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Medical imaging tasks can require high-performance signal processing to convert sensor data into imagery to help with 
medical diagnostics.  FPGAs are a compelling platform for these systems, since they can perform heavily pipelined 
operations customized to the exact needs of a given computation.  In previous work we have benchmarked a CT scanner 
backprojection algorithm [http://ee.washington.edu/faculty/hauck/Tomography/].  In this article we focus on an FPGA 
platform and a high level synthesis tool called Impulse C to speed up a statistical line of reaction (LOR) estimation for a 
high-resolution Positron Emission Tomography (PET) scanner. The estimation algorithm provides a significant improvement 
over conventional methods, but the execution time is too long to be practical for clinic applications. Impulse C allows us to 
rapidly map a C program into a platform with a host processor and an FPGA coprocessor. In this article, we describe some 
successful optimization methods for the algorithm using Impulse C. The results show that the FPGA implementation can 
obtain an 82x speedup over the optimized software. 
 
Positron Emission Tomography (PET) is a nuclear medical imaging technique which produces a three-dimensional scan of the 
body. This technology is used in hospitals to diagnose patients and in laboratories to image small animals. In the beginning of 
the process, radiotracers are injected into bodies and absorbed by specific tissues. A radiotracer is a molecule labeled with a 
positron emitter, such as 11C, 13N, 18F or 15O.  In the nucleus of a radiotracer, a proton decays and a positron is emitted. After 
traveling a short distance, the emitted positron annihilates with an electron and produces two 511 keV photons which travel in 
essentially opposite directions. 
 
In order to determine the distribution of radiotracers, a patient is placed between abundant gamma detectors. When a pair of 
photons is detected within a short timing window, the system registers the event as a coincidence. The line joining two relevant 
detectors is called a line of response (LOR). A gamma detector is composed of crystals that interact with photons in order to 
improve the signal to noise ratio. However, it is difficult to estimate the exact depth of interactions. Moreover, a photon may 
interact with multiple crystals, which makes it harder to estimate the true LOR. Conventional PET scanners employ versions of 
Anger logic to position events [1][2]. Anger logic positions interactions by calculating the energy-weighted centroid of the 
measured signals. The depth of interaction is assigned a constant value which is based on the attenuation coefficient of the 
detector crystals. It causes the well known parallax error [2], shown in figure 1. Therefore, it is important for a high resolution 
PET scanner to estimate the depth and order of interactions. 
 

  
 
Fig. 1.  The inaccuracy of conventional PET scanner. The estimation error is cause by ignoring the depth and order of 
interaction 



 
Methods & Tools 
In order to estimate the first interaction positions of photons, a statistical LOR estimation method is proposed in [3].  It uses a 
Bayesian estimator for determining a LOR by estimating three-dimensional interaction positions of a pair of annihilation 
photons. This estimation algorithm provides a significant improvement over Anger logic under a variety of parameters, but it 
also involves huge computations. The optimized algorithm takes 1.76 hours to estimate LORs from one million coincidences 
running in a computer with an AMD Opteron Processor 168. It requires processing millions of LORs in order to construct a 
high-resolution image visualizing the distribution of the radiotracers. For example in [4], it needs 250 million LORs for 
reconstructing an image. The execution time for the algorithm to construct such a high-resolution image will be 18.3 compute-
days. This is unacceptable for clinic applications. 
 
Our goal is to reduce the execution time of the LOR estimation algorithm by using Field-Programmable Gate Arrays (FPGA). 
FPGA devices can provide high computation power and flexibility. Traditional FPGA implementations use hardware 
description languages (HDLs) such as VHDL and Verilog. HDL programming methodologies aimed at chip designs are 
unsuitable for programming large-scale scientific applications [5]. In this project, we use a C-to-FPGA tool-flow called 
Impulse C. Impulse C allows us to rapidly map a C program into a platform such that the FPGA can co-process with a host 
processor. In [6] we showed that the design time using Impulse C is less than the HDLs. Moreover, a program written in 
Impulse C is portable. Without modifying any code it can be re-mapped into a newer FPGA device or platform. 

