
FPGA vs. MPPA for Positron Emission
Tomography Pulse Processing

Michael Haselman1, Nathan Johnson-Williams1, Chad Jerde1, Maria Kim1, Scott Hauck1,
Thomas K. Lewellen2, Robert Miyaoka2

1 Electrical Engineering Department, University of Washington
Seattle, WA USA

{haselman,nathanjw,chadj3,mbkim,hauck}@ee.washington.edu
2 Department of Radiology, University of Washington

Seattle, WA USA
{tkdog,rmiyaoka}@u.washington.edu

Abstract—As FPGAs follow Moore’s Law and increase in

capacity and complexity, they are becoming more complex to use
and are consuming increasing amounts of power. An interesting
alternative for reconfigurable computing that is lower power and
may be easier to program are Massively Parallel Processor
Arrays (MPPAs). In this paper we investigate the Ambric
AM2045, a commercial MPPA. To understand the differences
between the architecture and computational models of MPPAs
and FPGAs, we have implemented two pulse-processing
algorithms used in Positron Emission Tomography (PET). The
algorithms for event timing and event location were developed
for FPGAs and then adapted to MPPAs. In this paper, we
present the two implementations and discuss the main
differences. Specifically, we show how the MPPA’s lack of a
real-time mode, their distributed memory structure, and object
based programming model posed challenges for these algorithms.

I. INTRODUCTION
For the last two decades FPGAs have been following

Moore’s Law, and the latest devices contain more than
500,000 logic elements, megabits of memory, a thousand
dedicated multipliers, and very sophisticated I/O.
Unfortunately, these advancements have created challenges
for FPGA users. These include design complexity and power
consumption. While increased transistor counts have allowed
FPGAs to support larger and more complex circuits, it has
also increased the complexity of the designs. This has
resulted in slower design, debug and verification cycles for
new designs.

A promising technology that attempts to address these
issues is massively parallel processor arrays (MPPAs). A
commercial version of the MPPA, the Ambric AM2045 [2],
has recently become available. MPPAs can reduce the
configuration overhead of FPGAs because they are configured
at the word level; one configuration bit can route 32 signals
through a switch instead of one bit per signal. To address the
design complexity problem, Ambric has developed an
efficient programming model. In the Ambric model, each

processor independently executes a single encapsulated Java
object, and the processors communicate through a network of
self-synchronizing registers.

Previous work [3,4,5,13] has shown that the Ambric MPPA
is simple to program and achieves performance close to an
FPGA. In this work, we investigated the architecture of the
Ambric MPPA and how some of the constraints of the
computation model affect an embedded process such as
Positron Emission Tomography (PET) data acquisition and
pulse processing.

II. AMBRIC MPPA
The Ambric AM2045 MPPA is a 2-D array of RISC

processors [6,7]. The array consists of 360 32-bit processors
with 360 1KB RAM banks. Each processor executes a single
Java object that is strictly encapsulated. The processors are
connected together with a network of self-synchronizing
channels, removing the need to globally synchronize the
system.

Fig. 1 shows the architecture of the compute units (CU) and
RAM units (RU) of the Ambric MPPA. Each CU contains
four RISC processors. Two of the processors (SR) are simple
32-bit streaming processors that are best suited for simple
tasks such as joining channels or address generation. Each SR
CPU has a 64 word local RAM for instructions and data
storage. The other processors (SRD) are 32-bit streaming
processors with DSP extensions for more complicated
computations. Each SRD CPU has three ALUs, two in series
and one in parallel. A 256 word RAM is available for each
SRD CPU. Additionally, the SRDs are directly connected to
the RAM unit (RU), which is the main on-chip memory. Each
RU has four single-ported RAM banks that are 256 words
each, for a total of 32k bits of memory. Two CUs and two
RUs are combined together to make a bric. The brics are then
tiled together to in a 5x9 array to make the MPPA.

Fig. 1. Block diagram of the Ambric compute unit (CU) and RAM unit (RU).

