
DRAFT—Do not distribute

Macah: A “C-Level” Language for Programming Kernels on
Coprocessor Accelerators

Benjamin Ylvisaker Allan Carroll Stephen Friedman Brian Van Essen
Carl Ebeling Dan Grossman Scott Hauck

University of Washington
{ben8, vanessen, sfriedma, allanca, ebeling, djg}@cs.washington.edu hauck@ee.washington.edu

Abstract
Coprocessor accelerator architectures like FPGAs and GPUs are
increasingly used in embedded systems because of their high per-
formance on computation-heavy inner loops of a variety of appli-
cations. However, current languages and compilers for these archi-
tectures make it challenging to efficiently implement kernels that
have complex, input-dependent control flow and data access pat-
terns. In this paper we argue that providing language support for
such kernels significantly broadens the applicability of accelerator
architectures. We then describe a new language–called Macah–and
compiler that provide this support.

Macah is a “C-level” language, in the sense that it forces
programmers to think about some of the abstract architectural
characteristics that make accelerators different from conventional
processors. However, the compiler still fills in several important
architecture-specific details, so that programming in Macah is
substantially easier than using hardware description languages or
coprocessor-specific assembly languages. We have implemented a
prototype Macah compiler that produces simulatable Verilog which
represents the input program mapped onto a model of an acceler-
ator. Among other applications, we have programmed a complex
kernel taken from video compression in Macah and have it running
in simulation.

1. Introduction
Coprocessor accelerator architectures, like field-programmable
gate arrays (FPGAs) and graphics processing units (GPUs), have
substantially higher execution unit density than sequential pro-
cessors, but little to no support for unpredictable program be-
havior. The higher execution unit density translates into higher
performance–with respect to time and/or energy efficiency–on ap-
plications that fit the architectural constraints. Applications from
a variety of domains, including signal, image and video process-
ing, cryptography, computational biology, and scientific simula-
tion, have been profitably accelerated with coprocessors.

An important weakness of accelerators is that programming
them requires unconventional languages and/or compilers, and the
tools currently available are hard to use. In particular, these tools

[Copyright notice will appear here once ’preprint’ option is removed.]

are weak at handling applications that have moderately complex
input-dependent control flow and data access patterns. To address
this weakness, we have developed a “C-level” programming lan-
guage for accelerators, called Macah, and a prototype compiler.
Macah makes it easier to program more complex applications on
accelerators, because it carefully balances the strengths of human
programmers and algorithmic compilers.

Coprocessors can only accelerate applications that are repet-
itive and predictable, but there are degrees of repetitiveness and
predictability. We divide this spectrum of algorithms up into three
ranges: brute force, efficient, and fast. Brute force algorithms, like
dense matrix-matrix multiplication and finite impulse response
(FIR) filters, are almost perfectly predictable and have simple repet-
itive control flow and data access patterns. Efficient algorithms,
like fast Fourier transforms (FFTs) and dynamic programming al-
gorithms such as Smith-Waterman sequence alignment, are still
highly predictable, but have less repetitive control flow and/or data
access patterns. Fast algorithms use input-dependent heuristics that
are not completely predictable and repetitive to avoid unnecessary
computation at the expense of accuracy in a way that the algorithm
designers deem acceptable.

Existing programming tools work well for many brute force–
and even some efficient–algorithms, but make implementing fast
algorithms either harder than is necessary or impossible. Fast algo-
rithms pose two primary challenges. By definition, the logic of such
algorithms is complex, meaning that using low-abstraction lan-
guages, like hardware description languages (HDLs) or accelerator-
specific assembly languages, is extremely time consuming and
error-prone. Because the control flow and data access patterns
are somewhat unpredictable and irregular, purely data-parallel lan-
guages simply do not apply, and systems that depend on static loop
and array analyses for automatic vectorization and parallelization
do not work well or at all.

Macah makes programming fast algorithms on accelerators eas-
ier by providing a “C-level” abstraction for this family of archi-
tectures. We are referring to C’s role as a “portable assembly lan-
guage” for conventional sequential processors. Well written C pro-
grams are mostly portable–and performance-portable–across es-
sentially all conventional sequential (or “von Neumann”) proces-
sors and compilers. Coprocessor accelerators do not implement this
sequential model, so we need a new abstract model and correspond-
ing “C-level” programming language to fill the equivalent space in
the programming ecosystem.

The remainder of the paper is organized around a running ex-
ample, block matching motion estimation, which is the most com-
putationally significant part of video compression for modern, high
compression-ratio codecs. We use this application to motivate the
novel features of Macah and our prototype compiler, the descrip-
tion of which constitute the bulk of the paper. We have also pro-

Draft for LCTES08 1 2008/2/25



Reference Frame Current Frame

Block

Motion Vector 〈-2,2〉

Search Area

Candidate Block

Search Radius

Search Diameter Motion Vector Space

X

Y

Figure 1. An illustration of some motion estimation terminology.
In this picture, the frames are 16px×12px, the blocks are 4px×4px,
and the search radius is 3px.

grammed other applications in Macah and believe it to be appli-
cable to any application that fits the constraints of coprocessor ac-
celerators. Our compiler currently generates code for a simulated
accelerator, which is described in the final section.

2. Block-Matching Motion Estimation
Block-matching motion estimation (BMME) is the part of video
compression that finds similar blocks of pixels in different frames.
Video codecs that support high compression ratios, like H.264,
allow blocks of pixels in one frame (the current frame) to be
defined as similar to some other block of pixels in another frame
(the reference frame). The difference in position of the two blocks
within their respective frames is called the motion vector (MV).
The MV plus the small pixel value differences between the two
blocks can be encoded in far fewer bits than the raw pixel data.
Motion estimation terminology is illustrated in figure 1.

During the compression process, the encoder must decide which
block in the reference frame to use for each block in the current
frame. This decision is made by the motion estimation algorithm.
“Full search” (FS) is the simplest BMME algorithm. For each block
in the current frame, it does a complete block comparison with
every block in the reference frame that is within the search radius
defined by the codec. This algorithm clearly finds the best MV, but
at a huge computational cost. For example, one 1920×1080 frame
of full search with a search radius of 15 requires almost 2 billion
pixel comparisons.

Fortunately, BMME can be approximated very accurately with
heuristics that drastically reduce the amount of computation re-
quired. The variety of BMME heuristics that have been proposed is
impressive, but most use four basic ideas. 1) Motion estimation can
be performed on down-sampled versions of the input frames, with
detailed block comparisons only done in regions that the down-
sampled comparison judged to be promising. 2) Block compar-
isons for a sparse subset of MVs can be tested first, with more de-
tailed searching in the area of the best comparisons. 3) “Predictive”
BMME algorithms first try MVs based on which MVs were best for
adjacent blocks, which works because of the strong spatial correla-
tion of motion in most video. 4) Finally, the search for a good MV
for a particular block can be terminated early as soon as a “good
enough” MV is found. When carefully combined, these heuristics
can reduce the computational demands of BMME by two to three
orders of magnitude compared to FS1, with negligible reduction in
video quality[1].

