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Neural networks have been widely used in neuroscience experiments to model and analyze neural 

activities. Sleep spindle, a rare brain signal, is considered to be associated with learning and 

memory. Currently, a complex neural network model named Multi-block RNN Autoencoders 

(MREA) has shown satisfactory performance in reconstructing the brain signals and the possibility 

of revealing the unclear mechanism of how sleep spindles contribute to learning and memory. To 

develop a real-time system for analyzing sleep spindles, the Field Programmable Gate Array 

(FPGA) was used to accelerate the model. Because of the substantial size of the MREA, we 

initially deployed its baseline model, Latent Factor Analysis via Dynamical Systems (LFADS), 

onto FPGA. The model was translated to hardware descriptions by HLS4ML (High-Level 

Synthesis for Machine Learning), a framework that converts the traditional machine learning 

models to HLS models. We deployed the LFADS onto Xilinx U55C by modifying its architecture 

and implementing the HLS4ML package. The modification of the LFADS architecture, 

implementation of the HLS4ML, and the on-board performance are discussed in this thesis. 



 i

 

TABLE OF CONTENTS 

Chapter 1. Introduction ................................................................................................................... 1 

Chapter 2. MRAE and LFADS ....................................................................................................... 2 

2.1 Autoencoder and Variational Autoencoder .................................................................... 2 

2.2 Multi-Block RNN Autoencoders - MRAE ..................................................................... 4 

2.3 Latent Factor Analysis via Dynamical Systems - LFADS ............................................. 6 

2.3.1 LFADS Architecture and Basics ................................................................................. 7 

2.4 Scripts, Dataset, and Evaluation Metrics ........................................................................ 8 

Chapter 3. Inference on Hardware .................................................................................................. 9 

3.1 Field-Programmable Gate Arrays – FPGAs ................................................................. 10 

3.2 LFADS Inference on FPGA - Advantages ................................................................... 10 

3.3 High-Level Synthesis for Machine Learning (HLS4ML) ............................................ 11 

Chapter 4. LFADS Modification for Deployment ........................................................................ 12 

4.1 Gaussian Sampling Removal ........................................................................................ 12 

4.1.1 No-sampling LFADS Performance........................................................................... 13 

4.2 No-sampling LFADS in Keras Functional API ............................................................ 14 

Chapter 5. HLS4ML Implementation for LFADs ........................................................................ 16 

5.1 LFADS Bidirectioanl GRU – Keras Configuratoin ...................................................... 16 

5.2 Bidirectional Layer – HLS4ML Implementation ......................................................... 19 

5.3 GRU Initial_State – Keras Configuration ..................................................................... 22 



 ii

5.4 GRU Initial_State – HLS4ML Implementation ............................................................ 23 

5.5 HLS4ML Implementation - I/O Parallel vs I/O Stream................................................ 24 

Chapter 6. LFADS on FPGA ........................................................................................................ 24 

6.1 Keras Model Performance vs Hls Model Performance ................................................ 25 

6.2 FPGA Resource Utilization .......................................................................................... 26 

Chapter 7. Conclusion ................................................................................................................... 27 

Chapter 8. Future Work ................................................................................................................ 27 

Chapter 9. Reference ..................................................................................................................... 29 

Chapter 10. Acknowledgements ................................................................................................... 32 

Appendix ....................................................................................................................................... 34 

Appendix A: HLS4ML Layer Implementation Tutorial ........................................................... 34 

Appendix B: Github Repositories ............................................................................................. 34 



 

 

1

Chapter 1. INTRODUCTION 

In recent years, the interest in utilizing artificial intelligence in a variety of research fields has been 

increasing. Neural networks have also been widely used to analyze neural signals [1]. Sleep 

spindle, a particular brain signal, captures the attention of neuroscientists. The sleep spindles are 

transient low frequency (roughly around 10-15Hz) rare signals that primarily occur during sleep 

[2]. Recent studies have shown that sleep spindles have demonstrated a co-modulatory relationship 

with other non-rapid eye movement (NREM) oscillations, such as hippocampal sharp wave-ripples 

and neocortical slow waves [3]. Both of these two oscillations are associated with learning and 

memory. Nevertheless, there is still an incomplete understanding of how sleep spindles contribute 

to learning and memory.  

A machine learning model, multi-block RNN autoencoders (MRAE), has shown a remarkable 

ability to process neural data collected from primate brains [4]. Moreover, MRAE can be further 

applied to analyze sleep spindles. To analyze sleep spindles with low latency, Field Programmable 

Gate Arrays (FPGAs) will be used to accelerate the algorithms. The model will be pushed through 

a framework named HLS4ML [5], a Python package that automatically translates the machine 

learning models to hardware descriptions. These translated hardware descriptions are applicable 

for the FPGA deployment. However, due to the complexity of the MRAE architecture, we decided 

to first deploy the baseline model of MRAE, latent factor analysis via dynamical systems 

(LFADS), onto FPGA. 

