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University of Washington 

Abstract 

Accelerating Next Generation Genome Reassembly in FPGAs: Alignment Using 

Dynamic Programming Algorithms 

Maria Kim 

Chair of the Supervisory Committee: 
Professor Scott A. Hauck 

Electrical Engineering 

DNA sequencing has proven to be advantageous in a multitude of 

applications, but challenges in computation has hindered its widespread 

growth in various fields. Although innovative sequencing machines have been 

able to process millions of DNA segments in parallel, reassembling these 

short read pieces has become a bottleneck in the computation. We use a 

hardware platform and various algorithms to significantly accelerate current 

software systems by utilizing a FPGA as a coprocessor. Our reassembly 

process requires two principle steps: 1) the Matcher, which implements the 

BFAST algorithm and 2) the Aligner, which manages multiple alignment 

computations. This thesis covers the Aligner, which uses a hybrid sequence 

alignment dynamic programming algorithm to obtain the best alignment for 

the short reads. The algorithm, design, and results of this thesis describe the 

implementation, as well as the resulting improvements in computation speed.  
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1. Introduction 

Since the completion of the Human Genome Project in 2003 [6], DNA sequencing has 

reached revolutionary speeds in the computation of the human genome. Next Generation 

Sequencing machines massively parallelize DNA segments and output millions of short read 

data to be analyzed. However, a large part of DNA data analysis involves reassembly, and 

current reassembly software systems cannot keep up with these new sequencing machines.  

By utilizing parallelism, Field Programmable Gate Arrays (FPGAs) have the ability to ease 

the computational burden. While software systems are somewhat limited in their ability to 

parallelize programs, FPGAs have the advantage of an intrinsic parallel structure to handle 

large amounts of genomic data. The execution speed of hardware coprocessors has proven to 

achieve significantly higher performance. Because reassembly involves independent threads 

of computation, it is able to take advantage of this massive parallelism.  

Because of the ability to significantly accelerate the entire DNA sequencing process, 

researchers from a wide variety of fields will be able to take advantage of what is stored in 

genomic data. DNA data contains valuable information which can help reveal various 

processes of biological occurrences. This data may assist in fields ranging from medicine to 

forensics, revolutionizing research in numerous areas.  

We implemented a short read reassembly system in the design, which contains two main 

parts, the Matcher and the Aligner. The Matcher adapts an existing algorithm to hardware in 

order to cut down the number of computations required in alignment. The Aligner receives 

data from the Matcher and runs multiple processes in parallel to accelerate the computation. 
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This thesis covers the Alignment portion of the design, and the following chapters are 

documented: 

 Chapter 2: Background gives background information on DNA sequencing, 

reassembly, alignment, and FPGAs.   

 Chapter 3: Algorithms describes the algorithms used in the design. 

 Chapter 4: System Design provides information on the short read reassembly design 

in hardware. 

 Chapter 5: Design Specifications breaks down each component of the Aligner.  

 Chapter 6: Results presents the outcome of our designs. 

 Chapter 7: Conclusion provides information on possible additions to the design, as 

well as an overall conclusion to the thesis.  
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2. Background 

2.1 DNA Sequencing 

Deoxyribonucleic acid (DNA) is arranged in a double helix structure, in which two parallel 

sugar phosphate backbone strands are linked with four different nucleotide bases: adenine, 

thymine, guanine, and cytosine.  Figure 1 illustrates the structure of DNA and the nucleotide 

bases that hold this bonded, paired structure. 

 

Figure 1: Structure of DNA [1] 

The process of DNA sequencing determines the arrangement of these nucleotide bases in a 

molecule of DNA, and this arrangement contains genetic information. To sequence DNA, the 

identification of only one of a pair of bases is required, since “A” always pairs with “T” and 

“C” always pairs with “G”. Consequently, by sequencing one side of the DNA strand, the 
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other side is automatically known. Imagine unraveling the structure of Figure 1 into the one 

in Figure 2.  

G C

A T

A T

G C

T A

A T

C G

C G

G C

 

Figure 2: Decomposed DNA Strand 

From Figure 2, we can “read” or sequence the bases on the left, as the string 

“GAAGTACCG”. With this string identified, its pair is recognized as “CGGTACTTC”. 

 A sequenced strand of DNA has the string of nucleotide bases identified, and locating these 

nucleotide bases in the genome has proven to be useful in various applications. The 

following sections describe the applications that utilize DNA sequencing, as well as the 

history and process behind it.  

2.1.1 Applications 

DNA sequencing has become a valuable asset to a wide range of applications, including 

medicine, biological research, and forensics. Personalized medicine has been of great interest 

in recent years, and genetic information allows the discovery of disease susceptibility and 
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genetic risk factors [2]. In the future, many medical specialists hope to locate the cause of 

genetic diseases, such as certain cancers, diabetes, and hypertension, and exploit individual 

genetic data for prevention purposes. In addition to protective measures, identifying a 

malignant gene may be useful in the discovery of treatments and remedies.  

With the ability to access sequencing technology, researchers could make thorough studies of 

biological organisms. There are an estimated 30 million different species in the world [19], 

providing a massive amount of raw data to work with. If DNA sequencing was more readily 

available, an expansion of evolutionary knowledge is within reach. Genetic data can allow 

biologists to compare differing organisms, as well as similar individuals, since the genomic 

structure of each DNA strand varies.  

In forensics, DNA sequencing assists the identification process in challenging cases. Most 

criminals inevitably leave behind a trace of DNA, and DNA sequencing tools could use this 

evidence to help reveal the suspect(s) involved in the crime. This will result in less time, 

effort, and money spent during the investigation. An accurate identification process will not 

only ease current forensic issues, but it may also result in deterrence of future crimes.  

These initial applications provide a motivation for this study, and have proven that DNA 

sequencing can be applied to a range of different fields. Many more applications and benefits 

are expected to arise as the technology evolves. 

2.1.2 Human Genome Project and Sequencing Goals 

Due to the benefits of DNA sequencing, people became interested in sequencing the first 

human genome and began the Human Genome Project. This project was an arduous, time-
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consuming, and costly task. The human genome is composed of three billion nucleotide base 

pairs (bp), whereas smaller bacterial genomes such as E. coli have merely 5 million bp [5], a 

difference of 600 times. Because of the sheer number of nucleotide bases in the human DNA, 

the Human Genome Project was a process with an official time span of 13 years, from 1990-

2003, and a price tag of $3 billion [6]. From this project, the first human genome was 

sequenced. 

Despite these hindrances, many prospective opportunities arose from this project. Various 

groups were able to initiate sequencing goals for many more genomes. The 1000 Genome 

Project (http://www.1000genomes.org) [7] is determined to catalog the genomic sequence of 

a thousand different humans. With newer sequencing technologies, researchers expect to 

bring the $3 billion dollar price tag down to $1000 per genome [8]. All these ambitious goals 

will allow a range of applications to be within reach, and have become a primary task for 

many research groups.  

2.1.3 Sequencers 

Since the first DNA sequencing publication by Sanger in 1977 [3], computational biologists 

have put much effort in generating new, more efficient sequencing tools. As a result, in 2004 

Next Generation Sequencing machines have changed the outlook for DNA research [4]. 

Although sequencing DNA has accelerated significantly, the analysis of the resulting data is 

unable to keep up. In fact, sources [2] have indicated that the computation of DNA 

sequencing analysis has fallen behind the processing capabilities of modern technology. 

Next Generation Sequencing machines randomly slice DNA strands into “short read” 

components and sequence millions of bases in parallel. The lengths of the short reads have 
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decreased considerably from the 650-800 bp reads of the original Sanger sequencing 

technique; current Illumina/Solexa and Roche 454 machines generate short reads ranging 

from 35 bp to 250 bp [1]. The shorter reads result in massive parallelization, and therefore an 

efficient method of sequencing DNA. However, these shorter reads also lose valuable 

information for reassembly, which may prove to be significantly more costly and demanding 

[4]. 

2.1.4 Reassembly and Alignment 

 As described in the previous sections, the process of sequencing a human genome has 

reached incredible speeds; Next Generation Sequencing machines have the ability to 

sequence many nucleotide bases in parallel. However, another part to the sequencing process 

exists, which involves assembling these short read pieces back to its 3 billion base pair 

strand. There are two primary methods of performing this task: alignment and de Novo.  

