
A Lemple -Ziv based
Configuration Management Architecture

for Reconfigurable Computing

by

Melany Ann Richmond

A project report submitted in partial fulfillment
of the requirements for the degree of

Master of Science

University of Washington

2001

Program Authorized to Offer Degree:

Electrical Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a master’s project by

Melany Ann Richmond

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Scott Hauck

Carl Sechen

Date: ______________________

Master’s Project

In presenting this project report in partial fulfillment of the requirements for a Master’s
degree at the University of Washington, I agree that the Library shall make its copies
freely available for inspection. I further agree that extensive copying of this thesis is
allowable only for scholarly purposes, consistent with "fair use" as prescribed in the U.S.
Copyright Law. Any other reproduction for any purposes or by any means shall not be
allowed without my written permission.

Signature___

Date___

A Lemple -Ziv based
Configuration Management Architecture

for Reconfigurable Computing

By Melany Ann Richmond

Chairperson of the Supervisory Committee

Professor Scott Hauck
Department of Electrical Engineering

University of Washington

Abstract

FPGAs are a powerful technology for developing high-performance embedded systems.

The density and performance of FPGAs has steadily improved over time, making their

use ever more attractive. As FPGAs have increased in density, the size of the

configuration bit stream needed to program the device has also grown. As a result, the

time necessary to configure an FPGA, as well as the amount of storage needed on the

device, has grown. Because of this, techniques have been investigated to decrease the

amount of configuration data being sent into an FPGA. One technique in particular,

investigated in depth by Hauck [Hauck99b] and Li [Li01], looks at ways where generic

data compression algorithms can be applied to reduce the size of the configuration bit

stream. Data compression is used in many applications as a means of reducing inherent

redundancies found in data representations. Compression techniques typically decrease

storage and communication costs associated with writing to a device. Previous research

investigates multiple algorithms for configuration bit stream compression [Hauck99b],

[Li01]. Based upon that work, this project looks to implement one in particular. A

Lemple-Ziv based decompression engine was designed to work with current FPGA

technology. The goal of this project was to investigate the feasibility of building such a

design into hardware as well as the impact the added hardware would have upon an

FPGA.

i

TABLE OF CONTENTS

List of Figures ii

List of Tables iii

Introduction 1

Background – Field-Programmable Gate Arrays 3

Target Device – Xilinx Virtex Series FPGA 8

Target Compression Algorithm – Lemple Ziv 10

Symbol Size Factors 14

Compressed Bitstream Characteristics 15

Design Overview 16

Hardware Details 19

Shifter Component 21

Control Component 26

Hardware Implications 29

Conclusion 36

References 37

Appendix 1: Verilog Model 39

ii

LIST OF FIGURES

Figure 1: Programming bit for SRAM-based FPGAs. 4

Figure 2: Pass Gate connecting two routing resources. 5

Figure 3: A 2-input LUT 5

Figure 4: Typical Island Style routing structure used in FPGAs. 6

Figure 5: Overview of Xilinx CLB [Xilinx99] 7

Figure 6: Virtex architecture overview [Virtex00]. 8

Figure 7: CLB Column Frame Organization 9

Figure 8: FDR buffer overview. 10

Figure 9: Example of LZ77 buffer. 11

Figure 10: Extended FDR buffer to aid LZ compression. 13

Figure 11: Hardware overview 17

Figure 12: LZ Decompression Input and Output diagram 18

Figure 13: Design Architecture Overview. 19

Figure 14: Completed Cadence layout of design. 21

Figure 15: Shifter component overview 22

Figure 16: Shifter Mux with D-Flip Flop. 23

Figure 17: Single shift register schematic 23

Figure 18: Layout of a single shift register. 24

Figure 19: 512 to 1 Multiplexer 25

Figure 20: 512:1 MUX and symbol shifter layout. 25

Figure 21: Overview of Control Hardware 26

Figure 22: Logic for down counter decrementor. 28

Figure 23: Control component layout. 29

Figure 24: Optimized SRAM cell with an area of 52.65µm2 30

iii

LIST OF TABLES

Table 1: Truth table for internal feedback signal. 27

Table 2: Truth table for down counter adder. 28

Table 3: Approximated area for each Virtex-E device in the 0.25µµµµ

process used for this design..

30

Table 4: Virtex-E Series FPGA Family Members and corresponding

characteristics used for area calculations. [Xilinx00b].

32

Table 5: Approximated component sizes for shifter 33

Table 6: Area Approximation Calculations for MUX. 33

Table 7: Control Area Approximations 34

Table 8: Overall area approximations for added hardware. 35

Table 9: Approximated Area Comparison. 35

1

Introduction

Traditionally, algorithms are accomplished in one of two ways. One common method is

to utilize a general-purpose computer, using software to implement a given task. This

type of process is based upon a central processor with predetermined resources. The

software will use the available resources as orchestrated by the processor. The advantage

of this practice is the large amount of available flexibility. If the algorithm changes, the

software can be changed, usually in a short amount of time. However, with added

flexibility there is loss of performance. For many functions, a general-purpose computer

can be slow and cumbersome. The performance loss can be attributed to the lack of

hardware-optimized components within the general-purpose computer for specific tasks.

Without specialized structures optimized for specific functions, some computations will

ultimately forfeit performance.

It is impossible to assume that hardware structures for every possible computation could

be included on a general-purpose computer. As a result, an approach taken for some

algorithms is to implement them using an Application Specific Integrated Circuit (ASIC).

This process optimizes the hardware to accomplish a specific problem. For that reason,

the ASIC will generally achieve better performance. However, achieving optimization in

hardware will cause a loss in flexibility. Once the design has been fabricated, any

changes to the algorithm would require that a new ASIC be designed and fabricated. The

design and fabrication process can have a long turn-around time, possibly months for a

new ASIC. With this in mind, traditional design options force the designer to choose at

the start of a design whether flexibility, speed, or even time to market is of greater

importance.

Reconfigurable computing serves to bridge the gap between hardware and software,

offering greater flexibility than a hardware solution and delivering increased speed over a

software solution. In particular, Field Programmable Gate Arrays (FPGAs) are one

method making this possible. The FPGA can be utilized to speed-up compute intensive

2

algorithms by configuring the algorithm onto the resources available on the chip. FPGAs

are useful for numerous applications. For example, an FPGA can be used in conjunction

with a general-purpose computer. In this case, the functions not possible to speed up

utilizing an FPGA could be run simultaneously on a general-purpose machine with only

the compute-intense algorithms configured on the FPGA. Similarly, for problems

requiring more resources than physically available on a single FPGA, multiple devices

can be tied together and configured to solve even larger problems.

Configuration compression looks to reduce the time needed to program an FPGA. In the

past, time taken to reconfigure a device was of little importance. However, many FPGAs

can now be reconfigured during run-time. When an FPGA is configured, the

reconfiguration delay directly affects system performance. With larger numbers of

applications finding the need for run-time reconfiguration, faster reconfiguration times

are becoming much more desirable and needed.

In this project, a hardware architecture was implemented that takes a compressed

configuration bit stream and decompresses it in hardware. The design was based upon

previous work [Hauck99b], [Li01], [Dandalis01]. The goal of this project was to

investigate the feasibility of such a hardware addition to an FPGA by building a Lemple-

Ziv (LZ) decompression engine designed to work with current SRAM-based FPGA

structures. At the same time, the project looked to investigate the impact that the added

hardware would have upon the size of an FPGA.

