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ABSTRACT
Large-scale recordings of neural activity are providing new oppor-

tunities to study neural population dynamics. A powerful method

for analyzing such high-dimensional measurements is to deploy an

algorithm to learn the low-dimensional latent dynamics. LFADS

(Latent Factor Analysis via Dynamical Systems) is a deep learning

method for inferring latent dynamics from high-dimensional neural

spiking data recorded simultaneously in single trials. This method

has shown a remarkable performance in modeling complex brain

signals with an average inference latency in milliseconds. As our

capacity of simultaneously recording many neurons is increasing

exponentially, it is becoming crucial to build capacity for deploying

low-latency inference of the computing algorithms. To improve the

real-time processing ability of LFADS, we introduce an efficient im-

plementation of the LFADS models onto Field Programmable Gate

Arrays (FPGA). Our implementation shows an inference latency of

41.97 𝜇s for processing the data in a single trial on a Xilinx U55C.
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1 INTRODUCTION
Over the past decade, the ability to record large-scale neural ac-

tivity has improved dramatically, providing us with new opportu-

nities to study neural population dynamics. A powerful strategy

for analyzing such high-dimensional measurements is to learn the

low-dimensional latent dynamics that explain much of the vari-

ance in the measurements. Analysis of neural signals also widely

relies on neural networks [1]. LFADS [2, 3] model is a cutting-edge

neural network architecture in the field of neural modeling and

computational neuroscience. LFADS leverages the capacity of re-

current neural networks (RNNs) for uncovering hidden patterns

and combines them with variational inference techniques to infer

the latent factors that drive the observed data. Although LFADS

demonstrates satisfactory performance in modeling brain signals,

processing the extensive neural recordings in real time still poses

significant computational challenges. Large-scale neural record-

ings are commonly involved in novel neuroscience experiments

[4]. To process the large-scale neural recordings in real-time, Field

Programmable Gate Arrays (FPGAs) are used to accelerate the in-

ference.as

FPGAs enable customized data processing logic and have gained

widespread adoption for achieving highly parallel dataflow pro-

cessing with minimal latency. Thus, low-latency, low-power, and

high-throughput model inference can be achieved on FPGAs, which

makes large-scale real-time neural experiments possible. For in-

stance, Low-latency LFADS can be employed to create real-time

closed-loop experiments that decode neural activity to manipulate

external devices. Furthermore, high-throughput machine learning

(ML) in neural-related experiments improves the ability to examine

extensive neural recordings. This capability is increasingly crucial

2023-10-01 11:57. Page 1 of 1–6.
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in modern neuroscience experiments, as the integration of large-

scale neural recordings has become a commonplace and essential

component.

In this paper, we present an efficient implementation of the

LFADS model in High-Level Synthesis (HLS) for the hls4ml pack-

age [5]. This HLS implementation will opens the door for wider

low-latency and high-throughput applications of the LFADSmodels

for neural sequential data. Several optimizations for input/output

(IO) ports and data access mechanisms are donewhile implementing

the HLS representation of the LFADS model.

2 CORE CONCEPTS
As LFADS is one of the promising models for modeling complex

brain activities by inferring smooth dynamics based on the collected

neural spiking data, it is considered for this study. The focus of the

work is to demonstrate the ability to run low-latency inference of

LFADS-like models on an FPGA. A modified LFADS model is used

for this study as described in Sec. 2.1.

2.1 Model Description
LFADS is a sequential model based on a variational autoencoder

(VAE). The encoder has a bidirectional GRU layer, which takes

the single-trial neural spikes as input and converts them into a

low-dimensional latent space representation. This representation

acts as the initial state for the decoder GRU layer, which tries to

regenerate the input data. LFADS assumes the observed spikes are

samples from a Poisson process with firing rates (𝑟𝑡 ). So, instead of

estimating the neural spikes, the decoder learns the firing rates (𝑟𝑡 )

as a function of time. The decoder (or generator) GRU is expected

to learn the underlying dynamics. So, the decoder is trained to infer

a reduced set of latent dynamic factors, 𝑓𝑡 . The firing rates can be

constructed from the latent factors.

