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Abstract—As FPGAs follow Moore’s Law and increase in 

capacity and complexity, they are becoming more complex to use 
and are consuming increasing amounts of power.  An interesting 
alternative for reconfigurable computing that is lower power and 
may be easier to program are Massively Parallel Processor 
Arrays (MPPAs).  In this paper we investigate the Ambric 
AM2045, a commercial MPPA.  To understand the differences 
between the architecture and computational models of MPPAs 
and FPGAs, we have implemented two pulse-processing 
algorithms used in Positron Emission Tomography (PET).   The 
algorithms for event timing and event location were developed 
for FPGAs and then adapted to MPPAs.  In this paper, we 
present the two implementations and discuss the main 
differences.  Specifically, we show how the MPPA’s lack of a 
real-time mode, their distributed memory structure, and object 
based programming model posed challenges for these algorithms. 

I. INTRODUCTION 
For the last two decades FPGAs have been following 

Moore’s Law, and the latest devices contain more than 
500,000 logic elements, megabits of memory, a thousand 
dedicated multipliers, and very sophisticated I/O.  
Unfortunately, these advancements have created challenges 
for FPGA users.  These include design complexity and power 
consumption.  While increased transistor counts have allowed 
FPGAs to support larger and more complex circuits, it has 
also increased the complexity of the designs.  This has 
resulted in slower design, debug and verification cycles for 
new designs.  

A promising technology that attempts to address these 
issues is massively parallel processor arrays (MPPAs).  A 
commercial version of the MPPA, the Ambric AM2045 [2], 
has recently become available.  MPPAs can reduce the 
configuration overhead of FPGAs because they are configured 
at the word level; one configuration bit can route 32 signals 
through a switch instead of one bit per signal.  To address the 
design complexity problem, Ambric has developed an 
efficient programming model.  In the Ambric model, each 

processor independently executes a single encapsulated Java 
object, and the processors communicate through a network of 
self-synchronizing registers. 

Previous work [3,4,5,13] has shown that the Ambric MPPA 
is simple to program and achieves performance close to an 
FPGA.  In this work, we investigated the architecture of the 
Ambric MPPA and how some of the constraints of the 
computation model affect an embedded process such as 
Positron Emission Tomography (PET) data acquisition and 
pulse processing.  

II. AMBRIC MPPA 
The Ambric AM2045 MPPA is a 2-D array of RISC 

processors [6,7].  The array consists of 360 32-bit processors 
with 360 1KB RAM banks. Each processor executes a single 
Java object that is strictly encapsulated. The processors are 
connected together with a network of self-synchronizing 
channels, removing the need to globally synchronize the 
system.   

Fig. 1 shows the architecture of the compute units (CU) and 
RAM units (RU) of the Ambric MPPA.  Each CU contains 
four RISC processors.  Two of the processors (SR) are simple 
32-bit streaming processors that are best suited for simple 
tasks such as joining channels or address generation.  Each SR 
CPU has a 64 word local RAM for instructions and data 
storage.  The other processors (SRD) are 32-bit streaming 
processors with DSP extensions for more complicated 
computations.  Each SRD CPU has three ALUs, two in series 
and one in parallel.  A 256 word RAM is available for each 
SRD CPU.  Additionally, the SRDs are directly connected to 
the RAM unit (RU), which is the main on-chip memory.  Each 
RU has four single-ported RAM banks that are 256 words 
each, for a total of 32k bits of memory.  Two CUs and two 
RUs are combined together to make a bric.  The brics are then 
tiled together to in a 5x9 array to make the MPPA. 



Fig. 1.  Block diagram of the Ambric compute unit (CU) and RAM unit (RU). 
 
One key feature of the computation model of the Ambric 

MPPA is the channels between the processors.  The 
processors in this architecture compute independently of any 
other processor, and any control or data that needs to pass 
between processors is sent over these self-synchronizing 
channels.  Self-synchronizing is achieved by using Ambric 
registers in the channel.  Ambric registers are conventional 
registers with two extra control signals.  The two signals 
control when a register can send or receive data.  Each register 
is 32-bits wide and has a valid and accept control signal.  
Before a processor can write to a channel, it must assert its 
valid signal and the receiving register must have an asserted 
valid bit.  If the valid bit is zero, the processor must stall until 
the valid bit is asserted, signifying the channel is no longer 
full.  Likewise, if a processor needs a piece of data from a 
channel, it must assert the accept signal and stall until the 
valid signal is asserted.  This communication scheme allows 
the individual processors to have varying workloads and 
execution times without having to perform global 
synchronization. 