In this paper, you will first find a short background on FPGAs. Second, an overview is

given for the target device that could benefit from this type of hardware, Xilinx Virtex

FPGAs. Next, an overview of the Lemple-Ziv compression is presented. Following that,

a discussion on the symbol size factors can be found. Subsequently, a discussion on the

configuration bit stream characteristics needed for LZ decompression hardware is

presented. Next, an overview of the design is presented with a more detailed discussion

3

closely following. the hardware design is discussed and each of the major components is

explained. Finally, the hardware impact upon current Virtex FPGAs are discussed..

Background – Field-Programmable Gate Arrays

FPGAs contain configurable logic blocks (CLBs), input-output blocks (IOBs), memory,

clock resources, programmable routing, and configuration circuitry. These logic

resources are configured through the configuration bit stream allowing a very complex

circuit to be programmed onto a single chip. The configuration bitstream can be read or

written through one of the configuration interfaces on the device.

FPGAs have been developed using various programming technologies. Two of the most

well known types of programmable devices are antifuse-based or SRAM-based. Antifuse

FPGAs are one-time programmable devices. An antifuse is initially an open connection.

In order to program this type of device, high voltage is applied high enough to destroy the

antifuse. When an antifuse is “blown” a connection is permanently made. At the same

time, “unblown” antifuses are open connections. Thus, once the antifuses are blown the

FPGA is now permanently programmed. On the other hand, an SRAM based FPGA

would be Reprogrammable. Therefore, the permanent nature of an antifuse makes this

type of FPGA not useful for reconfigurable applications, such as the target application for

this project.

At this time, SRAM programmable FPGAs are very popular for reconfigurable

applications. For such a device, SRAM cells, as shown in Figure 1 below, are connected

to the configuration points within the FPGA. The configuration data from the input bit

stream is written to the SRAM cell. The outputs, Q and Q , connect to the FPGA

resources. The actual control of the FPGA is therefore handled by the outputs of the

SRAM cells scattered throughout the device. Thus, an FPGA can be programmed and

reprogrammed as simply as writing to and reading from a standard SRAM.

4

Q

Q
READ or WRITE

DATA

Figure 1: Programming bit for SRAM-based FPGAs.

In Figure 1 above, a SRAM cell is made up of two cross-coupled inverters and a pass-

transistor. The pass-transistor is included to read from or write to the cell and is

controlled by an enable signal. When the enable signal is set true, the data line is

connected and now can write over or read from the current stored value. When the

enable signal is set false, the cross-coupled inverters work together to maintain the value

stored in the cell. However, the upper inverter could adversely affect the cell’s ability to

reprogram simply by reinforcing the old value to the input at the same time as data is

being written. Therefore, the upper inverter and pass-transistor must be balanced by the

ratio of gate sizes such that a signal written in from the data will be able to overpower the

upper inverter.

In an FPGA, the routing is configured using a pass-gate structure. When a program bit is

set true, the two routing resources are connected as shown in Figure 2 below. The pass

gate completes the circuit, allowing a signal to flow from one routing resource to another.

On the other hand, if the program bit is configured to be false, the connection is left open

and the routing resources are not connected.

5

Program
Bit

Routing
Resource 2

R
outing

R
esource 1

Figure 2: Pass Gate connecting two routing resources.

Lookup Tables (LUTs) are another useful structure normally included on FPGAs. These

are small memories provided for computing arbitrary logic functions. By design, LUTs

can compute any Boolean logic function with n inputs. This is done by connecting 2n

program bits to the multiplexer on the LUT. The LUT holds truth table outputs within

the memory instead of computing the output directly through combinational logic. In a

LUT, multiplexers implement logic function by choosing from the program bits in the

table. For example, in Figure 3 below, n is equal to two, meaning there are four possible

outputs. If all the program bits of the 2-input LUT were set to false except for the one

corresponding to a control signal equal to 00 (P1), the LUT in the figure would act like a

2-input NOR gate. Alternatively, if all the program bits were set to true except 11 (P4),

the LUT would operate like a 2-input NAND gate. Therefore, depending upon how the

program bits are configured, any 2-input function can be implemented using the LUT.

This means for any n-input LUT, any n-input function can be implemented.

C
1

C
2

LUT
out

P1
P2
P3
P4

NAND NOR

1
0
0
0

1
1
1
0

C1 C2

00
01
10
11

P1
P2
P3
P4

Figure 3: A 2-input LUT

6

Routing structures on FPGAs conventionally are an island-style layout as shown in the

Figure 4. This type of design surrounds the logic structures on all sides with horizontal

and vertical routing channels, permitting arbitrary communication between resources.

For each Logic Block, the inputs and outputs connect to the routing channels through a

programmable Connect Block. Switch Blocks are used to change routing direction by

allowing junctions of horizontal and vertical connections. This type of structure ensures

that any arbitrary circuit can be mapped and routed onto the FPGA.

Switch

Block

Logic

Block

Logic

Block
Connect
Block

Logic

Block

Logic

Block
Connect
Block

Connect
Block

Connect
Block

Connect
Block

Connect
Block

Switch

Block

Figure 4: Typical Island Style routing structure used in FPGAs.

Within an FPGA, Logic Blocks implement functions using a combination of

multiplexers, LUTs and flip-flops contained within each block. Program bits are

connected to the control and/or the data lines of each multiplexer. The program bits

select between outputs of different logic resources within the interconnected logic blocks.

An overview of a Xilinx configurable logic block (CLB) can be seen in Figure 5. Many

SRAM-based FPGAs will use an architecture very similar to this.

7

LUT

C[1:4]

LUT

LUT

S/R
D Q

EC

S/R
D Q

EC

G4
G3
G2
G1

F4
F3
F2
F1

X

Y

YQ

XQ

K

Figure 5: Overview of Xilinx CLB [Xilinx99]

The CLB structure is very flexible, able to compute complex functions. In the simplified

CLB overview shown above, the overall functionality of the LUTs, multiplexers, and

flip-flops is determined by the configuration bits. Utilizing the three LUTs, it is possible

to implement a nine-input logic function. For smaller functions, the CLB could compute

any two four-input functions, utilizing the two four-input LUTs separately. Control

signals provide an enable as well as a set or reset for the flip-flops. They also provide a

means to connect directly to the flip-flops. At the same time, the control signals control

another input connection for the third LUT. The inputs F and G are connected to the

CLB from routing adjacent to the block. The outputs will connect to other CLBs through

the routing wires also adjacent to the block. Utilizing the numerous CLBs in conjunction

with all the other components contained on an FPGA, complex systems can be

implemented.

8

Target Device – Xilinx Virtex Series FPGA

Like the generic FPGAs discussed above, Virtex devices contain configurable logic

blocks (CLBs), input-output blocks (IOBs), memory (SRAM), clock resources,

programmable routing, and configuration circuitry. The CLBs are the functional units for

constructing logic. Furthermore, the IOB blocks provide and interface between the CLBs

and the package pins on the FPGA. The Virtex architecture overview can be seen in

Figure 6. These resources are configured through the configuration bitstream. The

configuration bitstream is made up of a mixture of commands and data and is typically

read by the Virtex device through one of the configuration interfaces.

CLBs

IOBs

IOBs
Right Block Select RA

MLe
ft

Bl
oc

k
Se

le
ct

 R
A

M

Le
ft

IO
B

s Right IO
B

s

Figure 6: Virtex architecture overview [Virtex00].

