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Abstract

1 Con�gurable computing systems constitute a new class of computing and communication systems

which are composed of con�gurable hardware capable of system-level adaptation. The objective of the

MATCH (MATlab Compiler for Heterogeneous computing systems) compiler project at Northwestern

University is to make it easier for the users to develop e�cient codes for con�gurable computing systems.

Towards this end we are implementing and evaluating an experimental prototype of a software system that

will take MATLAB descriptions of various embedded systems applications, and automatically map them

on to a con�gurable computing environment consisting of �eld-programmable gate arrays, embedded

processors and digital signal processors built from commercial o�-the-shelf components. In this paper, we

provide an overview of the MATCH compiler and discuss the testbed which is being used to demonstrate

our ideas of the MATCH compiler. We present preliminary experimental results on some benchmark

MATLAB programs with the use of the MATCH compiler.
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1 Introduction

Con�gurable computing systems constitute a new class of computing and communication systems which

are composed of con�gurable hardware capable of system-level adaptation [6, 5]. One can visualize such

systems to consist of �eld-programmable gate arrays (FPGA) and �eld-programmable interconnect chips.

However, purely FPGA-based systems are usually unsuitable for complete algorithm implementation. In

most computations there is a large amount of code that is executed relatively rarely, and attempting to map

all of these functions into reprogrammable logic would be very logic-ine�cient. Also, recon�gurable logic

is much slower than a processor's built-in functional units for standard computations such as 
oating point

and complex integer arithmetic, variable length shifts, and others.

The solution to this dilemma is to combine the advantages of both microprocessor based embedded

systems (distributed and heterogeneous), specialized processors such as digital signal processors (DSPs), and

FPGA resources into a single system. The microprocessors are used to support the bulk of the functionality

required to implement an algorithm, while the recon�gurable logic is used to accelerate only the most

critical computation kernels of the program. This would make a typical con�gurable computing system a

heterogeneous array of embedded processors, DSPs and FPGAs.

A key question that needs to be addressed is how to map a given computation on such a heterogeneous

architecture without expecting the application programmer to get into the low level details of the architecture

or forcing him/her to understand the �ner issues of mapping the applications on such a distributed hetero-

geneous platform. Recently, high-level languages such as MATLAB have become popular in prototyping

algorithms in domains such as signal and image processing, the same domains which are the primary users of

embedded systems. MATLAB provides a very high level language abstraction to express computations in a

functional style which is not only intuitive but also concise. However, currently no tools exist that can take

such high-level speci�cations and generate low level code for such a heterogeneous testbed automatically.

We would like to motivate our work with an example hyperspectral image processing application from

the NASA Goddard Space Center. The hyperspectral image classi�cation application attempts to classify a

hyperspectral image in order to make it more useful for analysis by humans. Example uses are to determine

the type of terrain being represented in the image: land, swamp, ocean. In 1999, NASA will launch the �rst

Earth Observation Satellite, the Terra. The Terra satellite is projected to average 918 GBytes of data per

day. If one were to download the raw data to earth, it would �ll up NASA's entire data holdings (125,000

GBytes so far) in 6 months. Hence it is important to perform computation on the data on board the satellite

itself before sending down the data to earth. The need for con�gurable computing in this environment is that

there is a lot of instrument dependent processing that needs to be performed. The computations on the data

involve several algorithms, and the algorithms often change over the lifetime of the instrument. Figure 1

shows an overview of the NASA's hyperspectral application. Currently, NASA scientists have to write all

the code for execution on embedded processors in assembly language or C, and the code for execution on

1



Figure 1: NASA's Hyperspectral application. The need for con�gurable computing in this environment is
that there is a lot of instrument dependent processing that needs to be performed. The computations on
the data involve several algorithms, and the algorithms often change over the lifetime of the instrument.

the FPGAs in structural or RTL VHDL code. The application scientists that are developing algorithms for

such a satellite are experts in signal and image processing and often prototype their algorithms in languages

such as MATLAB. Hence there is a need to develop tools to convert high-level descriptions of algorithms

in MATLAB and compile them automatically to run on a heterogeneous network of embedded processors,

DSP processors, and FPGAs.

The objective of the MATCH (MATlab Compiler for Heterogeneous computing systems) compiler project

at Northwestern University is to make it easier for the users to develop e�cient codes for con�gurable

computing systems. Towards this end we are implementing and evaluating an experimental prototype of

a software system that will take MATLAB descriptions of various embedded systems applications, and

automatically map them on to a con�gurable computing environment consisting of �eld-programmable gate

arrays, embedded processors and digital signal processors built from commercial o�-the-shelf components.

An overview of the easy-to-use programming environment that we are trying to accomplish through our

MATCH compiler is shown in Figure 2. The goal of our compiler is to generate e�cient code automatically

for such a heterogeneous target that will be within a factor of 2-4 of the best manual approach with regard to

two optimization objectives: (1) Optimizing resources (such as type and number of processors, FPGAs, etc)

under performance constraints (such as delays, and throughput) (2) Optimizing performance under resource

constraints.

The paper is organized as follows. Section 2 provides an overview of the testbed which is being used to

demonstrate our ideas of the MATCH compiler. We describe the various components of the MATCH compiler

in Section 3. We present preliminary experimental results of our compiler in Section 4. We compare our
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Figure 2: A graphical representation of the objectives of our MATCH compiler. The objective is to have
an user develop various algorithms in image and signal processing in MATLAB, specify the constraints
regarding delays and throughputs, and for the MATCH compiler to automatically partition and schedule
the computations on di�erent portions of the testbed

work with other related research in Section 5, and conclude the paper in Section 6.