Heuristic approaches to BMME, a high-level sketch of which
is shown in figure 2, are extremely fast, but also relatively com-
plex. As a result, many researchers continue to use FS as a bench-
mark to demonstrate the power of coprocessor accelerators. But
there is no reason to run FS on an accelerator when smarter algo-

1 The speedup factor depends strongly on the search radius.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

for (i=0; i<ImgH/BlkH; i++) {
  for (j=0; j<ImgW/BlkW; j++) {
    dist[SrchDia][SrchDia];
    for (y=0; y<SrchDia; y++) {
      for (x=0; x<SrchDia; x++) {
        dist[y][x] = NOT_COMPUTED;
      }
    }
    searching = 1;
    while (searching) {
      chooseMV(dist, bestMVs, &mv);
      d = compareBlks(ref,cur,i,j,mv);
      dist[mv.i][mv.j] = d;
      searching = stillSearch(dist);
    }
    bestMVs[i][j] = mv;
  }
}

Figure 2. Sketch of heuristic motion estimation in C. The differ-
ences between heuristics are in how chooseMV picks the next mo-
tion vector and when stillSearch cuts off the search.

rithms can compute (almost) the same result at least as quickly on
a conventional processor. Similar patterns exist in other application
domains. For example, the BLAST tool uses a heuristic approach
to compute the same biological sequence alignments as the Smith-
Waterman algorithm in a fraction of the time, with only a small
loss of accuracy. Just like the motion estimation example, BLAST
is less predictable and more irregular that Smith-Waterman. Pro-
gramming tools for coprocessor accelerators must be able to handle
these fast algorithms for the architectures to be relevant to the given
application.

2.1 Accelerating Motion Estimation
The particular BMME implementation that we chose to accelerate
is called the enhanced hexagonal search (EHS)[1]; other heuristic
searches would have worked as well. EHS is a three phase algo-
rithm. In the “predictive” phase, block comparisons are done for
the 〈0, 0〉 MV and a small number of other MVs that were found
to work well in adjacent blocks. The best of these MVs is taken as
the initial center of the “coarse search” phase. In the coarse phase,
block comparisons are done for the six MVs arranged in a hexagon
around the current center MV. If any of them is better than the cen-
ter, the best is taken as the new center and the process repeats. When
the center is better than all of the points of the hexagon around
it, the algorithm moves on to the “fine search” phase. In the fine
phase, a few more blocks inside the perimeter of the final hexagon
are compared. The best MV from the fine search phase is taken as
the best MV for the block.

Three things are important about heuristic algorithms for mo-
tion estimation: 1) they still do a large amount of computation in
the block comparisons 2) their control flow and data access patterns
are highly dependent on the input data, and 3) intermediate results
produced by the algorithm are used relatively quickly to make deci-
sions about what to compute next. There is additional complexity in
real video compression systems that we do not discuss in this paper,
including variable block sizes, sub-pixel MVs, and multiple refer-
ence frames. This added complexity only increases the importance
of support for sophisticated algorithms in accelerator programming
systems.

Before implementing EHS in Macah, we will analyze its poten-
tial for acceleration and come up with a high-level strategy for ac-
celerating it. This analysis is done relative to an abstract model of
the behavior and performance characteristics of accelerators, like

Draft for LCTES08 2 2008/2/25



Main
Memory

Sequential Processor
Micro-Parallel Engine

  PC

Workspace Memory

Processing Elements

Figure 3. An abstract model of a hybrid processor-coprocessor
system. Macah programmers need to think about writing acceler-
able code at the level of detail shown in this model.

that described in [2] and illustrated in figure 3. In order to write
good Macah code, the programmer must do this kind of analysis,
and therefore must have a high-level understanding of the structure
and behavior of coprocessor accelerators. Though Macah looks like
C, a well written version of EHS for a sequential processor will not
go through the Macah compiler and produce efficient code. Macah
is “C-level” for accelerators; it is not C.

Some of the most important constraints in the accelerator are the
limited local memory and limited external communication band-
width. The processing elements draw most of their input data from
this local memory, because the bandwidth of the connection to the
larger main memory is substantially lower than the computational
throughput of the accelerator. Applications must have a sufficiently
high computation to main memory bandwidth ratio in order to ac-
celerate well. This constraint is overlooked surprisingly often.

EHS performs approximately 10 block comparisons per block
on average. Each block comparison requires 16 × 16 = 256 pixel
comparisons. Each pixel comparison requires approximately 4 op-
erations (2 reads, one absolute difference, and one accumulation).
So EHS requires about 10×256×4 = 10240 operations per block.

The main memory bandwidth requirements depend on what is
stored in workspace memory. At the very least we will need to
transfer a block’s worth of pixels for the current frame and the refer-
ence frame (2×16×16 = 512 pixels). Depending on how large and
flexible the workspace memory is, we may have to transfer pixels
from the reference frame multiple times. Optimistically assuming
that each pixel is transfered only once, and assuming two bytes per
pixel, that makes the main memory bandwidth requirement 1024
bytes per block. The computation to main memory bandwidth ra-
tio comes to approximately 10 operations per byte. This number is
reasonable, but leaves very little room for wasting memory band-
width.

The next important feature of EHS that we consider is its com-
plex control. Accelerator architectures have very poor support for
unpredictable control flow, such as the logic to determine which
block comparison to perform next. We believe that the best way to
implement algorithms of this complexity is to partition them into
a control part that executes on a conventional sequential processor
and a kernel part that performs the repetitive, predictable piece of
the computation. The control part sends commands consisting of
block locations and motion vectors to the kernel part. The kernel
part then does block comparisons and sends back computed block
differences.

For such an implementation to work well, the accelerator must
be integrated with a sequential processor. This could be die-level

integration, as in FPGAs with embedded processors or board-level,
as in products from XtremeData, Inc. and DRC Computer Corp.

Next we must consider what data can be buffered in the
workspace memory. A single frame of 1920×1080 video is al-
most 4MB of data (assuming 16 bits per pixel). Real accelerators
have workspace memory capacity in the range of low hundreds of
KBs to very low MBs, so realistically we will only be able to store
a few blocks worth of data in the workspace memory at a given
time. This will affect how we do buffering in the Macah code.

Accelerators work by executing many simple operations con-
currently on their simple processing elements (PEs), so we have
to think about which operations can execute in parallel. The inner
loops that perform a single block comparison are a simple reduc-
tion, so they will parallelize nicely. The only complication is the
order in which pixels from the reference frame are accessed de-
pends on the MV currently being tested. This fact will make the
buffer for the reference frame slightly more complicated than the
buffer for the current frame.

Finally, there is inevitably some latency involved in sending a
MV from the sequential processor to the coprocessor and getting a
result back. Therefore, we want to have multiple MVs “in flight” at
any time to keep the whole pipeline full. However, at certain points
in the motion estimation algorithm, there may only be one or two
new MVs to perform block comparisons for before those results are
needed to decide what to do next. To keep the pipeline full, we need
to work on multiple blocks from the current frame simultaneously.