 
We sped up the LOR estimation of a PET scanner using this high level synthesis approach. On the XtremeData XD2000F [13] 
platform, the system estimates LORs from one million coincidences in 79 seconds at 100MHz. A speedup of 82x is achieved 
compared to the optimized software. Another contribution is that we describe some methods for improving the application.  
 
The Algorithm 
The algorithm was developed for a high-resolution PET detector capable of providing depth-of-interaction information. Our 
collaborators at U.W. designed the PET system as an insert to a mammography unit; figure 2 shows the sketch of the PET 
system. There are four detector panels in the system, and each detector-panel is composed of depth-of-interaction micro-crystal 
element (dMiCE) crystal pairs. The size of the individual crystal element is 2×2×20 mm3 and each is coupled to its own 2×2 
mm2 micro-pixel avalanche photodiodes (MAPDs) [7]. A triangular-shaped light reflector is placed between two crystal 
elements in a dMiCE pair. The differential distribution of the scintillation light shared can be used to determine the depth of 
interaction. 
 
To help the reader understand the complexity of the problem, we provide a quick overview of the calculations in the next 
sections.  However, the exact formulas are not crucial for understanding the acceleration process, which begins at section 
“Computation Complexity” below. 
 

 
 
 
Fig. 2.  Sketch of the PET system and the dMiCE crystal pair.   
 

Depth of Interaction 
 
The distribution of the light is currently modeled as a joint-normal distribution. The probability density function for the 
measured signal pair sp with a depth of interaction d mm and deposited energy λ keV is represented as: 
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where M(d, λ) and K(d, λ) are respectively the mean vector and covariance matrix for the depth of interaction d and the 
deposited energy λ. The signal pair sp is a 2x1 vector. The deposited energy λ is the reduced energy of a photon after an 
interaction. These parameters are experimentally determined as discussed in [8]. Through these experiments, we find the M(d, 
511) and K(d, 511) for d∈ {2, 6, 10, 14, 18}. The parameters for other values of d and λ are estimated through interpolation: 
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The Photon Process 
The path length that a photon travels without interacting with the matter through which it passes is exponentially distributed. 
This is known as the Beer-Lambert Law, or simply as attenuation. The parameter of this exponential distribution, given by μ, 
is known as the attenuation coefficient, and it varies with the materials and the energy of the photon. Two dominate types of 
photon interactions present in PET imaging are photoelectric absorption and Compton scattering. Thus the attenuation 
coefficient of a photon with energy e is represented as: 

)()()( eee στ μμμ += , 
where μτ is the photoelectric attenuation coefficient and μσ is the Compton scattering attenuation. After undergoing 

Compton scattering, the probability that a photon of energy ek-1 will have energy ek is described by Klein-Nishina formula [9]: 
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where C(ek|ek-1) is a normalization factor: 
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 Moreover, the energy of the photon that scatters at θ degree is given by: 
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The Statistical LOR Estimation Algorithm 
The algorithm estimates an LOR from a coincidence, which is basically coupled signal-pairs measured by dMiCEs within a 
short timing window. A signal-pair is composed of two measured signals, and we assume that a signal-pair is caused by one 
interaction which happens in the crystal element with the larger measured signal. The interaction position is assumed to be in 
the center of the crystal, with an unknown depth. A LOR is the line that connects with two first interaction positions of a pair 
of photons. Given an interaction sequence {sA, Bj}, the photon has I total interactions in detector A and the first interaction 
crystal in panel B is Bj. In detector A, the first interaction crystal is sA1, the second one is sA2 and the ith interaction crystal is sAi. 
Hence, the estimation confidence for the given interaction sequence is: 
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where depk is the depth of interaction in crystal sAk. The first interaction position is estimated by computing the expected 
depth of interaction: 
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The probability density function for the interaction path is given by the equation: 
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where ek is the energy of a photon after the kth interaction at position ak, and e0 is assumed to be 511 keV. The first line of the 
equation computes the probability of the last interaction. The last interaction might be photon absorption or Compton 
scattering. Hence, the algorithm computes both probabilities as from_PE and from_CS. The second line computes the 
probabilities according to the Beer-Lambert Law. The third line computes the probability of Compton scattering of each 
interaction except the last one.  
 
