
Dynamic Communication in a Coarse Grained Reconfigurable Array 

Robin Panda, Scott Hauck 

Dept. of Electrical Engineering 

University of Washington 

Seattle, WA 98195 

{robin, hauck}@ee.washington.edu 

 

 
Abstract - Coarse Grained Reconfigurable Arrays (CGRAs) 

are typically very efficient for a single task. However all 

functional units are required to perform in lock step, wasting 

resources and making complex programming flows difficult. 

Massively Parallel Processor Arrays (MPPAs) excel at 

executing unrelated tasks simultaneously, but limit the amount 

of resources dedicated to a single task. We propose an 

architecture with an MPPA’s design flexibility and a CGRA’s 

throughput, capable of processing and transferring data in a 

pre-compiled schedule, with dynamic transfers between 

components. Alternative interconnect strategies are compared 

for silicon area cost and power utilization.  
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I. INTRODUCTION 

Field programmable gate arrays (FPGAs) have long 

been used for accelerating compute intensive applications 

without the cost and difficulty of custom ASICs. However, 

their ability to be programmed for any logic function at the 

granularity of individual bits is unnecessary for many 

applications. If we limit primarily to standard logic 

operations performed on entire words of data, logic units 

can be used instead of LUTs. If the routing also operates on 

a word granularity, area can be saved by not storing or 

processing redundant configuration information. 

Coarse Grained Reconfigurable Arrays (CGRAs) 

attempt these word optimizations with a sea of ALUs 

connected with a FPGA-like interconnect that operates on a 

word’s worth of data at a time. The reduction in 

configuration information allows for time-multiplexing 

several configurations onto the same hardware, increasing 

hardware utilization. An alternate method of wiring 

computational elements together is a Massively Parallel 

Processor Array (MPPA). This is a network of more 

independent processors and their memory which 

communicate by passing messages. 

CGRAs are good at using many processors for a single 

task, but the need for the whole device to operate in lock 

step is inefficient for control and handling multiple tasks in 

an application. MPPAs are great for control and a large 

number of tasks or applications, but are less efficient for 

pipelined tasks and cannot automatically spread operations 

across hardware. Our goal is to design an architecture that 

combines the benefits of both. 

II. WHAT IS A CGRA 

Our base CGRA [1] is composed of word-width 

functional units, including ALUs, shifters, or other special-

purpose processing elements, connected with a word-

oriented interconnect. It also includes LUTs and single bit 

communication channels to form a basic FPGA within the 

architecture for control and bitwise logic. Memory is local 

like in an FPGA with no native coherency mechanisms for 

shared memory. Block memories are managed by the 

application code, while registers required for timing and 

synchronization are managed by the CAD tools. 

Each cycle, the configuration of the functional units’ 

opcodes and addresses to be requested from register banks is 

sent to the functional units. These opcodes are scheduled by 

the compiler using modulo scheduling [2] for automatically 

pipelining user code. The ALUs in a CGRA cannot change 

contexts independently. In addition to sharing the context 

selection mechanism with other hardware, they must all 

follow the same schedule to ensure the proper 

synchronization of operations. This limits independence of 

separate threads and therefore the thread level parallelism 

that can be used. It is still a very good architecture for the 

parallelism and pipelining extracted by the compiler. 

The interconnect, is handled similarly. Switchboxes 

(Fig. 1) connect 32-bit buses to other switchboxes and 

processing elements. An incoming bus (A) will fan out to 

multiplexers (B, C) in all other directions. Configuration 

memories (D) cycle through the configurations to select the 

appropriate inputs to the multiplexer B. After passing 

through the multiplexer, the bus is registered before being 

driven across the long wires to the next switchbox. 

 

Figure 1.   Switchbox schematic 



A CGRA’s cyclic schedules waste hardware because 

they must use predication instead of branching with data 

dependent instructions. When executing multiple 

applications, all tasks are locked to the same execution rate, 

slowing down some tasks and wasting more hardware on 

others. Some tasks may process data at significantly 

different rates [3], requiring careful optimization by the 

programmer. 