This requirement forces us to change the algorithm, because the
predictive part of the sequential version needs to know what the
best MVs are for its neighboring blocks. This change illustrates one
of the most important weaknesses of a pure optimizing compiler
approach to programming accelerators. Even if we assume that a
compiler’s loop and array analyses are smart enough to optimize
irregular, input dependent code well, we generally expect compilers
to not change the meaning of a program. We believe that this kind
of super-aggressive optimization is best done in a separate code
restructuring tool.

The accelerated implementation of EHS that we have sketched
here is inarguably more complicated than the sequential version.
The Macah code, parts of which are presented in the next section, is
longer and more complicated than the C version as well. However,
it is not clear how to program this kind of fast motion estimation
algorithm in purely data parallel languages. The aggressive loop
and array optimizations used by “C to gates” compilers do not work
with data-dependent control flow and data access patterns. Our
only remaining option for programming FPGAs, at least, is HDLs
which force the programmer to think at an even more detailed level
about the hardware in the coprocessor. To our knowledge, there
are no published implementations of the fastest motion estimation
heuristics for any coprocessor accelerator.

3. Macah
Macah is C plus threads and extensions designed for programming
coprocessor accelerators. The reason to use an accelerator is to
take advantage of the performance and energy benefits of execut-
ing kernels in a highly parallel fashion. The key issues for achiev-
ing this parallelism are being able to allocate local data structures
to the workspace memory in a distributed way, using the limited
bandwidth to main memory judiciously and pipelining the loops so
that operations from different loop iterations can execute simulta-
neously. Macah’s features are designed to make it easy to write
kernels that achieve high performance, as long as the program-
mer understands accelerators well enough to do the kind of anal-
ysis demonstrated in the previous section. However, Programmers
should not have to think about the details of a particular architec-
ture.

Draft for LCTES08 3 2008/2/25



 1 cmd_t stream cStrm = pstream_create(cmd_t);
 2 rslt_t stream rStrm = pstream_create(rslt_t);
 3 args = { cStrm, rStrm, curFrame, refFrame };
 4 pthread_create(&accelThread, NULL, accel, &args);
 5 
 6 int dist[^NumBlks^][SrchDia][SrchDia];
 7 for (i=0; i<ImgH/BlkH; i++) {
 8   for (b=0; b<NumBlks; b++) {
 9     for (y=0; y<SrchDia; y++) {
10       for (x=0; x<SrchDia; x++) {
11         dist[b][y][x] = NOT_COMPUTED;
12       }
13     }
14   }
15   for (j=0; j<ImgW/BlkW - NumBlocks; j++) {
16     dist <<= 1;
17     for (y=0; y<SrchDia; y++) {
18       for (x=0; x<SrchDia; x++) {
19         dist[NumBlks - 1][y][x] = NOT_COMPUTED;
20       }
21     }
22     searching = 1;
23     while (searching) {
24       blockNum = chooseMV(dist, bestMVs, &mv);
25       cmd.code = COMPARE_BLOCKS;
26       cmd.i = mv.i;
27       cmd.j = mv.j;
28       cmd.b = blockNum;
29       cmdStrm <! cmd;
30       dist[blockNum][mv.i][mv.j] = IN_PROG;
31       searching = stillSearch(dist);
32     }
33     bestMVs[i][j] = mv;
34   }
35 }

Figure 4. High level sketch of fast motion estimation, updated to
interface with a kernel thread that performs the block comparisons.

 1 void chooseMV(int dist[NumBlocks][SrchDia][SrchDia],
 2               mv_t bestMVs[ImgH/BlkH][ImgW/BlkW],
 3               mv_t *mv) {
 4   ...
 5   // complex logic to choose b, x and y
 6   ...
 7   if (dist[b][y][x] == IN_PROG)
 8     dist[b][y][x] <? rsltStrm;
 9   ...
10 }

Figure 5. chooseMV implements the heuristics of a particular
motion estimation algorithm. Because the interface between the
sequential logic and the kernel is asynchronous, this code might
find a MV in the distortion table that has been sent to the kernel,
but for which a result has not yet returned. In that case, the code
does a blocking receive on the result stream.

Macah’s features are streams, kernel blocks, FOR loops, shiftable
arrays, architecture-dependent pseudo-constants, and dynamic
scheduling annotations. We use motion estimation to motivate the
language features, though we did not design the language specifi-
cally for this application, and have programmed several other appli-
cations in it. Four snippets of a Macah version of motion estimation
are contained in figures 4, 5, 6 and 7.

The code in figure 4 is the main part that runs on the sequential
processor; it is very similar to the C version sketched in figure 2.
There is some extra startup code for creating the thread that the
kernel will run in and streams for communicating commands and

 1 void refReader (px stream s,
 2                 px refFrame[ImgH][ImgW]) {
 3   int ib, jb, i, j;
 4   for (ib=0; ib<ImgH; ib+=ImgH) {
 5     for (i=ib-SrchRad; i<ib+BlkH+SrchRad; i++) {
 6       for (j=-SrchRad; j<BlkW+SrchRad; j++) {
 7         s <! refFrame[i][j];
 8     } }
 9     for (jb=0; jb<ImgH; jb+=ImgH) {
10       for (i=ib-SrchRad; i<ib+BlkH+SrchRad; i++) {
11         for (j=jb+SrchRad;
12              j<jb+SrchRad+BlkW; j++) {
13           s <! refFrame[i][j];
14 } } } } }

Figure 6. Memory accessor function. This function is run in a
separate thread. It feeds the kernel through stream s.

results. There are three substantial changes in the motion estimation
code itself. Where the C version calls a function to do a block
comparison for a MV, the Macah version sends a command to
the kernel and marks that MV in the distortion table as currently
being worked on. In the function for choosing the next MV to try,
illustrated in figure 5, if the heuristic needs to know the distortion
for a particular MV, and finds that entry marked with a IN PROG,
it blocks until the coprocessor sends back a result. Finally, there is
an additional loop to let the sequential side send MVs from several
blocks at the same time.

3.1 Streams
Streams are first-in, first-out data channels that two threads can use
to communicate and synchronize. There are two different styles of
streams in most Macah programs. Memory accessor streams have
the kernel at one end and a function that only either reads data
out of main memory and sends it down the stream, or receives
data from the stream and writes it into memory at the other end.
This kind of stream is used in the motion estimation code to read
the frame data and load it into the local buffers. An example of a
memory accessor function is shown in figure 6. The other kind of
stream has active compute threads on both sides, like the command
stream and result stream in the motion estimation code. Stream
sends and receives also interact with kernel blocks in a way that
eases automatic pipelining; this is discussed further below.

Streams are created with calls to built-in library functions. The
stream create function, shown in figure 4 on line 1 (fig. 4:1),
builds a stream capable of carrying data elements of the given
type. pstream free deallocates the resources associated with
a stream. The mem * spawn and mem * join functions (fig.
7:7-8) are for creating and destroying memory accessor streams.
The spawn functions create a stream, spawn a new thread, and
start running the given function in the new thread with the given
arguments. The join functions wait for the thread on the other end
of the stream to finish.