In this work, we have studied an autoencoder (AE)-based model

to reduce the complexity of FPGA deployment. Furthermore, our

studies show that removing the Gaussian-sampling has almost

no impact on the model performance. The original LFADS model

uses a controller network to predict the dynamics of the system

in the presence of an external input. To simplify the model, we

have studied an LFADS, which can only predict the autonomous

dynamics. Figure 1 presents the overview of the LFADS architecture

used in this work. The model structure is adopted from [6]. In

our model, a bidirectional GRU encoder with 64 units for both

forward and backward layers, compresses the input spikes into a

latent vector of dimension 64. Then the latent variables are used

for initializing the unidirectional GRU decoder, which has 64 GRU

units. The decoder produces a set of low-dimensional temporal

factors of dimension 4. These four latent dynamic factors are then

passed through a fully connected layer with 70 units to produce

the log firing rates, log(𝑟𝑡 ), corresponding to the input spike. The

model is trained with Keras [7] and TensorFlow [8].

2.2 Dataset and Evaluation Metrics
In this paper, we have used the data collected from a study of mon-

key reaching tasks [9]. The input dataset contains a total of 170

trials. Out of which, 136 trials (80%) are used for training, while 17

trials are used for each, validation and test. Each trial consists of

70 recording channels, with 73 discrete time steps per channel. A

detailed training and evaluation methodologies are presented in

Ref. [6].

Two metrics are used to evaluate the performance of LFADS

model: negative Poisson log-likelihood (NPLL) and the coefficient

of determination (R
2
). As LFADS estimates the firing rates, assuming

spiking variability follows a Poisson distribution, it uses NPLL as

a loss function in training. It should be noted that the main goal

of this work is to deploy LFADS onto an FPGA, not to optimize its

performance. Figure 2 shows the NPLL comparison of a VAE-based

LFADS model with the AE-based model used in this work. The R
2

score is calculated by fitting the reconstructed temporal factors 𝑓𝑡
to the measured behavioral data (hand position). The closer the

score is to 1, the better the factors align with the behavioral data,

indicating a stronger correlation between the model’s predictions

and the observed behavior.

3 IMPLEMENTATION
One of the main focuses of this work is to implement the LFADS

model in HLS and integrate it into hls4ml for rapid development

on FPGA. Currently, almost all components of the LFADS model

are available in hls4ml, except for the Bidirectional wrapper for
the GRU and the quantized GRU (QGRU).

3.1 HLS implementation: Keras Model
The HLS bidirectional wrapper is used for the Bidirectional layer of

the Keras LFADS model. To implement the Bidirectional wrapper, a

reverse function is applied to invert the order of the input sequence.

During inference, the original and reversed inputs pass through

corresponding GRU layers and their outputs are concatenated.

3.2 QKeras Model
We have also studied quantization-aware training (QAT) using the

QKeras package [10] . We have built our QKeras model using the

QGRU, QBidirectional, QDense layers and different quantized form

of sigmoid and tanh activation functions. Since these two activation

functions are non-linear, outputs of the original and the quantized

function could be different. So, this has been properly optimized in

our implementation. For QBidirectional, we use two QGRUs, one

for the forward and one for the backward input sequences, and

concatenate the two outputs to form the QBidirectional output. It

is important to note the precision of the inputs also needs to be ad-

justed by using a quantizer to make different operations consistent.

Most of the hyperparameters used for QAT are similar to the

floating-point models. For the QKeras model, a step learning rate

schedule is used, with an initial learning rate of 0.01, patience of 10

epochs, decay factor of 0.5, and a minimum learning rate of 10
−5
.