III. MPPAS 

In the Ambric MPPA [4], the ALUs from the CGRA are 

replaced with small processors with full, independent 

branching. This makes it well suited for small control tasks. 

However, since the processors and network are no longer 

executing in a lock-step manner, the rest of the architecture 

is more complicated. The processors must be individually 

programmed. The network routing can still be configured at 

compile time, but special sets of registers (Fig. 2) are 

needed to coordinate operations between different 

processors. The interconnect is flow-controlled, which 

allows processors to know when to operate on the data in 

the channel and can retain data in flight if the processor or 

network downstream is not ready to receive data. 

Fig. 2 represents one stage of the communication 

network. In the absence of congestion, data is sent from the 

upstream stage via Data In/Valid In, held in register B, and 

sent out via Data Out/Valid Out. If the downstream stage is 

unable to receive data, it will deassert Ready In, and this 

stage will maintain the data in B. It will alert the upstream 

stage via Ready Out. However, since the upstream stage 

may have already forwarded a new value, this stage includes 

a second register C to hold this value. 

Many applications do not easily break down into the 

hundreds of sub-tasks required for an MPPA in a human-

comprehensible manner. Increasing throughput without 

these sub-tasks requires either heavyweight processors or 

dedicated hard blocks. Even when broken down, 

communication overhead can be a problem [6] when 

executing the tiny subtasks required for high throughput. 

Since hard blocks go unutilized in many applications and 

large, out-of-order processors are not efficient uses of die 

area and power, another solution is required. 

IV. ARCHITECTURES 

Ideally, a CGRA could be divided into a few regions that 

operate on different schedules called control domains. If at 

least some of the control domains have the ability to 

conditionally branch like MPPAs, control tasks could be 

implemented in a compact manner and eliminate costly 

predication within the main computation blocks. Multiple 

tasks, from the same application or not, could operate 

independently of one another, and each task would be 

spread over its maximum utilizable area. This spreading can 

be done automatically via CGRA-style tools, allowing the 

computation to be written in a logical, integrated manner 

that is easier for programmers to understand and compose. 

 

Figure 2.  Ambric register set for dynamic flow control (adapted from [5]) 

This hybrid will operate on a fixed schedule in large 

processing blocks, but also have smaller control flow 

oriented tasks that communicate dynamically with each 

other and the computation blocks. Because the processing 

blocks take up more area, most of the architecture will be 

operating in the scheduled mode. To be most efficient, the 

system will need to be able to allocate resources to large, 

CGRA-style blocks or small, MPPA-style tasks on an 

application-by-application basis. 

For such a system, independent scheduled and flow-

controlled networks would be inefficient. Instead, there 

should be flow controlled communications on underlying 

scheduled resources, or scheduled communications on 

underlying flow controlled resources. Since much of the 

array is likely to be dedicated to CGRA-like computations, 

having the underlying hardware be scheduled is likely to be 

the most efficient. Because of this, this paper will explore 

adapting a scheduled network for dynamic communication, 

using the existing single bit resources for implementing the 

data valid and backpressure signals. 

A. Dedicated and borrowed storage 

The most straightforward way to shoehorn the 

handshake circuit of Fig. 2 into the switchbox of Fig. 1 is by 

adding dedicated shadow registers in parallel with each 

existing register like gray register at A in Fig. 3. However, 

there are already more registers conveniently located in the 

same switchbox that might be borrowed. Each wire entering 

the switchbox fans out to multiplexers headed in every 

direction. For example, Fig. 3 shows a track from the West 

fanning out to the North and East. Each multiplexer is 

followed by a register, which can store the extra data during 

a stall if its mux is programmed properly. By adding the 

gray wire from B’s register to A, the data captured a B 

during a stall can be recovered during normal operation. 

