
U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

FPGA Deployment of LFADS for Real-time Neuroscience
Experiments

Xiaohan Liu

xliu1626@uw.edu

University of Washington

USA

ChiJui Chen

silencekugel.ee05@nycu.edu.tw

National Yang Ming Chiao Tung

University

Hsinchu, Taiwan

YanLun Huang

yanlun172@gmail.com

National Yang Ming Chiao Tung

University

Hsinchu, Taiwan

LingChi Yang

hisky1256.ee11@nycu.edu.tw

National Yang Ming Chiao Tung

University

Hsinchu, Taiwan

Scott Hauck

hauck@uw.edu

University of Washington

USA

Shih-Chieh Hsu

schsu@uw.edu

University of Washington

USA

Elham E Khoda

ekhoda@uw.edu

University of Washington

USA

Bo-Cheng Lai

bclai@nycu.edu.tw

National Yang Ming Chiao Tung

University

Hsinchu, Taiwan

ABSTRACT
Large-scale recordings of neural activity are providing new oppor-

tunities to study neural population dynamics. A powerful method

for analyzing such high-dimensional measurements is to deploy an

algorithm to learn the low-dimensional latent dynamics. LFADS

(Latent Factor Analysis via Dynamical Systems) is a deep learning

method for inferring latent dynamics from high-dimensional neural

spiking data recorded simultaneously in single trials. This method

has shown a remarkable performance in modeling complex brain

signals with an average inference latency in milliseconds. As our

capacity of simultaneously recording many neurons is increasing

exponentially, it is becoming crucial to build capacity for deploying

low-latency inference of the computing algorithms. To improve the

real-time processing ability of LFADS, we introduce an efficient im-

plementation of the LFADS models onto Field Programmable Gate

Arrays (FPGA). Our implementation shows an inference latency of

41.97 𝜇s for processing the data in a single trial on a Xilinx U55C.

ACM Reference Format:
Xiaohan Liu, ChiJui Chen, YanLun Huang, LingChi Yang, Scott Hauck, Shih-

Chieh Hsu, Elham E Khoda, and Bo-Cheng Lai. 2023. FPGA Deployment of

LFADS for Real-time Neuroscience Experiments . In Proceedings of (Fast
Machine Learning for Science ICCAD, 2023). ICCAD, San Francisco, CA, USA,

6 pages. https://doi.org/XXXXXXX.XXXXXXX

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Fast Machine Learning for Science ICCAD, 2023, November 2, 2023, San Francisco, CA
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Over the past decade, the ability to record large-scale neural ac-

tivity has improved dramatically, providing us with new opportu-

nities to study neural population dynamics. A powerful strategy

for analyzing such high-dimensional measurements is to learn the

low-dimensional latent dynamics that explain much of the vari-

ance in the measurements. Analysis of neural signals also widely

relies on neural networks [1]. LFADS [2, 3] model is a cutting-edge

neural network architecture in the field of neural modeling and

computational neuroscience. LFADS leverages the capacity of re-

current neural networks (RNNs) for uncovering hidden patterns

and combines them with variational inference techniques to infer

the latent factors that drive the observed data. Although LFADS

demonstrates satisfactory performance in modeling brain signals,

processing the extensive neural recordings in real time still poses

significant computational challenges. Large-scale neural record-

ings are commonly involved in novel neuroscience experiments

[4]. To process the large-scale neural recordings in real-time, Field

Programmable Gate Arrays (FPGAs) are used to accelerate the in-

ference.as

FPGAs enable customized data processing logic and have gained

widespread adoption for achieving highly parallel dataflow pro-

cessing with minimal latency. Thus, low-latency, low-power, and

high-throughput model inference can be achieved on FPGAs, which

makes large-scale real-time neural experiments possible. For in-

stance, Low-latency LFADS can be employed to create real-time

closed-loop experiments that decode neural activity to manipulate

external devices. Furthermore, high-throughput machine learning

(ML) in neural-related experiments improves the ability to examine

extensive neural recordings. This capability is increasingly crucial

2023-10-01 11:57. Page 1 of 1–6.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Fast Machine Learning for Science ICCAD, 2023, November 2, 2023, San Francisco, CA Liu, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

in modern neuroscience experiments, as the integration of large-

scale neural recordings has become a commonplace and essential

component.

In this paper, we present an efficient implementation of the

LFADS model in High-Level Synthesis (HLS) for the hls4ml pack-

age [5]. This HLS implementation will opens the door for wider

low-latency and high-throughput applications of the LFADSmodels

for neural sequential data. Several optimizations for input/output

(IO) ports and data access mechanisms are donewhile implementing

the HLS representation of the LFADS model.