The SGD optimizer is used instead of Adam when the total bits are

less than 6 bits for more stable training. After through scanning,

we have chosen to use 3 integer bits for all activations and 1 integer

bit (only sign bit) for weights and biases, since they are initialized

with the Lecun uniform initializer [11].
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Figure 1: LFADS architecture used for this study.
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Figure 3: The structure of 64-units quantized GRU cell

3.3 HLS implementation: QKeras Model
Figure 3 displays the architecture of a 64-unit quantized GRU cell.

There are four weight quantizers, two activation quantizers (quan-

tized sigmoid, and quantized tanh) and one state quantizer. During

the hls4ml compilation, the precisions for all the following calcula-

tions are automatically determined based on those quantizers. For

example, the colored arrows in Figure 3 show the required bit-width

for the addition before the sigmoid.

For the choice of quantized activation, we use hard quantized

activation. Figure 4 shows the curves of the real activations and

the quantized (hard) activations. In HLS, it requires a look-up table

to achieve the non-linearity in quantized activations. However, as

the bit-width increases, the size of the look-up table exponentially

grows to maintain accuracy. In contrast, the hard sigmoid calcu-

lation can be supported with simple wiring in hardware, without

requiring a multiplier or look-up table. This statement is also true

for hard tanh as it can be derived from hard sigmoid.

4 2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Real Q-Sigmoid
Hard Q-Sigmoid
Sigmoid

(a)

4 2 0 2 4
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1.00

y

Real Q-Tanh
Hard Q-Tanh
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(b)

Figure 4: The plots of 4-bits quantized activations, quantized
hard activations, and real activations (a) quantized sigmoid
and quantized hard sigmoid ranged from 0 to 0.9375. (b) quan-
tized tanh and quantized hard tanh ranged from -1 to 0.875.

The current version of hls4ml has two options for the datatype

used in the dataflow: IO-parallel and IO-stream. To maximize the

bandwidth, fully-partitioned arrays were utilized in IO-parallel,

which can be resource-intensive. As a result, we use streams since

they are synthesized as more resource-efficient FIFOs. Furthermore,

we have modified the hls4ml compiler to use array-of streams

datatype, offering more flexibility in terms of bandwidth compared
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to the default packed struct datatype. The GRU layers only sup-

port IO-parallel, so we have applied a simple wrapper layer to the

GRU to convert the stream type to an array type for IO. Similarly,

for the bidirectional layer, we have employed the same approach to

handle IO.

4 RESULTS
The LFADS model described in Sec. 2.1 is translated into an HLS

model by utilizing the hls4ml tool. The implementation is tested

using Vivado HLS 2020.1 with a Xilinx Alveo U55C FPGA as the

target. In this work, we have carefully optimized quantization and

resource utilization on the FPGA.

4.1 Quantization Results
The quantization process is to reduce the precision of the model pa-

rameters as well as the inputs. Typically the model parameters, such

as weights and biases, are stored as 32-bit floating-point numbers

in the Keras models. As the floating-point number takes up a lot of

resources on the FPGA, it is preferred to use fixed-point representa-

tions of the model parameters. The fixed-point format is referred to

Vivado HLS ap_fixed type [12], where the sign bit is included in

the integer bits. In this is paper, the ap_fixed numbers are written

in <total bits, integer bits> format. hls4ml converts the in-

put model parameters into ap_fixed while implementing the HLS

model representation. This process is called post-training quanti-

zation (PTQ). In our study, we varied the fractional bits between

2 and 16 while keeping the precision of the integer part fixed to

4, 6, and 8. The NPLL and 𝑅2 scores are calculated for different

quantization settings and the values are compared with that of the

floating-point model as shown in Figure 5. Different colors in the

figure represent integer bits of 4 (orange), 6 (green) or 8 (red). We

observe that at least 6 integer bits and 10 fractional bits, <16,6>,
are needed to achieve a similar performance as the floating-point

model.
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Figure 5: Shows (a) NPLL and (b) R2 score as a function of
fractional bits. The blue line in each figure represents the
floating-point, whereas the lines correspond to inter bits of
4 (orange), 6 (green), or 8 (red).