The configuration memory is traditionally thought of as a rectangular array of bits. The

bits are grouped into vertical, one-bit wide frames extending from top to bottom in the

array. A frame is the smallest portion of the configuration memory that can be written to

or read from at any given time. Frames are grouped together into columns. In the

different types of Virtex devices there are different designations for the columns.

Typically these will include a center column, which includes the configuration for the

global clocks. Two IOB columns will represent the configuration for all the IOBs on the

edges of the device. Most of the remaining columns are devoted to CLBs. Lastly, the

remaining columns are RAM.

9

The frames are situated such that they are vertical in the device. In this manner, the

“front” of the frame appears at the top. In Figure 7 below, (shown horizontally in the

figure) the top 18 bits of the column would specify the IOBs located at the top of the

columns. Next, 18 bits are designated for each of the n CLBs, where n is determined by

the type of device. Lastly, 18 more bits will specify the bottom IOBs. The actual Frame

size varies, depending up the number of rows in the device. The number of configuration

bits in a frame is 2) rows CLB #(18 +× plus extra padding bits. The padding bits are

used because the configuration bitstream is written into 32 bits words beginning with the

top of the frame. In the case where the last 18-bit word does complete an entire 32-bit

word, “padding” bits are added onto the right in the form of extra zeros [Virtex00].

Top IOBs CLB R1 CLB R2 ... CLB Rn Bottom 2 IOBs

18 bits 18 bits 18 bits 18 bits 18 bits

Figure 7: CLB Column Frame Organization

The circuit configuration for a Virtex device is done using the Frame Data Input Register

(FDR). The FDR is a shift register into which the data is loaded prior to transfer to the

many configuration points within the device. An overview can bee seen in Figure 8,

below. In particular, the starting address of the consecutive frames about to be

configured is loaded into the FDR and then transferred to the frames in the order

specified [Li01].

10

Bitsream

FPGA
arrayFD

R
 B

uf
fe

r

Figure 8: FDR buffer overview. The configuration data for each frame is written

to the FDR and then transferred to the frames within the FPGA array.

Target Compression Algorithm – Lemple Ziv

Lemple-Ziv (LZ) is a generic compression algorithm utilizing regularities in a bitstream.

LZ works by assigning frequently occurring groups of symbols to a dictionary. When the

symbols appear in the data, they are replaced with a reference to the location in the

dictionary. The reference will tell where the match previously occurred, how long the

match is, and give a new symbol. By this means data can be represented in a much

smaller form.

There are multiple versions of LZ compression; LZ77, LZ78 and LZW being the most

common. LZ78 and LZW both generate better compression over a finite bitstream

compared to LZ77 [Li01]. However, LZ78 and LZW both utilize static dictionaries. For

this type of design a look-up table holding the recurring symbols would need to be built

in hardware. This method has been implemented in previous research [Dandalis01].

Adding a look-up-table means that in order to decompress, LZ78 and LZW have a larger

impact on the necessary hardware. Because of the hardware impact, these versions of LZ

were not considered for configuration compression [Li01]. On the other hand, LZ77

utilizes a dynamic dictionary. For this type of design the added hardware would be a

Shifter and Control; a look-up table would not be needed. Instead of utilizing a look-up

11

table, the shifter would serve as the fixed size dictionary, with the location of a match

used as a reference address. As a result, LZ77 has a smaller impact upon the extra

hardware needed for decompression. Therefore, this is the version chosen to integrate

configuration compression onto an FPGA.

The LZ77 compression algorithm holds the last n symbols of the input bitstream in a

buffer, where n is the size of the buffer. When a portion of the bitstream about to be

written into the buffer is found to match a segment already contained in the buffer, a

reference using the segment match location is sent instead. This reference is made up of

three values: a pointer to the location of the first matched data symbol in the buffer, a

length value showing how many symbols match, and the next symbol following the

matched data in the bitstream. An example of LZ77 encoding is shown in Figure 9

below. A matching segment, “A0014”, begins at position 8 in the buffer. This match has

a length of 5, and the symbol following is an “F”. The corresponding codeword sent to

the configuration file is “8, 5, F”.

8 A 0 0 1 4 6 A B 1 A 0 0 1 4 F 6 C A 2
 9 8 7 6 5 4 3 2 1 0

(a) Before encoding

6 A B 1 A 0 0 1 4 F 6 C A 2
 9 8 7 6 5 4 3 2 1 0

Output to File 8, 5, F
(b) After encoding

Figure 9: Example of LZ77 buffer. The matching pattern “A0014” is found and

the code word “85F” is written to the compressed file.

For a finite bitstream LZ77 is not guaranteed to be efficient. For the case where no

matching is found, rather than outputting a symbol, the algorithm will produce a 3-field

codeword. In this situation, it is possible for the compressed file to actually become

larger than the original file and the compression ratio will worsen. A variation of LZ77

12

that will improve upon this and help the compression ratio is LZSS. LZSS institutes

limitations on what can or cannot be encoded. The length variable must be larger than a

predetermined minimum. If the match is found and the length is smaller than the

minimum, the current symbol is written directly to the file and the match is not encoded.

However, when the length of the match is larger than or equal to the minimum, the

codeword containing the index pointer of the first symbol in the match and length of the

match is written to the file. The codeword would be smaller than writing the symbols

directly and the codeword will be written to the file. In addition, LZSS will need to add a

flag bit to indicate whether the bits are a compressed LZ-packet or a symbol. This could

cause a file to become slightly larger and worsen the compression ratio.

As previously mentioned, LZSS is able to fully utilize the intra-frame regularities.

However in current devices, the FDR buffer can only contain a single frame of

configuration data at a time. Therefore, using it as the LZ-buffer will not fully take

advantage of naturally occurring inter-frame regularities. A solution proposed in

previous research is to extend the FDR buffer. An overview of this is shown in Figure 10

below. The lower portion of the buffer works in much the same was as the current FDR

buffer built onto Virtex FPGAs. The upper portion is solely for decompression. As data

is written to the device, it is simply shifted upwards into the upper section of the buffer.

The next portion of the configuration data is shifted into the buffer and is transferred to

the specified frame once the lower section is filled with the new frame data.

13

Bitsream

FPGA
array

Bu
ff

er

Figure 10: Extended FDR buffer to aid LZ compression.

LZ compression works extremely well as a compression algorithm for cases containing

regularities in a bitstream. Finding these regularities in a given configuration bitstream

will optimize compression. As previously mentioned, LZ works very well at utilizing

naturally occurring regularities in the FDR buffer, however as discussed in earlier

sections, LZ requires a large buffer to do this. The hardware costs need to be minimized

and the FDR cannot grow without bounds. Therefore, the size the FDR is expanded to

must be limited. At the same time, methods in prior research were investigated to exploit

the configuration bitstream to aid in LZ compression [Li01]. To take advantage of some

regularities, the bitstream can be externally reordered such that large redundancies

between frames will occur sequentially in the bitstream. This should help the

compression ratio. As this is external to the architecture built for this project.

14

Symbol Size Factors

Current Virtex devices load entire frames of data at a time. Due to similarity of the

resources available on the device, there is typically some regularity between the many

frames, i.e. inter-frame regularity [Li01]. Inter-frame regularities appear in circuits

containing similar configurations among rows. LZ utilizes regularities in a bitstream,

using recently loaded data as a fixed sized dictionary for later writes. Therefore, if the

frames in the configuration bitstream can be reordered such that those with similarities

would be loaded consecutively, better compression should be achieved. There is some

coding overhead incurred by moving the frames; however, this is taken care of external to

the device and will not directly impact the hardware costs.