One key feature of the computation model of the Ambric

MPPA is the channels between the processors. The
processors in this architecture compute independently of any
other processor, and any control or data that needs to pass
between processors is sent over these self-synchronizing
channels. Self-synchronizing is achieved by using Ambric
registers in the channel. Ambric registers are conventional
registers with two extra control signals. The two signals
control when a register can send or receive data. Each register
is 32-bits wide and has a valid and accept control signal.
Before a processor can write to a channel, it must assert its
valid signal and the receiving register must have an asserted
valid bit. If the valid bit is zero, the processor must stall until
the valid bit is asserted, signifying the channel is no longer
full. Likewise, if a processor needs a piece of data from a
channel, it must assert the accept signal and stall until the
valid signal is asserted. This communication scheme allows
the individual processors to have varying workloads and
execution times without having to perform global
synchronization.

The programming model that led to the Ambric MPPA
architecture is based on a strict subset of serial Java code. The
code for each processor is written as a separate Java object.
Each object executes serially on a single processor, without
any side effects to any other object. The objects are connected
to make composite objects or applications using a proprietary
language called aStruct. aStruct, statically specifies all
processes and communication channels in a design.

III. POSITRON EMMISSION TOMOGRAPHY
PET is a medical imaging technique that uses radioactive

decays to measure certain metabolic activities inside living
organisms. The first step for a PET scan is the generation and
administration of the radioactive tracer. A tracer consists of a
radioactive isotope and a metabolically active molecule. The
metabolically active molecule acts as a carrier to transport the
isotope to the tissue of interest. For example, FDG, the most
commonly used tracer in PET, is an analog of glucose. This is
valuable because cancerous tissue metabolized more glucose
than normal surrounding tissue. So, if cancerous tissues are
present in a subject that receives FDG, a higher concentration

of FDG will accumulate in the cancerous cells and therefore
more radiological activity will occur in those cells.

The PET scanner hardware is designed to detect and
localize the radioactive decays of the tracer isotopes. One
important feature of PET isotopes that makes PET possible is
that the final result of the decay process is the emission of two
anti-parallel 511KeV photons. A 511KeV photon has a
substantial amount of energy and will pass through many
materials, including body tissue. While this is beneficial for
observing the photon outside the body, it makes it difficult to
detect the photon. Photon detection is the task of the
scintillator and photodetector detector set. To detect both
photons from an event, the scanner is built as a ring of
detectors that surrounds the subject. As a photon exits the
body, it first interacts with the scintillator. A scintillator is a
crystal that absorbs high-energy photons and emits light in the
visible spectrum. The photodetector is coupled to the
scintillator to convert the visible light into an electrical pulse.

The pulses from the photodetectors are fed into the front-
end electronics for data acquisition and pulse processing. The
pulses have to be processed to extract start time, location and
pulse energy. For the scanner that we are currently building
[8], this is performed in an FPGA [10]. In this paper, we will
discuss the algorithms to extract the start time of the pulse as
well as one of the methods used to determine the location of
the scanner.

The start time of the pulse is important for determining
coincidence pairs. Coincidence pairs refer to the two photons
that arise from a single decay event. Many of the photons
from a radioactive event don’t reach the scanner because they
are either absorbed or scattered by body tissue, they don’t hit
the scanner, or the scintillator crystal does not detect them.
The scanner works by detecting both photons of an event and
essentially draws a line that represents the path of the photons.
If only one of the two emitted photons hits the scanner, there
is no way to determine where the event occurred. To
determine if two photons are from the same event, they have
to occur within a certain time of each other. Considering the
photons travel at essentially the speed of light, the timing
portion requires a very precise time stamp be placed on each
event. The better the precision of the time stamp, the lower
the probability that two separate random events will be paired
together. The fewer randoms that are paired together, the
better the final image will be.

In addition to determine coincidence, the location of the
photon interaction with the scanner is needed to create the
final image. Image reconstruction essentially draws lines
between the two detectors that detected photons from a single
event. Where more lines intersect more activity is present.
Precise location of the photon interaction in the scanner will
result in more accurate lines, which will produce higher
quality images.