 

Figure 3.  Fanout inside a switchbox 



This design should be more efficient than putting in 

special purpose shadow registers. When dedicating registers 

to the task, the register overhead of supporting the 

handshaking will be paid by every channel with shadow 

registers of this capability, even if not used. This is very 

inefficient when the handshaking is used little. When 

borrowing registers from another channel, the primary 

overhead when the handshaking capability is unused comes 

from adding the additional input to each multiplexer and the 

logic gates for the handshake. However, each channel 

actually using handshaking will be wasting a set of 

perpendicular driver buffers that are quite large. Therefore, 

it is inefficient when handshaking is heavily used. 

B. Half-bandwidth 

The extra registers are required because it takes a cycle 

to notify the upstream register after the downstream register 

stops; since the upstream register may have already sent a 

value, storage is needed to save the incoming value. An 

alternative is to require a register to hold its value until the 

receiving register is guaranteed empty. Thus, if a stall 

occurs any value will have an empty register ahead of it 

already. 

While this means we do not need to add storage to the 

interconnect, it only allows a data word to be sent every 

other clock cycle. Fortunately, it is rare to have an iteration 

interval of 1 in a CGRA [2]. Similarly, meaningful loops on 

an MPPA processor generally contain more than one 

instruction, like in [3] and in [6]. Therefore, in many cases it 

is impossible to send or receive data on every clock cycle 

anyway, and a half-bandwidth channel is sufficient. 

The handshake must be modified as follows: If a register 

set holds valid data, then it must deassert ready to prevent 

upstream data from being lost in case the set downstream 

from it becomes no longer ready. If a set does not hold valid 

data, then it is ready to receive data. Thus, the ready signal 

output is simply the inverse of its own valid bit. When used 

for dynamic flow control, a half-bandwidth channel only 

uses up one 32-bit bus and two single bit routes, the 

minimum for implementing a handshake. 

C. Interleaved channels 

If a sending task can produce data every cycle and its 

receiving task can receive every cycle, they may benefit 

from a full bandwidth channel. If either is slower, eventually 

the storage available in the channel will be exhausted and 

the faster task will have to periodically stall until its data 

rate matches its partner’s. Thus, since full-rate channels are 

rare, we would like to avoid adding hardware to the 

architecture specifically for these cases. 

This need for a full-rate channel can be satisfied by 

alternating between two half-rate channels within the 

processing control domain. The sequence of words A, B, C, 

D would be sent with A and C on one channel and B and D 

on the other. Note that interleaving two half-bandwidth 

channels is roughly the same cost as borrowing registers, 

only requiring two extra single-bit channels. This cost is 

only borne by channels that actually require this full 

bandwidth, since half-bandwidth and interleaved full-

bandwidth channels can coexist in the same mapping 

D. Minimal changes 

The interconnect itself does not need to perform the 

handshake; it can be performed by the proper programming 

of the regular compute elements. To avoid using flow 

control and buffering within the channel, we instead 

pipeline the channel without stalls, and have a large enough 

FIFO at the end of the channel to catch all sent values when 

the receiving task stalls. If the FIFO begins to fill, a 

ready/stall signal is sent via a separate one-bit channel to 

the sender to throttle the data in the stream. 

Ready must be predicted many clock cycles in the future 

to account for the longer propagation delay between where 

ready is generated and where the signal takes effect. For a 

channel of length N, the FIFO is no longer ready when there 

are less than 2N words: It will take N clock cycles for ready 

to propagate to the sending device and, at that time, there 

may be N more words in the channel. 

In practice, an entire memory block would be dedicated 

to the receiver FIFO. The memory cannot be shared with 

any other functions because the full memory bandwidth is 

potentially required. Note that special provision must be 

made to ensure the FIFO logic itself does not stall. 

Otherwise, data already in flight in the channel will be lost. 

In fact, for all of the flow-controlled networks in this paper 

the network itself cannot stall with the surrounding logic; 

since these channels may traverse completely independent 

tasks, allowing those tasks to stall the channels can easily 

produce deadlock. 