Reordering the frames in the bitstream to utilize the inter-frame regularities does not

guarantee the compressed file will be smaller. On current Virtex devices, one frame of

data is loaded at a time. To exploit this natural regularity, the FDR buffer will be

modified to extend past the length of one frame. Previous research found that extending

the buffer length improved the compression ratio [Li01].

Similar to regularity among frames, there usually is some regularity within a single

frame, i.e. intra-frame regularity [Li01]. For Lemple-Ziv compression, the shift-based

design of the FDR buffer naturally takes care of this. At the same time, the size of the

FDR buffer as well as the size of the symbol will utilize this. The larger the buffer, the

smaller the compressed file. This is another reason the FDR buffer is extended past the

length of a single frame.

As mentioned, on Virtex devices the configuration bitstream is made up of 32-bit words.

However, the 32-bit words are made up of 18-bit words with extra padding bits used to

make up the difference. As shown in Figure 7 above, each CLB is segmented into 18-bit

words, not 32-bits. In order to preserve the regularities, the 32-bit configuration

bitstream will be broken into the original 18-bit frame size when it is compressed.

15

Therefore, if the symbol size was instead chosen to utilize a 32-bit word, i.e. powers of 2,

much of the regularity would be missed [Li01].

The physical size of a symbol has a large impact upon the compression ratio. First, for

very short symbols, the coding overhead may greatly increase [Li01]. For example, using

a LZSS format, each symbol-packet written to the compressed file will increase by 1-bit

by the addition of a flag bit. As an illustration, for a 2-bit symbol the packet written to

the compressed file is 3-bits long, 33% larger. This can have an obvious impact on the

size of the compressed file. On the other hand, very large symbols can also affect the

coding overhead. For very large symbols, the possible matches in LZ-compression will

shrink. The larger groupings will encompass more of the buffer. This means there are

physically less symbols contained in the buffer to match. The buffer would need to be

extended much further in order to maintain a useful compression ratio. However, the

added hardware costs of a very large buffer far outweigh any possible gain.

As it turns out, the decompression is done in hardware and the potential hardware cost

was considered [Li01], [Hauck99]. In related research, LZ approaches were found to

work best with a 6-bit symbol size and a FDR buffer at least the length of two frames

[Li01].

Compressed Bitstream Characteristics

In the LZ decompression engine, the FDR buffer for this design is 3072-bits. Each

symbol is 6-bits long by itself. This is based upon previous research [Li01]. For a six-bit

symbol size, the FDR buffer is actually a 512-symbol shifter.

The bitstream is made up of a mixture of compressed Lemple-Ziv packets and

uncompressed symbols. As previously discussed, the compressed Lemple-Ziv data

packets are made up of a flag, a pointer and a length value. Analogously, each non-

16

compressed symbol will be made up of a flag and a symbol. In order to address all 512

locations, the pointer is 9-bits long. The length variable is also 9-bits long based on prior

work. If the length and pointer are at least the same size, it aids in compression

[Hauck99a]. The flag indicating what type of packet is being sent into the decompression

engine is a single bit long. This translates the total length 19-bits for a LZ packet and 7-

bits for a symbol-packet.

The flag is used to indicate what type of packet is being sent into the decompression

engine. For an uncompressed symbol, the flag is set to true. When this is read by the

hardware, the 6-bit symbol following the flag will be read directly into the LZ-shifter.

On the other hand, for a compressed LZ-packet, the flag is set to false. When this is read,

the 18-bits following the flag, encompassing first the pointer and second the length, are

read into the hardware. At this point, data is not read from the compressed input

bitstream until the remaining symbols are decompressed and read into the hardware.

Design Overview

The hardware is made up of two major components. The first component is the LZ-

shifter, which is the extended FDR buffer mentioned earlier in this report. The second

component is the control logic component. Furthermore, the hardware is designed to

work with current technology such that it can be integrated into a current Virtex FPGA

device. An overview of the design when built with such an FPGA can be seen in Figure

11 below.

17

FPGA
array

SH
IF

TE
R

Bitsream

C
O

N
TR

O
L

Figure 11: Hardware overview

The control component reads in the compressed configuration bitstream a packet at a

time. The bitstream will contain a mixture of compressed LZ-packets and uncompressed

symbols. Each packet, regardless to type, will begin with a flag that specifies the format

to expect. If the flag is true, the 6-bit symbol is shifted directly onto the buffer.

However, if the flag is false, the 18-bit codeword encompassing the pointer and length is

sent in and a symbol is copied from the shifter. As mentioned, the shifter will be an

extended version of a Virtex FDR buffer. For a LZ-packet, the shifter will select a

symbol to copy using a large multiplexer.

A block diagram of the inputs and outputs can be seen in Figure 12 below. The list of

inputs to the system include the configuration bitstream where 19-bits could be accessed

during any given clock cycle. Other inputs include a preset for the control logic and a

hold used to temporarily disable any running processes. The LZ-hardware also has an

input coming from the FPGA substrate. The buffer has a readback function that can load

into the shifter a frame already programmed on the device (50 18-bit groupings for this

design). The last input is a select, controlling readback function just mentioned.

18

Configuration
Bitstream

19

hold
preset

Write to FPGA
configuration points

50 x 18 bits 50 x 18 bits

Read from FPGA
configuration points

6
Symbol Out

LZ packet
finished

LZ Decompression
Hardware

select

Configuration
Bitstream

19

hold
preset

Write to FPGA
configuration points

50 x 18 bits 50 x 18 bits

Read from FPGA
configuration points

6
Symbol Out

LZ packet
finished

LZ Decompression
Hardware

select

Figure 12: LZ Decompression Input and Output diagram

In a similar fashion, the outputs of the system include the last symbol shifted out of the

shifter. In addition, a control output signal indicates when a LZ-packet has been

decompressed. This signal is normally true and is set false while a decompression is

being processed. Lastly, after some time, an entire frame will eventually be loaded on the

shifter. An output from the buffer is used to load this frame into the main substrate of the

FPGA, which configures the device.

The shifter reads in a symbol at a time from the control logic while the decompression

hardware is running. The shifter is connected to a large multiplexer which is used during

LZ decompression to select a symbol to copy. At the same time, the input of each shift

register is multiplexed. The first input is connected to the previous shifter register in

order to shift a symbol. The second input is comes from configuration points within the

FPGA substrate. This is in order for the FPGA to readback a frame of configuration

points onto the shifter. However, only some of the registers are used for the readback,

the number equal to the size of a frame. The shifter is extended past the length of a single

frame, but only a frame of data will be read back at a time. This can be seen in Figure 11

above. Meanwhile, the output of each shift register is connected to the large multiplexer

used for symbol selection during LZ-decompression. Likewise, each shift register is

connected to the input of the next shift register in the buffer. At the same time, some of

the registers at the start of the shifter are connected to the FPGA substrate. At the front

of the shifter, a section the length of a frame is connected to the FPGA substrate.

19

Hardware Details

As discussed above, the major hardware components necessary for Lemple Ziv

decompression encompass a shifter and control. The architecture detail can be seen in

Figure 13 below. The symbol shift register is the dynamic dictionary used during

Lemple-Ziv decompression. It also is the connection point where configuration points on

the FPGA will be written. The shifter is 3072-bits long, which works out to 512 symbols.

As a result, Connected to the outputs of each symbol contained in the shifter is a 512 to 1

Multiplexer. This multiplexer uses the pointer value to select a symbol to be copied onto

the buffer.