IV. EVENT TIMING
As a part of our project for developing a PET scanner [8],

we have developed an all-digital timing algorithm
implemented in an FPGA [9,10]. This timing technique will
replace several custom analog circuits with an ADC and
FPGA, while achieving similar timing resolution.

The pulses from the photodetector are first sent to a low-
pass filter and then sampled with a 70MHz ADC. The pulse
input into the FPGA is shown in Fig. 2. As can be seen, with
a sampling period of 14.3ns, the first sample of the pulse will
not necessarily be near the start of the pulse. The desired
timing resolution is around 2ns, so some form of interpolation
is required to calculate the start time.

Fig. 2. Event pulse from ADC that is input to the FPGA.

Our timing algorithm is based on using a reference pulse
that has the same shape as the event pulses to interpolate the
start time. The general idea is to fit the reference pulse to the
sampled pulse and then utilize the reference pulse to
interpolate the start time. The first step is to detect a pulse
from the free-running ADC. This is accomplished by using
two triggers. The first trigger is very close to the baseline
noise to get the first sample of the pulse closest to the origin.
A second trigger is needed to differentiate whether noise or a
true pulse tripped the first trigger. The second trigger needs to
be high enough that noise does not trip it, but low enough that
almost all possible voltages of the second sample of a good
pulse trip it. Once a pulse is detected, the amplitude of the
event pulse is normalized so that it matches that of the
reference pulse. This is accomplished by normalizing the
summation of the pulse samples because the pulses all have
the same shape. As a pulse is detected all of the 25 samples
that make up the pulse are summed and the ratio of the
summation of the reference pulse to the data pulse is
calculated. The first sample of the pulse is then multiplied by
this ratio to normalize the first sample. This normalized first
point is then sent to a lookup table to lookup the start time of
the pulse based on the sample voltage. To perform this
lookup, a reference pulse is precalculated that has the same
shape as the event pulses. To determine the start time, the
table is reference by voltages, and the output is the time it
takes for the reference pulse to reach this voltage. This is
referred to as the fine grain portion of the time stamp. Notice
that this time stamp is simply breaking up the ADC sampling
period into many higher resolution periods. In this
implementation, the 14.3ns ADC period is broken into 30ps

steps. In order to get the overall time, the fine-grain time
stamp is combined with the coarse-grain time, which is a free
funning counter at the rate of the ADC. The coarse-grain
component of the time stamp is important because time
stamps for coincidental pairs are calculated by separate sets of
electronics (each detector in the scanner has a separate set of
data acquisition electronics) on opposite sides of the scanner.
Coincidental events are paired in a post-processing step in the
host computer.

A. FPGA Implementation
The design for the FPGA was done in Verilog and was

pretty straightforward. The system runs at 70MHz to match
the rate of the ADC. The bit width is 12-bits to match the
precision of the ADC. The divide to calculate the
normalization ratio is performed with a lookup table. The
lookup table is 83k bits (not all areas are possible). The
reference pulse is also stored in memory for the time lookup,
and is 26k bits. Finally, the coarse-grain time stamp is simply
a 12-bit counter that increments on the system clock. It does
not matter that this counter will roll over, because data for
each event is sent to the host computer in chronological order.
When events from two detectors are compared to find
coincidental pairs, the search window is small enough that
events from different rollovers won’t be paired up.

Fig. 3. Block diagram of the FPGA implementation of PET timing.

The design shown in Fig. 3 was place and routed using
QuartusII 8.0 for implementation on a StratixII S60
development board. One timing core uses 250ALMs (out of
71,760), 114 kbits of memory (out of 9.4 Mbits), 1 PLL (out
of 8), and 36 I/Os (out of 743). The timing core runs up to
150MHz. In the scanner, there will need to be more than one
timing circuit since there will be a large number of channels
supported by each FPGA.