The programming model that led to the Ambric MPPA 
architecture is based on a strict subset of serial Java code.  The 
code for each processor is written as a separate Java object.  
Each object executes serially on a single processor, without 
any side effects to any other object.  The objects are connected 
to make composite objects or applications using a proprietary 
language called aStruct.  aStruct, statically specifies all 
processes and communication channels in a design.     

III. POSITRON EMMISSION TOMOGRAPHY 
PET is a medical imaging technique that uses radioactive 

decays to measure certain metabolic activities inside living 
organisms.  The first step for a PET scan is the generation and 
administration of the radioactive tracer.  A tracer consists of a 
radioactive isotope and a metabolically active molecule.   The 
metabolically active molecule acts as a carrier to transport the 
isotope to the tissue of interest.  For example, FDG, the most 
commonly used tracer in PET, is an analog of glucose.  This is 
valuable because cancerous tissue metabolized more glucose 
than normal surrounding tissue.  So, if cancerous tissues are 
present in a subject that receives FDG, a higher concentration 

of FDG will accumulate in the cancerous cells and therefore 
more radiological activity will occur in those cells.   

The PET scanner hardware is designed to detect and 
localize the radioactive decays of the tracer isotopes.  One 
important feature of PET isotopes that makes PET possible is 
that the final result of the decay process is the emission of two 
anti-parallel 511KeV photons.  A 511KeV photon has a 
substantial amount of energy and will pass through many 
materials, including body tissue.  While this is beneficial for 
observing the photon outside the body, it makes it difficult to 
detect the photon.  Photon detection is the task of the 
scintillator and photodetector detector set.  To detect both 
photons from an event, the scanner is built as a ring of 
detectors that surrounds the subject.  As a photon exits the 
body, it first interacts with the scintillator.  A scintillator is a 
crystal that absorbs high-energy photons and emits light in the 
visible spectrum.  The photodetector is coupled to the 
scintillator to convert the visible light into an electrical pulse.   

The pulses from the photodetectors are fed into the front-
end electronics for data acquisition and pulse processing.  The 
pulses have to be processed to extract start time, location and 
pulse energy.  For the scanner that we are currently building 
[8], this is performed in an FPGA [10].  In this paper, we will 
discuss the algorithms to extract the start time of the pulse as 
well as one of the methods used to determine the location of 
the scanner.   

The start time of the pulse is important for determining 
coincidence pairs.  Coincidence pairs refer to the two photons 
that arise from a single decay event.  Many of the photons 
from a radioactive event don’t reach the scanner because they 
are either absorbed or scattered by body tissue, they don’t hit 
the scanner, or the scintillator crystal does not detect them.   
The scanner works by detecting both photons of an event and 
essentially draws a line that represents the path of the photons.  
If only one of the two emitted photons hits the scanner, there 
is no way to determine where the event occurred.  To 
determine if two photons are from the same event, they have 
to occur within a certain time of each other. Considering the 
photons travel at essentially the speed of light, the timing 
portion requires a very precise time stamp be placed on each 
event.  The better the precision of the time stamp, the lower 
the probability that two separate random events will be paired 
together.  The fewer randoms that are paired together, the 
better the final image will be.   

In addition to determine coincidence, the location of the 
photon interaction with the scanner is needed to create the 
final image.  Image reconstruction essentially draws lines 
between the two detectors that detected photons from a single 
event.  Where more lines intersect more activity is present.  
Precise location of the photon interaction in the scanner will 
result in more accurate lines, which will produce higher 
quality images.   



IV. EVENT TIMING 
As a part of our project for developing a PET scanner [8], 

we have developed an all-digital timing algorithm 
implemented in an FPGA [9,10].  This timing technique will 
replace several custom analog circuits with an ADC and 
FPGA, while achieving similar timing resolution.   

The pulses from the photodetector are first sent to a low-
pass filter and then sampled with a 70MHz ADC.  The pulse 
input into the FPGA is shown in Fig. 2.  As can be seen, with 
a sampling period of 14.3ns, the first sample of the pulse will 
not necessarily be near the start of the pulse.  The desired 
timing resolution is around 2ns, so some form of interpolation 
is required to calculate the start time.  