2 Overview of MATCH Testbed

The testbed that we have designed to work with the MATCH project consists of four types of compute

resources. These resources are realized by using o�-the-shelf boards plugged into a VME cage. The VME

bus provides the communication backbone for some control applications. In addition to the recon�gurable

resources, our testbed also incorporates conventional embedded and DSP processors to handle special needs

of some of the applications. Real life applications often have parts of the computations which may not be

ideally suited for the FPGAs. They could be either control intensive parts or could be even complex 
oating

point applications. Such computations are performed by these embedded and DSP processors. An overview

of the testbed is shown in Figure 3

We use an o�-the-shelf multi-FPGA board from Annapolis Microsystems as the recon�gurable part of

our testbed. This WildChildTM board (refer to Figure 4) has 8 Xilinx 4010 FPGAs (each with 400 CLBs,

512KB local memory) and a Xilinx 4028 FPGAs (with 1024 CLBs, 1MB local memory). All these FPGAs

can communicate among themselves either via a on board 36 bit wide systolic bus or via a crossbar. An

on-board micro controller interfaces to the Force V host (explained later) via the VME bus. With the help

of this controller, the host can e�ectively con�gure the FPGAs. Further, the local memories of the FPGAs

can be accessed by the Host controller, aiding in block data transfers to and from the board.
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Figure 3: Overview of the Testbed to Demonstrate the MATCH Compiler

A Transtech TDM-428 board is used as a DSP resource. This board has four Texas Instruments

TMS320C40 processors (each running at 60MHz, with 8MB RAM) interconnected by an on board 8 bit

wide 20MB/sec communication network. One of these processors can communicate with the host processor

via the VME bus interface. The other general purpose compute resource employed in the MATCH testbed

is a set of Motorola MVME2604 boards. Each of these boards hosts a PowerPC-604 processor (each running

at 200 MHz, with 64 MB local memory) running Microware's OS-9 operating system. These processors can

communicate among themselves via a 100BaseT ethernet interface.

A Force 5V board with MicroSPARC-II processor running Solaris Operating system forms one of the

compute resources that also plays the role of a main controller of the testbed. This board can communicate

with other boards either via the VME bus or via the ethernet interface. This processor moreover functions

as a master to the FPGA and DSP boards that act as attached processors.

3 The MATCH Compiler

We will now discuss various aspects of the MATCH compiler that automatically translates the MATLAB

programs and maps them on to di�erent parts of the target system shown in Figure 3. The overview of the

compiler is shown in Figure 5.

MATLAB is basically a function oriented language and most of the MATLAB programs can be written
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Figure 4: Recon�gurable part of the MATCH testbed

using prede�ned functions. These functions can be primitive functions or application speci�c. In a sequential

MATLAB program, these functions are normally implemented as sequential codes running on a conventional

processor. In the MATCH compiler however, these functions need to be implemented on di�erent types of

resources (both conventional and otherwise) and also some of these need to be parallel implementations to

take best advantage of the parallelism supported by the underlying target machine.

MATLAB also supports language constructs using which a programmer can write conventional procedural

style programs (or parts of it) using loops, vector notation and the like. Our MATCH compiler needs to

automatically translate all such parts of the program into appropriate sequential or parallel codes. MATLAB

being a dynamically typed language, poses several problems to a compiler. One of them being the well known

type inferencing problem. The compiler has to �gure out not only whether a variable was meant to be

a 
oating point variable, but also the number of dimensions and extent in each dimension if the variable

happens to be an array. Our compiler provides mechanisms to automatically perform such inferencing which

is a crucial component of any compiler for a dynamically typed language.

The maximum performance from a parallel heterogeneous target machine such as the one shown in

Figure 3 can only be extracted by e�cient mapping of various parts of the MATLAB program onto the

appropriate parts of the target. The MATCH compiler incorporates automatic mechanisms to perform

such mapping. It also provides ways using which an experienced programmer well versed with the target

characteristics can guide the compiler to �ne tune the mapping in the form of directives.

3.1 The Compilation Overview

The �rst step in producing parallel code from a MATLAB program involves parsing the input MATLAB

program based on a formal grammar and building an abstract syntax tree. Figure 6 shows a graphical view

of the hierarchy captured by the grammar. An example MATLAB code and the corresponding abstract

syntax tree is also shown. After the abstract syntax tree is constructed the compiler invokes a series of

phases. Each phase processes the abstract syntax tree by either modifying it or annotating it with more
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Figure 5: The MATCH Compiler Components

information.

Using rigorous data/control 
ow analysis and taking cues from the programmer directives (explained in

Section 3.6.2), this AST is partitioned into one or more sub trees. The nodes corresponding to the prede�ned

library functions directly map on to the respective targets and any procedural style code is encapsulated as

a user de�ned procedure. The main thread of control is automatically generated for the Force V processor

which keeps making remote procedure calls to these functions running on the processor (or processors) onto

which they are mapped. Figure 7 shows various transformations done to the MATLAB AST to �nally

convert it into a parallel program running on the target.

In the following sections we go into the details of these aspects of the MATCH compiler.