The basic operations supported by streams are send and re-
ceive, written expS <! exp (fig 4:29) and exp <? expS (fig
5:8), respectively. The default send (receive) operator blocks if the
stream is full (empty). There are also non-blocking versions written
expW :: expS <! exp and expW :: exp <? expS (fig
7:12), respectively. After one of the non-blocking stream operations
executes, expW (W stands for “worked”) is set to 1 or 0, depend-
ing on whether the operation actually succeeded. Non-blocking re-
ceives are used in the kernel to get commands, and are discussed
further below.

Macah streams are unlike streams in languages like StreamIt[3],
and StreamC[4]. In these languages, kernels are defined to consume
and produce a particular number of stream elements per firing.

Draft for LCTES08 4 2008/2/25



In other words, they have no send and receive operators that can
execute conditionally. This more restrictive use of streams gives
the compiler more opportunity to statically analyze the interactions
of a group of kernels, but makes some programming styles difficult
or impossible to use. For example, it is not clear how to program
the motion estimation kernel that conditionally receives data into
its buffers when it gets the command to move to the next block.

3.2 Kernel Blocks
Kernel blocks serve to mark what code should be run on the accel-
erator, and ease the challenge of pipelining loops by relaxing the
order of evaluation rules. Kernel blocks are written like standard
C blocks, preceded by the new keyword kernel (fig 7:9). The
Macah compiler attempts to generate an accelerated implementa-
tion for the code in kernel blocks. If such an implementation is
not possible for whatever reason, the compiler will report either an
error or a warning, along with diagnostic information to help the
programmer understand why the block cannot be mapped to the
accelerator. Code outside of kernel blocks is translated to standard
C, as discussed below. The motion estimation kernel is shown in
figure 7.

In order to find enough parallel operations to keep the PEs busy,
almost all kernels need to be pipelined. This means that different
parts of adjacent loop iterations are executed concurrently. The or-
der of execution rules inside kernel blocks have been subtly relaxed
to accommodate this pipelining. Consider the simple example illus-
trated in figure 8. There is a loop with three operations: a receive,
some computation, and a send. In the sequential implementation
the first receive happens before the first send, which happens be-
fore the second receive, and so on. In the pipelined trace, however,
the second receive happens before the first send. If the rest of the
program that this code interacts with is expecting to receive a value
on s2 before sending another value on s1, the pipelined implemen-
tation will cause the program to deadlock.

The motion estimation kernel has exactly this structure. The
kernel receives a command on the command stream, computes a
block difference, and sends back a result. Both streams are con-
nected to the sequential thread that receives results, chooses what
MV to try next and sends back commands. This circular structure
in the stream communication structure has the potential to create
deadlock, which is why the receive on the command stream in the
kernel is non-blocking. If the latency of the pipelined kernel and
the communication between the processor and coprocessor is long
enough that the sequential thread cannot keep the kernel filled with
commands, the non-blocking receive will fail, and “bubbles” will
automatically be introduced into the pipeline.

The semantics of Macah explicitly allow stream sends and re-
ceives in kernel blocks to happen “late” and “early”, respectively,
from the perspective of an outside observer. This relaxation per-
mits the compiler to perform loop pipelining without analyzing the
other code that interacts with the kernel through streams. This defi-
nition puts the onus on the programmer to ensure that their kernels
do not send data out that causes other data to be received later in
the same kernel, unless the proper precautions are taken. Tools for
analyzing whole Macah programs for safety of stream communica-
tion patterns could clearly offer helpful error checking. In the spirit
of Macah’s “C-levelness”, the default is to trust the programmer on
this point.

3.3 Shiftable Arrays
Shiftable arrays are simply arrays that support a shift operation
in addition to the standard array indexing operation. The result of
shifting an array left (right) by N is that each element of the array
is moved to the left (right) by N places, assuming that array indices
increase to the right. After a left (right) shift of N , the right-most

 1 #define RefBuffH (BlkH+2*SrchRad)
 2 #define RefBuffW (NumBlks*BlkW+2*SrchRad)
 3 #define RowsPer (Ceil(RefBufH / BlkH))
 4 
 5 px curBuff[^NumBlks^][BlkH][BlkW];
 6 px refBuff[BlkH][RowsPer][^RefBuffW^];
 7 refStrm = mem_reader_spawn(refReader, refFrame);
 8 curStrm = mem_reader_spawn(curReader, curFrame);
 9 kernel {
10   done = 0;
11   do {
12     recvCmd :: cmd <? cmdStrm;
13     if (recvCmd) {
14       switch (cmd.code) {
15         case CMD_COMPARE_BLOCKS:
16           FOR (i = 0; i < BlkH; i++) {
17             dists[i] = 0;
18             refI = (i + cmd.i) / BlkH;
19             for (j = 0; j < BlkW; j++) {
20               refJ = j + cmd.j + BlkW * cmd.b;
21               refPx = refBuf[i][refI][refJ];
22               curPx = curBuf[cmd.b][i][j]
23               dists[i] += ABS(curPx - refPx);
24           } }
25           dist = 0;
26           FOR (i = 0; i < BlkH; i++)
27             dist += dists[i];
28           rsltStrm <! dist;
29           break;
30         case CMD_NEXT_BLOCK:
31           curBuff <<= 1;
32           FOR (i = 0; i < BlkH; i++) {
33             for (j = 0; j < BlkW; j++)
34               curBuff[NumBlks-1][i][j] <? curStrm;
35             for (i2 = 0; i2 < RowsPer; i2++) {
36               if (i2 * BlkH + i < RefBuffH) {
37                 refBuff[i][i2] <<= BlkW;
38                 for (j = 2*SrchRad;
39                      j < RefBuffW; j++)
40                   refBuff[i][i2][j] <? refStrm;
41           } } }
42           break; 
43         case CMD_NEXT_ROW:
44           FOR (i = 0; i < BlkH; i++) {
45             for (b = 0; b < NumBlks; b++) {
46               for (j = 0; j < BlkW; j++)
47                 curBuff[b][i][j] <? curStrm;
48             for (i2 = 0; i2 < RowsPer; i2++)
49               if (i2 * BlkH + i < RefBuffH)
50                 for (j = 0; j < RefBuffW; j++)
51                   refBuff[i][i2][j] <? refStrm;
52           }
53           break;
54         case CMD_DONE:
55           done = 1;
56           break;
57     } }
58   } while (!done);
59 }

Figure 7. Block comparison kernel in Macah. This code resides in
the “accel” function referred to on line 4 of figure 4.

(left-most) N places in the array are uninitialized. Shiftable arrays,
in addition to being convenient for many application domains, help
describe the kinds of regular PE to PE communication patterns that
accelerators support well. The reference frame buffer in the motion
estimation kernel is defined as a shiftable array because there is
significant overlap between the search areas for adjacent blocks.
When the kernel receives a command to move from one block to

Draft for LCTES08 5 2008/2/25



for (...) {       recv1        recv1
  x <? s1;        compute1     recv2, compute1
  ... compute;    send1        recv3, compute2, send1
  s2 <! y;        recv2        recv4, compute3, send2
}                 compute2     recv5, compute4, send3
                  send2        recv6, compute5, send4
                  recv3        recv7, compute6, send5

Sequential trace Pipelined traceCode

tim
e

tim
e

Figure 8. Simple pipelining example

the next, it shifts the reference frame buffer by the block width and
fills in the empty piece.