 
Fig. 2.  Event pulse from ADC that is input to the FPGA. 

Our timing algorithm is based on using a reference pulse 
that has the same shape as the event pulses to interpolate the 
start time.  The general idea is to fit the reference pulse to the 
sampled pulse and then utilize the reference pulse to 
interpolate the start time.  The first step is to detect a pulse 
from the free-running ADC.  This is accomplished by using 
two triggers.  The first trigger is very close to the baseline 
noise to get the first sample of the pulse closest to the origin.  
A second trigger is needed to differentiate whether noise or a 
true pulse tripped the first trigger.  The second trigger needs to 
be high enough that noise does not trip it, but low enough that 
almost all possible voltages of the second sample of a good 
pulse trip it.  Once a pulse is detected, the amplitude of the 
event pulse is normalized so that it matches that of the 
reference pulse.  This is accomplished by normalizing the 
summation of the pulse samples because the pulses all have 
the same shape.  As a pulse is detected all of the 25 samples 
that make up the pulse are summed and the ratio of the 
summation of the reference pulse to the data pulse is 
calculated.  The first sample of the pulse is then multiplied by 
this ratio to normalize the first sample.  This normalized first 
point is then sent to a lookup table to lookup the start time of 
the pulse based on the sample voltage.  To perform this 
lookup, a reference pulse is precalculated that has the same 
shape as the event pulses.  To determine the start time, the 
table is reference by voltages, and the output is the time it 
takes for the reference pulse to reach this voltage.  This is 
referred to as the fine grain portion of the time stamp.  Notice 
that this time stamp is simply breaking up the ADC sampling 
period into many higher resolution periods.  In this 
implementation, the 14.3ns ADC period is broken into 30ps 

steps.  In order to get the overall time, the fine-grain time 
stamp is combined with the coarse-grain time, which is a free 
funning counter at the rate of the ADC.  The coarse-grain 
component of the time stamp is important because time 
stamps for coincidental pairs are calculated by separate sets of 
electronics (each detector in the scanner has a separate set of 
data acquisition electronics) on opposite sides of the scanner.  
Coincidental events are paired in a post-processing step in the 
host computer.   

A. FPGA Implementation 
The design for the FPGA was done in Verilog and was 

pretty straightforward.  The system runs at 70MHz to match 
the rate of the ADC.  The bit width is 12-bits to match the 
precision of the ADC.  The divide to calculate the 
normalization ratio is performed with a lookup table.  The 
lookup table is 83k bits (not all areas are possible).  The 
reference pulse is also stored in memory for the time lookup, 
and is 26k bits.  Finally, the coarse-grain time stamp is simply 
a 12-bit counter that increments on the system clock.  It does 
not matter that this counter will roll over, because data for 
each event is sent to the host computer in chronological order.  
When events from two detectors are compared to find 
coincidental pairs, the search window is small enough that 
events from different rollovers won’t be paired up. 

 

 
Fig. 3.  Block diagram of the FPGA implementation of PET timing. 

The design shown in Fig. 3 was place and routed using 
QuartusII 8.0 for implementation on a StratixII S60 
development board.  One timing core uses 250ALMs (out of 
71,760), 114 kbits of memory (out of 9.4 Mbits), 1 PLL (out 
of 8), and 36 I/Os (out of 743).  The timing core runs up to 
150MHz.  In the scanner, there will need to be more than one 
timing circuit since there will be a large number of channels 
supported by each FPGA.  

B. Ambric Implementation  
The timing algorithm was also implemented in the Ambric 

AM2045 as an application experiment for the MPPA.  The 
first step in any Ambric implementation is determining how to 
partition the application into separate objects.  Fig. 4 shows 
how the application was initially partitioned.  The first block 
in the system is the sum block (shown in Fig. 5).  This object 
keeps a running sum of the last 24 samples of the pulse.  It 
achieves this by adding the latest sample to the running total, 
while subtracting the 25th sample.  The current sample is also 
sent through a 24 stage FIFO so that when it is compared to 
the triggers, the sum of the pulse samples is already available.   



Fig. 4.  First partition of the timing application into separate object

 
Fig. 5.  Block diagram of the sum block. 