3.2 MATLAB Functions on FPGAs

In this section we describe our e�ort in the development of various MATLAB libraries on the Wildchild

FPGA board described earlier and shown in Figure 4. These functions are developed in Register Transfer

Level (RTL) VHDL using the Synplify logic synthesis tool from Synplicity to generate gate level netlists,

and the Alliance place-and-route tools from Xilinx. Some of the functions we have developed on the FPGA

board include matrix addition, matrix multiplication, one dimensional FFT and FIR and IIR Filters. In

each case we have developed C program interfaces to our MATCH compiler so that these functions can be
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pc_filter = rand(63,1);
pc_filter_time = zeros9512,1);
pc_filter_frq = fft(pc_filter_time);
for i = 1:6
  pc2(i,:) = pc1(i,:)*pc_filter_freq
end;

stmt_list

stmt expression

=

pc_filter rand( , )

63 1

stmt ....

stmt ....
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...................

.................

.....................
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Figure 6: Abstract Syntax Tree: (a) The hierarchy captured by the formal grammar (b) A sample MATLAB
code (c) Abridged syntax tree for the MATLAB code.

called from the host controller. In the sidebar subsection we discuss the implementation of one of these

functions namely the IIR �lter function as a typical example.

3.2.1 IIR and FIR Filter (A sidebar section in the �nal version)

Filtering is one of the most common operations performed in signal processing. Most �lters belong to one of

two classes - FIR for Finite Impulse Response and IIR for In�nite Impulse Response �lter. While the actual

implementation of these two classes of �lters is di�erent, mathematically they are quite similar, and the FIR

�lter can be done using the more general IIR �lter. We have implemented MATLAB library functions for

FIR or IIR �ltering of up to order 64 on vectors of maximum size 250,000 elements. The data precision used

is 8 bits �xed-point in fractional 2's complement format.

There are several ways to implement a IIR �lter, many of which build higher order �lters out of smaller

ones. The cascaded form of the IIR �lter lends well to implementation on the multi-FPGA architecture of

the WILDCHILD system due to the presence of near-neighbor communication capability via the systolic bus.

Several FPGAs can be strung together in series to implement the required �lter operation. The primary

constraint in our implementation has been the resource requirements of the �lter unit on each FPGA. Since

the FPGAs on the WILDCHILD board are very modest, we were able to �t only a 1-tap �lter (�rst order

�lter or 'integrator') on each FPGA.

Each 1-tap �lter unit on the FPGAs is reversible. It can accept input from the left or right systolic bus

and output the result on the right or left bus respectively. The input vector is initially stored in the local

memory of PE1 and fed into the 1-tap �lter on PE1. The partially �ltered data then moves on to PE2, then

to PE3 and so on in a pipelined manner until it reaches PE8 which writes its result to its local memory

completing an 8-tap �lter. For higher-order �lters, all PEs are reversed and the partially �ltered data is read

from PE8's local memory, passed through PE7, PE6 and so on until it reaches PE1 where it gets written to
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PE1's local memory completing a 16-tap �lter. This process of passing data back and forth can be repeated

as many times as required to implement �lters of any size. PE0 is not used in this design and is con�gured

as a 'blank' FPGA.

The performance characteristics of this �lter implementation for various number of taps and various data

sizes is shown in Table 1. These characterizations are used by the automated mapping algorithm of the

MATCH compiler described in Section 3.6.1.

3.3 MATLAB Functions on DSPs

In this section we will describe our e�ort in the development of various MATLAB library functions on the

DSPs. These functions are developed on the Transtech DSP boards utilizing multiple DSPs using message-

passing among multiple processors in C using our own custom implementation of MPI. We subsequently used

the PACE C compiler from Texas Instruments to generate the object code for the TMS320C40 processors.

Our current set of functions includes real and complex matrix addition, real and complex matrix multipli-

cation ,one and two dimensional FFT. Each of these libraries has been developed with a variety of data

distributions such as blocked, cyclic and block-cyclic distributions. In the sidebar section, we go through the

implementation details of one of these functions (FFT) as a typical example.
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Table 1: IIR/FIR �lter library function characterizations on the Wildchild FPGA board of the MATCH
testbed. Runtimes in milli-seconds are shown for various number of taps and various data sizes.

Filter Vector Con�g Download Compute
Taps Size Time + Readback

16 16K 2600 132+15=147 3
16 64K 2600 188+58=246 13
16 256K 2600 440+230=670 52
64 16K 2600 132+15=147 13
64 64K 2600 188+58=246 52
64 256K 2600 440+230=670 210
256 16K 2600 132+15=147 52
256 64K 2600 188+58=246 210
256 256K 2600 440+230=670 840

Table 2: 2-D FFT library function characterizations on a 2-D image on the DSP board of the MATCH
testbed. Runtimes in seconds are shown for various image sizes and various processor sizes/con�gurations
and data distributions.

Processor con�gs
Image Size 1x1 2x1 4x1
16 x 16 0.007 0.006 0.005
64 x 64 0.151 0.089 0.057
128 x 128 0.668 0.378 0.233
256 x 256 3.262 1.799 1.06

3.3.1 2-dimensional Fast Fourier Transform (A sidebar section in the paper)

The 2-dimensional Fast Fourier Transform (FFT) takes a 2-D image of size N * N, and performs 1-D FFT on

each row and 1-D FFT on each column of the array. To ensure best performance, the distribution of the input

data among the cluster of DSPs is very important. Though a row-wise data distribution is best suited for

FFT computation along the rows with the entire row being present within the same processor, this generates

a lot of communication when one performs the column-wise FFTs unless one performs a transpose of the

intermediate data. Our implementation of FFT is generic enough to handle FFT when data is distributed

di�erently.