Symbol Shifter

pointer

New
Symbol

Copied Symbol

Control
Logic

Counterlength

Flag

hold

CONTROL

SHIFTER

512:1 MUX

9-
bi

t p
oi

nt
er

9-
bi

t l
en

gt
h

6-
bi

t s
ym

bo
l

Flag 10

preset

countDone

Read/Write to FPGA Substrate

Symbol
Out

Select
read back

from FPGA
substrateLZ pa

ck
et

Sym
bo

l P
ack

et

Figure 13: Design Architecture Overview.

The control component reads in the compressed configuration bitstream a packet at a

time. Using the flag, the control determines which type of packet is being read in. The

20

control will react to one of three cases. First, the flag would indicate a LZ-compressed

codeword is being read in. Second, the flag would indicate that an uncompressed symbol

would be shifted in. Lastly, regardless to the flag value, the hold signal would be enabled

and nothing will be read in until this is released.

When a LZ-packet is read in by the decompression hardware, a number of things happen.

First, the flag sets the “countDone” signal to false. While this is false, no more packets

will be read in to the hardware. Meanwhile, the pointer value is fed to the large MUX in

order to locate the symbol indexed by the compressed codeword in the shifter. The MUX

selects the symbol to be copied back and shifts it onto the input of the symbol shifter.

The pointer value will remain the same for the entire duration of the LZ packet

decompression. This is stored in a register when the initial LZ-packet is read in by the

hardware. During decompression, the buffer shifts a symbol at a time. Consequently, the

next sequential matched symbol will conveniently shift to the location of the original

indexed match. One by one, each of the matched symbols will be copied onto the buffer.

At the same time, the number of symbols copied is determined by the length value from

the LZ codeword. The length is fed into a down counter that was built into the control.

For each symbol copied the counter decrements by one at the start of each clock cycle.

Once the down counter reaches zero it sends a signal (countDone is set true) to the

Control indicating that the decompression is complete. At this point, the control logic

looks for a new packet in the compressed input data stream.

As mentioned, some of the packets will be uncompressed symbols. Similar to an LZ-

packet, a symbol packet begins with a flag indicating that a symbol is to be read. The

flag is striped off and the symbol is shifted directly onto the buffer. As this is completed

in one clock cycle, the control logic will look for a new packet in the compressed input

data stream at the start of the next clock cycle.

21

The hold symbol is an input used to stop all running processes. No matter what the

decompression is doing at the time hold is enabled, the hardware will remain in its

current state until the signal is disabled.

The overall Cadence layout for the entire LZ-decompression hardware can be seen in

Figure 14 below.

Figure 14: Completed Cadence layout of design.

Shifter Component

The shift register is designed to shift 512 6-bit symbols. As mentioned, this is the

extended version of the FDR buffer found in Virtex FPGAs. An overview of the shifter

component is shown in Figure 15 below.

22

Sy
m

bo
l 0

Sy
m

bo
l 1

Sy
m

bo
l 2

Sy
m

bo
l 1

50

Sy
m

bo
l 1

49

Sy
m

bo
l 5

11

512:1 MUX

Copied
Symbol

pointer

Symbol
Out

Symbol
In

Read/Write connections to FPGA substrate

Figure 15: Shifter component overview

While the decompression engine is running, a symbol per clock cycle (6-bits) is shifted

towards the output (right-shift in Figure 14). As mentioned, the shifter is extended past

the length of a single frame to aid the compression, in other words, a single frame of the

configuration bitstream is connected to the FPGA substrate for configuration or readback.

Consequently, the input of each shift register is multiplexed to allow the readback

capability. A select signal controls whether the buffer is reading a symbol or a frame

from the substrate.

Each shift register is made up of small, fast D-flip-flops, the schematic of which is shown

in Figure 16 below. As mentioned, a multiplexer is located on the input of each flip-flop.

Utilizing this, the input can be chosen from the shifter or read directly from the substrate.

The output will be connected to the next register in the shifter and the 512 to 1

Multiplexer. The outputs of the first 150 6-bit symbols are connected to the

configuration memory located on the target device,

23

D

clockSelect

Q out

Shifted In

Read from
FPGA

Figure 16: Shifter Mux with D-Flip Flop.

The symbol shifter will dominate the final size of the design due to the shear number of

registers needed. Therefore, it was necessary to design the shift register to be as small as

possible. As a result, a minimal number of transistors were used. The schematic for can

be seen in Figure 17 and the Cadence layout of a shift register can be seen in Figure 18

Q

S

S
hold

Clk1 Clk2

Read_In

D

Figure 17: Single shift register schematic

As you can see, the shift register uses as few transistors as possible. Because of the large

size of the LZ-buffer, this will help to minimize the final size of the entire buffer.

24

Figure 18: Layout of a single shift register.

The 512 to 1 Multiplexer was built directly into the shift component. The large

multiplexer is actually a combination of a number of smaller multiplexers. This is to

limit the use of long chains of series transistors. Using Hspice and Cadence extracted

netlists, multiple designs using different combinations of 8 to 1, 4 to 1 and 2 to 1 were

tested for speed. The fastest design used 2 to 1 MUXs and 4 to 1 MUXs. An overview

of the MUX design is shown in Figure 19 below.

25

Pointer bit 1

Pointer bit 6
Pointer bit 7

Pointer bit 8
Pointer bit 9

Shifter bits [512:1]

256 instances

4 instances

1 instance
Copied
Symbol

MUX1 out
[255:0]

Pointer bit 2
Pointer bit 3

64 instances

Pointer bit 4
Pointer bit 5

16 instanceMUX2 out
[63:0]

MUX3 out
[15:0]

MUX4 out
[3:0]

Figure 19: 512 to 1 Multiplexer is built using a combination of smaller 2 to 1 and

4 to 1 multiplexers.

A Cadence layout for the entire shifter component can be seen in Figure 20 below.

Figure 20: 512:1 MUX and symbol shifter layout.

26

Control Component

The control component is made up of a down counter, control logic for the pointer, and

logic selecting the input to the LZ-buffer. An overview is shown in Figure 21 below.

First, the control determines the type of packet being sent in. A 2-bit control signal is

generated based upon the flag indicator at the start of a packet and the hold input signal.

The feedback value is used by the control MUX to select a copied symbol or a to read a

symbol from the input bitstream. Next, a block is included devoted to the pointer control.

This logic block stores the pointer value for the duration of a LZ decompression. This

block uses the countDone variable on the output of the down counter to determine

whether the pointer value should be held. Next, a down counter is included. This utilizes

the length value in an LZ codeword to determine how many symbols to copy from the

LZ-shifter. The output of the down counter is normally set true, but is set false once a

LZ-packet is read in. The down counter decrements by 1 for each symbol copied. This

cycle continues until the down counter reaches “0”. Once the counter is finished, a signal

(countDone) indicates to the LZ-packet has been decompressed and a new packet is read

in at the input.

MUX
Symbol

Copied
Symbol Symbol to

LZ-shifter

Down
Counter

Pointer
Control

pointer

length

9

flag

pointer

Select
Logic

countDone

flag
hold

Figure 21: Overview of Control Hardware

27

The output of the select logic is named “feedback”. This is a 2-bit symbol that is used

internally to the control once a packet has been identified as either compressed or

uncompressed. The truth table for this signal can be seen in Table 1 below.

Table 1: Truth table for internal feedback signal.