The check block is where the incoming samples are checked 
against the two triggers to see if an event pulse has arrived.  
Notice that there is only one output from this block.  This was 
the first optimization.  An Ambric processor takes a cycle to 
write out each output so if the first point and area of the pulse 
were sent separately, it would take the check stage two cycles 
to send it’s outputs.  Instead, these two channels could be 
combined to one 32-bit word because they were both less than 
16-bits.   

Notice that the normalization block, where the pulse area 
ratio is looked up, had to be manually separated into four 
different objects and therefore four different processors.  This 
is because the lookup table memory requirement is four times 
larger than the memory contained in a single RU.   The lookup 
table is required because the Ambric ALU does not support 
divides.  To accommodate this, a fan out and fan in block had 
to be added.  The input to the fan out block occurs only when 
an event is detected in the check block.  This is a scenario 
where the Ambric channels greatly simplify the control, as the 
check block processor will only assert the valid signal when 
an event is triggered, so the fan out processor simply stalls 
until this occurs.   

The fan out block distributes the combined first point and 
pulse sum to the normalization blocks.  Before the data is sent 
to the normalization block, the lookup address (pulse sum) is 
adjusted by an offset for each normalization block.  Only one 
of the blocks will receive a valid address, while all others will 
receive an address out of the memory bounds, and the 
processors are programmed to output a -1 when this occurs.  
The normalization block that receives a valid address will 
normalize the first point and send it to the fan in block.  This 
organization keeps all normalization blocks in lockstep, and 
avoids event inversion. 

Finally, the time block performs the time lookup.  Unlike 
the normalization block, the memory requirements for the 
lookup table in this block can fit in one RU.  

Table I 
COMPUTATION REQUIREMENTS OF EACH STAGE BEFORE OPTIMIZATION. 

Block  Cycles per input 
transaction 

Input transactions per 
output transaction  

Sum   8  1 

Check  10  25 or more 

Fan Out  4  1 

Normalization  11  1 

Fan In  4  1 

Time  5  1 
 
Table I shows the computation requirements for each 

processor for this initial implementation.  An input or output 
transaction is the transfer of a value on all inputs or outputs 
respectively.  While this is a functioning implementation, the 
large number of cycles per input limited the achievable 
throughput.  Therefore, optimizations were performed to 
reduce the overall cycles per input.  This is akin to pipelining 
in an FPGA.  Notice that the check block requires 25 inputs 
before it can output a new value because a pulse is 24 samples 
long.  This means that everything downstream from the check 
block has ample time to compute so there is no need to 
optimize any of them.  Therefore, the optimization effort was 
focused on the sum and check blocks. 

The first optimization was to break up the check block. This 
object had two if statements to check the two threshold values.   
Since the if statements were the most costly operation, 
because of branching, we realized that it would be necessary 
to break up the if statements into separate blocks.  

Fig 6 shows how the single check object has been separated 
into multiple objects: CheckVfpt checks the first sample 
threshold, CheckVet checks the second sample threshold, and 
And determines if both of triggers were crossed.  At this point 
a peculiar thing was noticed; CheckVet took eight cycles 
while CheckVfpt only took seven cycles. The assembly code 
revealed the issue.  The threshold value for CheckVet 



 
Fig. 6.  Block diagram of final optimized version of the sum and check blocks.  

required more than 16 bits, so an extra assembly operation 
was required.  For this reason another block before the 
CheckVet was used to apply the value.  This reduced its cycle 
time 6 cycles.  This caused us to realize that writing input 
stream values to a local variable and then evaluating the 
variable caused an extra cycle, as opposed to just computing 
on the stream.  Based on this, we were able to reduce all the 
Check Blocks to 6 cycles. Fig 6 shows the final optimized 
partitioning of the sum and check objects.  The optimized 
results are shown in Table II. 
 

Table II 
Computation requirements of the optimized sum and check blocks. 