B. Ambric Implementation
The timing algorithm was also implemented in the Ambric

AM2045 as an application experiment for the MPPA. The
first step in any Ambric implementation is determining how to
partition the application into separate objects. Fig. 4 shows
how the application was initially partitioned. The first block
in the system is the sum block (shown in Fig. 5). This object
keeps a running sum of the last 24 samples of the pulse. It
achieves this by adding the latest sample to the running total,
while subtracting the 25th sample. The current sample is also
sent through a 24 stage FIFO so that when it is compared to
the triggers, the sum of the pulse samples is already available.

Fig. 4. First partition of the timing application into separate object

Fig. 5. Block diagram of the sum block.

The check block is where the incoming samples are checked
against the two triggers to see if an event pulse has arrived.
Notice that there is only one output from this block. This was
the first optimization. An Ambric processor takes a cycle to
write out each output so if the first point and area of the pulse
were sent separately, it would take the check stage two cycles
to send it’s outputs. Instead, these two channels could be
combined to one 32-bit word because they were both less than
16-bits.

Notice that the normalization block, where the pulse area
ratio is looked up, had to be manually separated into four
different objects and therefore four different processors. This
is because the lookup table memory requirement is four times
larger than the memory contained in a single RU. The lookup
table is required because the Ambric ALU does not support
divides. To accommodate this, a fan out and fan in block had
to be added. The input to the fan out block occurs only when
an event is detected in the check block. This is a scenario
where the Ambric channels greatly simplify the control, as the
check block processor will only assert the valid signal when
an event is triggered, so the fan out processor simply stalls
until this occurs.

The fan out block distributes the combined first point and
pulse sum to the normalization blocks. Before the data is sent
to the normalization block, the lookup address (pulse sum) is
adjusted by an offset for each normalization block. Only one
of the blocks will receive a valid address, while all others will
receive an address out of the memory bounds, and the
processors are programmed to output a -1 when this occurs.
The normalization block that receives a valid address will
normalize the first point and send it to the fan in block. This
organization keeps all normalization blocks in lockstep, and
avoids event inversion.

Finally, the time block performs the time lookup. Unlike
the normalization block, the memory requirements for the
lookup table in this block can fit in one RU.

Table I
COMPUTATION REQUIREMENTS OF EACH STAGE BEFORE OPTIMIZATION.

Block  Cycles per input
transaction 

Input transactions per
output transaction  

Sum   8  1 

Check  10  25 or more 

Fan Out  4  1 

Normalization  11  1 

Fan In  4  1 

Time  5  1 

Table I shows the computation requirements for each

processor for this initial implementation. An input or output
transaction is the transfer of a value on all inputs or outputs
respectively. While this is a functioning implementation, the
large number of cycles per input limited the achievable
throughput. Therefore, optimizations were performed to
reduce the overall cycles per input. This is akin to pipelining
in an FPGA. Notice that the check block requires 25 inputs
before it can output a new value because a pulse is 24 samples
long. This means that everything downstream from the check
block has ample time to compute so there is no need to
optimize any of them. Therefore, the optimization effort was
focused on the sum and check blocks.

The first optimization was to break up the check block. This
object had two if statements to check the two threshold values.
Since the if statements were the most costly operation,
because of branching, we realized that it would be necessary
to break up the if statements into separate blocks.

Fig 6 shows how the single check object has been separated
into multiple objects: CheckVfpt checks the first sample
threshold, CheckVet checks the second sample threshold, and
And determines if both of triggers were crossed. At this point
a peculiar thing was noticed; CheckVet took eight cycles
while CheckVfpt only took seven cycles. The assembly code
revealed the issue. The threshold value for CheckVet

Fig. 6. Block diagram of final optimized version of the sum and check blocks.

required more than 16 bits, so an extra assembly operation
was required. For this reason another block before the
CheckVet was used to apply the value. This reduced its cycle
time 6 cycles. This caused us to realize that writing input
stream values to a local variable and then evaluating the
variable caused an extra cycle, as opposed to just computing
on the stream. Based on this, we were able to reduce all the
Check Blocks to 6 cycles. Fig 6 shows the final optimized
partitioning of the sum and check objects. The optimized
results are shown in Table II.

Table II
Computation requirements of the optimized sum and check blocks.