Flag Hold Feedback

X 1 00 HOLD

0 0 10 LZ

1 0 01 SYMBOL

The down counter is predetermined to subtract 1-bit on each clock, or simply a

subtractor. One very simple way to do this is to use two’s complement arithmetic. Using

two’s complement form, subtraction can be handled as addition by complementing the

subtrahend such that A – B = A + (-B). Therefore, using this representation means the

subtraction can be accomplished by taking the 2’s complement of the subtrahend and

adding it to the minuend. In other words, the number is complemented and added using a

conventional adder.

At the same time, the down counter will always subtract 1-bit from the length value.

Therefore, a general-purpose adder is not the best solution. Since the subtrahend is a

constant value, it is possible to push this into the logic and resultantly using fewer levels

of logic in the adder. First, the 2’s complement value is found to be 111111111. Second

a truth table was developed for a 1-bit Full-adder and is shown below in Table 2. The

constant 1 has been omitted. Furthermore, the Boolean logic and equivalent gates are

shown in Figure 22.

28

Table 2: Truth table for down counter adder.

In Carry_in Sum Carry_out

0
0
1
1

0
1
0
1

1
0
0
1

0
1
1
1

inCarryIninCarryIninCarryInoutCarry
inCarryIninCarryInSum

___11_
__1

+=•+•+•=
⊕=⊕⊕=

Carry_out
In

Carry_In

Sum
In

Carry_In

Figure 22: Logic for down counter decrementor.

From the truth table, the logic used for the adder is an OR for the Carry_out value and an

XNOR for the Sum. Similarly, the half adder is found to have the Carry_out equal to the

In-bit. In addition, inverting the In-bit will result in the sum.

The down counter outputs a signal when the counter reaches “0”. A psuedo NMOS NOR

gate is used to determine this. When all 9-bits of the count are “0”, the output of the

NOR gate is true and the counter is complete.

The Cadence layout of the control component is shown in Figure 23 below.

29

Figure 23: Control component layout.

Hardware Implications

This purpose of this project was to implement in hardware a LZ decompression engine

investigated in previous research [Hauck99b], [Li01]. One of the goals was to determine

the impact such a design would have upon the size of current devices. In particular, how

much larger is the device going to become.

At this time, SRAM based FPGAs can attribute roughly 25% of the total area directly to

the memory cells on the chip. Fortunately, the number of distributed RAM cells is

known for each device [Virtex00a]. Consequently, using a memory cell as the unit of

measure, an approximate area can be found for the FPGA. These calculations were done

by first building a SRAM cell and optimizing it in the same manner as the rest of the

design. The area measured for this cell is used as the basic unit of measure for

subsequent calculations. The area for the different devices as they currently stand was

found using this formula: λ××)(4 _cellsibuted_RAM#_of_distr , where λ is the cell area

for a SRAM cell. For the process used, the area of an SRAM cell is 52.65µm2. Using this

30

measurement and the above calculation, an area approximation can be found for each

device. This calculation can be seen in Table 3.

Figure 24: Optimized SRAM cell with an area of 52.65µm2.

Table 3: Approximated area for each Virtex-E device in the 0.25µ process used
for this design.

Device Distributed
RAM bits

Approximate
original

Chip Area
(mm2)

XCV50E 24576 5.18
XCV100E 38400 8.09
XCV200E 75264 15.9
XCV300E 98304 20.7
XCV400E 153600 32.3
XCV600E 221184 46.6

XCV1000E 393216 82.8
XCV1600E 497664 105
XCV2000E 614400 129
XCV2600E 812544 171
XCV3000E 1038336 219

The area for a single shift register (shown in Figure 17) is 102µm2. As shown in Figure

24 above, an SRAM cell built using the same process has an area of 52.65µm2; roughly

50% smaller than a shift register. In a typical device, SRAM cells account for

approximately 25% of the overall area of the chip. Thus, the SRAM cell size will be

31

used as a reference from which the overall percentage of the area increase caused by the

added hardware in each device can be approximated

The hardware costs are a function of the Virtex device into which it is built. The large

contributing factor is the variation in frame size from device to device. Specifically, the

physical size of every component in the decompression hardware can be directly linked

to the frame size used for a given deice. In particular, the LZ- buffer should be two or

more times larger than a frame length to aid in compression [Li01]. For example, this

design uses a LZ-buffer over three times larger than a frame. Thus, for the device with

the smallest frame size, multiplying this by three does not result in the length of single

frame of the largest device. Therefore, the different frame length for each device will

cause each to need different buffer lengths. At the same time, the size of the pointer and

length variables used is directly linked to the buffer length. In the same way, the size of

these variables influences the size of the down counter and control logic.

In Table 4 below, the hardware characteristics of each device is outlined. The number of

configuration bits contained in each frame is a function of the number of CLB rows.

Each shifter is than extended by two frames, resulting in a final length three times larger.

The symbol size is the same for each device, 6-bits. Therefore, the resulting symbol

shifter size can be found by dividing the LZ shifter by 6. The symbol shifter must be a

power of 2N and actual length will become larger, increasing the LZ-shifter.

32

Table 4: Virtex-E Series FPGA Family Members and corresponding
characteristics used for area calculations. [Xilinx00b].

Device CLB
Array

CLB
Rows

Bits
per

Frame

Bits per
extended

LZ
Shifter

Minimum
Symbols

in LZ
Shifter

Symbols
 per
LZ

Shifter

Address
Bits

XCV50E 16 × 24 16 324 972 162 256 8
XCV100E 20 × 30 20 396 1188 198 256 8
XCV200E 28 × 42 28 540 1620 540 512 9
XCV300E 32 × 48 32 612 1836 306 512 9
XCV400E 40 × 60 40 756 2268 378 512 9
XCV600E 48 × 72 48 900 2700 450 512 9

XCV1000E 64 × 96 64 1188 3564 594 1024 10
XCV1600E 72 × 108 72 1332 3996 666 1024 10
XCV2000E 80 × 120 80 1476 4428 738 1024 10
XCV2600E 92 × 138 92 1692 5076 846 1024 10
XCV3000E 104 × 156 104 1908 5724 954 1024 10

The hardware built assumed 48 CLB rows (similar toXCV600E device). As mentioned

the number of bits per frame in a Virtex device is dependent upon the number of CLB

rows per column. As mentioned before, the actual formula for calculating the number of

bits is: 2) rows CLB #(18 +× . This means the frame size is 900 bits for this project.

Next, the FDR buffer is extended as discussed in earlier sections. The buffer used in this

design is 3072-bits long (512 6-bit symbols); well over three times larger than a frame

size.

The impact the LZ-shifter would have on the hardware is first the added length. The LZ-

buffer is there times the original size with the exact value is device dependent. Typical

values are shown in Table 4. The shifter size for a generalized device could be

approximated by the following formula: 1)/(#2 λ×× FrameBits where λ1 is the area of

the shift register. This was measured to be 102µm2. The resulting LZ-shifter

calculations using the SRAM measurements can be seen in Table 5.

33

Table 5: Approximated component sizes for shifter
Device CLB

Rows
Approximate
shifter Area
(mm2)

XCV50E 16 0.198
XCV100E 20 0.242
XCV200E 28 0. 330
XCV300E 32 0.375
XCV400E 40 0.463
XCV600E 48 0.551

XCV1000E 64 0.727
XCV1600E 72 0.815
XCV2000E 80 0.903
XCV2600E 92 1.04
XCV3000E 104 1.17

In the same fashion, the impact the large MUX would have on the hardware also depends

upon the buffer size, more specifically, the number of bits needed to be addressed. This

is once again a function of the frame size. As mentioned in the hardware overview, the

mux is made up of smaller muxes. Therefore, the large MUX area is based upon the

areas for a 2 to 1 and 4 to 1 mux, respectively. The area of the MUX has been

approximated using this calculation Table 4, below.