Block 
Cycles per input 
transaction 

Input transactions per 
output transaction 

Dup4  1  1 

Sum   4  1 

FIFO  1  1 

Dup2  1  1 

Sub  5  1 

Load Const  4  1 

CheckVfpt  6  1 

CheckVet  6  1 

And  4  1 

Combine  6  1 

Check  6  25 or more 

 

C. Discussion 
A few issues arose in the implementation of the PET timing 

algorithm on the Ambric AM2045 MPPA.  The first issue was 
the inability to create a real-time counter to make the coarse-
grain time stamp.  This was impossible to do because of the 
possibility of stalls in the Ambric processor.  Stalls can arise 
for multiple reasons, but the most likely is the processor’s 
need to stall if the output register is not accepting data.  While 
this is an important feature for Ambric’s computation model, 
there may be an easy solution for this.  The solution would be 
extending the processor to perform non-blocking writes.  In 
this scenario, if the check block detected a pulse and tried to 
output to a channel that was not accepting data, the pulse 
would have to be discarded to avoid stalls.  In many 
computations this would not be acceptable, but in PET, since 
final image is made up of the statistics of hundreds of 
thousands of events, this would not be an issue.  This is in fact 

what occurs in the FPGA implementation; the system is 
designed to handle the average count rate, but if a short period 
of high activity occurs, some of the data is not processed.   

Another issue is the difficulty creating a memory that is 
larger than one RU.  For example, in the normalization block 
the lookup table required the memory of four RAM units.  In 
the FPGA tools, this is a simple step: an array of the 
appropriate size is declared and the tools stitch together the 
needed memories automatically.  This was not the case with 
the Ambric programming tools.  When it was discovered that 
the normalization lookup table exceeded the capacity of one 
RAM unit, the table needed be partitioned by hand.  With the 
memories distributed over four RAM units, the addressing had 
to be managed to ensure that the correct memory was read.  In 
addition to the added complexity, the partitioning of the 
memory also used three extra processors.  Replacing a few 
scattered brics in the array with larger memories would help 
with this problem.  Alternatively, providing a library of large 
memory components that automatically compose together 
smaller memories would be a major productivity improvement.   

Finally, as was discussed in the previous section, after the 
initial implementation the bottlenecks of the system were easy 
to determine.  These bottlenecks prevented the system from 
achieving the required throughput. To speedup these sections 
of the code the check and sum objects needed to be manually 
partitioned into multiple steps in order to pipeline the 
algorithm.  This meant that more processors were used to do 
the same amount of work, reducing the code density per 
processor.  In an FPGA, while it may be harder to pinpoint the 
bottleneck, the speedup may be accomplished by retiming 
with registers.  Retiming however can also create 
synchronization complexities for FPGA designs.  Having a 
mechanism to automatically spread computationally intensive 
objects across multiple processors and aggregating several 
simple objects onto one CPU, would be key for making best 
use of the MPPA fabric. 

To create a fair throughput comparison, the design was also 
compiled to a Stratix device (both Altera Stratix and Ambric 
MPPA are on a 130nm process).  Without any optimizations, 
the FPGA can run up to 150MHz.  While the FPGA only 
needs to run at 70MHz for the current scanner to match the 
speed of the ADC, the possible higher clock frequency allows 
for faster ADCs to be used in the future.  The Ambric MPPA 
on the other hand can only achieve a throughput of 50MHz 
(300MHz clock divided by 6 cycles for CheckVfpt).   
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V. EVENT LOCALIZATION 
Our lab has been investigating the use a continuous slab 

crystal for a scintillator crystal [11,12]. The monolithic slab 
crystal has the benefit of cheaper production, but determining 
where the photon enters the crystal is more complicated.  As 
can be seen in Fig. 7 the light spreads out substantially from 
the point of interaction, and many of the sensors on the 
photodetector receive light.   
 

Electronic Interface

PMT or Solid-State sensor array

Scintillation Crystal

 
Fig. 7. Dispersed output from a continuous scintillator crystal. 

The photodetector in this system has an 8x8 array of sensors.  
For any event in the slab crystal, a distribution of light will 
result, as shown in Fig. 8.  Notice that all of the 64 sensors 
receive some light, and there is an obvious peak, but achieving 
resolution beyond the 8x8 will require additional processing.  
In this study a resolution of 127x127 is achieved. 

 

Fig. 8. A representative event, showing the response of an 8x8 PMT array. 