Block 
Cycles per input 
transaction 

Input transactions per 
output transaction 

Dup4  1  1 

Sum   4  1 

FIFO  1  1 

Dup2  1  1 

Sub  5  1 

Load Const  4  1 

CheckVfpt  6  1 

CheckVet  6  1 

And  4  1 

Combine  6  1 

Check  6  25 or more 

C. Discussion
A few issues arose in the implementation of the PET timing

algorithm on the Ambric AM2045 MPPA. The first issue was
the inability to create a real-time counter to make the coarse-
grain time stamp. This was impossible to do because of the
possibility of stalls in the Ambric processor. Stalls can arise
for multiple reasons, but the most likely is the processor’s
need to stall if the output register is not accepting data. While
this is an important feature for Ambric’s computation model,
there may be an easy solution for this. The solution would be
extending the processor to perform non-blocking writes. In
this scenario, if the check block detected a pulse and tried to
output to a channel that was not accepting data, the pulse
would have to be discarded to avoid stalls. In many
computations this would not be acceptable, but in PET, since
final image is made up of the statistics of hundreds of
thousands of events, this would not be an issue. This is in fact

what occurs in the FPGA implementation; the system is
designed to handle the average count rate, but if a short period
of high activity occurs, some of the data is not processed.

Another issue is the difficulty creating a memory that is
larger than one RU. For example, in the normalization block
the lookup table required the memory of four RAM units. In
the FPGA tools, this is a simple step: an array of the
appropriate size is declared and the tools stitch together the
needed memories automatically. This was not the case with
the Ambric programming tools. When it was discovered that
the normalization lookup table exceeded the capacity of one
RAM unit, the table needed be partitioned by hand. With the
memories distributed over four RAM units, the addressing had
to be managed to ensure that the correct memory was read. In
addition to the added complexity, the partitioning of the
memory also used three extra processors. Replacing a few
scattered brics in the array with larger memories would help
with this problem. Alternatively, providing a library of large
memory components that automatically compose together
smaller memories would be a major productivity improvement.

Finally, as was discussed in the previous section, after the
initial implementation the bottlenecks of the system were easy
to determine. These bottlenecks prevented the system from
achieving the required throughput. To speedup these sections
of the code the check and sum objects needed to be manually
partitioned into multiple steps in order to pipeline the
algorithm. This meant that more processors were used to do
the same amount of work, reducing the code density per
processor. In an FPGA, while it may be harder to pinpoint the
bottleneck, the speedup may be accomplished by retiming
with registers. Retiming however can also create
synchronization complexities for FPGA designs. Having a
mechanism to automatically spread computationally intensive
objects across multiple processors and aggregating several
simple objects onto one CPU, would be key for making best
use of the MPPA fabric.

To create a fair throughput comparison, the design was also
compiled to a Stratix device (both Altera Stratix and Ambric
MPPA are on a 130nm process). Without any optimizations,
the FPGA can run up to 150MHz. While the FPGA only
needs to run at 70MHz for the current scanner to match the
speed of the ADC, the possible higher clock frequency allows
for faster ADCs to be used in the future. The Ambric MPPA
on the other hand can only achieve a throughput of 50MHz
(300MHz clock divided by 6 cycles for CheckVfpt).

ln P event X, Y, ()()

1

8

row 1

8

col

eventrow col, µX Y, ()
row col,

!"
#

$
%
2

2 &X Y, ()
row col,

"
#

$
%
2

'

ln &X Y, ()
row col,

"
#

$
%

+

"
(
(
(
#

$
)
)
)
%

*
=

*
=

!=

 (1)

V. EVENT LOCALIZATION
Our lab has been investigating the use a continuous slab

crystal for a scintillator crystal [11,12]. The monolithic slab
crystal has the benefit of cheaper production, but determining
where the photon enters the crystal is more complicated. As
can be seen in Fig. 7 the light spreads out substantially from
the point of interaction, and many of the sensors on the
photodetector receive light.

Electronic Interface

PMT or Solid-State sensor array

Scintillation Crystal

Fig. 7. Dispersed output from a continuous scintillator crystal.