Shiftable arrays can be simulated with normal arrays and extra
index arithmetic. However, shiftable arrays can be used to more
directly describe the spatial relationships that exist in an algorithm,
and potentially lead to a more efficient implementation.

3.4 FOR Loops
FOR loops are simply for loops that the user has declared should
be unrolled completely at compile time. In the motion estimation
kernel, the loops over the height of the block are all FOR loops (fig
7:16,26,32,44). Of course, the accumulations needed to produce a
single distortion value for a block create a moderately long depen-
dence chain, which is exactly why we rely on pipelining to overlap
the computations of adjacent iterations.

Loop transformations like unrolling, interchange and blocking
are well understood and can be performed by compilers. Advanced
parallelizing and vectorizing compilers [5] use sophisticated linear
algebra-based loop and array analyses to decide how to apply loop
optimizations. However the extent to which they are applied can
have a significant impact on important issues like workspace mem-
ory and main memory bandwidth requirements, and it is far from
trivial to automatically decide what combination of transformations
will produce good results. The authors of [6], who include pio-
neers of parallelizing and vectorizing compilers, state “The qual-
ity of compiler-optimized code for high-performance applications
is far behind what optimization and domain experts can achieve
by hand. . . the performance gap has been widening over time”. We
therefore consider it important to give the programmer the tools
needed to express which operations should be carried out in paral-
lel. In the future, it may be worthwhile to use these kinds of opti-
mizations on the most inner loops of applications like motion esti-
mation.

3.5 Architecture-Dependent Pseudoconstants
Macah is intended to be as portable as possible, but deciding how to
structure a kernel to best exploit the local memory, external band-
width and parallel computation resources of a particular accelerator
often requires non-trivial application-level trade-offs. Architecture-
dependent pseudoconstants (ADPCs) give programmers a tool to
write code that can be automatically adapted to different architec-
tures. They are typically used to control code features like the size
of buffer arrays and the extent of loops. They are declared by the
programmer via a call to the built-in function ADPC which takes
two integers, a min and a max. The compiler then chooses a value
in this range that produces efficient code. In the motion estimation
code, the ADPC NumBlks (fig 4:6 and fig 7:5) controls the number
of blocks from the current frame that are are buffered in workspace
memory at same time. The size of the current frame buffer and
reference frame buffer both depend directly on NumBlks. By us-
ing an ADPC instead of a fixed constant, the compiler can adapt
the program to accelerators with significantly different amounts of
workspace memory. This explicit technique gives a level of porta-

bility and automation that exceeds the ad hoc technique of manu-
ally tuning C #define values for each architecture.

Currently all Macah ADPCs are integers with min and max
constraints, but generalizing the concept to other types and kinds
of constraints may prove valuable.

3.6 Dynamic Scheduling Annotations
Dynamic scheduling annotations are not used in the code presented
in this paper, but they are important in some applications, like
molecular dynamics (MD) simulations. MD simulation is an N-
body problem that simulates the movement of a collection of parti-
cles over time. The kernel of a MD simulation is the all-pairs inter-
action between the particles (i.e. O(N2) complexity). The compu-
tational complexity of this kernel is typically reduced by ignoring
the interaction of particle pairs beyond some cut-off distance. The
kernel of MD considers many pairs of particles, but only computes
the forces between them if they are within the cut-off distance.

The standard strategy for implementing conditional control flow
on most accelerators is predication, or if-conversion. That is, the
conditionally guarded expressions and statements are uncondition-
ally evaluated, and then their results are either used or discarded.
The inefficiency of this strategy increases with the frequency with
which results are discarded, and the quantity of resources used to
do the discarded work. Even though the simplicity of accelerator
controllers makes actually dynamically choosing to do some work
or not relatively expensive, it is sometimes necessary to achieve
reasonable efficiency.

In the MD simulation, the distance cut-off test is an example
of conditional control flow that is better to dynamically evaluate,
because for a given atom, the percentage of atoms in its neighboring
regions that actually fall within its distance cut-off is relatively
low (∼15%), and because the amount of computation needed to
compute the force for a single atom pair is non-trivial.

Macah allows programmers to label conditional statements with
the fraction of the executions that the programmer expects the ex-
pression to be true. The compiler is then able to use this information
to decide if those conditional statements should be implemented
with predication or some form of dynamic evaluation. This infor-
mation could be gathered with profiling, too, but since the alloca-
tion of accelerator resources can have such a large impact on perfor-
mance, it is important to give the programmer a way control it. One
mechanism that facilitates dynamic evaluation are the non-blocking
stream operators discussed in section 3.1.

3.7 Parallel Extensions
Task, thread or process parallelism is also important in embed-
ded systems. The kind of parallelism exploited by Macah and
accelerators can be integrated with these other forms of paral-
lelism to program multiprocessor machines with multiple copro-
cessors. There are some interesting challenges raised by such an
integration–for example, how multiple sequential threads can share
a single coprocessor–but we have not yet investigated these issues.
We believe, however, that coprocessor accelerators and chip multi-
processors (CMPs) should be seen as complementary, not compet-
itive, architectural families. We are already seeing announcements
of products from processor industry leaders that integrate multiple
sequential cores and GPUs. We expect this kind of integration to
continue.

4. Compiling Macah
A Macah compiler targeting a processor/accelerator system is cur-
rently in an early prototype state. The kernel bodies are compiled
into configurations for a simulated accelerator and the non-kernel
code is simply translated to C and compiled with a normal C com-

Draft for LCTES08 6 2008/2/25



while (e) {
  S;
}

(a) Before

if (e) {
  do {
    S;
  } while (e);
}

(b) After

Figure 9. Loop inversion allows the body of the loop to be ex-
ecuted without additional conditional tests, if the outer if can be
optimized away.

if (e) {
  a = x*2;
  b = y/3;
  c <? s;
}
else {
  a = z+r;
  while (1) {
    ...
  }
}

(a) Before

eThen = e;
eElse = !eThen;
aT = x*2;
bT = y/3;
if (eThen)
  c <? s;
aE = z+r;
if (eElse)
  while (1) {
    ...
  }
a = eThen ? aT : aE;
b = eThen ? bT : b;

(b) After

Figure 10. If conversion replaces conditional blocks with uncon-
ditional statements, selection expressions and individual predicated
statements. This is almost always preferable for accelerators, which
have poor support for unpredictable control flow.

piler. Kernels are translated into Verilog code that can be simulated
both before and after the backend part of the compiler runs.