Alignment is the process rearranging the short reads into its 3 billion base pair form by using 

a string matching technique. An already sequenced and assembled “reference” genome is 

compared against the short reads. This concept is displayed in Figure 3 with a DNA 

sequencing machine from Illumina/Solexa, which outputs approximately 200 million short 

reads for one human genome [4]. 
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Figure 3: Aligning 200 million Illumina short reads to a 3 billion base pair reference sequence using a string matching 
technique. 

These 200 million 75-100 bp reads are then mapped to a 3 billion bp reference sequence via a 

string matching procedure. Note that the reference genome and the produced short reads must 

have an appropriate evolutionary distance for accurate alignments [9]; the two sequences 

must be similar enough for a base by base comparison. Because a sequenced human genome 

exists from the Human Genome Project, and the similarity between two humans is found to 

be approximately 99.5% [10], alignment is a suitable process for reassembling human short 

read data.  

The other known method for reassembly is called de Novo. This method does not use a 

reference sequence, and is categorized in a class of NP-hard problems, where no efficient 

exact solution is known [11]. Because our design utilizes alignment for reassembly, no 

further discussion of de Novo will be given. However, more information can be found in 

Paszkiewicz and Studholme [12]. 

http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0050254
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2.2 Issues with Reassembly 

Reassembly is a difficult task, partially due to the massive amount of computation required. 

This amount of computation is necessary because of the various conflicts that occur in the 

genome, including the repetition of bases, differences between the compared genomes, and 

machine errors. All these issues will be discussed in the following sections.  

2.2.1 Repetition 

The human genome contains many repetitive regions, which are more likely to create 

alignment problems for shorter read lengths. With the shorter read lengths in Next 

Generation Sequencing, repetition becomes a more frequent occurrence. Shorter read lengths 

will cause more identical segments of nucleotide bases, which results in ambiguous 

alignments. This issue is treated in various ways, depending on the program used. Some 

algorithms will use the first matching short read for the alignment, while others disregard 

repetitive areas completely; neither method solves the problem. However, an increase in the 

short read length will decrease the probability of repetitions from occurring. Current 

sequencing machines are working to increase the length of the short reads, while maintaining 

its advantageous performance.  

2.2.2 Biological Differences 

Biological differences between the read and reference occur at a rate of approximately 0.5% 

[10]. One of the most common forms of these variations is called Single Nucleotide 

Polymorphisms (SNPs), which are found where the read and reference differ by a single 

nucleotide base. SNPs occur due to the diversity in human populations. For example, a 
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disease may occur in one person, but not in another because of SNPs. An example of a SNP 

is displayed in Figure 4. 

 

Figure 4: Single Nucleotide Polymorphisms (SNPs) 

In gray, Figure 4 shows that the nucleotide base “A” does not match with the “C”s in the 

read, which is an indication of a SNP. Note that there are multiple layers of short read 

sequences in alignment; this feature becomes particularly useful when errors or differences 

occur in the short read because the depth of the reads allow for researchers to identify SNPs. 

Other biological variations that occur in genomic sequences include insertions and deletions 

(indels), in which a segment of the read differs from the reference due to an insertion or 

deletion of one or more bases. Indels appear to shift bases in different locations of the 

genome in alignments. They also create gaps in either the read or the reference. 
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2.2.3 Machine Errors 

 

Figure 5: Sequence Errors 

A machine error occurs when the DNA sequencing machine incorrectly calls a base. For the 

example in Figure 5, a “G” is reported in the genome where a “C” actually occurs. This can 

be differentiated from the SNP in Figure 4, because a sequencing machine error generally 

occurs in a single row of reads. In this way, the depth of the short reads helps distinguish a 

SNP or indel from a machine error.  

2.2.4. Handling Reassembly Issues 

If no differences occurred between the reads and the reference, alignments can be made 

quickly and accurately. An error-free and difference-free alignment is shown in Figure 6.  
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Figure 6: Difference and Error-free Alignment 

In Figure 6, a quick string comparison is made to align the sequenced short reads to the 

reference. However, because biological differences and DNA sequencing machine errors are 

inevitable, an accurate string matching algorithm must be used for alignments. 

Sequence Alignment dynamic programming algorithms have been shown to give accurate 

alignments by considering these issues. However, the performance of the dynamic 

programming algorithms has proven to be a setback. This issue can be partially resolved by 

using a hardware platform to compute the dynamic programming solution.  

2.3. Hardware Platform 

Current alignment software programs, such as BFAST [13] and MAQ [14] produce a 

relatively accurate consensus genome by utilizing a sequence alignment dynamic 

programming algorithm. However, computational speeds have become a major obstacle. We 

can accelerate these computation times significantly by using the same algorithms on a 
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hardware platform. Furthermore, Field-Programmable Gate Arrays (FPGAs) have proven to 

be an appropriate platform candidate due to its parallel structure and flexibility. 

2.3.1 The FPGA Structure 

An FPGA will not meet current CPU processing speeds in terms of frequency, but it is able 

to perform many computations in parallel. The structure of a typical Xilinx FPGA is shown 

in Figure 7.  

 

Figure 7: FPGA Structure 

Each logic block of the FPGA is composed of logic elements and registers. The logic 

elements have lookup tables (LUTs) to perform combinational logic, represented using a 

truth table. The registers implement sequential logic to handle state-holding operations. The 

LUTs and registers are used together to execute the programmable logic. [16] 

In addition to the numerous logic blocks, FPGAs provide DSP blocks for efficient 

multiplication, internal memories for data access, multiple clock speeds for user flexibility, 

and input/output ports for external communication. Because of these features, FPGAs are 
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commonly used as a coprocessor for systems with large amounts of computations. The first 

step of using a coprocessor involves streaming data from the host, as shown in Figure 8. 

Then the FPGA performs computations in parallel, using the received data. Once results have 

been computed, they are sent back to the host processor for further data analysis. 

 

Figure 8: Co-processing 

Although parallel processing appears to be universally effective, programs can take 

advantage of it only when the application permits. In order to utilize the FPGA, independent, 

repetitive computations must be inherent in the application. DNA reassembly is able to take 

advantage of the FPGA because reassembly entails massive amounts of base by base 

comparisons. The Design Specification (Chapter 5) of this thesis further examines this 

observation by describing the specific computations necessary for DNA reassembly.  

2.3.2 Advantages of the FPGA 

In addition to the FPGA, other accelerators exist for massive parallel computing. One 

example is the Graphics Processing Unit (GPU), which is commonly used to accelerate the 
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process of rendering three-dimensional (3-D) graphics. GPUs are composed of a large 

number of fine-grained parallel processors to assist in real-time, operation-heavy 

computations [20].  However, in cases where many random accesses are made to external 

memory, latency decreases the performance of GPUs significantly. This limitation applies to 

the DNA reassembly application because of the randomness of the short reads. The genomic 

data stored in external DRAM is read in an unpredictable order, which slows down the 

computation process on a GPU. 

Alternatively, application-specific integrated circuits (ASICs) have the best performance and 

compute 3-4 times faster than FPGAs [17]. However, unlike GPUs and FPGAs, ASICs 

cannot be reprogrammed. This limiting factor results in an increase in implementation time 

as well as NRE costs.  

FPGAs prove to be a useful middle ground between ASICs and CPUs. It is able to generate 

large computations in parallel and offers the flexibility of reprogramming. Accordingly, 

FPGAs appear to be the best hardware platform for a short read reassembly accelerator.  

2.3.3 Pico Computing 

Pico Computing provides hardware development systems that contain FPGAs, external 

memories, and communication ports. API libraries and examples are also offered to support 

the hardware system. This project uses Pico Computing’s M-501 model. The M-501 uses 

Xilinx’s Virtex-6 LX FPGA, x8 PCI Express Host Interface, and 512 MB DDR2. The PCI 

Express interface allows efficient bandwidth between the host software and the Xilinx 

FPGA. In addition, the 512 MB of DDR2 can be utilized to store large amounts of data.   
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Pico Computing’s products ease the design of coprocessor systems by having a range of 

features for hardware designers. The provided memory controller uses a multi-port manager 

for projects with several memory streams. By querying each port in a round robin fashion, 

the controller is able to keep memory accesses from different modules independent. 

Furthermore, the software API allows C++ programs to transfer large quantities of data via 

PCI Express. Because 200 million 76 bp short reads must be streamed from the host, a large 

bandwidth is needed for this design. 
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3. Algorithms 

3.1 Dynamic Programming Algorithms 

Dynamic programming algorithms for DNA sequencing are commonly used as part of the 

reassembly process. These types of algorithms compare the sequence of two genomes using a 

string matching procedure. The score reveals the best alignment by rewarding matches and 

penalizing indels and mismatches. As a result, the best score comes from a perfectly 

matched, gapless sequence of bases.  