The performance characteristics of this 2-D FFT implementation on the DSP board for various number

of processors and various data distributions, and various data sizes is shown in Table 2. The table shows

the results for a 1D FFT with along the rows with the data distributed in a cyclic(4),cyclic(4) manner. The

speedup is around 3 on 4 processors. These characterizations are used by the automated mapping algorithm

of the MATCH compiler described in Section 3.6.1.
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3.4 Automatic Generation of User functions

Since MATLAB allows procedural style of programming using constructs such as loops and control 
ow, the

parts of the program written in such a style may not map to any of the prede�ned library functions. All

such fragments of the program need to be translated appropriately depending on the target resource onto

which they are mapped. As shown in Figure 5, we wish to generate C code for the DSP and embedded

processors and VHDL code for the FPGAs. In most cases we need to translate them into parallel versions

to take advantage of multiple resources that can exploit data parallelism.

The particular paradigm of parallel execution that we have presently considered is the single-program-

multiple-data (SPMD) model. In this particular scenario, the compiler must decide on which processors to

perform the actual compute operations and various candidate schemes exist to guide the compiler in making

its decision. One possible scheme is called the owner-computes rule in which operations on a particular data

element are executed by only those processors that actually \own" the data element. This is the way compu-

tations are currently assigned to processors in our compiler. Ownership is determined by the alignments and

distributions that the data is subjected to. Though automated procedures do exist which discover suitable

alignments and distributions that the data must be subjected to so as to minimize inter-processor commu-

nication, our current infrastructure relies on user-provided data alignment and data distribution directives

for this information.

Under the owner-computes rule, assignment statements are executed by the processor that owns the data

element being assigned to. We illustrate the compilation process through the example shown in Figure 8

for the Jacobi iterative method for solving the Laplace equation. The Jacobi method updates all elements

of a new array using the average value of all its top, bottom, left and right neighbors of the old array

x. The following points are to be noted. First, corresponding to the array assignment statement, its

scalarized C equivalent has a set of nested for loops whose loop bounds have to be determined by the data

distribution among the processors. Also the computation of elements at the border may need data from

neighboring processors, which are obtained as part of four vectorized messages called MPI-SENDRECV().

The compilation process described here is analogous to that followed by High-Performance Fortran compilers

when they generate message passing Fortran code.

The SPMD code generation process must partition the loop bounds in the loop nest so that each processor

executes only those iterations for which new[i,j] resides on it. This is done by taking into account the

alignment and distribution directives. The computation partitioning is achieved using a linear algebra

framework which is su�ciently sophisticated to handle a�ne subscript and loop bound expressions that may

also involve compile-time unknowns. This framework also helps in �nding out the data needed from other

processors and also the exact way of sharing them.

10



Function  jacobi

%! match type real x(100,100), new(100,100)

%! match distribute x(block,block) new(block,block) onto
procs(4,4)

   new(2:99,2:99) = x(1:98,2:99) + x(3:100,2:99)

+ x(2:99,1:98) + x(2:99,3:100);

RESULTANT C CODE:

float  x(26,26), new(25,25);  /* distributed data */

MPI-SENDRECV(x, top)  /* communicate with top */

MPI-SENDRECV(x, bottom)  /* communicate with bottom */

MPI-SENDRECV(x, left)  /* communicate with left */

MPI-SENDRECV(x, right)  /* communicate with right */

for  (i = 2; i < 24 ; i++){  !/* reduced loop bounds */

  for ( j = 2: j <  24; j++) {  /* reduced loop bounds */

      new[i,j] = x[i-1,j] + x[i+1,j] + x[i,j-1)]+ x[i,j+1]

   }

}

ARRAY X DISTRIBUTED on
16 processors arranged as (4,4)

Computation of processor (2,2)

Figure 8: Example automatic generation of SPMD code for the Jacobi computation. Since the two arrays
new and x of size 100 X 100 are distributed among a 4 X 4 array of processors, each processor works on a
sub-array of size 25 X 25. Any non-local data that is accessed has to be obtained through message passing
prior to execution of the computation.

3.5 Type Inferencing

In this section, we discuss the mechanisms used by the MATCH compiler to perform type inferencing. When

possible, our compiler tries to infer type and shape of variables using automatic inferencing techniques.

Often, it may not be possible to infer these attributes, in which case our compiler takes the help of user

directives which allow the programmer to explicitly declare the type/shape information.

3.5.1 Automatic Inferencing

First, we convert the expressions in the original MATLAB source to a sequence of subexpressions, all having

the single operator form. We then infer the shapes of the various subexpressions using a shape algebra. The

determination of a variable's shape is often non-trivial because of its potentially symbolic nature.

If e is an arbitrary MATLAB expression, we de�ne its shape �(e) as follows:
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where pi 2 Z and pi � 0 8 1 � i � �D(e).
(1)

Thus, the shape of a MATLAB expression consists of its dimensionality �D(e), a boolean expression

�P (e) referred to as its shape-predicate, and �nally, its shape-tuple matrix c�T (e). The shape-tuple matrix is
a square diagonal matrix having the extents of the MATLAB expression e as its principal diagonal elements.

These elements can be symbolic and their validity is ensured by the shape-predicate which must be true at

run-time.