This thesis includes the introduction of MREA and LFADS, the advantages of using FPGA to 

accelerate LFADS, the modifications of LFADS architecture, the implementation of HLS4ML, 
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and the on-board performance of LFADS. Since this work is the first step in analyzing sleep 

spindles, several future works are also mentioned at the end.  

Chapter 2. MRAE AND LFADS 

In this chapter, the target model MRAE and its baseline model LFADS will be introduced. Both 

the MRAE and LFADS follow the variational autoencoder (VAE) architecture. Therefore, it is 

necessary to understand the VAE and its baseline architecture - autoencoder (AE) first. 

2.1 AUTOENCODER AND VARIATIONAL AUTOENCODER 

AE is a distinctive type of deep learning architecture. It is designed to compress the inputs to the 

latent representation and then decode from the latent representation to reconstruct its inputs [6]. 

Figure 1 illustrates the structure of an AE.  

 

Figure 1. Autoencoder Architecture. 

[6] and [7] discuss the architecture of a typical autoencoder. 

Encoder: The encoder takes the input X and maps it to a lower-dimensional representation Z 

through the transformations within its hidden layers.  
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Latent Representation: The latent space representation Z contains the compressed information 

of the input X. 

Decoder: The decoder mirrors the function of the encoder in reverse. It takes the latent space 

representation Z and reconstructs the original inputs based on this compressed information. The 

AE is trained such that the reconstructed output X’ is as close to X as possible.  

AE has been commonly used in various fields, such as classification, clustering, and anomaly 

detection [8]. There are various forms of AE, including convolutional AE [9], recurrent AE [10], 

or MLP AE [11]. Therefore, the implementation of AE is not restricted to the type of neural 

network layers. 

VAE also follows the encoder-decoder structure, but it provides a way to describe the latent space 

representation using probabilities [12]. The VAE architecture is diagrammed in Figure 2. 

 

Figure 2. Variational Autoencoder Architecture. 

VAE enhances the representation capabilities of traditional AE [8]. Compared to AE, VAE 

encodes the input X to parameters that can define the latent distribution and then decodes from the 
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samples in this distribution to reconstruct its original input [8]. In our case, both MRAE and 

LFADS are based on the VAE architecture. 

2.2 MULTI-BLOCK RNN AUTOENCODERS - MRAE 

MRAE was designed by Nolan et al. [4] in 2022. It is designed to directly reconstruct the 

broadband time-series micro-Electrocorticography (μECoG) data. As its name suggests, the 

MRAE contains multiple blocks of RNN autoencoder (RAE). The architecture of a single-unit 

RAE is presented in Figure 3. 

 

Figure 3. Single-unit RAE Architecture [4]. 

The single-unit RAE follows the VAE architecture. The RAE encoder and decoder are based on 

the GRU cell, which is a type of RNN. Different types of RNNs are shown in Figure 4.  

 

Figure 4. Vanilla RNN, LSTM, GRU Architecture [13]. 

Compared to a vanilla RNN, GRU has two gates, a reset gate and an update gate, to regulate the 

computation, which helps to solve the vanishing gradient problem that the vanilla RNN will 
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encounter [14]. Apart from vanilla RNN and GRU, there is also another type of RNN called LSTM. 

LSTM has more parameters to regulate the computation than GRU. See [14] for a more complete 

explanation. 

Moreover, the encoder of RAE is a bidirectional GRU, which combines two GRU to process the 

input data in both forward and backward directions. The details of the bidirectional GRU are 

discussed in Chapter 5.1.  

[4] also demonstrated that in the single-unit RAE, the input μECoG signals are passed into the 

bidirectional GRU encoder, and the encoder estimates the latent distribution parameters. From this 

distribution, the latent state values are sampled. Then, these values initialize the initial state of the 

unidirectional decoder GRU. After that, a fully connected layer (FC) processes the output from the 

decoder to reconstruct the entire input. However, they evidenced that a single-unit RAE was 

insufficient to precisely reconstruct the broadband signals. Therefore, the MRAE, which is 

extended from RAE, was proposed. Figure 5 shows the MREA architecture. 