3.1.1. Scoring  

Because dynamic programming sequence alignment algorithms incorporate indels as 

penalties in the score, they are more accurate than a standard string comparison. The first 

step in these algorithms is to set one sequence to be compared on the left side of the matrix, 

while setting the other sequence across the top. For our design, the read sequence is on the 

left side of the matrix, while the reference sequence is displayed across the top, as shown in 

Figure 9. 

 

Figure 9: Dynamic Programming Score Matrix 
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The second step of this process involves initializing the matrix by setting the first row and 

first column of the score matrix to an initialized value. These initialized values depend on the 

algorithms used, which will be further discussed in the next section (3.2. Smith-Waterman vs. 

Needleman-Wunsch). The initialized matrix is shown in Figure 10.  

 

Figure 10: Initialized Matrix 

After the second step, the third step requires the derivation of scores from neighboring 

elements in the matrix. These neighboring locations include the following three units: 1) the 

above left unit, 2) the left unit, and 3) the unit above, as illustrated in Figure 11.  
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Figure 11: Derived Scores 

Once these scores are derived, match bonuses, mismatch penalties, and gap penalties are 

computed on each score; this is the fourth step to the sequence alignment dynamic 

programming algorithm. A score derived from the upper left corner creates a contiguous 

alignment at that particular location in the alignment. For these types of scores, the aligning 

bases are compared to give a match bonus or mismatch penalty. For Figure 11, these bases 

are “G” for the read and “C” for the reference sequence. On the other hand, a score derived 

from the remaining above or left locations signifies a “gap” or a deletion in either the read or 

reference; these scores are given gap penalties. A score from the left indicates that there is a 

gap in the read, which is equivalent to an insertion in the reference. Conversely, a score from 

the above unit signifies a gap in the reference sequence or an insertion in the short read. Once 

these scores are computed, the maximum of the computed scores is the final score of that 

element in the matrix. 

The fifth step of a sequence alignment dynamic programming algorithm involves searching 

through the matrix to find the highest score, and therefore the best alignment location for the 
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two alignments. The highest score is where the last base in the alignment occurs. A summary 

of the five steps are displayed in Table 1.  

Table 1: Dynamic Programming Algorithm for Sequence Alignment, Steps 

Step  Process 

1. Set the reference sequence across the top of the 2x2 matrix and 
the read sequence along the side. 

2. Initialize the first row and first column of the score matrix (values 
depend on algorithm) 

3. For each element, derive scores from neighboring above, above-
left, and left units. 

4. For each element, compute match and mismatch scores on above-
left score and gap score on above and left scores. Choose maximum 
of computed score as final score.  

5. Once all elements in matrix are filled, find the highest score, which 
is where the last base in the alignment occurs. 

An example of the Smith-Waterman algorithm, one of the most commonly used sequence 

alignment dynamic programming algorithms, is given in the next section. 

3.1.2. Smith-Waterman Algorithm Example 

 

Figure 12: Smith-Waterman Example [21] 
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In the example of Figure 12, the first step involves setting the reference sequence across the 

top and the read sequence along the side. Then, for the Smith-Waterman [23] algorithm, the 

first row and column is set to zeros. Once the score matrix is initialized, each element derives 

a score from its above, above-left, and left neighbors. For the dotted-lined element in Figure 

12, all zeros are derived from the neighboring cells.  

For this example, a match score of +1, a mismatch of -1, and a constant gap penalty of -1 are 

given. Thus, a score of -1 (gap), +1 (match), and -1 (gap) are computed from the above, 

above-left, and left cells, respectively. The highest score of the three is then the final score of 

that cell, which is +1. This method is then implemented on every cell of the matrix. 

In addition, the Smith-Waterman algorithm finds the best alignment at the highest scoring 

matrix element. For the example in Figure 13, +3 occurs in the last “G” of the reference and 

the third “G” of the read sequence. The final alignment is therefore “GCG”, as shown in 

Figure 13. 

 

Figure 13: Smith-Waterman Alignment [21] 
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3.1.3. Affine Gap Scheme 

There are two major methods to deal with scoring indels: a constant gap scoring scheme, and 

an affine gap scoring scheme. The constant gap scoring method uses a constant value to 

penalize each gap individually. This method was used in the Smith-Waterman algorithm 

example of the previous section.  

In contrast, the affine gap scoring scheme is more complex because it penalizes a new gap, or 

an “open-gap”, more than an “extended-gap”. An open-gap has no other gaps directly 

preceding it, while an extended-gap prolongs an existing gap in the same direction. The 

affine gap scoring method is more accurate because a large insertion, as opposed to multiple 

single insertions, is considered to be a better alignment biologically; therefore, we 

implemented the affine gap scoring into our system. 

3.2 Smith-Waterman vs. Needleman-Wunsch Algorithm  

In addition to the Smith-Waterman algorithm, the Needleman-Wunsch [22] is another 

commonly used sequence alignment dynamic programming algorithms. The Smith-

Waterman algorithm is a local sequence alignment algorithm, while the Needleman-Wunsch 

is a global sequence alignment algorithm. This section will discuss the difference between 

these two algorithms as well as their implementations. 

3.2.1 Differences 

The Smith-Waterman Algorithm is a local sequence alignment algorithm, which finds similar 

areas in two sequences. It does not penalize gaps in the beginning and end of a sequence, so 

it is most advantageous in finding sections of perfect alignment. However, because the 



23 
 

 
 

alignment is not constrained to the entire sequence, large areas of bases may be neglected, 

which was shown in the previous Smith-Waterman example of Figure 13.   

Alternatively, the Needleman-Wunsch Algorithm is a global sequence alignment algorithm, 

which compares the entire sequence of two genomes, end-to-end, as illustrated in Figure 14. 

 

Figure 14: Global Alignment [21] 

Because of this end-to-end comparison, the Needleman-Wunsch Algorithm is useful for 

utilizing an entire short read sequence. However, there are cases where the best alignment is 

needed for sections of the sequence, rather than the entire strand.  

As a result, we chose to use a hybrid Smith-Waterman/Needleman-Wunsch algorithm. In our 

design, the short read and the reference use different algorithms. The short read sequence 

utilizes the Needleman-Wunsch algorithm while the reference sequence uses the Smith-

Waterman algorithm. A summary of these observations is listed in Table 2.  

Table 2: Hybrid Algorithm 

Algorithm Usage Description 

Smith-Waterman Reference Sequence Allows a portion of the 
sequence to be aligned 

Needleman-Wunsch Short Read Sequence Constrained to use entire 
sequence for comparison 
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The implementation of this hybrid algorithm is accomplished in the initialization stage of the 

program, while the core of the dynamic programming algorithm remains the same.  

3.2.2. Implementation 

The main difference in implementing a local alignment and a global alignment lies in the 

initialization of the scoring matrix. Initializing a dynamic programming matrix requires 

assigning values to the first row and column. The Smith-Waterman algorithm sets both the 

first row and column to zeros, as shown in the previous example of Figure 12. 

Alternatively, the Needleman-Wunsch algorithm uses a gap-score initialization. Only the top 

upper-left corner is assigned to a zero, while other scores in the first column and row are 

assigned to a gap score. Figure 15 shows how the initialization portion of the matrix would 

differ from the Smith-Waterman algorithm.   

 

Figure 15: Needleman-Wunsch Initialization 

Note that only the initialization scores are filled in for this figure. For our algorithm, -2 is 

used for the open gap penalty, while -1 is used as the extended gap penalty. In addition, +2 is 
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used as the match bonus and -2 is used the mismatch penalty. The first base in the first row or 

column receives an open-gap score because it aligns to a gap at the beginning of the 

sequence. The rest of the units in the row or column receive an extended-gap score, in 

addition to the preceding gap scores.  

From these two initialization schemes, the hybrid Smith-Waterman/Needleman-Wunsch 

algorithm can be found, which is illustrated in Figure 16. 

 

Figure 16: Hybrid Initialization 

As previously mentioned, the reference sequence uses the Smith-Waterman algorithm, and 

therefore, initializes its side of the matrix with zeros. The short read sequence uses the 

Needleman-Wunsch algorithm, and therefore, requires a gap-score initialization scheme.   
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3.3 Computational Burden 

Although the dynamic programming algorithm proves to be an accurate sequence 

comparator, the computation time limits its efficiency. For a human genome, a 3 billion bp 

reference must be aligned to 200 million, 76 bp reads. This computation runs at 

 (  ) where   is the number of bases in a reference and   is the number of total read 

bases. The number of clock cycles for this computation in shown in Equation 1. 