Table 6: Area Approximation Calculations for MUX.
MUX Formula for

 MUX Area
Approximation

Mux Area
Calculations

2 to 1 λ2 to 1 136.8 µm2

4 to 1 λ4 to 1 388 µm2

8 to 1 4λ2 to 1 + λ4 to 1 935 µm2

16 to 1 5λ4 to 1 1940 µm2

32 to 1 16λ2 to 1 + 5λ4 to 1 4130 µm2

64 to 1 21λ4 to 1 8150 µm2

128 to 1 64λ2 to 1 + 21λ4 to 1 0.00169 mm2

265 to 1 85λ4 to 1 0.0033 mm2

512 to 1 256λ2 to 1 + 85λ4 to 1 0.0068 mm2

1024 to 1 341λ4 to 1 0.0132 mm2

Lastly, the impact caused by the control is much less substantial than the LZ-shifter and

large MUX. This can be seen in Figure 14 showing the final layout of the entire design.

However, it is still important to discuss the factors this component would contribute to

the overall area. The size of the control is influenced by the pointer and length values.

34

The overall area would be approximated in the following way:

C#Bits/LTH#Bits/PTR +×+× 54)()(λλ . The constant, C, would not change unless the

symbol size changed. For example, regardless to device, the feedback bits will be two

bits and this are is constant. The constant cost was found to be 0.00598 mm2. Similarly,

λ4 and λ5 were also based upon the design built. The area was found by measuring the

control sections that utilize first the pointer and second the length and calculating the cost

per bit, The cost per pointer bit (λ4) was found to be 0.00438mm2. Next, the cost per

length bit (λ5) will be 0.0129mm2. The calculated impact upon each device can be seen

in Table 7 below.

Table 7: Control Area Approximations
Device Control Area

Approximaton
(mm2)

XCV50E 0.057333
XCV100E 0.057333
XCV200E 0.057333
XCV300E 0.063751
XCV400E 0.063751
XCV600E 0.063751
XCV1000E 0.063751
XCV1600E 0.070169
XCV2000E 0.070169
XCV2600E 0.070169
XCV3000E 0.070169

The overall area approximation for the added hardware was found by adding the area

impacts for the different components. The overall area approximation can be found in

Table 8 below. The approximated area comparison can be found in Table 9 below.

35

Table 8: Overall area approximations for added hardware.
Device Approximate

shifter Area
(mm2)

Mux Area
Calculations

(mm2)

Control Area
Approximation

(mm2)

Combined Area
of new

hardware
(mm2)

XCV50E 0.198 0.0033 0.057333 0.258633
XCV100E 0.242 0.0033 0.057333 0.302633
XCV200E 0. 330 0.0068 0.057333 0.394133
XCV300E 0.375 0.0068 0.063751 0.445551
XCV400E 0.463 0.0068 0.063751 0.533551
XCV600E 0.551 0.0068 0.063751 0.621551

XCV1000E 0.727 0.0132 0.063751 0.803951
XCV1600E 0.815 0.0132 0.070169 0.898369
XCV2000E 0.903 0.0132 0.070169 0.986369
XCV2600E 1.04 0.0132 0.070169 1.123369
XCV3000E 1.17 0.0132 0.070169 1.253369

Table 9: Approximated Area Comparison.
Device Approximate

Area of
Original Device

(mm2)

Approximate
Area of combined

 Device
(mm2)

Percent of
Area Added

XCV50E 5.18 5.438633 4.75 %
XCV100E 8.09 8.392633 3.60 %
XCV200E 15.9 16.29413 2.41 %
XCV300E 20.7 21.14555 2.11 %
XCV400E 32.3 32.83355 1.63 %
XCV600E 46.6 47.22155 1.32 %

XCV1000E 82.8 83.60395 0.96 %
XCV1600E 105 105.8984 0.85 %
XCV2000E 129 129.9864 0.76 %
XCV2600E 171 172.1234 0.65 %
XCV3000E 219 220.2534 0.57 %

From Table 9, it can be seen that the impact this hardware has on the device is very

minimal, at most 4.75%. This means the hardware can be added to current Virtex FPGAs

with very little cost to the overall area of the chip. At the same time, the size of the LZ-

decompression hardware will increase linearly, versus the FPGA increase quadratically.

Therefore for larger devices, the impact upon the overall area is less than 1%.

36

Conclusion

This project took a technique proposed in previous research [Hauck99b], [Li01] that

integrated a Lemple-Ziv compression algorithm into hardware for configuration

compression on FPGAs. This approach was found to decrease the size of the

configuration bitstream needed to program a device and ultimately should speed up

configuration time. The goal of this project was to investigate the feasibility of building

such a design in hardware as well as the impact the added hardware would have upon an

FPGA.

As it turns out, the impact this approach had on the FPGA hardware was minimal. The

largest overall increase in area was approximately 4.75%. Furthermore, the larger

devices resulted in an even smaller impact on the overall increase in area at

approximately 0.5%. This can be attributed to how the Virtex series of FPGA devices

increase in size. The number of CLBs in the Virtex-E Family of FPGAs will increase

quadratically. However, the LZ-shifter is based upon the frame size, which will increase

linearly. Consequently, the extra area needed for the decompression hardware on larger

devices will increase slower than the growth of the device. All Virtex-E devices are good

candidates for this technique. In particular, the larger devices could benefit simply

because the impact to the area is so small. Overall, this configuration decompression

hardware is a powerful solution for decreasing the storage and communication costs

associated with configuring an FPGA.

Acknowledgements

The author would like to thank fellow graduate student Zhiyuan Li his on research

configuration compression. The author would also like to thank her advisor, Scott

Hauck, for his assistance in preparing this report. This research is funded in part by

DARPA and Xilinx.

37

References

[Compton99] K. Compton, Programming Architectures for Run-Time
Reconfigurable Systems, M.S.E.E. Thesis, Northwestern University,
Dept. of ECE, December 1999

[Dandalis01] N. Dandalis, V. Prasanna, “Configuration Compression for FPGA-
based Embedded Systems”, ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, 2001

[Hauck98a] S. Hauck, “Configuration Prefetch for a Single Context
Reconfigurable Coprocessors”, ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp 65-74, 1998

[Hauck98b] S. Hauck, “The Roles of FPGAs in Reprogrammable Systems”,
Proceedings of the IEEE, Vol. 86, No. 4, pp. 615-639, April 1998

[Hauck99a] S. Hauck, W. Wilson, “Runlength Compression Techniques for
FPGA Configurations”, IEEE Symposium on FPGAs for Custom
Computing Machines, 1999.

[Hauck99b] S. Hauck, Z. Li, E Schwabe, “Configuration Compression for the
Xilinx XC6200 FPGA”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 18, No. 8, pp 1107-
1113, August 1999

[Hwang01] S Hwang, “Unified VLSI Systolic Array Design for LZ Data
Compression”, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Vol. 9, No. 4, August 2001.