It is possible to formulate a shape algebra which expresses each of the three components of a MATLAB

expression's shape in terms of the shape components of the expression's subexpressions. For instance, given

the MATLAB assignment c a+ b, we have the following:

�D(c) max(�D(a); �D(b));
�P (c) (�(a) = 1) _ (�(b) = 1) _ (c�T �

(a) = c�T �

(b));c�T �(a)�(b) + c�T �

(b)(1� �(b)):

In the above, �(a) and �(b) are scalars that are unity if and only if the MATLAB expressions a and b are

themselves scalars. The symbolic expressions for �(a) and �(b) can also be formulated in terms of the shape

components of a and b. The matrices c�T �

(a) and c�T �

(b) are basically c�T (a) and c�T (b) \expanded" to the

dimensionality of the result (i.e., �D(c)).

3.5.2 User Guided Inferencing

User guided type inferencing in the MATCH compiler is done by taking cues from the programmer by means

of directives. The directives for match compiler start with %!match and hence appear as comments to

other MATLAB interpreters/compilers. An extensive set of directives have been designed for the MATCH

compiler. Some examples of these directives are:

%!match TYPE integer a
a = 2 % this speci�es 'a' as being a scalar
%!match TYPE real a(512,512) , b(100)
[a; b] = foo(1; 2)
% this speci�es a as 512x512 real matrix, b is a 100 element row vector.
%!match TYPE real a(512,512) , b(N)
[a; b] = foo(1; 2)
% Here N must be a constant known at compile-time.
%!match TYPE real a(unknown), b(unknown,10)
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[a; b] = foo(1; 2)

3.6 Mapping onto the Target

3.6.1 Automated Mapping

When possible, the MATCH compiler tries to automatically map the user program on to the target machine

taking into account the speci�ed timing constraints, device capabilities and costs. The automatic mapping is

formulated as a mixed integer linear programming problem with two optimization objectives: (1) Optimizing

resources (such as type and number of processors, FPGAs, etc) under performance constraints (such as delays,

and throughput) (2) Optimizing performance under resource constraints. The performance characterization

of the prede�ned library functions and the user de�ned procedures guide this automatic mapping. Examples

of performance characterizations are illustrated in Table 1 for the FPGA board and Table 2 for the DSP board

in our MATCH testbed. Figure 9 shows some of the steps involved in automatic mapping. Figure 9(a) shows

the control-data 
ow graph of a given MATLAB program. Each node of the graph consists of MATLAB

functions which can have several implementations on various resources such as single or multiple FPGAs and

DSP processors. These functions are characterized in terms of the costs on various resources and execution

times in Figure 9(b). Finally, using our mixed integer linear programming formulation and solution for the

time constrained resource optimization problem results in the resource selection, pipelining, and scheduling,

shown in Figure 9(c).

3.6.2 User Guided Mapping

In cases where such an automatic mapping is not satisfactory or if the programmer is in a better position

to guide the compiler, special user directives are provided for this purpose. These directives describe the

target architectures to the compiler, the availability of prede�ned libraries on them and other relevant

characteristics. Some examples of such directives supported by the MATCH compiler are:

%!match USE FUNCTION fpga-�t
�t(1:n)
%!match BIND TASK �lter TO PROCESSOR[1..10]
�lter(1:m)
%!match USE PROCESSOR TYPE "DSP"
c = a * b

3.7 Complete Code Generation

After generating the ASTs for each of the individual parts of the original MATLAB program, these ASTs are

suitably translated for appropriate target processors. Depending on the mapping (performed as discussed in

Section 3.6), the targets for each of these ASTs could be di�erent. The ASTs corresponding to FPGAs are
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translated to RTL VHDL and those corresponding to Host/DSP/Embedded processors are translated into

equivalent C language programs. Finally, these generated programs are compiled using the respective target

compilers to generate the executable/con�guration bit streams.

3.7.1 Code Generation for FPGAs

Each user function is converted into a process in VHDL. Each scalar variable in MATLAB is converted

into a variable in VHDL. Each array variable in MATLAB is assumed to be stored in a RAM adjacent to

the FPGA, hence a corresponding read or write function of a memory process is called from the FPGA

computation process. Control statements such as IF-THEN-ELSE constructs in MATLAB are converted

into corresponding IF-THEN-ELSE constructs in VHDL. Assignment statements in MATLAB are converted

into variable assignment statements in VHDL. Loop control statements are converted into a �nite state

machine as shown in Figure 10.

function sum()
sum = 0;
for i =1:100
  sum = sum + a(i);
end

process sum
if rising_edge(clock)
case state is
when int: sum := 0; i := 0;
                state := 2;
when 2: if (I < 100) state := 3;

else state := 5;
when 3: RAMaddr := a + I;

Readmemory := 1;
state := 4;

when 4:
sum := sum + RAM_out;
i := i + 1;
state := 2;

when 5:
result_sum := sum;
state := init;

end process

2 3

4 5

int

State diagram of finite
state machine

MATLAB PROGRAM Register Transfer Level VHDL PROGRAM

Figure 10: Example compilation of a MATLAB program with loops into RTL VHDL. On the top left we
show an example MATLAB code which performs a summation of elements of an array. We show the state
diagram of a �nite state machine to perform the same computation in the bottom left. On the right we show
the corresponding RTL VHDL code.