 

Figure 5. MRAE Architecture [4]. 
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[4] emphasizes that in MRAE, multiple single-unit RAE are grouped into an independent block, 

and several such blocks are parallelized within MRAE. The input signals are filtered into non-

overlapping frequency bands and then processed by independent blocks. The output from the 

decoder in each block is concatenated and projected by the last fully connected layer to reconstruct 

the entire input. By increasing both the number of single-unit RAE in each block and the total 

number of blocks in MRAE, the reconstruction accuracy has increased dramatically. The MRAE 

with a total of 3 blocks, each containing 512 single-unit RAE, shows the best reconstruction 

accuracy. See [4] for a complete discussion of the architecture and performance of MRAE. 

As mentioned above, MRAE is the candidate for analyzing sleep spindles. However, due to the 

extremely large size of MRAE, it is hard to be deployed onto FPGA. Its complex architecture will 

require a large amount of hardware resources to support the inference. Therefore, the baseline 

model, LFADS, is chosen to be the target of the initial FPGA deployment. LFADS has been 

developed for years and has shown promising results in modeling brain activities. Furthermore, it 

is considerably small compared to MRAE, which makes it an ideal candidate for FPGA 

deployment. 

2.3 LATENT FACTOR ANALYSIS VIA DYNAMICAL SYSTEMS - LFADS 

Sussillo et al. [15] developed LFADS in 2016. They demonstrated that the LFADS infers smooth 

dynamics based on the collected neural spiking data to provide a promising way to model complex 

brain activities.  

[15] illustrated that the complexity of the brain presents extreme challenges in developing a 

universal algorithm to analyze brain signals, and the two most used approaches are feed-forward 

processing and sequential processing. Feed-forward processing is completely input driven and is 
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not affected by temporal dynamics. In contrast, sequential processing is mainly based on dynamics. 

The “computational dynamics” are calculated from the nonlinear system that starts from a specific 

initial condition to run for a period. Here, temporal dynamics refers to the changes and patterns of 

neuronal activities that occur in the brain over time, and “computational dynamics” are the 

stimulations of brain dynamics. These two approaches focus on different aspects and are generally 

not used together. However, LFADS combines both sequential processing and external input, 

which takes advantage of both methods in processing complex neural data. 

2.3.1 LFADS Architecture and Basics 

LFADS follows the VAE architecture. A detailed discussion of LFADS architecture is in [15] and 

[16]. Figure 6 presents the overview of the LFADS architecture. 

 

Figure 6. LFADS Architecture [16]. 

The LFADS model used in this work is sourced from Hurwitz et al. [17]. They reimplemented the 

original LFADS that is discussed in [15, 16] in Tensorflow2 Keras API. In the following Chapters, 

“Hurwitz et al.’s LFADS” refers to their reimplemented LFADS. The architecture of Hurwitz et 

al.’s LFADS is the same as the one shown in Figure 6. 

[15] and [16] summarize that the bidirectional GRU encoder compresses the input spiking data to 

produce a set of mean (μ) and variance (σ). The mean and variance are used to define the Gaussian 
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distribution. Then the samples from the distribution are used to initialize the initial condition of 

the unidirectional GRU decoder. Based on this initial condition, the decoder starts to run and 

produces a set of low-dimensional temporal factors denoted as ft. These factors are believed to 

contain the information of the input spiking data. After that, a fully connected layer takes the 

factors as input and outputs the log firing rates. Finally, the log firing rates are passed into an 

exponential function to generate the inferred firing rates, rt, of the input spiking data.  

Another notable detail is that the original LFADS has a controller to generate the inferred input 

for the decoder [16]. Figure 7 shows the LFADS architecture with the controller. However, as 

discussed in [15], the decoder can also receive no input. In Hurwitz et al.’s LFADS, the controller 

is not implemented, and the input to the decoder is zero, which is also the architecture used in this 

work.  

 

Figure 7. LFADS Architecture with Controller [16]. 

2.4 SCRIPTS, DATASET, AND EVALUATION METRICS 

Apart from the LFADS model, the scripts that are used to train and evaluate the model are also 

from Hurwitz et al. [17]. Besides, the dataset used for training, validation, and testing is collected 

from a monkey reaching experiment [18]. In this work, only a small portion of the entire dataset 
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was used, which only contains a total of 176 trials. We used 136 trials for the training, and the 

remaining 34 trials were used for validation and testing. Each trial contains information from 70 

recording channels, and the data in each channel were sampled into 73 discrete time steps. 

Two metrics were used for evaluating LFADS performance in this work. The first one is the 

negative Poisson log-likelihood, which is also the loss function of the LFADS training. Since the 

input spiking data is assumed to follow the Poisson process, LFADS minimizes the negative 

Poisson log-likelihood to reach optimal performance during the training [15]. See [15] for a more 

detailed discussion. The negative Poisson log-likelihood is calculated by passing both the testing 

dataset and the generated log firing rates to a Poisson loss function in TensorFlow. One point to 

note is that the goal of this work is to deploy LFADS onto FPGA, not to optimize LFADS 

performance. Thus, the performance of Hurwitz et al.’s LFADS can be used as the ground truth. 