An interaction position is derived from the depth of interaction with a specific crystal. In our application, the depths are equally 
sampled with 1 mm interval. The interaction depth of Bj is also estimated with the maximum likelihood method. In other words, 
the depth with the maximum ),|( λφ dsp  is assumed to be the interaction depth of Bj in order to compute the probability 

density function. If the last interaction is a Compton scattering, we assume the deposited energy is MLλ, which is also 
estimated from a signal pair using the maximum likelihood method. 
 
The algorithm estimates the first interaction crystal by computing a confidence matrix: 
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The Ai and Bj with the maximum confidence CM[i][j] are assumed to be the first interaction crystals. Therefore, the interaction 
sequence is the {sA, Bj} and {sB, Ai} with the maximum confidence. The estimated first interaction positions of the sequences 
are selected to construct an LOR for the coincidence. 

Computation Complexity 
Given a coincidence with I total interactions in detector A and J total interactions in detector B. The total computation of 
equation (3) is J×I!×20I+I×J!×20J. For example, it involves 288,000 computations of equation (6) to estimate an LOR from a 
coincidence with 3 interactions in both detectors. Figure 3 shows the percentage of photons with a given number of 
interactions. Because most coincidences have 3 or less interactions in a detector, there is no significant improvement in 
resolution to compute LOR from a coincidence with more than 3 interactions, but photons with 4 or more interactions require 
excessive time to analyze. In this work, we only consider coincidences with 3 or less interactions in a detector. 
 
Software Optimization 

  
Fig. 3.  Percentage of photons with a given number of interactions. 
 
Some coincidences with too small signals are considered as noise and are not used in estimating LORs. Table I is the detailed 
profile of these one million coincidences, and it can be used to analyze the performance bottleneck. There are actually 657,273 
coincidences, and they are used to evaluate the LOR estimation algorithm. 
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The original algorithm [3] was implemented with C++ and most data types are double precision. To speed up the computation 
the data types are modified to single precision and fixed-point without introducing significant errors. The probability calculated 
from equation (6) is stored in single precision rather than fixed-point because of the exponential term; the dynamic range of the 
exponential values is too large to represent in a proper fixed-point value. Moreover, since the purpose of the algorithm is to 
estimate the depth of interaction rather than the exact probability, the constant scalars can be removed. For example, the 
constant scalar 1/2π in equation (1) is removed without affecting the results. 
 
Another optimization is loop invariant relocation.  When computing equation (4), there are some loop invariants which are 
relocated out of a loop to reduce the computation.  However, the iteration space varies for different number of interactions, 
since a recursion is involved to compute equation (4). It is not a trivial problem to relocate loop invariants for a recursive 
function. The recursion is mapped to an in-order tree traversal problem. The tree is I-depth for I interactions, and the leaves 
represent one iteration. All loop invariants are computed in non-leaf nodes and reused by its children nodes. 
 
The last optimization is to implement functions with lookup tables, such as computing the position from a given crystal and 
depth. One major lookup table is the Klein-Nishina formula. Because we use a 9-bit unsigned integer to represent photon 
energy, all results of the formula are pre-computed and stored in a two-dimensional lookup table. A lot of computation time is 
saved by using the lookup table.  

Software Profiling 
After optimization, we produce a 1.8x speedup with the new software version, but the performance is still limited. Figure 4 
shows the execution time for estimating LORs from one million coincidences. Although coincidences with 3 interactions occur 
only 8% of the time, they take most of the execution time. The following sections describe the methods to speed up the 
computation using FPGA hardware. 
 