For each loop statement, we create a �nite state machine with four states. The �rst state performs the

initialization of loop control variables and any variables used inside the loop. The second state checks if the

loop exit condition is satis�ed. If condition is valid, it transfers control to state 4, which is the end of the

loop. If condition is not valid, it transfers control to state 3, which performs the execution of statements in

the loop body. If there is an array access statement (either read or write), one needs to generate extra states

to perform the memory read/write from external memory and wait the correct number of cycles.
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3.7.2 Code Generation for Host/DSP/Embedded

Once the abstract syntax tree is constructed, generating the code is quite straightforward. A reverse post-

order traversal of the abstract syntax tree is done. At nodes corresponding to operators and function calls,

the annotated information about the operands and the operator/function are checked. Depending upon

the annotated information a call to a suitable C function is inserted that accomplishes the task of the

operator/function call in the MATLAB program. For example, to invoke the �t function on the cluster of

DSP processors, the compiler generates a call to a wrapper function �t(DSP,....), instead of the set of actual

calls needed to invoke the �t on the DSP processors cluster. This wrapper contains the mechanism to invoke

the function on all the available platforms. Similarly, to invoke the �t on the FPGAs instead of the DSPs,

the compiler just has to generate the call �t(FPGA,...).

i  =  j  +  2    /* no function call */

stmt_list

a

=

fft(  )

b
matrix

DSP

matrix

FFT(  DSP/*platform*/,

         b_info  /* all about argument b */
       )

       & a_info, /* all about argument a */

=

a
+

b c
matrix

matrix matrix

FPGA

=

i
+

j 2
scalar

scalar

ADD(  FPGA /*platform*/
          & a_info,/* argument a info */
              b_info,/* argument b info */
              c_info,/* argument c info  */
         )

Figure 11: Code Generation: The * info represent structures that all necessary information such as
type,shape,precision, actual data itself etc about the variable. The �elds of the structure get de�ned along
with the de�nition of the variable. These informations are used where ever the variable is used henceforth.
For operators, function calls are generated only when operands are not scalar.

4 Experimental Results

We have implemented a preliminary version of the MATCH compiler. In this section we will report results

of the MATCH compiler on some benchmark MATLAB programs.
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4.1 Matrix Multiplication

We �rst report on results of the simple matrix multiplication function on various parts of the testbed. We

perform the same matrix multiplication function on three targets on the testbed. The following MATLAB

code shown below represents the matrix multiplication test benchmark. We use directives to map the same

matrix multiplication computation to three targets in our heterogeneous testbed. The compiler calls the

appropriate library functions and the related host code.

%!match TYPE real a(256,256)

a = rand(256,256)

%!match TYPE real b(256,256)

b = rand(256,256)

%!match TYPE real c(256,256)

%!match USE PROCESSOR TYPE "FORCE"

c = a * b

%!match USE PROCESSOR TYPE "DSP"

c = a * b

%!match PRECISION 8 bits a,b,c

%!match USE PROCESSOR TYPE "FPGA"

c = a * b

end

The results of executing the code on the testbed are shown in Table 3. The column shown as \Force"

refers to a matrix multiplication library running on the Force board using the RTEExpress library [3]

from Integrated Sensors Inc., using 32 bit real numbers. The column shown as \DSP" refers to a matrix

multiplication library written in C using one processor on the Transtech DSP board, using 32 bit real

numbers. The column shown as \FPGA" refers to a matrix multiplication library function written in VHDL

in the Wildchild FPGA board, using 8 bit fractional numbers. It can be seen that even including the FPGA

con�guration and data download times it is faster to perform matrix multiplication on the Wildchild FPGA

board. It should be noted however that the FPGA board is operating at a smaller clock cycle (20 MHz)

instead of the Force board running at 85 MHz and the DSP board running at 60 MHz. However the FPGA

board has more parallelism since it has 8 FPGAs working in parallel; also the data precision on the FPGA

computation is only 8 bits while the Force board and DSP boards are operating on 32 bit integer numbers.

The numbers in parenthesis under the column for FPGA refers to the FPGA con�guration and data read

and write times o� the board.

4.2 Fast Fourier Transform

We next report on results of a one-dimensional Fast Fourier Transform function on various parts of the

testbed. We perform the same FFT function on four targets on the testbed using a program similar to the

previous matrix multiplication example.
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Table 3: Comparisons of runtimes in seconds of the matrix multiplication benchmark on various targets of
the testbed

Execution Time(in secs)
Size Force RTE DSP FPGA

(85 MHz, 32 bit) (60 MHz, 32 bit) (20 Mhz, 8 bit)
64X64 0.36 0.08 0.002 (0.038)
128X128 2.35 0.64 0.015 (0.082)
248X248 16.48 4.6 0.103 (0.246)
496X496 131.18 36.7 0.795 (0.961)

Table 4: Comparisons of runtimes in seconds of the FFT benchmark on various targets of the testbed. The
numbers in parenthesis under the column for FPGA refers to the FPGA con�guration and data read and
write times o� the board.

Execution Time(in secs)
Size Force RTE DSP FPGA

(85 MHz, 32 bit) (60 MHz, 32 bit) (9 MHz, 8 bit)
128 0.62 0.668 0.00005 (0.51)
256 2.61 3.262 0.00013 (0.51)

The results are shown in Table 4. The column shown as \Force" refers to the FFT running on the Force

board with the RTEExpress Library [3] from ISI, using 32 bit real numbers. The column shown as \DSP"

refers to the FFT written in C using one processor on the Transtech DSP board, using 32 bit real numbers.

The column shown as \FPGA" refers to the FFT written in VHDL in the Wildchild FPGA board, using 8

bit fractional numbers. It can be seen that even including the FPGA con�guration and data download times

it is faster to perform the FFT on the Wildchild FPGA board. It should be noted however that the FPGA

board is operating at a smaller clock cycle (9 MHz) instead of the Force board running at 85 MHz and the

DSP board running at 60 MHz.