In the following work, we compared the negative Poisson log-likelihood of the modified model 

with the ground truth to evaluate the performance of the modified model. 

The second evaluation metric is the coefficient of determination (R2). This is calculated by fitting 

the LFADS factors to the behavioral data. See [17] for a comprehensive discussion.  Again, the R2 

score from Hurwitz et al.’s LFADS was used as the ground truth in this work. 

Chapter 3. INFERENCE ON HARDWARE 

In this chapter, we will first introduce FPGAs and then look at the advantages of using FPGAs to 

accelerate inference. Finally, we will introduce HLS4ML [5], which is the framework used for 

translating machine learning models to hardware languages. 
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3.1 FIELD-PROGRAMMABLE GATE ARRAYS – FPGAS 

FPGAs are a type of semiconductor device that can be programmed to utilize in different use cases, 

which include the implementation of high parallelism computation of neural networks [19]. In 

recent years, FPGAs stand as a prominent choice for accelerating neural network algorithms [20]. 

When processing a large neural network algorithm, FPGAs typically provide lower latency and 

higher throughput compared to a typical CPU [21]. On the other hand, FPGA is typically more 

energy-efficient than a modern GPU for these tasks [19, 21]. Although application specific 

integrated circuits (ASICs) are more energy efficient than FPGA in processing neural network 

algorithms, they cost more to produce and take a much longer time to develop [20]. All the above 

advantages make FPGA a useful device for accelerating neural network inference. 

3.2 LFADS INFERENCE ON FPGA - ADVANTAGES 

Since FPGA provides the opportunity of realizing low-latency, low-power, and high throughput 

model inference, it creates the possibility of developing large-scale real-time experiments. 

Although deploying LFADS onto FPGA is the first step in interacting with sleep spindles, there 

are still plenty of other applications for low-latency and high-throughput LFADS. For example, 

low-latency LFADS can be used to design real-time closed-loop experiments to decode neural 

activity to control external devices. On top of that, in neural-related experiments, high throughput 

ML increases the ability to analyze large-scale neural recordings. Experiments that are being done 

with large-scale neural recordings are becoming more and more common in novel neuroscience 

experiments [22]. 
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3.3 HIGH-LEVEL SYNTHESIS FOR MACHINE LEARNING (HLS4ML) 

HLS4ML is a Python package that translates machine learning models to HLS models, and the 

translated code is applicable for FPGA deployment [5]. The workflow of HLS4ML is depicted in 

Figure 8 below. 

 

 

Figure 8. HLS4ML Workflow [5]. 

[5] indicates that the orange section is the pre-HLS4ML processing, which is to train and tune the 

model to reach a satisfactory performance in machine learning frameworks, for example, Keras or 

PyTorch. The blue section represents the flow of the HLS4ML package. HLS4ML scans the 

trained machine learning model and translates it into the HLS project. The HLS project is 

synthesizable and can be implemented to deploy onto an FPGA. Besides, HLS4ML also provides 

the opportunity of tuning multiple parameters to optimize the HLS model performance.  
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Chapter 4. LFADS MODIFICATION FOR DEPLOYMENT 

To push LFADS through HLS4ML and deploy it onto FPGA, several modifications were 

necessary for the LFADS architecture. As mentioned, HLS4ML can accept models implemented 

in limited ML frameworks such as Keras or PyTorch. On top of that, all the layers in the model 

must be the framework built-in layers, for example, Keras.layers.Layer instance, and have been 

implemented in HLS4ML. Custom models or layers are not supported. Only when a model fulfills 

all the requirements above can it push through the HLS4ML workflow and generate the hardware 

descriptions.  

To make Hurwitz et al.’s LFADS fulfill the requirements, we removed the custom Gaussian 

sampling layer from the model and reimplemented it in Keras functional API. We evaluated the 

performance of the reimplemented model based on the same dataset and proved that the 

performance is nearly identical to the performance of Hurwitz et al.’s LFADS. 

4.1 GAUSSIAN SAMPLING REMOVAL 

The Gaussian sampling layer is the only custom layer in Hurwitz et al.’s LFADS. Since 

implementing a custom layer in HLS4ML will take longer time than implementing a Keras layer, 

we separated it from LFADS and started a parallel project to implement Gaussian sampling in 

HLS4ML. Once the Gaussian sampling is implemented in HLS4ML, it will be combined with this 

work. 