           

                             

 (   )                                 

Equation 1: Dynamic Programming Cycles 

This equation assumes that one base-to-base computation takes twenty clock cycles in a CPU 

because 5 additions, 5 comparisons, as well as about 5 branches are made for each score. As 

a rough estimate, for a system running on 2.27GHz, with 16 cores, it would take 800 years to 

reassemble a human genome, if we assume that the dynamic programming algorithm is the 

only running program, as shown in Equation 2. 

  
                  

                     
 

                        

Equation 2: Dynamic Programming Computation Time 

Because of the unreasonable amount of time it takes to do the computation, another 

algorithm was implemented into our design. 



27 
 

 
 

3.4 The BFAST Algorithm 

Current software alignment programs use various algorithms to ease the computational costs 

of sequence alignment. We adopted the algorithm from BFAST [13], because it has proven to 

be an accurate, commonly-used software alignment program.  

BFAST addresses the performance drawbacks of sequence alignment dynamic programming 

algorithms by using a premade index to quickly identify candidate alignment locations 

(CALs) [13]. CALs are locations in the reference where the read is most likely to match. An 

illustration of a read and a couple of its CALs is shown in Figure 17. 

 

Figure 17: CALs of a Read 

Once all possible CALs are found for a given short read, the dynamic programming 

algorithm runs on only those areas, which decreases the computation time significantly. The 

actual runtime of BFAST on the same 16 thread, 2.27 GHz machine is 6 hours, 38 minutes, 

and 15 seconds. 
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Table 3: BFAST Actual Runtime 

Process Running Time 

BFAST’s Algorithm + Dynamic Programming Algorithm 
  

6 hours, 38 minutes and 15 seconds. 

Dynamic Programming Algorithm alone 800 years  
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4. System Design 

BFAST improves the alignment computation time of DNA reassembly by finding CALs and 

running the dynamic programming algorithm solely on these areas. Note that there are two 

main portions to the overall algorithm: 1) the Matcher, which finds the CALs, and 2) the 

Aligner, which runs the sequence alignment dynamic programming algorithm. This thesis 

primarily covers the Aligner, while [15] discusses the Matcher. Figure 18 illustrates the data 

flow between the Matcher and the Aligner.  

 

Figure 18: Overall System 

The reference and other tables are precompiled in software, and then are stored in DRAM. 

The system begins when short read data is streamed into the hardware. The Matcher receives 

the reads first, and uses segments of the short read to look up CALs in memory. As the CALs 

are found, the Matcher passes them on to the Aligner. The Aligner is then able to score each 

CAL, and then pick the best alignment of the short read to the reference. The next sections 

discuss the various parts of the Matcher.  
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4.1 The Matcher 

The Matcher’s main purpose is to find all possible CALs for a short read. It accomplishes 

this task by using a precompiled index table of reference data, where short segments of the 

reference, called seeds, are used as the address. When a short read is streamed in, fixed 

length segments of the read are extracted and used as the address in the table. In this way, the 

short read and reference are quickly compared, and a simple look-up into the index obtains 

CALs for a read. The following sections describe these seeds and the look-up table. 

4.1.1 Generating Seeds 

The matcher obtains segments of the reference by sliding a window across the sequences. 

The mask and a segment of the reference or read performs a logical AND operator to extract 

seeds, as shown in Figure 19.  

 

Figure 19: Generating Seeds 

To create an index, the mask is slid across the entire reference sequence and obtains every 

pattern of nucleotide bases that exist in the reference. Our mask is composed of 22 ones, 

creating a seed length of 44 bits. The mask can contain 0’s to create gaps in the seeds, but we 
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found the mask with all 1’s sufficient for this application [13]. When processing short reads, 

the seeds are extracted and are used as the address in a pre-compiled look up table, the RIT.  

4.1.2 The RIT 

The Reference Index Table (RIT) stores every occurrence of a seed in the reference. To fill in 

the RIT, seeds are extracted from the reference sequence, and the locations of the seeds are 

recorded in the table.  

 

Figure 20: Creation of the RIT 

In the example of Figure 2-, a seed, “CATGCTAC” is extracted from the reference at base 

63. This seed is used as an address into the table, and location 63 is stored as data. This 

process continues along the entire reference to complete the RIT.   
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4.1.2 Using the RIT 

During runtime, our system utilizes the prebuilt RIT to find CALs for each short read. The 

mask used for the reference sequence is utilized to extract seeds from the stream of short 

reads. Then, the system uses the generated seeds to look up the read’s CALs, producing a 

quick CAL finder.  

 

Figure 21: Using the RIT 

In the example of Figure 21, the seed, “CATGCTAC” is extracted from Read #76. Read # 76 

is the 76th read in the stream from the host software. The extracted seed is then used to look 

up the CALs: 8, 19, 63, and 155.  In this manner, the RIT allows for a quick way to compare 

segments of the reference with the short reads.  
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4.1.3 Implementation in Hardware 

In theory, the RIT is a single CAL table. However, in hardware, our system divides the RIT 

into two look up tables: the Pointer table and the CAL table. The Matcher utilizes the bits of 

the seed to look up into these two tables, as shown in Figure 22. 

 

Figure 22: Seed Division 

BFAST uses a default seed length of 22 bases, which is proven to be a reasonable length for 

sequence alignment [13]. Because a base requires 2 bits, the seed is composed of 44 bits. The 

seed is first hashed before it is subdivided into categories. More information about the 

hashing function can be found in [15]. The first 29 bits of the seed are the Address and the 

Tag, which are used for the Pointer table. The last 15 bits of the seed is called the Key, which 

is used in the CAL table. The two tables are shown in Figure 23. 

 

Figure 23: Hash Table and Index Table 
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The table look-up begins with the Address, which locates a row in the Pointer table. The first 

value in that row, Start, is saved for the CAL table look-up. Then, the Tag bits of the seed are 

used to find the correct offset values for the next step. These first two steps complete the 

Pointer table look-up.  

The CAL table look-up begins with the addition of Start and Offset; this combined value 

identifies the beginning of an area in the CAL table. The end of that area is located using the 

second offset. Then, the Key bits of the seed are used to pass CALs that are associated with a 

matching Key within that area. 

4.1.4 The CAL Filter 

Because a sliding window is used to extract seeds, many seeds come from the same read and 

redundant CALs are inevitable. Therefore, our system incorporated a CAL Filter in the 

Matcher to improve the efficiency of the alignment computation. 

 

Figure 24: System with Filter 

In Figure 24, the first step of the Matcher extracts seeds for the RIT. Then, the CALs for that 

read are sent to the input of the filter. The last step filters all the CALs for a read, so that each 
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CAL appears only once. Note that in this example, CALs 47, 238, and 822 show up multiple 

times before the filtering step. 

4.1.4 CAL Finder and CAL Filter 

 

 

Figure 25: Data Flow of System with Matcher Highlighted 

In Figure 25, the Matcher is broken down into the CAL Finder and the CAL Filter. The 

system starts running when reads are streamed from the software. The CAL Finder is the first 

component that receives reads. It extracts seeds to obtain CALs from the RIT in DRAM, and 

then sends them on to the CAL Filter. Once the CALs are filtered, they are forwarded to the 

Aligner, where they are used to acquire the reference from DRAM. With the reference 

sequence, the Aligner scores each CAL for a read, and outputs the Read ID, Location, and 

Score for the highest scored location. 
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4.2 The Aligner 

The Aligner is the subsystem that compares the read and reference using the dynamic 

programming algorithm described in Chapter 3.1. It receives filtered CALs and short read 

sequences from the Matcher and finds the best CAL for a given read. Then, score 

information from the dynamic programming algorithm is sent back to the CPU. 

 

Figure 26: Data Flow of System with Aligner Highlighted 

Figure 26 breaks down the Aligner into two main components: the Array and the Controller. 

The Array receives the read and reference sequences and outputs their alignment score using 

the dynamic programming algorithm.  The dynamic programming algorithm is an 

independent process for each read and CAL pair, so multiple Arrays can run in parallel.   

The task of the Controller is to handle the multiple array units and the memory accesses into 

the DRAM. The Controller uses a CAL, which is a numerical location value in the reference 

sequence, to obtain the nucleotide base sequences at that location from memory. The Array 
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and Controller work together to output the best alignment for a short read sequence in the 

reference. In the next section, we discuss the Aligner hardware.  