4.3 Image Correlation

After investigating simple MATLAB functions, we now look at slightly more complex MATLAB programs.

One benchmark that we investigated is the image correlation benchmark whose code is shown below. The

MATLAB program takes two 2-dimensional image data, performs a 2-dimensional FFT on each, multiplies

the result and performs an inverse 2-dimensional FFT on the result, to get the correlation of two images.

The MATLAB program annotated with varius directives appears as follows. The type and shape directives

specify the size and dimensions of the arrays. The USE directives specify where each of the library functions

should be executed. It speci�es that the �rst FFT should be executed on the FPGA board, and the second

FFT should be executed on the DSP board, and the matrix multiplication and inverse FFT should be

executed on the host Force board using an RTE Express Library [3]from Integrated Sensors Inc.
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%!match TYPE real x

for x=1:12

%!match TYPE real image1(256,256)

image1 = rand(256,256);

%!match TYPE real image2(256,256)

image2 = rand(256,256);

%!match TYPE REAL m1(256,256)

%!match USE PROCESSOR TYPE "DSP"

m1 = fft(image1);

%!match TYPE REAL m2(256,256)

%!match USE PROCESSOR TYPE "FPGA"

m2 = fft(image2);

%!match TYPE REAL result(256,256)

%!match DISTRIBUTE result(CYCLIC,*) ONTO PROCS(2,2)

!match USE PROCESSOR TYPE "RTE"

result = ifft(m1 * m2)

end

The performance of this correlation benchmark using the Mathworks MATLAB 5.2 MCC compiler on a

SUN Ultra 5 workstation running Solaris 2.6 and the MATCH testbed is shown in Figure 12.
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Figure 12: Results the MATHWORKS MCC and MATCH compiler on Correlation Application on a SUN
ULtra 5 workstation.
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Figure 13: Control and Data Flow Graph of MPEG Decoder

Table 5: MPEG decoder design using heterogeneous resources
.

Delay IAT Cost in $ cost
(msecs.) Greedy MILP reduction

110 110 375 135 64%
90 90 450 225 50%
100 50 495 315 36%
90 45 515 390 24%
75 25 540 540 0%
60 20 680 680 0%
60 15 805 775 4%
50 10 1145 1145 0%

4.4 MPEG Decoder Design

We have applied our automatic mapping algorithm using mixed integer linear programming (MILP) to the

design of MPEG decoder using a heterogeneous set of resources to implement each subtask. The MATLAB

program for the MPEG decoder application has six functions called DECOR, DEQUAR, PREDR, IDCT,

SUM and DISP. Figure 13 shows the control-data
ow graph of the MPEG program. We assume that there

are implementations of each of these functions on single and multiple embedded processors, DSPs and FPGAs

of the testbed. Table 5 shows the results of such a mapping for various timing constraints. As can be seen,

our MILP algorithm produces results superior to a simple greedy heuristic based mapping.

4.5 Hyperspectral Image Processing

We would like to report the results of one complete application on our testbed described in the introduction.

The hyperspectral image classi�cation application from NASA attempts to classify a hyperspectral image

in order to make it more useful for analysis by humans. Example uses are to determine the type of terrain

being represented: land, swamp, ocean. The algorithm involves the use of a probabilistic neural network

computation in order to transform an image into k classes. The MATLAB version of the main part of the

code is shown below.

for p=1:rows*cols
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Figure 14: Mapping of Hyperspectral Application on Four FPGAs in MATCH Testbed

% load pixel to process

pixel = data( (p-1)*bands+1:p*bands );

class_total = zeros(classes,1);

class_sum = zeros(classes,1);

% class loop

for c=1:classes

class_total(c) = 0;

class_sum(c) = 0;

% weight loop

for w=1:bands:pattern_size(c)*bands-bands

weight = class(c,w:w+bands-1);

class_sum(c) = exp( -(k2(c)*sum( (pixel-weight').^2 ))) + class_sum(c);

end

class_total(c) = class_sum(c) * k1(c);

end

results(p) = find( class_total == max( class_total ) )-

1;

end

The MATLAB code was mapped onto a set of �ve FPGAs on the Wildchild Board in our MATCH testbed

as shown in Figure 14.

The performance of the application on an HP C-180 workstation with a 180 MHz PA-8000 CPU and

128 MB of memory and the WIldchild FPGA board with �ve FPGAs is shown in Figure 15. When the

application is coded in MATLAB in an iterative manner, it can process 1.6 pixels of the image per second.

When the application is coded in MATLAB using vectorization, it can process 35.4 pixels of the image per

second. When it is coded in Java, it can process 149 pixels per second, and when coded in C, it can process

364 pixels per second. However, when the application is coded in VHDL and executed on the Annapolis
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Figure 15: Performance of Hyperspectral Image Processing on Con�gurable Computing Testbed

Wildchild board with �ve Xilinx 4010 FPGAs, it can process 1942 pixels per second. Hence one can see the

bene�ts of going from a general purpose processor to a con�gurable computing system.

We �nally show the actual results of an image classi�cation performed on the image in Figure 16 on the

con�gurable computing testbed.

5 Related Work

In this section we review related work in the con�gurable computing area. These consist of hardware

approaches combining the technologies of processors and FPGAs, and software approaches to mapping

applications to con�gurable computing platforms.

5.1 Hardware Developments

The RAW project [10] at MIT is an attempt at building a simple and wire-e�cient architecture that scales

with increasing VLSI gate densities. A RAW machine is con�gurable in that it exposes its low-level hardware

details completely to the software system, eliminating the traditional compact instruction- set interface (ISA)

between the hardware and the compiler.