Our compiler is based on the CIL C parsing and translation
infrastructure [7]. We have modified the parser and internal data
structures to accommodate Macah’s new features. Most of the anal-
yses and transformations described in this section are well known.
What we provide here are explanations of why and how they are
applied differently in the context of coprocessor accelerators. In
CIL, all loops are represented as infinite loops with explicit breaks
and continues. This works well for us, because we need the loop
optimizations we use to apply to all kinds of loops.

4.1 Kernel Partitioning
For each kernel block, the necessary control transfers between the
sequential processor and the accelerator are automatically gener-
ated by the compiler, as are any data transfers that are necessary
for data structures that are accessed both inside and outside of a
kernel. This piece of compiler support is conceptually simple, but
quite valuable, because systems that require kernel code and non-
kernel code be written in different languages create a large amount
of manual interfacing work for the programmer.

4.2 Function Inlining
Function inlining is a well known optimization, which replaces
calls to a function with a copy of the body of the function. Complete
function inlining is required for accelerators, because they do not
support function calls.

4.3 FOR Loop Unrolling
A FOR loop is replaced by multiple copies of its body, with con-
stants filled in for the loop induction variable. It is considered an
error, if the initial value, termination condition or induction vari-
able increment cannot be computed at compile time.

while (1) {
  S1;
  if (e1) {
    while (1) {
      S2;
      if (e2)
        break;
    }
  }
  S3;
}

(a) Before

before = 1;
inner = 1;
after = 0;
while (1) {
  if (before) {
    S1;
    before = 0;
    if (!e1) {
      inner = 0;
      after = 1;
    }
  }
  if (inner) {
    S2;
    if (e2)
      after = 1;
  }
  if (after) {
    S3;
    before = 1;
    inner = 1;
    after = 0;
  }
}

(b) After

Figure 11. Loop flattening example for the special case where
there is only one inner loop.

4.4 Array Scalarization
Array scalarization breaks arrays up into smaller pieces that can be
accessed independently, when it is legal to do so. The motion esti-
mation code is carefully structured so that after FOR loop unrolling,
both the current frame buffer and the reference frame buffer are ac-
cessed only by constants in their first dimension. It is then clear
without any sophisticated array analyses that each sub-array can be
allocated to a different physical memory and accessed in parallel.
The dists array will be similarly scalarized.

Shiftable arrays that are not scalarized are implemented as nor-
mal arrays with additional offset and size variables. Indexing is per-
formed relative to the offset, modulo the size, and shifting is imple-
mented as offset arithmetic. If an architecture has built-in support
for this kind of indexing, we take advantage of that.

4.5 Loop Inversion
Loop inversion is a simple loop transformation illustrated in figure
9. In the common case that the outer conditional test in figure 9(b)
can be optimized away entirely, the body of the loop after the trans-
formation is not guarded by any conditions. Because accelerators
have little to no support for executing large pieces of code condi-
tionally, it is useful to reduce the “conditionality” of statements.

4.6 If-Conversion
If-conversion is illustrated in figure 10. After if-conversion, both
sides of conditional branches are executed unconditionally. Vari-
ables that are modified on either side have to be renamed, with
the final result selected after both sides have executed. Statements
with side-effects, like the stream receive and the loop in the exam-
ple have to be individually predicated. The current compiler com-
pletely converts all if-then-else and switch-case statements, though
as mentioned previously this is sometimes an inefficient strategy.

4.7 Loop Flattening
In order for kernels to perform well, the loops must be pipelined.
The actual pipelining process is described below. Pipelining algo-
rithms, like software pipelining [8] and iterative modulo scheduling

Draft for LCTES08 7 2008/2/25



while (1) {
  S1;
  while (1) {
    S2;
    if (e1)
      break;
  }
  S3;
  while (1) {
    S4;
    if (e2)
      break;
  }
  S5;
}

(a) Before

count = 1;
while (1) {
  if (count == 1) {
    S1;
    count++;
  }
  if (count == 2) {
    S2;
    if (e1)
      count++;
  }
  if (count == 3) {
    S3;
    count++;
  }
  if (count == 4) {
    S4;
    if (e2)
      count++;
  }
  if (count == 5) {
    S5;
    count = 1;
  }
}

(b) After

Figure 12. Loop flattening example for multiple inner loops.
These loops are not predicated only to keep the example manage-
able. Our loop flattening algorithm can handle multiple predicated
inner loops.

[9] can only handle a single loop. But Macah programs can have
multiple nested and sequenced loops. We apply a transformation
that in slightly different forms has been called flattening [10], co-
alescing [11] and collapsing [12]. The basic idea is that the bodies
of inner loops are placed directly into the outer loop, the outer loop
statements are appropriately guarded and the loop induction vari-
able calculations are patched up. In other work it is generally taken
for granted that the loops involved have to be reasonably analyz-
able to avoid a large number of added conditional tests. However,
we must flatten all loops in order to enable pipelining, so we gen-
eralized flattening to work with all kinds of loops.

We found it to be important to treat loops with a single inner
loop as a special case. In this case we can avoid wrapping the body
of the inner loop in additional conditional statements, which can
have a big impact on the amount of control and selection logic
generated. Flattening with a single inner loop is illustrated in figure
11; with multiple inner loops in figure 12. These examples show
only a single level of flattening; the basic algorithm can be applied
recursively to flatten more deeply nested loops.

4.8 Loop Fusion
Loop fusion [13], illustrated in figure 13 involves putting the bodies
of multiple sequenced loops together into a single loop. In the
sequential processor context, it is generally taken for granted that
the loop bounds and increments have to match exactly for fusion to
be profitable. In the accelerator context, fusing loops allows those
loops to execute in parallel, so it can be profitable even if the control
of the fused loops do not match exactly. Like loop flattening, we
have generalized fusion to handle arbitrary loops. In the case where
the control of fused loops is the same, redundancy elimination will
avoid computing it more than once at runtiume. Unlike flattening,
fusion cannot be applied in all cases. If there are dependences
between the two loops, it may not be legal to fuse them. If fusion is
legal, our compiler applies it before flattening.

while (1) {
  S1;
  while (1) {
    S2;
    if (e1)
      break;
  }
  S3;
  while (1) {
    S4;
    if (e2)
      break;
  }
  S5;
}

(a) Before

while (1) {
  S1;
  brk1 = 0;
  brk2 = 0;
  while (1) {
    if (!brk1) {
      S2;
      if (e1)
        brk1 = 1;
    }
    if (!brk2) {
      S4;
      if (e2)
        brk2 = 1;
    }
    if (brk1 && brk2)
      break;
  }
  S3;
  S5;
}

(b) After

Figure 13. Loop fusion merges two (or more) sequenced loops
into one. It can only be applied if there are no blocking depen-
dences.

4.9 Memory Accessor Streams
Memory accessor streams can be compiled into commands or “pro-
grams” for special memory interface units like direct memory ac-
cess (DMA) controllers and streaming engines. This compilation
process is not trivial, but because Macah programmers segregate
the memory access code into memory accessor functions, it is at
least clear what should be compiled this way.