As discussed in Chapter 2.3.1, the mean and variance are used to generate the Gaussian samples. 

Then the Gaussian samples initialize the initial condition of the GRU decoder to generate the 

decoder output. To remove the Gaussian sampling from LFADS, both the Keras layer for 

generating the variance and the custom layer for generating Gaussian samples were removed. In 
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this case, the mean values were used to initialize the initial condition of the GRU decoder in the 

no-Gaussian LFADS. 

4.1.1 No-sampling LFADS Performance 

Next, we trained, validated, and evaluated the no-gaussian LFADS based on the same dataset. 

The performance comparison is shown in Figure 9. 

 

Figure 9. Hurwitz et al.’s LFADS Performance vs No-Gaussian LFADS Performance. 

There are a total of 17 trials in the testing dataset. For each trial, the negative Poisson log-likelihood 

was calculated and compared with the ground truth, which is the negative Poisson log-likelihood 

of the optimized LFADS. The blue bar and orange bar indicate the performance of Hurwitz et al.’s 

LFADS and the no-Gaussian LFADS. For all 17 trials, these two models perform nearly identical. 

Besides, the R2 score from Hurwitz et al.’s LFADS is 0.90. The no-Gaussian LFADS has a 0.87 

R2 score, which is still in the reasonable range. These results indicate that removing Gaussian 
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sampling from LFADS does not significantly affect the model performance. It is a reasonable 

approach to accelerate the process of deploying LFADS onto FPGA. 

4.2 NO-SAMPLING LFADS IN KERAS FUNCTIONAL API 

HLS4ML accepts the model that is implemented in Keras API, but the model has to be based on 

either Keras functional or sequential API. Hurwitz et al.’s LFADS was implemented on neither of 

these two. The internal connections are custom defined. Therefore, a reimplementation in either 

Keras sequential or functional API was necessary. Since LFADS has multiple inputs and outputs, 

the functional API is a better choice for the reimplementation. We followed the architecture of 

Hurwitz et al.’s LFADS to reimplement the model except for the layers that are related to the 

Gaussian sampling. Figure 10 shows the model summary of Hurwitz et al.’s LFADS, as well as 

the model summary of our reimplemented model. 
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Figure 10. (a) Hurwitz et al.’s LFADS Model Summary. (b) Keras Functional API LFADS 

Model Summary. 

As mentioned in Chapter 4.1, the dense layer for generating the variance and the layer for 

generating the Gaussian samples were removed, so there are no such two layers in the 

reimplemented model. Although the mean values initialize the initial condition of the GRU, the 

GRU decoder still needs input. Thus, another input layer is added before the dense_mean layer. In 

Hurwitz et al.’s LFADS, the input to the decoder is inserted by Tensorflow2 functions instead of 

a Keras layer. To reimplement the entire model within Keras functional API, a Keras input layer 

is chosen for substituting the Tensorflow2 functions. Besides these layers, all other layers are 

matched to maintain the correct functionality of the model. 

Next, the trained weights and biases were copied to the Keras functional API LFADS. We 

evaluated the performance of this model based on the same testing dataset, and it performs indicial 
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to the no-Gaussian LFADS, which confirms that the reimplementation in Keras functional API 

does not affect any of the model performance. 

Chapter 5. HLS4ML IMPLEMENTATION FOR LFADS 

Besides the modifications of the LFADS architecture, several implementations were also 

necessary for the HLS4ML to push LFADS through. Implementing a new layer or adding a new 

feature into HLS4ML requires the developer to create several new files and classes in the current 

package. The Keras functional API LFADS has one HLS4ML-unsupported layer and one 

HLS4ML-unsupported feature. In this section, we will introduce the implemented new layer, 

bidirectional GRU, and the implemented new feature, GRU initial state, based on the Keras 

configuration and HLS4ML implementation details. 

5.1 LFADS BIDIRECTIOANL GRU – KERAS CONFIGURATOIN 

The keras.layers.Bidirectional is used for the LFADS encoder. It is a wrapper class that can wrap 

two Keras layers [23]. The general structure of the bidirectional layer is diagrammed in Figure 

11. 

 

Figure 11. Bidirectional Layer Structure. 
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In the bidirectional layer, one forward layer processes the input data in the original sequence, and 

the other backward layer processes the input data in the reversed sequence. Both the forward layer 

and the backward layer must be the same type of RNNs or layers that fulfill specific criteria [23], 

shown in Figure 11. [23] presents the below arguments of the bidirectional layer. 

Layer: The forward layer, which could be keras.layers.RNN instance, or keras.layers.Layer that 

fulfills the following criteria, which is shown in Figure 12. 

 

Figure 12. Requirements for Wrapped Layer instance [23]. 