38 
 

 
 

5. Design Specifications 

This chapter discusses the various modules of the Aligner subsystem and describes how each 

was implemented in hardware. There are five main sections in this chapter: 

1) Top Level: interconnects the other four modules together and crosses clock 

domains.  

2) RAM Controller: uses a CAL to read data from external DRAM. 

3) Computation Array: finds the best score for a read and CAL pair using the 

sequence alignment dynamic programming algorithm. 

4) Controller: handles the flow of data from the RAM Controller and the FIFOs to 

the multiple Computation Arrays.  

5) Track: receives the output scores of the Computation Arrays and finds the best 

score for a read. 

5.1 Top Level  

The Top Level module instantiates the sub-modules of the Aligner, and wires signals 

together for flow control and data management.  In addition, this module uses multiple 

asynchronous FIFOs to cross clock domains. This section will begin with a discussion of the 

various clocks and FIFOs in the Top Level module.  

5.1.1 Clocks 

There are three different clock speeds in the Aligner: the PicoClk, Ram_Clk, and the SWClk. 

These clocks, their uses, and their speeds are summarized in Table 4. 
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Table 4: Clocks 

Clock Name Use Speed 

PicoClk Software/hardware communication, 
Matcher/Aligner communication 

250 MHz 

Ram_Clk Pico’s memory interface 

 

267MHz 

SWClk Dynamic programming computation 

 

125 MHz 

The first clock listed in the table is the PicoClk, which runs the communication bus between 

the CPU and the FPGA, and between the Matcher and the Aligner. Similarly, the Ram_Clk is 

used to communicate with the external DRAM in Pico Computing's memory module. The 

SWClk runs the Computation Array and Controller, which runs on a slower clock due to the 

combinational logic involved in computing scores.  

5.1.2 FIFOs 

The Top Level module contains three FIFOs, including the Read FIFO, CAL FIFO, and the 

Output FIFO. The Read FIFO lies in between the CAL Finder and the Aligner to hold short 

read data. Similarly, the CAL FIFO sits in between the CAL Filter and the Aligner to store 

CAL data. Both the Read FIFO and the CAL FIFO cross from the PicoClk domain to the 

SWClk domain.  

The last FIFO in the Top Level Module is called the Output FIFO, which collects the Score, 

Location, and ReadID for each short read. The Output FIFO crosses from the SWClk domain 

to the PicoClk domain in order to communicate with the software on the host processor. All 

FIFOs, clock boundaries, and sub-modules are illustrated in Figure 27. 
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Figure 27: Top Level Module 

5.2 RAM Controller 

The Aligner uses an external memory to store reference sequence data. To read from the 

memory, the RAM Controller works with Pico Computing’s memory module in addition to 

the Controller. It also contains internal FIFOs to cross between the SWClk domain and the 

Ram_Clk domain. 

5.2.1 Memory Module 

To obtain reference data from the DRAM, the RAM Controller uses the control logic 

illustrated in Figure 28. 
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Figure 28: RAM Controller Control Logic 

The RAM Controller’s initial state begins when a valid CAL is available and ready to use. 

Once this occurs, the RAM Controller initiates a read from the DRAM uses a modified CAL 

as the address. When after approximately 40 cycles, when data is available, a “RefValid” 

signal is asserted by the RAM Controller to alert the Controller of valid reference data, which 

is stored locally in an asynchronous FIFO. As soon as the Controller is ready, it asserts 

RefSend to indicate the reference data was received, and then RefValid is deasserted by the 

RAM Controller. 

5.2.2. DRAM Addressing 

To read from the correct location in memory, several modifications must be made to the 

CAL. Pico Computing’s memory module requires reading 32-bit addressable, 256-bit aligned 
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data. This implies that each 256-bit data is stored in addresses that increment by 8, as shown 

in Figure 29.  

offset
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Aligner
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256 bits
256 bits

256 bits
256 bits

256 bits

offset+8
offset+16
offset+32
offset+40

 

Figure 29: Reference in Memory 

In addition, once a CAL is received from the Matcher, it must be converted from a base 

location to a bit location in the reference. The CAL value   represents the number of 2-bit 

bases from the start of the reference. Since the memory is word-addressed (32-bits) a division 

by 16, or a right shift by 4, is required to convert the CAL to an address in memory. The 

address modifications described in this section are summarized in Equation 3. 

     (     )          

Equation 3: Address Computation 

In this equation,         is the base offset from the Matcher data at which the Aligner data 

is stored in memory.  
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5.2.3. Reference Sequence in Memory 

Our current system uses 192 bases from the reference in the Computation Array. This is 

because our read base length is 76 bp, and the reference length must be at least 10bp longer 

on each side of the short read to handle indels; this requires a 96 bp reference. Pico 

Computing’s memory module keeps data in 128-bit bursts in memory, but we must ensure 

that we get at least 96 bp (or 192 bits) for each CAL, no matter where it lies in memory. For 

example, in Figure 30, a CAL lies at the end of a memory burst. If we were to read just the 

first two bursts, the last 32 bp of the 96 bp reference chunk would not be loaded into the 

Aligner. Therefore, 3 bursts, or 192 bases, are needed for each reference in the Aligner. 

 

Figure 30: Aligned CAL in Memory 

Because Pico Computing’s memory module reads data in 128-bit, 256-bit aligned bursts, we 

must read 512 bits of data from memory for every reference sequence. Although we read 

512-bits total, the reference only needs a 384-bit section of it. In addition, The Matcher sends 

a CAL as a 128-bit aligned location [15], so we must determine whether to take the MSB or 

the LSB 384-bits of the 512-bit data from memory. If the CAL is aligned to 256 bits, this 

indicates that its address is a multiple of          , and we can take the LSB of the data, 

as shown in Table 4.  
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Table 4: Aligned Reference 

Data Bits [511:384] [383:256] [255:128] [127:0] 

Burst # 4 3 2 1 

If the CAL is not a multiple of 8, the MSB data is taken instead, as shown in Table 5. 

Table 5: Unaligned Reference 

Data Bits [511:384] [383:256] [255:128] [127:0] 

Burst # 4 3 2 1 

 

5.3 Computation Array 

The Computation Arrays are used to compute the dynamic programming algorithm score of 

the reference and read sequences. Recall that the score reveals where the read best aligns in 

the reference. In the array, the read sequence is stored in an internal register, while the 

reference sequence is shifted in each cycle by a Reference Shifter that feeds this array. 

To replicate the behavior of the dynamic programming algorithm’s score matrix, each read 

base meets with each reference base in the Computation Array, when the reference sequence 

is shifted in. This process is described in Figure 31. As soon as the entire reference sequence 

shifts through, the computation is finished for the two sequences, and a unit at the bottom of 

the Computation Array outputs the Score and Position of the alignment.  

In addition to the dynamic programming score, various flow control signals are generated by 

the array. These signals interact with the Controller so that new sequences can be sent for 

computation. These features will be further discussed in the following sections.  
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Figure 31: Computation Array 

5.3.1 Reference Shifter 

The Reference Shifter’s purpose is to keep a reference sequence readily available for the 

Computation Array and convert from the parallel send of the reference from the memory to 

the serial stream the Computation Array needs. Because of this feature, the Computation 

Array has the ability to operate on two reference sequences at a time: one shifting out of the 

Reference Shifter and one shifting through the Computation Array. We chose to operate on 

two reference sequences at one time because there are multiple CALs for a majority of the 

short reads. This design choice creates a convenient and efficient way to pipeline the 

dynamic programming algorithm computation. 

However, our design does not allow references from two different reads in a single 

Computation Array at one time. If we were to include this feature, the arrays could 
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continuously shift and compute, which would accelerate this part of the system. However, the 

Computation Array would also have two different reads simultaneously in the computation, 

and we would have to keep track of when and where to load a new read in, as shown in 

Figure 32.  
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Figure 32: Multiple Reads 

Cycle t is the clock cycle prior to Cycle t+1, and the change in the reference and read data is 

shown through these diagrams. A separate read register is required for this design, and the 

read in a cell would be loaded as soon as the previous read’s computation is complete in this 

cell.  
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In addition, currently, the Computation Array is not the bottleneck of the system, so it is not 

necessary to accelerate this portion of the system. Shifting reference sequences from multiple 

reads would require more complex logic for no increase in efficiency of the overall system. 

Thus, for simplicity, this logic was not implemented our design. 

5.3.2 Computation Units 

The Computation Array is composed of multiple Computation Units, and there are as many 

units as there are bases in a short read sequence. Each unit represents an element in the score 

matrix and computes a score for one reference base and one read base each clock cycle.  