2 CORE CONCEPTS
As LFADS is one of the promising models for modeling complex

brain activities by inferring smooth dynamics based on the collected

neural spiking data, it is considered for this study. The focus of the

work is to demonstrate the ability to run low-latency inference of

LFADS-like models on an FPGA. A modified LFADS model is used

for this study as described in Sec. 2.1.

2.1 Model Description
LFADS is a sequential model based on a variational autoencoder

(VAE). The encoder has a bidirectional GRU layer, which takes

the single-trial neural spikes as input and converts them into a

low-dimensional latent space representation. This representation

acts as the initial state for the decoder GRU layer, which tries to

regenerate the input data. LFADS assumes the observed spikes are

samples from a Poisson process with firing rates (𝑟𝑡). So, instead of

estimating the neural spikes, the decoder learns the firing rates (𝑟𝑡)

as a function of time. The decoder (or generator) GRU is expected

to learn the underlying dynamics. So, the decoder is trained to infer

a reduced set of latent dynamic factors, 𝑓𝑡 . The firing rates can be

constructed from the latent factors.

In this work, we have studied an autoencoder (AE)-based model

to reduce the complexity of FPGA deployment. Furthermore, our

studies show that removing the Gaussian-sampling has almost

no impact on the model performance. The original LFADS model

uses a controller network to predict the dynamics of the system

in the presence of an external input. To simplify the model, we

have studied an LFADS, which can only predict the autonomous

dynamics. Figure 1 presents the overview of the LFADS architecture

used in this work. The model structure is adopted from [6]. In

our model, a bidirectional GRU encoder with 64 units for both

forward and backward layers, compresses the input spikes into a

latent vector of dimension 64. Then the latent variables are used

for initializing the unidirectional GRU decoder, which has 64 GRU

units. The decoder produces a set of low-dimensional temporal

factors of dimension 4. These four latent dynamic factors are then

passed through a fully connected layer with 70 units to produce

the log firing rates, log(𝑟𝑡), corresponding to the input spike. The

model is trained with Keras [7] and TensorFlow [8].

2.2 Dataset and Evaluation Metrics
In this paper, we have used the data collected from a study of mon-

key reaching tasks [9]. The input dataset contains a total of 170

trials. Out of which, 136 trials (80%) are used for training, while 17

trials are used for each, validation and test. Each trial consists of

70 recording channels, with 73 discrete time steps per channel. A

detailed training and evaluation methodologies are presented in

Ref. [6].

Two metrics are used to evaluate the performance of LFADS

model: negative Poisson log-likelihood (NPLL) and the coefficient

of determination (R
2
). As LFADS estimates the firing rates, assuming

spiking variability follows a Poisson distribution, it uses NPLL as

a loss function in training. It should be noted that the main goal

of this work is to deploy LFADS onto an FPGA, not to optimize its

performance. Figure 2 shows the NPLL comparison of a VAE-based

LFADS model with the AE-based model used in this work. The R
2

score is calculated by fitting the reconstructed temporal factors 𝑓𝑡
to the measured behavioral data (hand position). The closer the

score is to 1, the better the factors align with the behavioral data,

indicating a stronger correlation between the model’s predictions

and the observed behavior.

3 IMPLEMENTATION
One of the main focuses of this work is to implement the LFADS

model in HLS and integrate it into hls4ml for rapid development

on FPGA. Currently, almost all components of the LFADS model

are available in hls4ml, except for the Bidirectional wrapper for
the GRU and the quantized GRU (QGRU).

3.1 HLS implementation: Keras Model
The HLS bidirectional wrapper is used for the Bidirectional layer of

the Keras LFADS model. To implement the Bidirectional wrapper, a

reverse function is applied to invert the order of the input sequence.

During inference, the original and reversed inputs pass through

corresponding GRU layers and their outputs are concatenated.

3.2 QKeras Model
We have also studied quantization-aware training (QAT) using the

QKeras package [10] . We have built our QKeras model using the

QGRU, QBidirectional, QDense layers and different quantized form

of sigmoid and tanh activation functions. Since these two activation

functions are non-linear, outputs of the original and the quantized

function could be different. So, this has been properly optimized in

our implementation. For QBidirectional, we use two QGRUs, one

for the forward and one for the backward input sequences, and

concatenate the two outputs to form the QBidirectional output. It

is important to note the precision of the inputs also needs to be ad-

justed by using a quantizer to make different operations consistent.

Most of the hyperparameters used for QAT are similar to the

floating-point models. For the QKeras model, a step learning rate

schedule is used, with an initial learning rate of 0.01, patience of 10

epochs, decay factor of 0.5, and a minimum learning rate of 10
−5
.