The performance of the QAT model is estimated for different

total bit widths between 4 and 16, as shown in Figure 6. We see a

noticeable degradation in performance below total width of 10 bits.

A similar observation can be seen in the behavior reconstruction

shown in Figure 7. The performance of the 12-bit QAT model is

(a) QAT NPLL (b) QAT R2

Figure 6: Shows (a) NPLL and (b) R2 score as a function of total
bits for the quantized-aware trained (Q) models using. Re-
sults from the baseline floating-point (FP) model are shown
in the right subplots.

much closer to the floating-point model. Based on the results, we

have selected the QAT model with 10 bits for subsequent steps.

X

Y

(a) 4 bits

X

Y
(b) 8 bits

X

Y

(c) 12 bits

X

Y

(d) floating point

Figure 7: Behaviour reconstruction from quantize-aware-
trained models with different total bits and the baseline
floating-point model. Movement directions are grouped in
different colors. The solid lines denote the reconstructed
movement directions, while the dotted lines represent the
target movement directions.

4.2 Resource Utilization
We have used Alveo U250, which is currently the largest board in

the Xilinx Alveo FPGA series, as the target device to ensure the the

2023-10-01 11:57. Page 4 of 1–6.
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Figure 8: Resource utilization for different total bits with
post-training quantization. The target FPGA is Xilinx Alveo
U250.

available resources are sufficient at a high bit width. The LFADS

model is synthesized using Vivado HLS with different quantization

precision to obtain a resource estimation. For each case, we estimate

the utilization of different FPGA resources like memory (BRAM),

digital signal processing units (DSPs), flip-flops (FFs), and lookup

tables (LUTs). Figure 8 shows the resource consumption of the

LFADs model with post-training quantization in relation to the

total available resources. The four curves, representing different

resources, exhibit a downward trend as the total bit width decreases.

The limitation of FPGA inference in high bitwidth is DSPs. The DSP

consumption decreases significantly from 32 bits to 22 bits, followed

by a stable trend until 11 bits. This is due to the maximum input size

for multiplication in DSP48E2 is 27 × 18 [13]. If an input exceeds this

limit, two DSPs will be applied to perform the multiplication. For bit

widths below 12 bits, the DSP utilization decreases to nearly zero

percent since the multiplication is carried out by LUTs, resulting in

an increase in LUT consumption from the utilization of 12 bits to

10 bits.

4.3 FPGA Latency
Table 1 shows the deployment configuration. The precision used is

ap_fixed<16,6>, which is six integer bits and ten fractional bits. The

target FPGA is Xilinx Alveo U55C. The actual running frequency

on the U55C is 200 MHz, and the latency is 41.97 𝜇s.

Table 1: Deployment Configuration

Target FPGA Xilinx Alveo U55C

Precision ap_fixed<16,6>

Frequency 200 MHz

Latency 41.97𝜇s

5 SUMMARY AND OUTLOOK
We develop an automated design workflow based on hls4ml to

deploy LFADS onto an FPGA to accelerate the model for potential

large-scale real-time neuroscience experiments. For efficient imple-

mentation of the model, we studied both PTQ and QAT. Using QAT

it is possible to reduce total number of bits required to 10 bits, com-

pared to the 16 bits required for PTQ, while incurring negligible loss

compared to the floating-point model. For the on-board evaluation,

the 16-bit model demonstrates a latency of 41.97 𝜇s for processing

the data in a single trial, which is relatively small compared to the

O(𝑚𝑠) sampling interval commonly used in neuroscience experi-

ments. The acceleration enables large-scale real-time experiments

and enhances the capacity to process extensive neural recordings.

An AE-based LFADS model is studied for this work. The VAE-based

LFADS should be supported by hls4ml in the near future.
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