Three major steps are required to compute the score of one Computation Unit. First, each 

Computation Unit receives scores from neighboring units. Then, it uses those scores to 

compute its own score. The last step passes the Computation Unit’s computed scores to its 

own neighboring elements.  

The derived scores are from the following units in the score matrix: the Left unit, the Up 

(above) unit, and the Diag (above-left/diagonal) unit. Figure 33 displays how each of these 

five scores are derived.  
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Figure 33: Section of the Score Matrix with Derived Scores 

In this figure, the current unit is highlighted in gray, and its registers hold three values. These 

values include the Final score, the gap extended score from Up, and the gap extended score 

from the Left. The input scores are marked in solid arrows while the scores sent on by the 

current unit are marked in dotted arrows. There are five input scores total, two from each gap 

direction, and one from the diagonal. 

The second step of the score finding process involves the computation of new scores by 

using the five derived values. This computation is explained in Table 6.  
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Table 6: Score Computation 

Score Name Description Equation 

LeftOpen The open-gap score for a new 
gap from the left 

LeftOpen = Left – OPEN_GAP¹ 

LeftExtend The extended-gap score for an 
extended gap from the left 

LeftExtend = LeftExtend – EXTENDED_GAP² 

UpOpen The open-gap score for a new 
gap from above 

UpOpen = Up – OPEN_GAP¹ 

UpExtend The extended-gap score for an 
extended gap from above 

UpExtend = UpExtend – EXTENDED_GAP² 

DiagScore The diagonal score from the 
Diag unit with the match 
bonus or mismatch penalty  

DiagScore= match? (Diag +MATCH_BONUS³): 
(Diag-MISMATCH_PENALTY4) 

In our design, the following values are assigned to penalties and bonuses: 
¹OPEN_GAP = 2 
²EXTENDED_GAP = 1  
³MATCH_BONUS =2 
4
MISMATCH_PENALTY = 2 

The open gap scores are computed from the Final scores of neighboring elements, while the 

extended scores are computed from the extended scores of neighboring elements. In addition, 

DiagScore depends on the current unit’s reference base and read base. If the bases match, a 

bonus score is given; otherwise, a penalty is taken away from the derived DiagScore.  

The third step of the score computation involves finding the maximum of the computed 

values. In the sequence alignment dynamic programming algorithm we implemented, the 

best score is the highest score because mismatches and indels are penalties, while matches 

are bonuses. As a result, the best score is found from the maximum of the fives scores in 

Table 6, as shown in the segment of Verilog in Figure 34.  
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Figure 34: Score Computation 

In Figure 34, “GapMax” is the maximum of the gap extended values, LeftExtendPrev and 

UpExtendOut. The LeftExtendPrev and UpExtendOut scores take part in the computation of 

the final score, and are also saved in a register so that its values can be passed on to 

neighboring matrix elements. The Final score is found from the maximum of the score from 

DiagScore and GapMax. 

In our system, the minimum positive score is -78, as shown in Equation 4. 

 

 

//Compute bonuses and penalties 

always @(posedge clk) begin  

  

LeftExtend <= LeftExtendPrev - GAP_EXTEND_COST; 

 LeftOpen <= Final - GAP_OPEN_COST;       

UpOpen <= Up - GAP_OPEN_COST; 

 UpExtend <= UpExtendIn - GAP_EXTEND_COST;  

 MatchScore <= Diag + MATCH_BONUS; 

 MismatchScore <= Diag – MISMATCH_PENALTY; 

 

end 

 

//Final UpExtend score for unit, sent to bottom unit 

assign UpExtendOut = (UpOpen < UpExtend)? UpExtend:UpOpen; 

 

//Final LeftExtend score for unit, input to register 

assign LeftExtendPrev = (LeftOpen < LeftExtend)? LeftExtend:LeftOpen; 

  

//Maximum gap score 

assign GapMax = (UpExtendOut < LeftExtendPrev)? LeftExtendPrev:UpExtendOut; 

 

//Maximum match/mismatch score  

assign DiagScore = (match) ? MatchScore:MismatchScore; 

 

//Final Score 

assign Final = (GapMax > DiagScore) ? GapMax:DiagScore; 
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 (         (                         ))   

 (  (       ))      

Equation 4: Minimum Score in Design 

This would require 8 bits to implement a signed number. In addition, the maximum positive 

score is 152, as shown in Equation 5. 

(                       )   

         

Equation 5: Maximum Score in Design 

The maximum score in our design requires 9 bits for a signed number. Therefore, 9 bits was 

used for the scores in our system. The OPEN_GAP, EXTENDED_GAP, and 

MATCH_BONUS were listed in Table 6. 

5.3.3 Score Matrix vs. Computation Array 

The Computation Array utilizes the inherent parallelism in FPGAs by running multiple units 

simultaneously, as illustrated in Figure 35. 
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Figure 35: Clock Cycles in Computation Array 

In Figure 35, the Computation Array starts at clock cycle 1, where the first reference base 

and the first read base use the dynamic programming algorithm to compute a score. At clock 

cycle 2, read base “G” is computed with reference base “C”, while read base “C” is 

computed with reference base “G”. In this way, several units are running at the same time in 

most clock cycles; only the first clock cycle and the last clock cycle have a single unit 

computing on its own.  

Since the computation proceeds as a diagonal wave front through the dynamic programming 

array, we only need as many hardware units as the length of the longest diagonal.  Since the 

read is shorter than the reference, we need as many units as the length of the read.  Each unit 

is responsible for computing an entire row of the matrix, one cell at a time.  This means that 

each unit receives one base of the read at the beginning of the computation, and the bases of 

the reference stream through the array, from the top to the bottom. 
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Because of this diagonal computation, the Left, LeftExtend, Up, and UpExtend of each unit 

is computed in the previous clock cycle, and Diag from two cycles ago. Left and LeftExtend 

come from the same unit, one cycle earlier.  Up, UpExtend, and Diag come from the cell 

above the unit. The input score connections are shown in Figure 36. 
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Figure 36: Inputs for a Computation Unit 

Note that this figure does not display how each Final, LeftExtend, and UpExtend scores are 

computed, just how they are derived to be used for computation. Like the score matrix, the 

Computation Unit directly receives the Up and UpExtend scores from the unit above. On the 
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other hand, the Diag, Left, and LeftExtend scores are registered values because a clock cycle 

delay is equivalent to moving one unit to the left of the matrix (across the reference 

sequence). Therefore, the old Final value is used as Left, while the old LeftExtend value is 

used as the input LeftExtend value. In addition, the old Up value is used as the Diag value, 

which is equivalent to the above left value in the score matrix.  

5.3.4 Bottom 

Because the short read uses a global alignment dynamic programming algorithm, the highest 

score and position can be found by searching through the scores in the bottom row of the 

matrix [21]. The bottom unit of the Computation Array, shown in bold in Figure 31, receives 

scores from the last row of the matrix, computed by the last computation unit of the 

Computation Array. To find the best position and score of two sequences, the unit keeps 

track of the maximum score. Then, it holds onto the maximum score and position until the 

entire reference has shifted through the Computation Array. Once the end of the reference 

sequence arrives, the best score and location of that alignment is sent to the output.   

5.3.5 Control Signals 

Each Computation Array creates control signals for the Controller to initiate and end the 

computation process. Two primary signals are generated by the array in the flow control of 

this process: “RefReady” and “ReadReady”.  

When the entire reference sequence is shifted out of the Reference Shifter, the RefReady 

signal is asserted. In this way, the RefReady signal implies that a new reference sequence can 

be loaded in the empty register, as long as it uses the same read. Recall that a new reference 
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is loaded only if a short read has multiple CALs to compute against, because only one short 

read is in the Computation Array at a time. 

Conversely, the ReadReady signal implies that the Computation Array is available for a new 

short read. As soon as the reference sequence completely shifts out of the Computation 

Array, a Done bit is asserted by the bottom unit to indicate that the computation for one 

reference and read pair has been completed. If both the Done signal and the RefReady signal 

are asserted, the entire Computation Array, including the Reference Shifter, is empty. Once 

this occurs, the ReadReady signal is asserted.  

From these observations, the last base of the reference sequence determines the generation of 

the RefReady and ReadReady signals. Figure 37 illustrates how the ready signals are 

generated in the system.  
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Figure 37: RefReady and ReadReady 

RefReady is asserted as soon as the last reference base touches the end of the Reference 

Shifter, while the ReadReady signal is asserted as soon as the Done signal and the RefReady 

signal are true. These signals are then routed to the Controller, so that more sequence data 

can be received for computation. 