The SGD optimizer is used instead of Adam when the total bits are

less than 6 bits for more stable training. After through scanning,

we have chosen to use 3 integer bits for all activations and 1 integer

bit (only sign bit) for weights and biases, since they are initialized

with the Lecun uniform initializer [11].

2023-10-01 11:57. Page 2 of 1–6.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

FPGA Deployment of LFADS for Real-time Neuroscience Experiments Fast Machine Learning for Science ICCAD, 2023, November 2, 2023, San Francisco, CA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Inferred
firing rates

rt

Decoder FC
initial state

Observed
spikes Trials

N
eu

ra
on

s

Time

Observed
spikes Trials

N
eu

ra
on

s

Time
Encoder

Latent Space
Representation

64 dim

Bidirectional
GRU

64 units

FC

GRU
64 units

exponential

zero-value
decoder input

Factors
ft

Compare

Figure 1: LFADS architecture used for this study.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Trial

0

250

500

750

1000

1250

1500

1750

2000

2250

Ne
ga

tiv
e

Po
iss

on
 L

og
-li

ke
lih

oo
d

Negative Poisson Log-likelihood per Trail
VAE-based LFADS
AE-based LFADS

Figure 2: The figure shows the NPLL values of the AE-based
LFADS (red) and a VAE-based LFADS (blue) with a similar
architecture.

Dense
(64*3 units)

Dense
(64*3 units)

st-1

xt

State
Quantizer

Recurrent
Weight

Quantizer

Recurrent
Bias

Quantizer

recurrent
weight

recurrent
bias

Weight
Quantizer

Bias
Quantizer

Add

weight bias

Quantized
Sigmoid

Multiply

rt
zt

Wst-1

1-

Add

Multiply

Quantized
Tanh

MultiplyAddst

BWaccum2 = BWrw + BWstat + log2 (# of accumulation)

BWaccum1 = BWw + BWinput + log2 (# of accumulation)

Max (BWaccum1 , BWaccum2)

Figure 3: The structure of 64-units quantized GRU cell

3.3 HLS implementation: QKeras Model
Figure 3 displays the architecture of a 64-unit quantized GRU cell.

There are four weight quantizers, two activation quantizers (quan-

tized sigmoid, and quantized tanh) and one state quantizer. During

the hls4ml compilation, the precisions for all the following calcula-

tions are automatically determined based on those quantizers. For

example, the colored arrows in Figure 3 show the required bit-width

for the addition before the sigmoid.

For the choice of quantized activation, we use hard quantized

activation. Figure 4 shows the curves of the real activations and

the quantized (hard) activations. In HLS, it requires a look-up table

to achieve the non-linearity in quantized activations. However, as

the bit-width increases, the size of the look-up table exponentially

grows to maintain accuracy. In contrast, the hard sigmoid calcu-

lation can be supported with simple wiring in hardware, without

requiring a multiplier or look-up table. This statement is also true

for hard tanh as it can be derived from hard sigmoid.

4 2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Real Q-Sigmoid
Hard Q-Sigmoid
Sigmoid

(a)

4 2 0 2 4
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Real Q-Tanh
Hard Q-Tanh
Tanh

(b)

Figure 4: The plots of 4-bits quantized activations, quantized
hard activations, and real activations (a) quantized sigmoid
and quantized hard sigmoid ranged from 0 to 0.9375. (b) quan-
tized tanh and quantized hard tanh ranged from -1 to 0.875.

The current version of hls4ml has two options for the datatype

used in the dataflow: IO-parallel and IO-stream. To maximize the

bandwidth, fully-partitioned arrays were utilized in IO-parallel,

which can be resource-intensive. As a result, we use streams since

they are synthesized as more resource-efficient FIFOs. Furthermore,

we have modified the hls4ml compiler to use array-of streams

datatype, offering more flexibility in terms of bandwidth compared

2023-10-01 11:57. Page 3 of 1–6.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Fast Machine Learning for Science ICCAD, 2023, November 2, 2023, San Francisco, CA Liu, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

to the default packed struct datatype. The GRU layers only sup-

port IO-parallel, so we have applied a simple wrapper layer to the

GRU to convert the stream type to an array type for IO. Similarly,

for the bidirectional layer, we have employed the same approach to

handle IO.

4 RESULTS
The LFADS model described in Sec. 2.1 is translated into an HLS

model by utilizing the hls4ml tool. The implementation is tested

using Vivado HLS 2020.1 with a Xilinx Alveo U55C FPGA as the

target. In this work, we have carefully optimized quantization and

resource utilization on the FPGA.