The method we have developed for increasing the resolution 
of the photon sensors is known as Statistics Based Positioning 
(SBP) [11]. SBP is able to improve the overall detection 
characteristics of a continuous crystal detector. In an SBP 
system, each sensor array requires an initial characterization 
step. This involves positioning a source in the field of view at 
a known X-Y location, collecting data from each of the 64 
electronic sensors in the array, and saving the light response 
characteristics for that X-Y location in a table for future 

reference. The two statistical characteristics that are stored are 
the mean (µ) and variance (σ2) of the light distribution 
function of each sensor for a given X-Y location.  In other 
words, the same location of the crystal is hit with photons 
many times and the mean and variance of the energy 
deposited on each of the 64 sensors for all photon interactions 
is calculated and stored.  This is done for 127x127 locations.  
The result of this characterization is a 127x127 table that has 
64 means and variances (one for each sensor in the 8x8 array) 
in each location.  In execution mode, data collected from an 
unknown location is compared with the previously collected 
data table using (eqn. 1), and the coordinates of the 
characterization data that has the maximum value for (eqn. 1) 
are the position of the unknown source. Using this method, 
position resolution much finer than the spacing of the 
individual detectors within the 8x8 arrays is achieved.  

To calculate (eqn. 1) in hardware, the following 
modifications were made for the equation inside the 
summation 
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In this refactoring, the values for A, B and C are precalculated 
and stored in memory.   

The search of all 127x127 positions is too much processing 
to complete in the time required for the desired count rate of 
the scanner.   Fortunately, the solution space is convex and 
thus lends itself to a smarter search.  The algorithm that we 
implemented is a modified hierarchal search [12].   

The hierarchal search starts by sampling 9 points at multiple 
locations (see stage 1 in Fig 9), uniformly scattered across the 
whole solution space. The location with the highest value 
(upper right location of stage 1 in Fig 9) is assumed to be 
closer to the final solution than any of the other eight points 
with lower values. The highest valued location is then used as 
the center of a new search space (stage 2 in Fig 9) that is ¼ the 
size of the previous space. When the size of the solution space 
is reduced to one, the solution has been reached.  



 

Fig. 9. Three iterations of a 3x3 search on the solution space.  Note that this 
example only shows the first three of seven stages for illustration clarity. 

The regularity of this search allows each level of the search 
to consist of an almost identical process.  For the 3x3 search 
shown in Fig. 9, nine sets of characterization data table values 
are needed for the first stage, one for each position to be tested. 
The next iteration will consist of potential sample positions at 
one-half the spacing, with sets of points centered on each of 
the previous stage’s points.  This results in each stage’s data 
table having approximately four times the number of testable 
locations as the previous stage, but still only a fraction of the 
overall table, until the last stage is reached. The last stage is 
the only stage that needs access to the entire 127x127 table.  

Structuring the search in this way allows points tested at 
each iteration to be independent of calculations currently 
underway in the other iterations. This allows pipelining of the 
calculations with different events underway at each of the 
stages simultaneously. A second advantage of this method is 
that the storage requirement for each stage’s data table is 
reduced for each iteration prior to the last stage.  

A. FPGA Implementation 
This algorithm was also implemented on the StratixII DSP 

board [12].  Because the memory available in the prototype is 
not sufficient for a seven-stage system, only five stages could 
be created and tested.  Each stage requires 192 clock cycles. 
This represents a solution for each of 9 X-Y locations at each 
stage, plus 3 cycles for the final calculation of the coordinates 
of the minimum value and transferring the results to the next 
stage. Although each event will take 192 clocks at each of 
seven stages, for a total of 1344 clock cycles, as each stage 
completes its calculation it is immediately available for the 
next sequential event. This results in 7 events being solved 
simultaneously, with each event at a different stage of its 
solution. The implementation utilizes only 3.6% of the 
StratixII S180 and 75.9% of the memory (first five stages).   

B. Ambric Implementation  
Again, the localization algorithm was implemented in the 

Ambric MPPA as an application experiment.  Obviously the 
memory requirements of this application will be the largest 
implementation problem.  This algorithm requires far more 

memory than is available on the Ambric AM2045, so for a full 
implementation an external memory would be required.  Just 
as we did with the FPGA implementation, we investigated the 
application with the maximum number of stages that could fit 
on the device.   

Since the memory requirements of this algorithm were so 
extensive, this was the focus of our investigation. While it is 
possible for each processor to read and write to any RU in the 
MPPA, it was determined that the processors would not have 
the required bandwidth to make this work. So like the timing 
algorithm, the memories have to be manually partitioned over 
many RUs. Two alternative methods for partitioning the table 
over many processors were investigated. The first method, 
called “By Region,” was to break up the data by regions; each 
RU would store the response for one of the 127x127 array 
locations.  Stage 1 requires the storage of nine locations, and 
therefore uses nine RUs and nine processors to compute the 
correlation.  Stage 2 needs to store 49 locations.  As can be 
seen in Table III the number of processors needed by stage 3 
is 283, and the fourth stage alone would need 961 processors, 
far exceeding the number of processors on the Ambric 
AM2045.   

