driver buffers that are quite large. Therefore,

it is inefficient when handshaking is heavily used.

B. Half-bandwidth

The extra registers are required because it takes a cycle

to notify the upstream register after the downstream register

stops; since the upstream register may have already sent a

value, storage is needed to save the incoming value. An

alternative is to require a register to hold its value until the

receiving register is guaranteed empty. Thus, if a stall

occurs any value will have an empty register ahead of it

already.

While this means we do not need to add storage to the

interconnect, it only allows a data word to be sent every

other clock cycle. Fortunately, it is rare to have an iteration

interval of 1 in a CGRA [2]. Similarly, meaningful loops on

an MPPA processor generally contain more than one

instruction, like in [3] and in [6]. Therefore, in many cases it

is impossible to send or receive data on every clock cycle

anyway, and a half-bandwidth channel is sufficient.

The handshake must be modified as follows: If a register

set holds valid data, then it must deassert ready to prevent

upstream data from being lost in case the set downstream

from it becomes no longer ready. If a set does not hold valid

data, then it is ready to receive data. Thus, the ready signal

output is simply the inverse of its own valid bit. When used

for dynamic flow control, a half-bandwidth channel only

uses up one 32-bit bus and two single bit routes, the

minimum for implementing a handshake.

C. Interleaved channels

If a sending task can produce data every cycle and its

receiving task can receive every cycle, they may benefit

from a full bandwidth channel. If either is slower, eventually

the storage available in the channel will be exhausted and

the faster task will have to periodically stall until its data

rate matches its partner’s. Thus, since full-rate channels are

rare, we would like to avoid adding hardware to the

architecture specifically for these cases.

This need for a full-rate channel can be satisfied by

alternating between two half-rate channels within the

processing control domain. The sequence of words A, B, C,

D would be sent with A and C on one channel and B and D

on the other. Note that interleaving two half-bandwidth

channels is roughly the same cost as borrowing registers,

only requiring two extra single-bit channels. This cost is

only borne by channels that actually require this full

bandwidth, since half-bandwidth and interleaved full-

bandwidth channels can coexist in the same mapping

D. Minimal changes

The interconnect itself does not need to perform the

handshake; it can be performed by the proper programming

of the regular compute elements. To avoid using flow

control and buffering within the channel, we instead

pipeline the channel without stalls, and have a large enough

FIFO at the end of the channel to catch all sent values when

the receiving task stalls. If the FIFO begins to fill, a

ready/stall signal is sent via a separate one-bit channel to

the sender to throttle the data in the stream.

Ready must be predicted many clock cycles in the future

to account for the longer propagation delay between where

ready is generated and where the signal takes effect. For a

channel of length N, the FIFO is no longer ready when there

are less than 2N words: It will take N clock cycles for ready

to propagate to the sending device and, at that time, there

may be N more words in the channel.

In practice, an entire memory block would be dedicated

to the receiver FIFO. The memory cannot be shared with

any other functions because the full memory bandwidth is

potentially required. Note that special provision must be

made to ensure the FIFO logic itself does not stall.

Otherwise, data already in flight in the channel will be lost.

In fact, for all of the flow-controlled networks in this paper

the network itself cannot stall with the surrounding logic;

since these channels may traverse completely independent

tasks, allowing those tasks to stall the channels can easily

produce deadlock.

E. Tokens

For custom handshake processors, the memory required
can be reduced even further by calculating when to stall on
the sending side. A local register stores the count of available
words in the FIFO. Every time a new word is sent by the
sender, the count of storage remaining is decremented.
Whenever the FIFO is read by the receiver, it will send a
single bit token back to the counter to update it; when the
counter receives the token it will increment the counter.
When this counter reaches zero, the sending task must stall
or its data may arrive at a full FIFO. Because of the reduced
latency between where the stall signal is generated and
where it stops the sender, this design can operate with fewer
than 2N entries in the FIFO by throttling the send rate so no
more data is in flight than can be handled. Therefore, it is
more versatile when the FIFO memory is limited.

V. RESULTS

To evaluate these designs, they are compared for gate

area and power consumption. In our base architecture, delay

in the interconnect is dominated by the long wires between

switchboxes and is not significantly different between the

designs. The area of the logic gates added to a single

scheduled channel from one switchbox to another to add the

dynamic flow control capability is calculated. To account

for the existing logic used by the design we add the area of

the scheduled resources for each dynamic channel actually

used. For power, we calculate the energy used when an

individual bit on the bus toggles. This is added to the energy

used by the handshake logic for those channels using the

handshake.