The photodetector in this system has an 8x8 array of sensors.
For any event in the slab crystal, a distribution of light will
result, as shown in Fig. 8. Notice that all of the 64 sensors
receive some light, and there is an obvious peak, but achieving
resolution beyond the 8x8 will require additional processing.
In this study a resolution of 127x127 is achieved.

 

Fig. 8. A representative event, showing the response of an 8x8 PMT array.

The method we have developed for increasing the resolution
of the photon sensors is known as Statistics Based Positioning
(SBP) [11]. SBP is able to improve the overall detection
characteristics of a continuous crystal detector. In an SBP
system, each sensor array requires an initial characterization
step. This involves positioning a source in the field of view at
a known X-Y location, collecting data from each of the 64
electronic sensors in the array, and saving the light response
characteristics for that X-Y location in a table for future

reference. The two statistical characteristics that are stored are
the mean (µ) and variance (σ2) of the light distribution
function of each sensor for a given X-Y location. In other
words, the same location of the crystal is hit with photons
many times and the mean and variance of the energy
deposited on each of the 64 sensors for all photon interactions
is calculated and stored. This is done for 127x127 locations.
The result of this characterization is a 127x127 table that has
64 means and variances (one for each sensor in the 8x8 array)
in each location. In execution mode, data collected from an
unknown location is compared with the previously collected
data table using (eqn. 1), and the coordinates of the
characterization data that has the maximum value for (eqn. 1)
are the position of the unknown source. Using this method,
position resolution much finer than the spacing of the
individual detectors within the 8x8 arrays is achieved.

To calculate (eqn. 1) in hardware, the following
modifications were made for the equation inside the
summation

R
E µ!()

2

2 "
2

#

ln "()+= E µ!()
1

2 "#
#

$
%
&

'
(
)

2

ln "()+=

let : A µ= B
1

2 "#
= C ln "()=

R E A!() B#[]
2

C+=
In this refactoring, the values for A, B and C are precalculated
and stored in memory.

The search of all 127x127 positions is too much processing
to complete in the time required for the desired count rate of
the scanner. Fortunately, the solution space is convex and
thus lends itself to a smarter search. The algorithm that we
implemented is a modified hierarchal search [12].

The hierarchal search starts by sampling 9 points at multiple
locations (see stage 1 in Fig 9), uniformly scattered across the
whole solution space. The location with the highest value
(upper right location of stage 1 in Fig 9) is assumed to be
closer to the final solution than any of the other eight points
with lower values. The highest valued location is then used as
the center of a new search space (stage 2 in Fig 9) that is ¼ the
size of the previous space. When the size of the solution space
is reduced to one, the solution has been reached.

 

Fig. 9. Three iterations of a 3x3 search on the solution space. Note that this
example only shows the first three of seven stages for illustration clarity.

The regularity of this search allows each level of the search
to consist of an almost identical process. For the 3x3 search
shown in Fig. 9, nine sets of characterization data table values
are needed for the first stage, one for each position to be tested.
The next iteration will consist of potential sample positions at
one-half the spacing, with sets of points centered on each of
the previous stage’s points. This results in each stage’s data
table having approximately four times the number of testable
locations as the previous stage, but still only a fraction of the
overall table, until the last stage is reached. The last stage is
the only stage that needs access to the entire 127x127 table.

Structuring the search in this way allows points tested at
each iteration to be independent of calculations currently
underway in the other iterations. This allows pipelining of the
calculations with different events underway at each of the
stages simultaneously. A second advantage of this method is
that the storage requirement for each stage’s data table is
reduced for each iteration prior to the last stage.

A. FPGA Implementation
This algorithm was also implemented on the StratixII DSP

board [12]. Because the memory available in the prototype is
not sufficient for a seven-stage system, only five stages could
be created and tested. Each stage requires 192 clock cycles.
This represents a solution for each of 9 X-Y locations at each
stage, plus 3 cycles for the final calculation of the coordinates
of the minimum value and transferring the results to the next
stage. Although each event will take 192 clocks at each of
seven stages, for a total of 1344 clock cycles, as each stage
completes its calculation it is immediately available for the
next sequential event. This results in 7 events being solved
simultaneously, with each event at a different stage of its
solution. The implementation utilizes only 3.6% of the
StratixII S180 and 75.9% of the memory (first five stages).