4.10 Scheduling, Placement and Routing
The back-end part of the Macah compiler is a blend of software
pipelining, a normal compiler backend (instruction scheduling, reg-
ister allocation) and normal CAD backend (placement, routing).
Accelerator architectures are highly “clustered”, in the sense of
clustered VLIW processors [14], so where operations are placed
spatially, and the spatial routes data take from one operation to an-
other, are important.

In the back-end, architectures are represented as collections of
interconnected ALUs, registers, local memories and stream ports.
Our first prototype architecture model has a relatively simple grid-
style interconnection network with nearest-neighbor and longer
distance connections. We expect that a wide range of accelerators
can be faithfully modeled in this framework.

The back-end uses mostly conventional simulated annealing-
based placement and negotiated-congestion-based routing [15, 16].
However, the placement is in both space and time–the back-end de-
termines both which processing element an operation is executed
on and during which slot in the schedule an operation is executed.
Similarly, the router routes from one operation to another in differ-
ent slots in the schedule. In contrast to conventional CAD flows,
where registers are treated as placeable objects, in our back-end
registers are treated as a routing resource, where routing through
them goes from one step in the schedule to the next, as well as
spatially routing from the input to the output.

The other important capability provided by the back-end is
that it does automatic time-multiplexing of the kernel. Time-
multiplexing is necessary if the number of resources needed by
a kernel is larger than what is available in a particular architec-
ture. It is also important if some inter-iteration dependence in the
code forces the initiation interval–the rate at which loop iterations

Draft for LCTES08 8 2008/2/25



can be started–to be greater than one. The back-end handles time-
multiplexing by creating multiple copies of the graph that repre-
sents the architecture, and connecting the inputs of the registers
in one copy to the outputs of the same registers in the next copy.
Inter-iteration dependences can dramatically limit the amount of
parallelism that accelerators can exploit. The back-end reports di-
agnostics when such limitations occur, to help programmers under-
stand how to improve the performance of their programs.

The back-end process outlined here is similar to that used for
a variety of aggressively clustered VLIW processor and reconfig-
urable hardware projects, for example [17]. More details on the
back-end will be published separately.

4.11 ADPC Assignment
The compiler must search for appropriate values for the ADPCs.
Because the values of ADPCs can affect the sizes of data structures
and the shapes of control and dataflow graphs in complex ways,
ADPC choices have far-reaching impact on the rest of the com-
pilation flow. We are going to use Macah to investigate strategies
for choosing ADPC values, but we expect that: 1) building accu-
rate analytical models of how ADPC values relate to other program
characteristics will be intractable far all but the simplest programs,
and 2) it is likely that programmer-supplied auxiliary code for guid-
ing the ADPC search will be useful. Currently, the compiler sim-
ply assigns a default value to ADPCs. The functionality provided
by ADPCs can be simulated with a hand-built scripting framework
over the core Macah program for initial small-scale investigations.
Eventually, incorporating ADPCs more deeply into the compilation
process allows search algorithms to make use of internal compiler
information and terminate compilation early if bad ADPC values
are chosen, which is not possible with an external constant search
process.

4.12 Compiling to C
The non-kernel code is translated to C with calls into special li-
braries for streams and shiftable arrays. This translation to C can
be used on a whole Macah program, including the kernels, for early
stage debugging and execution on systems without an accelerator.
This translation clearly demonstrates that Macah is not less portable
than C. This translation is “lossy” in the sense that it eliminates the
features that make Macah efficiently compilable to coprocessors.

5. Simulation
Macah programs can currently be simulated at two levels: before
and after the back-end part of the compiler runs. The front-end
generates Verilog code for each of the kernels that essentially rep-
resents the body of one loop, after all the transformations have
been applied. This Verilog code is structured in a simple dataflow
style, where each operator fires when its inputs are ready. There is
not significant parallelism to exploit at this point, because the loop
controller module does not allow overlapped execution of adjacent
loop iterations.

A complete program is run by compiling and executing the C
code generated for the non-kernel Macah code. When the execution
hits a kernel, the generated C code calls a simulation management
library that forks a separate process to run the kernel in a Verilog
simulator. The two processes communicate via UNIX named pipes.
When the kernel simulation evaluates a kernel send or receive, it
sends a message to the C side which interprets the message and
executes the appropriate send or receive action.

Kernels can also be simulated after the back-end runs. The
Verilog generated by the back-end is no longer in a dataflow style.
It is a configuration for a simulated statically scheduled accelerator.
Now, all of the operations have been given slots in a schedule and

registers and routing paths have been allocated to get data from
one operation to another. The whole program simulation works
just as with the unscheduled kernels. The only difference from the
sequential side’s perspective is that the order in which send and
receive requests come from the Verilog simulator may be different.

The optimizations in the compiler are not yet sufficiently robust
to generate efficient implementations. In particular, if-conversion
and loop flattening generate a large amount of predicate and selec-
tion logic that can be optimized away, but is not yet. As a result,
the initiation interval for the motion estimation kernel is unreason-
ably large. The immaturity of the back-end tool currently limits
the proper simulation and scheduling, placement and routing to ex-
ample applications smaller than BMME. However this is a reflec-
tion of the state of the back-end tools and not the Macah front-end.
Proper simulation of the post scheduling, placement and routing
for larger applications, such as BMME, is imminent, and we expect
that a modest amount of compiler hacking effort will dramatically
improve the efficiency.

In addition to BMME, we have worked on the simulation of
both brute force and efficient implementations for other applica-
tions such as blocked dense matrix-matrix multiplication, and sev-
eral permutations of FIR filters.

5.1 Architectural Models
We model accelerator architectures as collections of ALUs, regis-
ters, local memories and stream ports. Our first prototype architec-
ture model has a relatively simple grid-style interconnection net-
work with nearest-neighbor and some longer distance connections.
The architectures we currently model have FPGA-like properties,
but the compilation flow is quite flexible, and we expect that a wide
range of accelerators can be faithfully modeled in this framework.

6. Related Languages
Several C-like languages for accelerator architectures have been
designed and implemented. The genealogically related languages
NAPA C[18], Streams-C[19] and especially Impulse C[20] are
closely related to Macah. They share several concepts, like streams
and pipelining accelerated blocks. There are three notable differ-
ences between the languages. The first is that Impulse C simply
ignores the interaction between stream sends and receives and loop
pipelining. Pipelining loops with stream sends and receives can
lead to deadlock or incorrect results, if there is some external feed-
back. The authors of [20] observe this fact in §4.10 with little fur-
ther comment. Though we have not fully formalized Macah yet, we
intend to use operational semantic to prove theorems about exactly
what kinds of programs have this kind of non-deterministic behav-
ior. The informal definition of Impulse C does not permit this kind
of reasoning.

The second difference is that Impulse C does not have ADPCs.
The lack of ADPCs makes porting kernel code from one architec-
ture to another more difficult.

Finally, threads in Macah are all hybrid, in the sense that any
thread can enter a kernel block. In Impulse C, each process must
be declared as either “software” or “hardware”. Macah’s hybrid
threads can be simulated in Impulse C by a collection of processes
that explicitly transfer control amongst each other with some sig-
naling protocol. However, in Macah the tighter integration of se-
quential and kernel code makes programming more complex ker-
nels easier.