Merge_mode: This “merge_mode” defines how the output from both the forward layer and the 

backward layer will be combined. A total of 5 choices are provided. Users can choose from “sum,” 

“mul,” “concat,” “ave,” or “None.” By default, “concat” is the chosen mode. 

Backward layer: The backward layer must match the type of the forward layer and the arguments 

in the forward layer except for the “go_backwards.” 

Call arguments: The call arguments of the keras.layers.Bidirectional are the same as those used 

for the forward and backward layers. There is one call argument that the developer needs to pay 
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attention to, which is the “initial_state” of the RNNs. When passing a list of initial conditions to 

the bidirectional wrapper, the first half of the list will be passed into the forward layer, and the 

second half of the list will be passed into the backward layer. 

For Hurwitz et al.’s LFADS, the encoder is a bidirectional GRU with “return_state” and 

“merge_mode” “concat.” The “return_state” argument of a GRU cell provides access to the hidden 

state value of the last time step. Figure 13 illustrates an example of the “return_state” argument of 

a GRU cell. In this figure, since the “return_state” argument is true, the hidden state value of the 

last time step, y2, is accessed and outputted along with the GRU regular output. It is noteworthy 

that, in the case of GRU, the hidden state value of the last time step is identical to the GRU regular 

output. 

 

Figure 13. The Logic of the “return_state” Argument. 

Figure 14 below demonstrates the logic of the LFADS bidirectional GRU encoder. The 

keras.layers.Bidirectional takes the input and passes it into the forward GRU. In the meantime, the 

input is automatically reversed so that the reversed input can be passed into the backward GRU. 

Since the “return_state” is true for both forward and backward GRU and the “merge_mode” is 

“concat,” the hidden state value of the last time step from both forward and backward GRU, 
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y_forward2 and y_backward2, are concatenated. All these three values will be outputted. However, 

only the concatenated value will be passed into the next layer. The y_forward2 and y_backward2 

are redundant. 

 

Figure 14. The Logic of LFADS Bidirectional GRU Encoder. 

5.2 BIDIRECTIONAL LAYER – HLS4ML IMPLEMENTATION 

In this work, only the unique case was implemented in HLS4ML, which is the bidirectional GRU 

with “return_state” for both the forward and backward layers and “merge_mode” “concat.” This 

unique combination is the use case of the LFADS encoder. The other two types of RNN, vanilla 

RNN and LSTM, along with other arguments, can be added to the package by following the same 

procedure.  

Generally, implementing a new Keras layer in HLS4ML follows the typical procedure, which is 

diagrammed in Figure 15. 
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Figure 15. HLS4ML Implementation Flow. 

There are four key files that the developer needs to create or modify, which are converter.py, 

layers.py, templates.py, and layer.h. To support the bidirectional GRU in HLS4ML, 

bidirectional.py, bidirectional_templates.py, and bidirectional.h were added to the package, and 

the layers.py were modified. 

Bidirectional.py: This script is used to parse the necessary layer parameters from the 

keras.layers.Bidirectoinal to the HLS4ML. Parameters such as but not limited to input and output 

shape, “merge_mode,” and “return_state” were included in this file. 

Layers.py: A class containing the expected attributes of the bidirectional layer was defined in this 

file. The expected attributes include choice attribute, weight attribute, type attribute, etc. By 

executing this file, the expected attributes, as well as the weights and biases of the trained 

bidirectional layer, can be loaded into HLS4ML.  

Bidirectional_templates.py: This template converts the parameters of the bidirectional layer to 

C++ code during the translation. Since the bidirectional layer wraps two GRU layers, the 
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bidirectional_templates.py was developed based on the recurrent_template.py. Implementations 

for the activation template and multiplication template were copied from recurrent_template.py.  

Bidirectional.h: bidirectional.h is the header file that defines all the calculations that will happen 

inside the bidirectional GRU. Within this file, two HLS4ML GRU layers are instantiated. One 

functions as the forward layer, while the other serves as the backward layer. Figure 16 

demonstrates an example of the calculation that happens inside the HLS4ML bidirectional GRU. 

 

Figure 16. Example of HLS4ML Bidirectional GRU. 

Besides the two instantiated HLS4ML GRU, another function was implemented in the 

bidirectional.h to reverse the input. The original input will first be reversed by this function. Then 

the original input and the reversed input will be passed into the forward and backward GRU 

correspondingly. Since the “return_state” is true for both forward and backward GRU, only the 

hidden state value of the last time step from both the forward GRU and the backward GRU will 

be concatenated. Moreover, as mentioned in Chapter 5.1, the LFADS encoder passes the 
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concatenated value of the forward and backward GRU to the next layer, so only the concatenated 

value is reserved for generating the final output.  