B. Ambric Implementation
Again, the localization algorithm was implemented in the

Ambric MPPA as an application experiment. Obviously the
memory requirements of this application will be the largest
implementation problem. This algorithm requires far more

memory than is available on the Ambric AM2045, so for a full
implementation an external memory would be required. Just
as we did with the FPGA implementation, we investigated the
application with the maximum number of stages that could fit
on the device.

Since the memory requirements of this algorithm were so
extensive, this was the focus of our investigation. While it is
possible for each processor to read and write to any RU in the
MPPA, it was determined that the processors would not have
the required bandwidth to make this work. So like the timing
algorithm, the memories have to be manually partitioned over
many RUs. Two alternative methods for partitioning the table
over many processors were investigated. The first method,
called “By Region,” was to break up the data by regions; each
RU would store the response for one of the 127x127 array
locations. Stage 1 requires the storage of nine locations, and
therefore uses nine RUs and nine processors to compute the
correlation. Stage 2 needs to store 49 locations. As can be
seen in Table III the number of processors needed by stage 3
is 283, and the fourth stage alone would need 961 processors,
far exceeding the number of processors on the Ambric
AM2045.

Table III:
Resource requirements per stage for “By Region”.

Stage
Row/Column
Length

Full Table
Size

Number of
Processors

Memory per
Processor
(words)

1 3 1728 9 192
2 7 9408 49 192
3 15 43200 225 192
4 31 184512 961 192
5 63 762048 3969 192
6 127 3096768 16129 192

Notice that each RU for each processor in this scheme only
requires 192 16-bit words (384 bytes). Each RU has 4KB of
memory, so they are only being partially filled. Given this
under-utilization of memory a second method was
investigated in order to utilize more of the memory. The
second method of data division is called “By Sensor”. This
method splits the data from the 64 sensors for each of the
127x127 locations needed for a given stage. Because there are
64 sensors, each RU could have some even portion (1/2, 1/4,
1/8, 1/16, 1/32) of the total table needed for a given stage. For
example, in stage 2, 49 of the 16129 (127x127) locations are
needed. Given the RUs storage capacity, it turns out that each
RU can store data for 8 of the 64 sensors for all 49 needed
locations in each RU. This means that 8 processor/RUs are
needed to compute stage 2. Each processor computes the
partial correlation for all locations based on the portion of the
8x8 sensor it has. Essentially, each processor computes only a
subset of the sums in (1). The partial correlation for a given
location is then sent to another processor, along with the other
partial correlations, to tabulate the final sum as shown in Fig
10. Table IV shows the maximum number of sensors per
processor. The actual implementation is the largest even
portion that will fit in a given RU.

Fig. 10. Block diagram of the Ambric implementation of event “By Sensor” event localization.
Table IV

Maximum resource requirements for the “By Sensor” memory partition
scheme.

Stage
Row/Column
Length

Full
Table
Size

Number of
Processors
required

Number of
Sensors/
Processor

1 3 1728 1 74
2 7 9408 5 13
3 15 43200 22 2
4 31 184512 93 0.69
5 63 762048 382 0.17
6 127 3096768 1549 0.04

Notice that even though this memory partition scheme
reduces the number of processors needed and allows an extra
stage to be stored on-chip, only four of the six stages can fit
on the device. For comparison, an equivalent number of
stages can also fit on a Stratix S30 (also 130nm process chip).

C. Discussion
Just like the memory partition in the timing algorithm, this

application required a substantial amount of work to get a
larger memory to work well on the Ambric MPPA. For both
FPGAs and MPPAs, the last couple of stages need to be stored
off chip, but the memory setup for on-chip memory was much
easier for the FPGA. Also, since so many processors on the
MPPA are needed to distribute the memory, there would be
only a couple of processors available to perform the
correlation calculations for the last stage. On the other hand,
the FPGA has plenty of unused logic available.