Many languages designed for accelerators feature some no-
tion of implicit data parallelism, often associated with array pro-
cessing primitives. This group includes Accelerator[21], KernelC/
StreamC[4], Cg[22] and StreamIt[3]. Few real applications are per-
fectly data parallel, but all of these languages offer features like
parallel reductions and scans that allow values to be combined and

Draft for LCTES08 9 2008/2/25



distributed. ZPL[23] is a very flexible array-based language that
demonstrates that the implicitly data-parallel style is quite power-
ful. In particular, by giving the programmer less control over the
sequence of operations, implicitly data parallel languages give the
compiler significant freedom to explore performance tradeoffs[24].

Even with some added features for structured sequencing, it is
not clear how to program some algorithms efficiently in an implic-
itly data parallel style. The hexagonal search BMME algorithm is
such an example. The authors of [21] were forced to use an “ef-
ficient” (not “fast”) algorithm for motion estimation, because it is
not clear how to program the fast one in an implicitly data parallel
style.

7. Conclusion
We have designed a C-like programming language called Macah
that reflects the key features of hybrid processor/accelerator sys-
tems. Macah lets programmers write efficient yet portable ker-
nels for complex heuristic algorithms. Key language features such
as streams with relaxed ordering dependencies and architecture-
dependent pseudoconstants provide a flexible model for program-
mers without requiring heroic compiler analysis. We have used
Macah to write fast, nontrivial, and portable kernels that would
be difficult if not impossible to write in hardware description lan-
guages, data-parallel languages, or earlier work with more restric-
tive stream operations.

References
[1] C. Zhu, X. Lin, L. Chau, and L.-M. Po, “Enhanced Hexagonal Search

for Fast Block Motion Estimation,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 14, no. 10, pp. 1210–1214,
October 2004.

[2] B. Ylvisaker, B. Van Essen, and C. Ebeling, “A Type Architecture
for Hybrid Micro-Parallel Computers,” in IEEE Symposium on Field-
Programmable Custom Computing Machines. IEEE, April 2006.

[3] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “StreamIt:
A Language for Streaming Applications,” in Computational
Complexity, 2002, pp. 179–196.

[4] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn,
P. Mattson, and J. D. Owens, “Programmable Stream Processors,”
IEEE Computer, vol. 36, no. 8, pp. 54–62, 2003.

[5] R. Allen and S. Johnson, “Compiling C for vectorization, paral-
lelization, and inline expansion,” in PLDI ’88: Proceedings of the
ACM SIGPLAN 1988 conference on Programming Language design
and Implementation. New York, NY, USA: ACM Press, 1988, pp.
241–249.

[6] A. Cohen, S. Donadio, M.-J. Garzaran, C. Herrmann, O. Kiselyov,
and D. Padua, “In search of a program generator to implement
generic transformations for high-performance computing,” Science of
Computer Programming, vol. 62, no. 1, pp. 25–46, September 2006.

[7] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “CIL:
Intermediate Language and Tools for Analysis and Transformation
of C Programs,” in CC ’02: Proceedings of the 11th International
Conference on Compiler Construction. London, UK: Springer-
Verlag, 2002, pp. 213–228.

[8] M. Lam, “Software pipelining: an effective scheduling technique
for VLIW machines,” in PLDI ’88: Proceedings of the ACM
SIGPLAN 1988 conference on Programming Language design and
Implementation. New York, NY, USA: ACM Press, 1988, pp.
318–328.

[9] B. Rau, “Iterative Modulo Scheduling,” HP Labs, Tech. Rep.
Technical Report HPL-94-115, 1994.

[10] A. M. Ghuloum and A. L. Fisher, “Flattening and parallelizing
irregular, recurrent loop nests,” SIGPLAN Not., vol. 30, no. 8, pp.
58–67, 1995.

[11] C. D. Polychronopoulos, “Loop Coalescing: A Compiler Transforma-
tion for Parallel Machines,” in Proc. International Conf. on Parallel
Processing, August 1987, pp. 235–242.

[12] D. J. Kuck, R. H. Kuhn, B. Leasure, and M. Wolfe, “The structure of
an advanced vectorizer for pipelined processors,” in Proc. IEEE
Computer Society Fourth International Computer Software and
Applications Conf., October 1980.

[13] K. Kennedy and K. S. McKinley, “Maximizing Loop Parallelism
and Improving Data Locality via Loop Fusion and Distribution,” in
Proceedings of the 6th International Workshop on Languages and
Compilers for Parallel Computing. London, UK: Springer-Verlag,
1994, pp. 301–320.

[14] P. Faraboschi, G. Desoli, and J. A. Fisher, “Clustered Instruction-
Level Parallel Processors,” Hewlett Packard Laboratories Cambridge,
Tech. Rep. HPL-98-204, December 1998.

[15] L. McMurchie and C. Ebeling, “PathFinder: A negotiation-based
performance-driven router for FPGAs,” in ACM International
Symposium on Field-Programmable Gate Arrays. ACM Press,
1995, pp. 111–117, monterey, California, United States.

[16] S. Li and C. Ebeling, “QuickRoute: a fast routing algorithm
for pipelined architectures,” in IEEE International Conference on
Field-Programmable Technology, Queensland, Australia, 2004, pp.
73–80.

[17] M. Kudlur, K. Fan, and S. Mahlke, “Streamroller: Automatic
Synthesis of Prescribed Throughput Accelerator Pipelines,” in
International Conference on Hardware/Software Codesign and
System Synthesis, October 2006.

[18] M. Gokhale and J. Stone, “NAPA C: Compiling for Hybrid
RISC/FPGA Architecture,” in IEEE Symposium on Field-
Programmable Custom Computing Machines, 1998.

[19] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski, “Stream-
oriented FPGA computing in the Streams-C high level language,”
in IEEE Symposium on Field-Programmable Custom Computing
Machines, 2000, pp. 49–56.

[20] D. Pellerin and S. Thibault, Practical FPGA Programming in C.
Prentice Hall PTR, April 2005.

[21] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: simplified program-
ming of graphics-processing units for general-purpose uses via data-
parallelism,” Microsoft Corporation, Tech. Rep. MSR-TR-2004-184,
December 2005.

[22] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard, “Cg: a
system for programming graphics hardware in a C-like language,”
ACM Trans. Graph., vol. 22, no. 3, pp. 896–907, 2003.

[23] B. L. Chamberlain, S.-E. Choi, E. C. Lewis, L. Snyder, W. D. Weath-
ersby, and C. Lin, “The Case for High-Level Parallel Programming in
ZPL,” IEEE Comput. Sci. Eng., vol. 5, no. 3, pp. 76–86, 1998.

[24] S. Agrawal, W. Thies, and S. Amarasinghe, “Optimizing stream pro-
grams using linear state space analysis,” in CASES ’05: Proceedings
of the 2005 international conference on Compilers, architectures and
synthesis for embedded systems. New York, NY, USA: ACM Press,
2005, pp. 126–136.

Draft for LCTES08 10 2008/2/25