 
Fig. 4. Execution time for processing the one million coincidences from table I, broken out by number of interactions.   
 
FPGA Optimization 

Impulse C 
Impulse C [10] was used as the design tool to accelerate the LOR estimation on the FPGA platform XtremeData XD2000F 
[13]. The Impulse C tools include the CoDeveloper C-to-FPGA tools and the CoDeveloper Platform Support Packages (PSPs). 
A PSP includes platform-specific hardware/software libraries that support the communication between the host and an FPGA 
device. With the PSP, one could port a program written in Impulse C to different platforms without modifying source code. 
 
The Impulse C programming model has two main types of elements: process and communication objects. Processes are 
independently executing sections of code that interface with each other through communication objects. There are two kinds of 
processes: hardware processes that could be synthesized to HDLs and software process that run on the host computer. We use a 
hardware process to compute equation (4) and (5), and a software process to compute the confidence matrix and perform I/O 
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1 249607 270369 40272
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3     1665
 



tasks. The communication between the hardware and software processes is through stream objects that transmit crystal IDs and 
signals pairs. 
 
Impulse C is a fully compatible subset of ANSI C that has some constraints [10] for hardware processes.  One constraint is no 
recursion. However, in our application equation (4) involves a recursion which is not allowed in Impulse C. To comply with 
the constraint, we start with only handling interaction sequences with 3 interactions; handling other sequences is discussed in a 
subsequent section.  Since the number of interactions is fixed, equation (4) can be implemented with 3 nested loops. 
 
To add the necessary mathematics libraries used in our application, such as square root and exponential, we use an Impulse C 
pragma. The square root is implemented using the FPGA vendor's IP. In our application, the input of the exponential function 
is always negative. We keep 14 bits for computing the exponential functions. If we use a lookup table to implement the 
function, the table is too large for the FPGA. Instead, the 14 bits are divided into most and least significant portions, each 7 bits. 
Given the equation: 

BABA eee ×=+ , 
 
the exponential function is implemented with two small lookup tables and a single-precision multiplier. 
 

 
 
Fig. 5.  Klein-Nishina Table. (a) The original two-dimension table (b) The compressed one-dimension table   
 
The Klein-Nishina table is also too large for our FPGA device, since the original table contains 262,144 single-precision 
entries. Fortunately, we observe that most entries of the table are zeros. Figure 5a shows the two-dimension table, where the 
gray region of the table is non-zero and the others are zeros. We compress the table into a one-dimension table, KN_tab, and 
two index tables, KN_min and KN_base. The compression reduces the number of entries from 262,144 to 71,639, and the 
compression ratio is about 0.27. The Klein-Nishina formula is computed by these three tables: 
 
if ek>ek-1 OR ek< KN_min[ek-1] 
   KN(ek|ek-1) = 0; 
else 
   index = KN_base[ek-1] +ek- KN_min[ek-1]; 
   KN(ek|ek-1) = KN_tab[index];         
end if 
 

Impulse C Optimization 
The Impulse C tool will automatically generate HDL from C code for the selected FPGA platform without modification. 
However, without refactoring the generated HDL is inefficient; the execution time is even longer than the software code. 
Hence, we use Impulse C’s loop pipelining to reduce the execution time. Loop pipelining is an optimization technique that 
reduces the number of cycles required to execute a loop by allowing the operations of one iteration to execute in parallel with 
operations of subsequent iterations. The pipelining efficiency is reported as the rate and latency. The latency of a pipeline is the 
number of cycles to produce the first result, and the rate of a pipeline is the cycles to produce the next result. The number of 
total cycles to execute N iterations of a loop is: latency + rate * N. If a loop has sufficient iterations, the dominant factor of 
execution time will be the rate. 
 
We merge three nested loops to one loop with 8,000 iterations. The original loop indexes are generated using division from the 
new index. Figure 6 shows the modified loop. The loop body computes equation (6). The division is implemented with 
external HDL in order to get both the quotient and remainder. It introduces a little logic, but significantly improves the 
performance. 
 