The areas and powers are calculated using the models

developed in a 65nm process for the Mosaic project [1]. The

Mosaic CGRA is used for wire length and driver

requirements. Because both the built FIFO and the token

counter are only required once per channel, their expenses

are amortized over the average channel length from the

Mosaic benchmarks suite. To put the calculated costs of

each design in context, the average area and energy

breakdowns of the various components in Mosaic are used

to estimate the final effect on full chip area and power. The

full chip power and area is graphed versus the percentage of

dynamic channels in dynamic mode. This is repeated

varying the percentage of scheduled channels capable of

handshaking.

In Fig. 4, the lines labeled built represent a FIFO

composed of existing processing elements as described in

section D. ½ BW is the design that operates at half data rate.

Borrow uses registers from perpendicular channels. Dual

interleaves two half-rate channels for full rate. Extra uses

dedicated shadow registers. Token builds dedicated FIFO

hardware with token counters.

As not all channels need be able to operate dynamically,

we only add this capability to 25% of the channels; we then

plot the full chip area for each design as the percentage of

the dynamic channels used increases. For area, the ½-

bandwidth design is the best in almost all situations. Full

bandwidth communication will still require another method.

If less than 20% of the available dynamic channels are in

use, borrowing registers from an adjacent channel is the

most efficient, with the dual interleaved channels a close

runner-up that will be superior if there are channels that

only need half bandwidth. However, as the usage increases,

such as when everything is operating like an MPPA, the

token method becomes the most area-efficient. If we

increase the percentage of handshake-capable channels

beyond 25, the absolute areas increase, but the comparison

between the designs remains roughly the same.

The energy graph tells a different story. The ½-

bandwidth design is one of the worst power-wise for large

channel utilization. The token counting FIFO has the best

energy performance for all utilizations. We can combine the

two graphs into the area-energy product. For this balance,

we see that the ½-bandwidth and token versions provide the

best results.

VI. CONCLUSION

The best implementation of a hybrid interconnect is

dependent on usage. For full bandwidth signaling with most

channels used, dedicated FIFO hardware with tokens is

ideal. However, in real applications this high utilization and

bandwidth is unlikely. Therefore, the best design is likely to

be the half-bandwidth channels with interleaving when full

bandwidth is required. To verify, future work is required to

develop benchmarks for this sort of hybrid architecture to

fully characterize the channel requirements for length,

bandwidth, and density. With appropriate CAD tool support,

the effects of stealing resources from a control domain can

be determined along with more precise cost estimates.

REFERENCES

[1] Brian Van Essen, Improving the Energy Efficiency of Coarse-Grained
Reconfigurable Arrays, Ph.D. Thesis, University of Washington,
Dept. of CSE, 2010.

[2] S. Friedman, A. Carroll, B. Van Essen, B. Ylvisaker, C. Ebeling, S.
Hauck, "SPR: An Architecture-Adaptive CGRA Mapping Tool",
ACM/SIGDA Symposium on Field-Programmable Gate Arrays, pp.
191-200, 2009.

[3] M. Haselman, N. Johnson-Williams, C. Jerde, M. Kim, S. Hauck, T.
K. Lewellen, R. Miyaoka, "FPGA vs. MPPA for Positron Emission
Tomography Pulse Processing", International Conference on Field-
Programmable Technology, 2009.

[4] M. Butts, A.M. Jones, P. Wasson, "A Structural Object Programming
Model, Architecture, Chip and Tools for Reconfigurable
Computing," IEEE Symposium on Field-Programmable Custom
Computing Machines, pp.55-64, 23-25 April 2007

[5] A. M. Jones, “Asynchronous communication among hardware object
nodes in IC with receive and send ports protocol registers using
temporary register bypass select for validity information,” U.S. Patent
7409533, Aug. 5, 2008.

[6] R. Panda, J. Xu, S. Hauck, "Software Managed Distributed Memories
in MPPAs", International Conference on Field Programmable Logic
and Applications, 2010.

Figure 4. Normalized full chip area, energy, and area-energy product