5.4 Controller 

The Controller handles the flow control between the various modules in the Aligner, and it 

has three main tasks. First, it reads from the CAL FIFO and Read FIFO, when data is 

available. Then, it initiates a read from DRAM using the CAL and waits for a valid reference 

sequence. The last step sends available read and reference signals to the multiple 
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Computation Arrays. Several strategies are used to accomplish these tasks, which will be 

described in the next few sections.  

5.4.1 Target Computation Array 

The multiple Computation Arrays are handled in a round robin fashion via a “target” counter. 

The target array receives the next available reference and read sequences as soon as it is 

ready for a new computation. Once the array receives data, the target value is incremented 

and the Controller moves on to the next Computation Array. This cycle continues as the 

Controller waits for available data and ready signals from the target array.  

5.4.2 Sending Reads 

For each computation, the CAL FIFO is dequeued and a reference sequence is sent to an 

available array. However, because there can be multiple CALs for a read, the short read 

sequence may not need to be sent to a Computation Array for every computation. Thus, the 

Controller must keep track of when to dequeue a read sequence from the Read FIFO, as well 

as when to send a new read sequence to a Computation Array. Note that these two tasks are 

not equivalent. A read is dequeued from the Read FIFO only once per read. We send a read 

to a Computation Array, depending on whether the Computation unit has received that short 

read previously. If only one Computation Array existed, then a read would be sent once each 

time a dequeue to the Read FIFO occurred.  

To differentiate between a dequeue of a read versus a send, the Controller determines when 

to dequeue from the Read FIFO by using a “FirstCAL” bit from the CAL FIFO. The 

FirstCAL signal indicates that the next CAL is the first CAL for the new read; the FirstCAL 
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bit does not come with a CAL. Thus, the Controller must dequeue a new read when it sees an 

asserted FirstCAL bit. 

A “FirstRound” bit is kept for each existing Computation Array, so that the Controller knows 

when to send a new read. An asserted FirstRound bit implies that a Computation Array has 

not received the current read yet. Therefore, for each computation, if the FirstRound bit is 

true for a Computation Array, a new read sequence is sent. Figure 38 illustrates these various 

signals in the Aligner.  
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Figure 38: Controller Diagram 

5.4.3 Controller Flow Chart 

In Figure 39, the system flow chart begins with the CAL FIFO, which is dequeued as soon as 

data is available. This data contains a FirstCAL bit to indicate whether the ReadFIFO should 
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be advanced. If FirstCAL is true, the ReadFIFO is dequeued and all the First Round bits are 

asserted.  

The next step checks the FirstRound signal, and if this signal is asserted for the target 

Computation Array, ReadReady is waited upon. Once the target Computation Array asserts 

its ReadReady signal, the read sequence is sent to a Computational Array. If FirstRound was 

not asserted, the RefReady signal is waited upon instead.  

When the appropriate ready signal and RefValid is asserted, the Controller sends a reference 

sequence to the target Computation Array. Once this takes place, the cycle is completed and 

the target is updated for the next computation cycle.  
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Figure 39: Controller Flow Control 
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The Controller uses the Computation Arrays via round robin because of simplicity, and 

because this design choice would not affect the computation time. In the current system, the 

Computation Arrays are not the bottleneck. Therefore, the next array would be waiting for 

the reference sequence from memory, and the next available Computation Array would be 

ready for the computation as soon as reference data is available.  

5.5 Track 

The Track module collects scores and positions from the Computation Arrays. It uses these 

values to find the best CAL for a given read. Once this is found, the Read ID and its best 

Position and Score are sent to the Output FIFO. The data flow and control flow for the Track 

module is shown in Figure 40. 
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Figure 40: Track Diagram 

5.5.1 Inputs 

The CAL FIFO and Read FIFO send CALs and Read IDs to Track, which are stored in an 

internal FIFO. Track uses the CALs to find the best location of an alignment by combining 

the relative position output from the Computation Array with the CAL. The Position from the 

Computation Array is a location relative to the CAL, while a CAL is a place along the 

reference. The addition of these two values will give the exact base location of an alignment, 

as shown in Figure 41. 
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Figure 41: CAL, Position, and Location 

5.5.2 Generating Outputs 

Every time an array completes a computation, Track updates the highest score, along with the 

Position and ReadID. When the FirstCAL bit is seen, a new read is in the system, and the 

Score, Position, and ReadID of the old read are sent to the Output FIFO. This step finalizes 

the life cycle of a CAL and read pair through the Aligner. Figure 42 summarizes this chapter 

with a functional diagram.  
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Figure 42: Aligner Modules 
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6. Results 

6.1 Score Computation 

As mentioned in the last chapter, the Computation Array uses a slow clock for the scoring 

process. In order to increase the clock frequency, a design was implemented in hardware 

for speculation. This design evaluates all the diagonal, open-gap, and extended gap scores 

at once by evaluating ( 
 
)  ( 

 
)     comparisons simultaneously, as shown in Figure 

43. 
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Figure 43: Computation Array II 

As we expected, this version of the Computation Array was able to use a faster clock 

because it avoids doing comparisons in series, reducing the levels of logic. The period of 

the clock and the levels of logic of both systems are shown in Table 7.  
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Table 7: Computation Array II, Speed 

Computation Array I 

Data Path Delay 6.879ns 

Logic Levels 12 

  

Computation Array II 

Data Path Delay 5.215ns 

Logic Levels 7 

Although a faster clock is one of the signs of an efficient system, that is not always the 

case. In hardware, a smaller system provides the ability to have more parallelism. This 

observation is true because more Computation Array units are able to fit in one FPGA. 

Thus, both the clock rate and the number of units must be computed to evaluate 

throughput. Table 8 lists the sizes of each Computation Array and the number of arrays 

that are able to fit in one FPGA, if it used strictly for Computation Arrays. 

Table 8: Computation Array II, Area 

Computation Array I 

  Slice Registers Slice LUTs Block 
RAM/FIFO 

Slices 

Number of 4,414/301,440 10,044/150,720 0/416 2,830/37,680 

Percentage 1% 6% 0% 7% 

Number of Units 
per chip 

68 units 15 units infinity 13 units 

 

Computation Array II 

  Slice Registers Slice LUTs Block 
RAM/FIFO 

Slices 

Number of 4,413/301,440 13,073/150,720 0/416 4,066/37,680 

Percentage 1% 8% 0% 10% 

Number of Units 
per chip 

68 units 11 units infinity 9 units 
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In both versions of the Computation Array, the slices are the limiting factor because it 

restricts the number of units that are able to fit in each chip. Therefore, the throughput is 

calculated using the number of slices and the period of the Computation Arrays, as shown 

in Table 9. 

Table 9: Computation Arrays, Throughput in Alignments/slices-ns 

 Computation Array I Computation Array II 

Number of Slices 2884 4120 

Period (ns) 6.879 5.215 

   

Throughput 
(alignments/slices-ns) 

                  

From this table, we conclude that Computation Array I provides the highest throughput 

and is therefore, the most efficient design for our system, despite its lower clock speed. 

As a result, we kept the original computing algorithm of the system. 

6.2. System Runtime 

Our system was only able to fit the RIT and reference sequence of one chromosome in 

the human genome due to the memory limitations of the M-501. Figure 44 shows the 

system runtime on Chromosome 21, which is one of the 23 chromosome pairs in the 

human genome. 
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Figure 44: System Runtime on Chromosome 21 

Corey Olson ran the system and included the load time of the DRAM, with a single 

Computation Array. The load time was included because BFAST includes its load time in 

the runtime, and we want to compare our results with it.  

Running the system on Chromosome 21 proves that our system is applicable and 

accurate. However, because the reference sequence was generated using only one 

chromosome, less CALs are generated by the Matcher overall. This means that there are 

less dynamic programming algorithm alignments compared to a system with the entire 

human genome as the reference. Therefore, the runtime for the full human genome 

system is expected to be greater than the one gathered in this section.  
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We also ran BFAST on a 2.27 GHz, 16-core machine to compare against our results, as 

shown in Table 10. 

Table 10: System in Hardware vs. BFAST 

 System Runtime on 
10,000,000 Reads 

Hardware 122 seconds 

BFAST 1,918 seconds 

For Chromosome 21, our design is 15.7 times more efficient than the BFAST software 

program. We expect a more dramatic improvement in runtime on the full human genome, 

because of the efficiency of our dynamic programming algorithm. The human genome 

will require more computations in the aligning system, and this is where our system is 

most efficient.  