Table III: 
Resource requirements per stage for “By Region”. 

Stage 
Row/Column 
Length 

Full Table 
Size 

Number of 
Processors 

Memory per 
Processor 
(words) 

1 3 1728 9 192 
2 7 9408 49 192 
3 15 43200 225 192 
4 31 184512 961 192 
5 63 762048 3969 192 
6 127 3096768 16129 192 

Notice that each RU for each processor in this scheme only 
requires 192 16-bit words (384 bytes).  Each RU has 4KB of 
memory, so they are only being partially filled.  Given this 
under-utilization of memory a second method was 
investigated in order to utilize more of the memory. The 
second method of data division is called “By Sensor”. This 
method splits the data from the 64 sensors for each of the 
127x127 locations needed for a given stage. Because there are 
64 sensors, each RU could have some even portion (1/2, 1/4, 
1/8, 1/16, 1/32) of the total table needed for a given stage. For 
example, in stage 2, 49 of the 16129 (127x127) locations are 
needed.  Given the RUs storage capacity, it turns out that each 
RU can store data for 8 of the 64 sensors for all 49 needed 
locations in each RU.  This means that 8 processor/RUs are 
needed to compute stage 2.  Each processor computes the 
partial correlation for all locations based on the portion of the 
8x8 sensor it has.  Essentially, each processor computes only a 
subset of the sums in (1).  The partial correlation for a given 
location is then sent to another processor, along with the other 
partial correlations, to tabulate the final sum as shown in Fig 
10.  Table IV shows the maximum number of sensors per 
processor.  The actual implementation is the largest even 
portion that will fit in a given RU.   



 
Fig. 10.  Block diagram of the Ambric implementation of event “By Sensor” event localization.
Table IV 

Maximum resource requirements for the “By Sensor” memory partition 
scheme. 

Stage 
Row/Column 
Length 

Full 
Table 
Size 

Number of 
Processors 
required 

Number of 
Sensors/ 
Processor 

1 3 1728 1 74 
2 7 9408 5 13 
3 15 43200 22 2 
4 31 184512 93 0.69 
5 63 762048 382 0.17 
6 127 3096768 1549 0.04 

Notice that even though this memory partition scheme 
reduces the number of processors needed and allows an extra 
stage to be stored on-chip, only four of the six stages can fit 
on the device.  For comparison, an equivalent number of 
stages can also fit on a Stratix S30 (also 130nm process chip).   

C. Discussion 
Just like the memory partition in the timing algorithm, this 

application required a substantial amount of work to get a 
larger memory to work well on the Ambric MPPA.  For both 
FPGAs and MPPAs, the last couple of stages need to be stored 
off chip, but the memory setup for on-chip memory was much 
easier for the FPGA.  Also, since so many processors on the 
MPPA are needed to distribute the memory, there would be 
only a couple of processors available to perform the 
correlation calculations for the last stage.  On the other hand, 
the FPGA has plenty of unused logic available.   

VI. CONCLUSION 
Ambric was designed to be a massively parallel computing 

platform like FPGAs.  Unlike FPGAs though, the Ambric 
MPPA was designed to achieve the parallelism with lower 
power and more efficient design cycles.  Previous academic 
research indicates that these two goals were accomplished.  
However, we have shown in this paper that some of the 
choices made to reach those goals have a large implication on 
certain applications.  Both the Ambric MPPA and FPGAs are 
best suited for streaming applications, and the two 
applications that we covered here are certainly streaming 
applications.  These applications however also have 
requirements that made them difficult to implement on the 
Ambric MPPA.  Specifically, we showed how the inability to 
create a real-time clock and the lack of larger memories made 

these applications less suited to this MPPA.  We also 
demonstrated how achieving speedup for timing critical 
objects in an MPPA requires manual partitioning. We 
discussed some possible software/compiler tricks that could 
solve these problems. We also discussed how partitioning to 
increased throughput also leads to low code density.  This 
phenomenon however seems to be inherent in MPPAs and is 
one of the large differences between FPGAs and MPPAs. 
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