Improving the pipeline rate 
The pipeline rate is the dominant factor in the runtime. This rate is dependent on three factors: 

1) Non-pipeline operators. The pipeline rate is limited by the operators which take multiple cycles to execute. For 
example, an external memory access in a loop would limit the pipeline rate, because it usually takes multiple cycles to 
access an external memory. 

2) Data dependence. The input of an iteration can depend on the output of previous iterations. This is called a recursion 
in Impulse C. The iteration cannot be executed until the dependence is solved, which also reduces the pipeline rate. 
However, data dependences in the same iteration would not limit the pipeline rate. 

3) Resource constraints. If a resource, such as a memory or an operator, is used in multiple stages of a pipeline, it also 
reduces the pipeline rate due to competition for the same resource. 

 
 

 
 
The first step to optimize the pipeline rate is to use pipeline operators. Most C language operations, such as addition, 
subtraction, multiplication and shift, are synthesized as pipelined operators. Impulse C synthesize the division and modulo to 
multi-cycles implementations requiring one cycle for each bit in the result. It significantly decreases the pipeline rate. Hence, 
we use external HDLs to implement the divisions and modulus. 
 
The second step to optimizing the pipeline rate is to remove data dependence between iterations. Although there is no data 
dependence in equation (4), floating-point accumulation may be considered as data dependence. Fortunately, Impulse C 
supports the floating-point accumulation via a compiler option. The option forces the compiler to detect the accumulation 
operations and implement them using pipelined floating-point accumulators rather than adders. 
 
Some coding styles may confuse the compiler and cause data dependence. For example, figure 7 shows a piece of C code that 
may confuse the compiler to cause unnecessary data dependence. The loop contains a switch statement, and the successive 
statement is dependent on the output of the switch statement. Although the dynamic rage of the id is 0 to 1, the compiler would 
believe that there is data dependence between iterations due to the missing default case of the switch statement. Incomplete 

for dep=0; dep<8000; dep++; 
   tmp  = dep / 20 ...... dep1; 
   dep3 = tmp / 20 …… dep2; 
   calculate a1, a2, a3 from depths and crystal ids; 
   compute photon entrance position, a0, from a1 and bj; 
   calculate e1, e2, using equation (3) 

   e3 = e2 - MLλ; 

   d0_prob = 100 )( aaee −−μ ; 

   d1_prob = 211 )( aaee −−μ ; 

   d2_prob = 322 )( aaee −−μ ; 
   cs0_prob = KN[e0][e1]; 
   cs1_prob = KN[e1][e2]; 

   lr1_prob = )-,|( 1011 eedepspφ ; 

   lr2_prob = )-,|( 2122 eedepspφ ; 

   from_PE= ),|()( 2332 edepspe φμτ ; 

   from_CS= ),|()(]][KN[e 33232 λφμσ MLdepspee ; 

   integral += (from_PE+from_CS)* 
                   d0_prob* d1_prob* d2_prob * 
                   cs0_prob * cs1_prob*  lr1_prob * lr2_prob; 
end for 
Fig. 6. The pseudocode of equation (4) after merging loops.   



conditional expressions would also cause this kind of data dependence. The coding style needs to be fixed in order to improve 
the pipeline rate. 
 

 
 
The last step to improve the pipeline rate is to avoid the resource constraints. In practice, we duplicate lookup tables that are 
referenced multiple times. We implement the exponential function and Klein-Nishina formula with lookup tables. These tables 
are referenced multiple times in the loop and limit the pipeline rate. The Impulse C compiler does not automatically duplicate 
these tables, but we could duplicate them manually. In figure 6 the Klein-Nishina table is referenced three times, which means 
it needs three duplicates. Unfortunately, it is too large to fit all three duplicates in our FPGA, even the compressed ones. We 
observe that it is unnecessary to duplicate the whole table for computing the probability of the first Compton scattering, 
because the energy of the photon is assumed to be 511 keV before the first interaction. Another table is removed by directly 
computing equation (2), but it involves a lot of FPGA resources. 
 