E. Tokens 

For custom handshake processors, the memory required 
can be reduced even further by calculating when to stall on 
the sending side. A local register stores the count of available 
words in the FIFO. Every time a new word is sent by the 
sender, the count of storage remaining is decremented. 
Whenever the FIFO is read by the receiver, it will send a 
single bit token back to the counter to update it; when the 
counter receives the token it will increment the counter. 
When this counter reaches zero, the sending task must stall 
or its data may arrive at a full FIFO. Because of the reduced 
latency between where the stall signal is generated and 
where it stops the sender, this design can operate with fewer 
than 2N entries in the FIFO by throttling the send rate so no 
more data is in flight than can be handled. Therefore, it is 
more versatile when the FIFO memory is limited. 

V. RESULTS 

To evaluate these designs, they are compared for gate 

area and power consumption. In our base architecture, delay 

in the interconnect is dominated by the long wires between 

switchboxes and is not significantly different between the 

designs. The area of the logic gates added to a single 



scheduled channel from one switchbox to another to add the 

dynamic flow control capability is calculated. To account 

for the existing logic used by the design we add the area of 

the scheduled resources for each dynamic channel actually 

used. For power, we calculate the energy used when an 

individual bit on the bus toggles. This is added to the energy 

used by the handshake logic for those channels using the 

handshake. 

The areas and powers are calculated using the models 

developed in a 65nm process for the Mosaic project [1]. The 

Mosaic CGRA is used for wire length and driver 

requirements. Because both the built FIFO and the token 

counter are only required once per channel, their expenses 

are amortized over the average channel length from the 

Mosaic benchmarks suite. To put the calculated costs of 

each design in context, the average area and energy 

breakdowns of the various components in Mosaic are used 

to estimate the final effect on full chip area and power. The 

full chip power and area is graphed versus the percentage of 

dynamic channels in dynamic mode. This is repeated 

varying the percentage of scheduled channels capable of 

handshaking. 

In Fig. 4, the lines labeled built represent a FIFO 

composed of existing processing elements as described in 

section D. ½ BW is the design that operates at half data rate. 

Borrow uses registers from perpendicular channels. Dual 

interleaves two half-rate channels for full rate. Extra uses 

dedicated shadow registers. Token builds dedicated FIFO 

hardware with token counters. 

As not all channels need be able to operate dynamically, 

we only add this capability to 25% of the channels; we then 

plot the full chip area for each design as the percentage of 

the dynamic channels used increases. For area, the ½-

bandwidth design is the best in almost all situations. Full 

bandwidth communication will still require another method. 

If less than 20% of the available dynamic channels are in 

use, borrowing registers from an adjacent channel is the 

most efficient, with the dual interleaved channels a close 

runner-up that will be superior if there are channels that 

only need half bandwidth. However, as the usage increases, 

such as when everything is operating like an MPPA, the 

token method becomes the most area-efficient. If we 

increase the percentage of handshake-capable channels 

beyond 25, the absolute areas increase, but the comparison 

between the designs remains roughly the same. 

The energy graph tells a different story. The ½-

bandwidth design is one of the worst power-wise for large 

channel utilization. The token counting FIFO has the best 

energy performance for all utilizations. We can combine the 

two graphs into the area-energy product. For this balance, 

we see that the ½-bandwidth and token versions provide the 

best results. 

VI. CONCLUSION 

The best implementation of a hybrid interconnect is 

dependent on usage. For full bandwidth signaling with most 

channels used, dedicated FIFO hardware with tokens is 

ideal. However, in real applications this high utilization and 

bandwidth is unlikely. Therefore, the best design is likely to 

be the half-bandwidth channels with interleaving when full 

bandwidth is required. To verify, future work is required to 

develop benchmarks for this sort of hybrid architecture to 

fully characterize the channel requirements for length, 

bandwidth, and density. With appropriate CAD tool support, 

the effects of stealing resources from a control domain can 

be determined along with more precise cost estimates. 
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