Vivado_backend.py and resource_strategy.py: These two Python files do not directly affect the 

HLS4ML bidirectional layer implementation. The calculation inside the bidirectional layer is not 

defined within these two files, but the optimization of the HLS4ML bidirectional layer is related 

to these two files. The optimization of the bidirectional layer was implemented, but the 

performance of the optimization has not been checked yet. 

Besides, all the implemented files preserve the space for adding new arguments or RNN instances, 

such as other types of “merge_mode” or RNN instances. Thus, it will be relatively easy to extend 

the function of the current HLS4ML bidirectional GRU. 

5.3 GRU INITIAL_STATE – KERAS CONFIGURATION 

Besides the bidirectional GRU encoder, the other HLS4ML unsupported feature in the Keras 

functional API LFADS is the call argument, “initial_state,” of the unidirectional GRU decoder. 

This call argument is used to set the initial condition of the GRU before the data processing. The 

existing logic of the HLS4ML GRU layer can only support zero-initialized conditions. But in 

LFADS, the initial condition of the decoder GRU is initialized by the mean values.  

When a sequence of input is processed, the initial condition is the first hidden state of the GRU. 

Figure 17 shows a detailed GRU architecture. In this example, when the input sequence is going 

to be processed by the GRU, the “initial_state” will initial the first ht-1 to the given values before 

the processing. 
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Figure 17. GRU Architecture [14]. 

5.4 GRU INITIAL_STATE – HLS4ML IMPLEMENTATION 

The implementation of the “initial_state” followed a similar procedure as the previous 

implementation. Since there is an existing HLS4ML GRU layer, adding new files is unnecessary. 

All modifications were made within the existing files. Figure 18 shows the steps of implementing 

“initial_state” into HLS4ML GRU. 

 

Figure 18. The Implementation Flow of “Initial_state” in HLS4ML GRU. 

The “initial_state” was added to recurrent.py, layers.py, and recurrent_template.py. The logic in 

recurrent.h was modified to initialize the initial condition of the GRU to the given input values 

other than 0. Previously, the first hidden state of HLS4ML GRU was initialized to 0 within a loop 
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before processing the sequence. After the implementation, the hidden state was able to be 

initialized to whatever the given values were. 

5.5 HLS4ML IMPLEMENTATION - I/O PARALLEL VS I/O STREAM 

When implementing the header file for a new layer or a new feature in HLS4ML, the developer 

can choose to use two types of coding techniques. One is I/O Parallel, and the other is I/O Stream. 

The HLS4ML implementation described in Chapter 5.1 and Chapter 5.3 was done in I/O Parallel. 

The key distinction between I/O Parallel and I/O Stream in HLS4ML resides in how they control 

the data processing. I/O parallel focuses on parallelizing the data within the clock cycle to increase 

the throughput, while I/O Stream processes the data sequentially to lower the FPGA resource 

utilization [24]. 

The conversion from I/O Parallel to I/O Stream for the above implementation was done by Yan-

Lun Huang from Dr. Bo-Cheng Lai’s group at the National Yang Ming Chiao Tung University. 

Yan-Lun followed the logic of the I/O Parallel implementation to develop the bidirectional GRU 

and “initial_state” in the I/O Stream version. Yan-Lun further ensured that the logic and the 

performance of bidirectional GRU and GRU “initial_state” in the I/O Stream version matches that 

of the I/O Parallel version. 

Chapter 6. LFADS ON FPGA 

Next, we will talk about the FPGA deployment of the Keras functional API LFADS. When 

deploying a model onto FPGA by using the HLS4ML workflow, the developers need to choose 

the target board, evaluate the HLS model performance, and analyze the latency of the inference 

and the FPGA resource utilization. In this chapter, we will first show the HLS model performance. 
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Then we will analyze the latency and resource utilization of the deployment. It is worth noting that 

the I/O Stream version of LFADS was used for this deployment to lower the FPGA resource 

utilization. 

6.1 KERAS MODEL PERFORMANCE VS HLS MODEL PERFORMANCE 

We pushed the Keras functional API LFADS through the implemented HLS4ML. The HLS model 

was successfully generated. During the translation process, post-training quantization (PTQ) was 

applied to the HLS model. Figure 19 shows the HLS model performance in different PTQ 

precision. 

 

Figure 19. (a) Negative Poisson Log-likelihood of HLS Model in Different Precision. (b) R2 

Score of HLS Model in Different Precision. 