 
 

Fig. 8.  Two datapaths that perform the identical operation, A*B*C*D. (a) the operators are evaluated in left-to-right order 
with a latency of 3. (b) A balanced datapath with a latency of 2. 
 

Reducing the pipeline latency 
Although the latency of our pipeline has a small impact on the performance, it has significant impact on the register utilization. 
Because a register is used to pass a signal from one stage to the next stage, each additional pipeline state would increase the 
number of registers. In figure 6, the variable integral is the product of multiple factors. According to the commutative law of 
multiplication, a product is not changed by the rearrangement of its factors. However, it does affect the pipeline latency to 
rearrange factors. Figure 8 shows an example for multiplication. Two datapaths perform the identical operation, but they have 
different latencies. Impulse C uses the C front-end to synthesize the datapath, where operators are evaluated left-to-right. Thus, 
we manually rearrange the operations to avoid getting a high pipeline latency. 
 

Reusing Datapaths 
As mentioned, the previous subsections describe the optimization for interaction sequences with three interactions. Other 
sequences still take a significant amount of execution time. The computation for sequences with different interactions is similar. 
For example, all sequences compute the probability of from_PE and from_CS. Thus, through careful design we can reuse the 3 
interaction datapaths. In Figure 6, the number of iterations is modified to be queried with a lookup table in order to handle 
sequences with different number of interactions using the same loop. 

for (i=0; i<10; i++) { 
 switch(id) { 
 case 0: 
    x = 1; 
    break; 
 case 1:  
    x = 2; 
    break; 
 } 
 y = x; 
} 
 

Fig. 7.  A piece of C code that may confuse the compiler to cause unnecessary data dependence between  iterations. 



 
Although the computation of different number of interactions is similar, they take different inputs. For example, )( 1−ieτμ in 
equation (4) is computed for all sequences, but the inputs are different. The sequences with 1/2/3 interactions take e2, e1, e0 as 
the input respectively. We can reuse these operations by inserting a piece of code that selects inputs before invoking operators. 
Therefore, all sequences are handled by the same code, significantly reducing the required FPGA resources. 
 

Reducing the communication between the FPGA and the host 
Since most computation is moved to the FPGA, the communication between the FPGA and the host becomes a bottleneck. The 
next step to improve the performance is to reduce the communication time. We use stream objects to communicate between the 
host and the FPGA, and we observe the PSP of our platform implements the stream objects with polling. It is required to query 
the status of a stream object before the real data is sent.  In our application, this data is crystal ids and signal pairs, and we pack 
multiple data into a large block.  It thus requires only one status query to send this packed data, reducing the communication 
times. 
 
Experiment Results. 
The design is implemented on the XtremeData XD2000F platform. Figure 9 shows the platform, which has two FPGAs: a 
bridge FPGA and an application FPGA. The bridge is responsible for communication with the AMD CPU via the 
HyperTransport protocol. The application circuit is placed in the Application FPGA, and communicates with the Bridge FPGA 
through the XOVE dedicated communication interface. These interfaces are generated by the Impulse C PSP, saving a lot of 
design time. Four QDR II SRAMs are connected to the application FPGA that are useful for applications that have large 
memory requirement. Two DDR-II DRAMs are shared with the Application FPGA and the AMD CPU. In our application, we 
use stream objects to communication between the FPGA and the host, and communication is through the Bridge FPGA.   
 

 
Figure 9. The XD2000F Platform 

 

Performance Analysis 
Figure 10 shows the execution time of our implementations: fixed-point software, optimized software, and pipeline FPGA.  
The fixed-point software is very slow, and we improved the performance using the methods described in Section III. The 
speedup is about 1.8x, but it is not efficient enough for medical applications.  We produced a pipelined FPGA implementation 
that exploits the loop-level parallelism in the application.  The result shows that the pipeline implementation obtains a 82x 
speedup over the optimized software. 
 