The BRASS group [9] at the University of California, Berkeley, is investigating the integration of pro-

cessors and recon�gurable logic. Their �rst pass at such an architecture was the GARP which combined

a MIPS-II processor with a �ne-grained FPGA coprocessor on the same die. They are also working on

more e�cient recon�gurable array designs, techniques to simplify and accelerate the mapping process, and

strategies for building recon�gurable applications.
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(a) Raw Image (b) Processed Image

Figure 16: Sample output of the raw image and the processed and classi�ed image from the hyper-spectral
image classi�cation application.

The Chimaera [8] project is based upon creating a new hardware system consisting of a microprocessor

with an internal recon�gurable functional unit. This solution takes advantage of the microprocessor's ability

to do the bulk of the work, while the recon�gurable unit performs the compute intensive kernels.

The NAPA1000 Adaptive Processor from National Semiconductor [7] features a merging of FPGA and

RISC processor technology. It uses an array of 1024 FPGA based simple processors as a co-processor to the

RISC processor to exploit �ne grain parallelism in certain applications.

There have been several companies that have developed products which are coprocessor boards that

contain FPGAs, embedded processors and memories, and can be attached to the PCI bus or a VME bus.

They include the Virtual Computer Corporation's (VCC) the H.O.T. Works PCI Board which contains

a Xilinx 6200 FPGA; the ACEcard II from TSI Labs which consists of two Xilinx 4035 FPGAs and a

microSPARC II CPU with 64MB of DRAM which attaches to a PCI bus; the WILDFORCE, WILDCHILD

and WILDSTAR boards from Annapolis Microsystems [1] which contains one to eight Xilinx 4000 series or

Xilinx Vertex FPGA's as processing elements which attach to either the PCI or VME buses.

5.2 Software Developments

Several di�erent works have been done on the development of software which can help reduce the amount

of time to take a high level application and map it to a con�gurable computing system.

The Cameron project [11] at Colorado State University is an attempt to develop an automatic tool for

image processing applications in Khoros, an advanced and widely used software development environment
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for signal processing. They have implemented the IP components of a standard signal-processing library

called VSIPL (Vector Signal Image Processing Library) in hardware using FPGAs.

The CHAMPION project [12] at the University of Tennessee focuses on providing tools to automate the

process of mapping image processing applications in Khoros onto recon�gurable systems. The approach

taken is to build a library of pre-compiled primitives that can be used as building blocks of image processing

applications.

The CORDS [4] project has developed a hardware/software co-synthesis system for recon�gurable real-

time distributed embedded system. It takes as input a task graph, a set of communication processors, general

purpose processors, and FPGA's, and assigns the tasks to the processors, and then develops the schedule for

the tasks and communication events.

The WASPP project from Annapolis Microsystems [1] combines the performance advantages of an FPGA-

based computer to the 
oating-point arithmetic and complex algorithm execution capabilities of a DSP

processor.

The RTExpress Parallel Libraries [3] tool from Integrated Sensors Inc. consist of e�cient, parallel perfor-

mance tuned implementations of over 200 MATLAB functions. The RTExpress Parallel libraries are written

in the C language. They have been designed for execution the on embedded high performance parallel

architectures.

There have been several commercial e�orts to generate hardware from high-level languages. The Signal

Processing Workbench (SPW) from the Alta Group of Cadence, translates from a block diagram graphical

language into VHDL, and synthesizes the hardware. The COSSAP tool from Synopsys also takes a Block

Diagram view of an algorithm and translates it to VHDL or Verilog. However, the levels that one has to enter

the design in SPW or COSSAP is at the block diagram level with interconnection of blocks which resem-

bles structural VHDL. The Renoir tool from Mentor Graphics Corporation lets users enter state diagrams,

block diagrams, truth tables or 
ow charts to describe digital systems graphically and the tool generates

behavioral VHDL/Verilog automatically. Subsequently the Monet tool converts the behavioral VHDL into

RTL VHDL, which can be used by the Leonardo logic synthesis tool. Tools such as Compilogic from Compi-

logic Corporation translate from C to RTL Verilog. Tools such as C2VHDL and COSYMA perform simple

transformations on simple C programs to generate behavioral VHDL code. JRS Labs also has a C to VHDL

translator. Again this tool translates C to behavioral VHDL.

Our MATCH compiler project [2] di�ers from all of the above in that it is trying to develop an integrated

compilation environment for generating code for DSP and embedded processors, as well as FPGAs, using

both a library-based approach and automated generation of C code for the DSP and RTL VHDL code for

the FPGAs.
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6 Conclusions

In this paper we provided an overview of the MATCH project. As described in the paper, the objective

of the MATCH (MATlab Compiler for Heterogeneous computing systems) compiler project is to make it

easier for the users to develop e�cient codes for con�gurable computing systems. Towards this end we

are implementing and evaluating an experimental prototype of a software system that will take MATLAB

descriptions of various embedded systems applications in signal and image processing, and automatically

map them on to an adaptive computing environment consisting of �eld-programmable gate arrays, embedded

processors and digital signal processors built from commercial o�-the-shelf components.

In this paper, we �rst provided an overview of the testbed which is being used to demonstrate our ideas

of the MATCH compiler. We next described the various components of the MATCH compiler. Subsequently

we presented preliminary experimental results of our compiler on small benchmark MATLAB programs, and

compared our work with other related research.
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