[Li01] Z. Li, S. Hauck, “Configuration Compression for Virtex FPGAs”,
IEEE Symposium on Field-Programmable Custom Computing
Machines, 2001

[Ranganathan93] N. Ranganathan, “ High Speed VLSI Designs for Lemple-Ziv-Based
Data Compression”, IEEE Transactions on Circuits and Systems – II:
Analog and Digital Signal Processing, Vol. 40, No. 2, February 1993

[Xilinx99] Xilinx, Xilinx 1999 Databook, San Jose, CA, Xilinx, Inc, 1999

38

[Xilinx00a] Virtex Series Configuration Architecture User Guide, San Jose, CA:
Xilinx, Inc, 2000

[Xilinx00b] Xilinx, Xilinx 2000 Databook, San Jose, CA, Xilinx, Inc, 2000

39

Appendix 1: Verilog Model
Header.v

// DEFINES
`define BITS 19 // bits in input stream
`define BUFFER 512 // 512 total Symbols
`define LTH 9 // Length bit size
`define PTR 9 // Pointer bit size
`define SYM 6 // Symbol value
`define STATUS_SYM 2'b11 // shift a sym -> flag set 1
`define STATUS_LZ 2'b10 // shift a copied symbol ->

// flag set to 0
`define STATUS_HOLD 2'b0 // do nothing!

LZ.v

// Include header.v with global define values
`include "header.v"

module LempZiv (clk, preset_n, hold, inbits,
 shifter5, // Symbol MSB
 shifter4,
 shifter3,
 shifter2,
 shifter1,
 shifter0, // Symbol LSB
 off_chip);

 input clk; // clk
 input preset_n; // Active low

 // preset, sets
// all bits to 0

 input hold; // stop system;
 input [`BITS-1:0] inbits; // value shifted in

 output [`SYM-1:0] off_chip;
 output [`BUFFER:0] shifter5; // MSB
 output [`BUFFER:0] shifter4;
 output [`BUFFER:0] shifter3;
 output [`BUFFER:0] shifter2;
 output [`BUFFER:0] shifter1;
 output [`BUFFER:0] shifter0; // LSB

 // Converter Registers

40

 reg [`SYM-1:0] symbol; //change to symbol
 reg [1:0] feedback; // LZ Shift by PTR & LTH,
 // Shift by SYM, or set HOLD
 // Set's up for next clock

 // Counter Registers
 reg count_done;
 reg [`LTH-1:0] count;

 // Shifter Registers
 reg [`SYM-1:0] off_chip;
 // each symbol is 6-bits long -- using 6 1-bit shifters.
 reg [`BUFFER:0] shifter5; // MSB
 reg [`BUFFER:0] shifter4;
 reg [`BUFFER:0] shifter3;
 reg [`BUFFER:0] shifter2;
 reg [`BUFFER:0] shifter1;
 reg [`BUFFER:0] shifter0; // LSB

 // Big Mux registers
 reg [`PTR-1:0] ptr;
 reg [`SYM-1:0] copied; //

 always @(posedge clk or negedge preset_n) begin

 // Converter
 if (~preset_n) begin
 symbol <= `BITS'b0;
 feedback <= `STATUS_HOLD;
 end
 // Set feedback to LZ
 else if (inbits[`BITS-1] == 1'b0) begin
 symbol <= copied;
 feedback <= `STATUS_LZ;
 end
 // Set feedback to SYM
 else if (inbits[`BITS-1] == 1'b1) begin
 symbol <= inbits[`BITS-2:`BITS-1-`SYM];
 feedback <= `STATUS_SYM;
 end
 // Set feedback to HOLD
 else if (hold == 1'b1) begin
 feedback <= `STATUS_HOLD;
 end // Converter

41

 // Down Counter
 if (~preset_n) begin
 count <= `LTH'b0;
 count_done <= 1'b1;
 end
 // Counter should start same clk as fb set to lz
 else if ((feedback == `STATUS_LZ) | ~count_done)
begin
 // need to look at incoming Flag for next clk
 if (count_done) begin
 // look at next possible length value - used to
catch errors
 if (inbits[`BITS-(1+`PTR+1):`BITS-
(1+`PTR+`LTH)] < 1'h2) begin
 count_done <= 1'b1;
 count <= `LTH'b0;
 end
 // next possible length is greater than 0, need
to decompress
 else if (inbits[`BITS-(1+`PTR+1):`BITS-
(1+`PTR+`LTH)] > 1'h0) begin
 count <= inbits[`BITS-(1+`PTR+1):`BITS-
(1+`PTR+`LTH)] - `LTH'b1;
 count_done <= ~(|(inbits[`BITS-
(1+`PTR+1):`BITS-(1+`PTR+`LTH)]-`LTH'b1));
 end
 end
 // count_done will be set true same clk as counter
reaches zero
 else if (~count_done) begin
 count <= count - `LTH'b1;
 count_done <= ~(|(count-`LTH'b1));
 end
 end // Down Counter

 // Symbol Shifter and output buffer //
 if (~preset_n) begin
 shifter5 <= `SYM'b0;
 shifter4 <= `SYM'b0;
 shifter3 <= `SYM'b0;
 shifter2 <= `SYM'b0;
 shifter1 <= `SYM'b0;
 shifter0 <= `SYM'b0;
 // buffer <= `FRAME'b0;
 off_chip <= `SYM'b0;

42

 end
 else if (feedback != `STATUS_HOLD) begin
 shifter5 <= {shifter5[`BUFFER-2:0], symbol[`SYM-
1]};
 shifter4 <= {shifter4[`BUFFER-2:0], symbol[`SYM-
2]};
 shifter3 <= {shifter3[`BUFFER-2:0], symbol[`SYM-
3]};
 shifter2 <= {shifter2[`BUFFER-2:0], symbol[`SYM-
4]};
 shifter1 <= {shifter1[`BUFFER-2:0], symbol[`SYM-
5]};
 shifter0 <= {shifter0[`BUFFER-2:0], symbol[`SYM-
6]};
 end // Symbol Shifter and output buffer

 // big mux -> takes in address of MSB of symbol to
copy.
 if (~preset_n) begin
 ptr <= `PTR'b0;
 copied <=`SYM'b0;
 end
 else if (feedback==`STATUS_LZ) begin
 copied <= {shifter5[ptr], shifter4[ptr],
shifter3[ptr], shifter2[ptr], shifter1[ptr],
shifter0[ptr]};
 end
 else if (inbits[`BITS-1] == 1'b0) begin
 if (feedback != `STATUS_LZ) begin
 copied <= {shifter5[inbits[`BITS-2]],
 shifter4[inbits[`BITS-3]],
 shifter4[inbits[`BITS-4]],
 shifter4[inbits[`BITS-5]],
 shifter4[inbits[`BITS-6]],
 shifter4[inbits[`BITS-7]]};
 ptr <= inbits[`BITS-2:`BITS-1-`PTR];
 end
 end // BIG MUX

 end
endmodule //

	Introduction
	Background – Field-Programmable Gate Arrays
	Target Device – Xilinx Virtex Series FPGA
	Target Compression Algorithm – Lemple Ziv
	Symbol Size Factors
	Compressed Bitstream Characteristics
	Design Overview
	Hardware Details
	Shifter Component
	Control Component
	Hardware Implications
	Device
	Device
	Device
	
	
	
	MUX

	Device
	
	Control Area�Approximaton �(mm2)

	Device
	
	Control Area

	Device
	
	
	
	
	Approximate �Area of combined� Device�(mm2)

	Conclusion
	
	
	
	
	
	
	Acknowledgements

	References
	Appendix 1: Verilog Model