 
 
Fig. 10.  Execution time of fixed-point software, optimized software, and pipeline FPGA implementations. 
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By applying the proposed methods, we significantly speed up the application. Figure 11 shows the real and estimated 
execution time of the application. The real execution time is measured with the computation and communication time. The 
communication time is the time that the host sends inputs (crystal ids and signal pairs) to the FPGA. The computation time is 
the time that the host waits for the result from the FPGA, and it includes the FPGA computation time and transmitting the 
results from the FPGA back to the host. We could estimate execution time from the profile (Table I) and the rate and latency of 
the pipeline. The estimated execution time is the best case for the implementation. The estimated and real computation times 
are very close. The communication time is the major difference between the real and estimated computation time. 

 
Figure 11. Execution time for sequences with different numbers of interactions. 
 
We use loop pipelining to achieve this performance. The major loop is used to compute equation (4) and (5). All non-pipelined 
operators, data dependence and Resource constraints are eliminated, and we achieve an optimized pipeline rate of 1 and a 
latency of 258. The first result of the loop is generated in the 258th cycle, and one result is generated in every successive cycle. 
 
Later we described methods to reduce the communication time by packing the stream data. Figure 12 shows the 
communication time for sending inputs to the FPGA. Most communication time is consumed in sending inputs of sequences 
with 1 or 2 interactions, because most sequences are 1 or interactions according to Table I. Total communication time is 
reduced by 30% by packing the stream data. 
 

 
 
Figure 12. Communication time for packed and unpacked streams. 
 
 

Resource Analysis 
Impulse C generated HDLs are synthesized with the Altera Quartus II Tool. Table III shows the synthesis report of the same 
architecture with different pipeline latencies. Because we use very deep pipelining to achieve the performance, the 
implementation consumes more registers than ALMs (Adaptive Logic Modules). Although the latency of a pipeline has less 
impact on the performance, it has significant impact on the register utilization. We reduced the pipeline latency by using the 
method described in Section 4.D. Because a register is used to pass a signal from one stage to the next stage, each additional 
pipeline stage would increase the number of registers. The memory bits are used in lookup tables, especially tables for 
calculating the Klein-Nishina formula. 
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Conclusion and future work 
Impulse C provides a design methodology that rapidly maps a C program to an FPGA platform and the communication 
between the host and FPGA platform is supported by the PSP. The program could be ported to another platform without 
modifying the code, if the PSP of the platform is available. In this work, we use the loop pipeline to reduce the number of 
cycles required to execute a loop by allowing the operations of one iteration to execute in parallel with operations of one or 
more subsequent iterations. We propose methods to optimize the rate and latency of a pipeline. These methods can also be 
applied to other applications or used to improve the high level synthesis tools. The optimized pipeline rate is achieved by 
removing non-pipeline operators, data dependence between iterations and resource constraints. Moreover, we reuse the data 
that could compute all interaction sequences with different number of interactions. The results show that FPGA 
implementation can obtain an 82x speedup over the optimized software. 
 
Although the estimation algorithm provides a significant improvement over Anger logic, it has assumptions used to reduce 
computation which may reduce the estimation precision. For example, the algorithm assumes that a signal pair is caused by 
exactly one interaction.  In practice, a signal pair is sometimes caused by multiple interactions in the same crystal. With our 
FPGA acceleration, these assumptions could be removed, making the estimated results be more accurate 
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TABLE III. SYNTHESIS REPORT OF THE PROPOSED ARCHITECTURE. DEVICE 
EP2S180F1508C3, CLOCK RATE IS 100MHZ 

Multiplication 
Rearranging Without With 

Pipeline Latency 291 258

ALMs 33,581 33,567

Registers 89,776 75,769

Memory Bits 2,969,408 2,969,408