6.3. Aligner Runtime 

To analyze the performance of the Aligner system, we ran the program, without software 

streams or Matcher computations to interfere with the time measurements. The Aligner 

includes all the modules in Chapter 5. 

We measured this runtime by generating reads and CALs in hardware, so that the PCIe 

stream time would not affect the accuracy of this time measurement. The range of the 

runtime was found for two different types of data sets on the system. The first type of 

data is one in which there is a single short read for all CALs. The second type of data is 

one in which every read has only one CAL. These two sets will give the full range of 

possible runtimes for the system. This is because the first data type is the most efficient 

that could occur in the system, while the latter is the most inefficient type of data for our 
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system; this is due to the way the Reference Shifter preloads reference sequences for the 

same short read, but does not do so for two different reads.  

In this setup, we determined how multiple Computation Arrays affect the runtime of the 

Aligner system. Then, we compared this runtime to the overall system to analyze the 

possibility of the Aligner being the bottleneck.  

6.3.1. Multiple Computation Arrays 

To compare the effects of multiple Computation Arrays, we varied the number of 

Computation Arrays and measured the runtime of each system using the setup described 

in 6.3., with a large set of CALs. To collect accurate data, the design was run on a large 

time scale and consisted of approximately 1 billion alignments. The results from this 

experiment are graphed in Figure 45.  

 

Figure 45: Graph of Multiple Computation Arrays 
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The runtime of the Aligner decreases with each additional Computation Array, but starts 

to level out at 6-8 arrays due to the memory bottleneck. Once the graph saturates, the 

arrays begin to stall as they wait for reference data. These results show the effectiveness 

of multiple Computation Arrays, as well as the limitations of the memory system. 

6.3.2. Bottleneck  

The Aligner becomes the bottleneck of the system if its throughput is less than the 

throughput of the entire system. Recall that this system generated CALs and short reads 

in hardware to negate the effects of the PCIe stream. This setup (described in 6.3.) 

resulted in a 28-40 minute runtime range for an Aligner with one Computation Array, as 

shown in Table 11.  

Table 11: Bottleneck Runtimes 

Type of data (   CALs) Runtime (seconds)   Runtime 

1 Read in system 1,684 28 minutes, 4 seconds 

1 CAL per read 2,396 39 minutes, 56 seconds 

The bottleneck runtimes allow us to estimate the throughput of the Aligner versus the 

entire system with one Computation Array, which was found in section 6.2. on 

Chromosome 21. This comparison is shown in Table 12.  

Table 12: System vs. Aligner Throughputs 

 Throughput (thousands of 
CALs per second) 

Aligner 446-635 

System 123 

Table 12 shows that the throughput of the Aligner is greater than the system. The number 

of CALs for the system on Chromosome 21 was found to be 1,471,016 for 1,000,000 

reads. This indicates that the Aligner is not the bottleneck of the system. 
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6.4. Resource Utilization  

The system resource utilization, for the entire system, is plotted in Figure 46. 

 

Figure 46: Resource Utilization in the Aligner 
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performance.  

 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Slice Registers Slice LUTs Block RAM/FIFO Slices

P
e

rc
e

n
ta

ge
 

Types of Resources 

Resource Utilization 

4 Arrays

3 Arrays

2 Arrays

1 Array



73 
 

 
 

7. Conclusions 

7.1. Conclusions 

Our team designed a hardware system to align short read sequences for DNA reassembly 

and proved that it was achievable. We implemented the BFAST algorithm in FPGA 

hardware to accelerate the process by over 15 times. In addition, we expect this number 

to increase with the use of the entire human genome as the reference sequence. This will 

require a compute board with larger DRAM capacity.  

The FPGA demonstrated to be valuable in balancing design flexibility with computation 

speed, and allowed massively parallel comparison of genomic sequences. With our new 

program, we anticipate more applications and advantages to arise from the field of DNA 

sequencing.  

7.2. Future Design Considerations 

This thesis has shown that the reassembly hardware accelerator is a useful tool due to the 

significant decrease in computation time. However, several additions must be 

incorporated in order to fully utilize the system for human genome mapping. In addition, 

other considerations are made in the following sections to improve upon the system. 

7.2.1. Transferring to the M-503 Boards 

Although the system was able to run on Chromosome 21, due to the limitations of 

memory size in our M-501s the reassembly process on the entire human genome was not 

processed. In addition to the M-501 boards, Pico Computing provides an M-503 with the 
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same Xilinx Virtex-6 LX240T. The M-503 also contains x8 Gen2 PCIe and two 4GB 

DDR3 SODIMM. 

Because each M-503 board contains a total of 8GB of external memory, we would be 

able to fit our 30 GB human genome system into four boards. The transition from an M-

501 to the M-503 is expected to be fairly smooth, and with the new platform, the entire 

human genome will be able to run in one system. 

In addition, the M-503 has two different ports to external memory. This means that the 

memory bandwidth will increase by a factor of two, allowing more instantiations of 

Computation Arrays. We can estimate the approximate number of Computation Arrays 

needed to make full use of the memory system from Equation 6. 
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Equation 6: Saturation of Computation Arrays 

If we have a large number of Computation Arrays compared to the number of CALs per 

read, then we can approximate a Computation Array’s execution time by the time it takes 

to finish a complete ref – read comparison.  Since the references are 192 bases, and the 

reads 76 bases, it takes 268 clock cycles.  Recall that memory loads take approximately 

40 cycles, the memory clock is 267MHz, and the Computation Array’s clock is 125MHz.  
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Thus, for each memory port on a Pico card, we can support at most 14.3 Computation 

Arrays. 

On the M-501, which has one memory port, anything more than about 14 Computation 

Arrays will be wasted waiting for the memory to deliver data.  However, an M-503 with 

two memory ports can support up to approximately 28 Computation Arrays. 

Our current implementation of the Computation Arrays will fill the FPGAs in our system 

at about 9 units, which means we are compute-bound, not memory-bound.  Thus, to take 

advantage of the extra memory bandwidth available on the M-503 (or even to improve 

the performance on our current M-501 system) we need to optimize the size of the 

Aligner system, improve the clock speed of the Computation Array, or use a larger 

FPGA.  One possible mechanism is to use C-Slowing [24], which heavily pipelines 

circuits with feedback loops, but requires a circuit that can work on multiple independent 

tasks.  Short-read alignment meets the requirements of C-Slowing well, since we have 

these independent data sets, though careful design to avoid over-using the storage 

resources of the device may be needed. 

7.2.2. Memory Bottleneck 

To improve upon the computation time of this design, the memory lookups should be 

accelerated because it is the bottleneck of the system. More specifically, the bottleneck of 

the design lies in the memory system of the CAL Finder because it requires two accesses 

to external DRAM for each seed, as opposed to just one for each read in the Aligner. This 

would be a ratio of approximately 110:1 memory lookups in the CAL Finder to the 

memory lookups in the Aligner, respectively. One possible solution to this problem lies 
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in transferring the Matcher into software, because memory accesses from software has 

greater bandwidth in the Pico system and is therefore more efficient for this application.  

It is estimated that a high-performance CPU (for example, one with 8 cores and 2.27 

GHz) is able to get 280 million random accesses per second. In addition, the system has 

two sockets, each with their own memory path, doubling the data access rate and 

enabling us to get 560 million accesses per second. Our current hardware system takes 

approximately 40 clock cycles to access one block of data at a 267 MHz clock rate. This 

is equivalent to 6.68 million accesses per second. This means that moving the Matcher 

system to software could increase its data access rate by approximately 84 times. 

Although the memory accesses in the Matcher will no longer be the bottleneck of the 

system, the memory accesses will continue to be the bottleneck in the Aligner. However, 

because the Aligner will be able to use the DRAM without the Matcher, it will have full 

access to the memory controller. Therefore, more Computation Arrays will be able to run 

efficiently in the Aligner, decreasing the runtime of the system. 

7.2.3. Reverse Complement 

DNA sequencing machines output short reads from a DNA strand, but the side it 

originated from is unknown. This becomes a problem for the reassembly process because 

the short reads will not align correctly with the other side of the DNA strand. Therefore, 

the system must run for both sides of the strand by incorporating the reverse complement 

of the short reads.  

However, incorporating the reverse complement would double the data size of the short 

reads, and therefore double the computation and/or memory data necessary. [15] 
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elaborates on the various ideas to include the reverse complement in the system design, 

while maintaining the current runtimes.  
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