VI. CONCLUSION
Ambric was designed to be a massively parallel computing

platform like FPGAs. Unlike FPGAs though, the Ambric
MPPA was designed to achieve the parallelism with lower
power and more efficient design cycles. Previous academic
research indicates that these two goals were accomplished.
However, we have shown in this paper that some of the
choices made to reach those goals have a large implication on
certain applications. Both the Ambric MPPA and FPGAs are
best suited for streaming applications, and the two
applications that we covered here are certainly streaming
applications. These applications however also have
requirements that made them difficult to implement on the
Ambric MPPA. Specifically, we showed how the inability to
create a real-time clock and the lack of larger memories made

these applications less suited to this MPPA. We also
demonstrated how achieving speedup for timing critical
objects in an MPPA requires manual partitioning. We
discussed some possible software/compiler tricks that could
solve these problems. We also discussed how partitioning to
increased throughput also leads to low code density. This
phenomenon however seems to be inherent in MPPAs and is
one of the large differences between FPGAs and MPPAs.

ACKNOWLEDGMENT
This work is supported in part by Altera, Ambric, NIBIB
R21/R33‐EB0001563, NIH grant EB002117, NSF, and Zecotek.

REFERENCES
[1] ITRS: 2007 Edition - Design. http://www.itrs.net/Links/2007ITRS/2007

Chapters 2007 Design.pdf
[2] www.ambric.com
[3] B. Hutchings, B. Nelson, S. West, R. Curtis, “Optical Flow on the

Massively Parallel Processor Array (MPPA),” International Symp. on
Field-Programmable Custom Computing Machines (FCCM), 2009.

[4] P. Top, M Gokhale, “Application Experiments: MPPA and FPGA,”
International Symp. on Field-Programmable Custom Computing
Machines (FCCM), 2009.

[5] C. Hu, et al., “Design of a 64-channel Digital High Frequency Linear
Array Ultrasound Imaging Beamformer on a Massively Parallel
Processor Array,” IEEE International Ultrasonic Symp. Proc., 2008,
pp. 1266-1269.

[6] M. Butts, A.M. Jones, P. Wasson, "A Structural Object Programming
Model, Architecture, Chip and Tools for Reconfigurable Computing,"
International Symp. on Field-Programmable Custom Computing
Machines (FCCM), 2007, pp. 55-64.

[7] M. Butts, “Synchronization Through Communication in a Massively
Prallel Processor Array,” IEEE Micro, pp. 32-40.

[8] T.K. Lewellen et al., “Design of a Second Generation FireWire Based
Data Acquisition System for Small Animal PET Scanners,” IEEE
Nuclear Science Symp. Conf. Record, 2008, pp. 5023-5028.

[9] M.D. Haselman, S. Hauck, T.K. Lewellen, and R.S. Miyaoka,
“Simulation of Algorithms for Pulse Timing in FPGAs,” IEEE Nuclear
Science Symp. Conf. Record, 2007, pp. 3161-3165.

[10] M. Haselman, et al., “FPGA-Based Front-End Electronics for Positron
Emission Tomography,” ACM/SIGDA International Symp. on Field-
Programmable Gate Arrays, 2009, pp. 93-102.

[11] J. Joung et al., “cMiCE:a high resolution animal PET using continuous
LSO with a statistics based positioning scheme,” Nuclear Science
Symposium Conference Record, 2001 IEEE, 2001, vol.2, pp. 1137-
1143.

[12] D. DeWitt, “An FPGA Implementation of Statistical Based
Positioning for Positron Emission Tomography,” Masters of Science in
Electrical Engineering thesis, University of Washington, 2008.

[13] D.B. Thomas, L. Howes, W. Luk, “A comparison of CPU’s, GPU’s,
FPGA’s, and massively parallel processor arrays for random number
generation,” ACM/SIGDA International Symp. on Field-Programmable
Gate Arrays, 2009, pp. 63-72.