In the above figure, the blue line in each figure represents the Keras model performance. It is 

straightforward to notice that as the fractional bit and integer bit increase, the HLS model 

performance gets better. At around six integer bits and ten fraction bits, the HLS model performs 

nearly the same as the Keras model.  
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We then deployed the HLS model with precision ap_fixed<16,6> onto Xilinx U55C and evaluated 

the on-board performance. The on-board performance was the same as the HLS model 

performance depicted in the above figure. 

6.2 FPGA RESOURCE UTILIZATION 

This chapter will talk about the latency of the inference and the resource utilization of the Xilinx 

U55C. The configuration of the Xilinx U55C deployment is shown in Table 1. 

Table 1: Deployment Configuration. 

Target FPGA Xilinx U55C 

Precision Ap_fixed<16,6> 

Frequency 200 MHz 

Latency 41.97μs 

 

The precision used for the deployment is ap_fixed<16,6>, which is six integer bits and ten 

fractional bits. The latency is 41.97μs for running 1 batch of testing data under 200 MHz. 

Moreover, Table 2 shows the resource utilization of deployment. 

Table 2. Xilinx U55C Resource Utilization. 

FPGA component Resource utilization Resource utilization (%) 

BRAM 474 23.51% 

DSP 1,869 20.71% 

FF 150,882 5.79% 

LUT 164,726 12.64% 
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Table 2 demonstrates that only around one-quarter of the resource on the board was utilized, which 

indicates that we can deploy several more models onto U55C with ap_fixed<16,6>.  

Nevertheless, as mentioned in Chapter 2.2, MRAE has 1536 units of LFADS-like model. 

Therefore, to deploy MRAE onto FPGA, a further decrease in resource utilization is necessary. 

Chapter 7. CONCLUSION 

In this thesis, we described the work that has been done in the first two years of deploying MRAE 

onto FPGA to analyze sleep spindles, which is the FPGA deployment of LFADS. At first, we 

studied the concepts and architectures of RAE, MRAE, and LFADS. After that, we discussed the 

modification of the LFADS architecture and the implementation of the HLS4ML. Next, we 

demonstrated the performance HLS model in different bit precision. Finally, we showed the results 

of the deployment, including the latency of the inference and the resource utilization of the target 

FPGA board. 

Chapter 8. FUTURE WORK 

The future goal is to deploy MRAE onto FPGA. To achieve this, one of the most important tasks 

is to integrate the Gaussian sampling layer with the current no-Gaussian LFADS. Since the MRAE 

follows the VAE structure, the support of the entire VAE architecture in HLS4ML is necessary.  

Another challenge we face is the high resource utilization of the FPGA. The current resource 

utilization is still too high to deploy a large model. Compared to LFADS, the MRAE is extremely 

large. To deploy a large model like this, several possible methods can be considered.  
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1. Apply quantization-aware training (QAT) on the model. Unlike PTQ, QAT allows the user 

to train the model with varied bit precision. This provides the opportunity to use fewer bits 

for the FPGA deployment while still maintaining reasonable performance. Currently, Chi-

Jui Chen and Lin-Chi Yang from Dr. Lai’s group are working on applying the QAT on 

LFADS and implementing both the quantized GRU and quantized bidirectional GRU in 

HLS4ML. Once these studies are finished, the FPGA resource utilization can be largely 

reduced. 

2. Simplify the MRAE architecture. The current MRAE model is used to precisely reconstruct 

the broadband μECoG signal. However, sleep spindles are low-frequency brain signals. To 

interact with sleep spindles, a simplified MRAE that only aims to reconstruct the signals 

in the low-frequency band may be enough. 
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APPENDIX 

APPENDIX A: HLS4ML LAYER IMPLEMENTATION TUTORIAL 

The tutorial for implementing a new Keras layer in HLS4ML - https://github.com/uw-

acme/acme-lab-documentation/tree/main/hls4ml_layer_implementation_tutorial. In this tutorial, 

the implementation flow with examples is described in detail. Developers can follow the tutorial 

to implement the unsupported layers in HLS4ML. 

APPENDIX B: GITHUB REPOSITORIES 

Tensorflow 2 Keras LFADS - https://github.com/XLSMALL/TF2Keras-LFADs 

This repository contains the scripts that we used to reimplement the Keras functional API 

LFADS and also the dataset that is introduced in chapter 2.4. It is forked from 

https://github.com/HennigLab/tndm, which was developed by Hurwitz et al.  

 

HLS4ML for LFADS - https://github.com/XLSMALL/hls4ml/tree/LFADs 

This repository contains the implemented HLS4ML package. The implementation is what we 

have discussed in this thesis, bidirectional GRU and the GRU “initial_state,” which are 

necessary for LFADS deployment. 

 
 
 

 

 