4.1 Quantization Results
The quantization process is to reduce the precision of the model pa-

rameters as well as the inputs. Typically the model parameters, such

as weights and biases, are stored as 32-bit floating-point numbers

in the Keras models. As the floating-point number takes up a lot of

resources on the FPGA, it is preferred to use fixed-point representa-

tions of the model parameters. The fixed-point format is referred to

Vivado HLS ap_fixed type [12], where the sign bit is included in

the integer bits. In this is paper, the ap_fixed numbers are written

in <total bits, integer bits> format. hls4ml converts the in-

put model parameters into ap_fixed while implementing the HLS

model representation. This process is called post-training quanti-

zation (PTQ). In our study, we varied the fractional bits between

2 and 16 while keeping the precision of the integer part fixed to

4, 6, and 8. The NPLL and 𝑅2 scores are calculated for different

quantization settings and the values are compared with that of the

floating-point model as shown in Figure 5. Different colors in the

figure represent integer bits of 4 (orange), 6 (green) or 8 (red). We

observe that at least 6 integer bits and 10 fractional bits, <16,6>,
are needed to achieve a similar performance as the floating-point

model.

2 6 10 14 18
Fractional bit

1700
1800
1900
2000
2100
2200
2300
2400

Ne
ga

tiv
e

Po
iss

on
 L

og
-L

ik
el

ih
oo

d Keras_LFADS
4 int bits
6 int bits
8 int bits

(a) PTQ NPLL

2 6 10 14 18
Fractional bit

1.0

0.5

0.0

0.5

R2 S
co

re

Keras_LFADS
4 int bits
6 int bits
8 int bits

(b) PTQ R2

Figure 5: Shows (a) NPLL and (b) R2 score as a function of
fractional bits. The blue line in each figure represents the
floating-point, whereas the lines correspond to inter bits of
4 (orange), 6 (green), or 8 (red).

The performance of the QAT model is estimated for different

total bit widths between 4 and 16, as shown in Figure 6. We see a

noticeable degradation in performance below total width of 10 bits.

A similar observation can be seen in the behavior reconstruction

shown in Figure 7. The performance of the 12-bit QAT model is

(a) QAT NPLL (b) QAT R2

Figure 6: Shows (a) NPLL and (b) R2 score as a function of total
bits for the quantized-aware trained (Q) models using. Re-
sults from the baseline floating-point (FP) model are shown
in the right subplots.

much closer to the floating-point model. Based on the results, we

have selected the QAT model with 10 bits for subsequent steps.

X

Y

(a) 4 bits

X

Y
(b) 8 bits

X

Y

(c) 12 bits

X

Y

(d) floating point

Figure 7: Behaviour reconstruction from quantize-aware-
trained models with different total bits and the baseline
floating-point model. Movement directions are grouped in
different colors. The solid lines denote the reconstructed
movement directions, while the dotted lines represent the
target movement directions.

4.2 Resource Utilization
We have used Alveo U250, which is currently the largest board in

the Xilinx Alveo FPGA series, as the target device to ensure the the

2023-10-01 11:57. Page 4 of 1–6.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

FPGA Deployment of LFADS for Real-time Neuroscience Experiments Fast Machine Learning for Science ICCAD, 2023, November 2, 2023, San Francisco, CA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 8: Resource utilization for different total bits with
post-training quantization. The target FPGA is Xilinx Alveo
U250.

available resources are sufficient at a high bit width. The LFADS

model is synthesized using Vivado HLS with different quantization

precision to obtain a resource estimation. For each case, we estimate

the utilization of different FPGA resources like memory (BRAM),

digital signal processing units (DSPs), flip-flops (FFs), and lookup

tables (LUTs). Figure 8 shows the resource consumption of the

LFADs model with post-training quantization in relation to the

total available resources. The four curves, representing different

resources, exhibit a downward trend as the total bit width decreases.

The limitation of FPGA inference in high bitwidth is DSPs. The DSP

consumption decreases significantly from 32 bits to 22 bits, followed

by a stable trend until 11 bits. This is due to the maximum input size

for multiplication in DSP48E2 is 27 × 18 [13]. If an input exceeds this

limit, two DSPs will be applied to perform the multiplication. For bit

widths below 12 bits, the DSP utilization decreases to nearly zero

percent since the multiplication is carried out by LUTs, resulting in

an increase in LUT consumption from the utilization of 12 bits to

10 bits.

4.3 FPGA Latency
Table 1 shows the deployment configuration. The precision used is

ap_fixed<16,6>, which is six integer bits and ten fractional bits. The

target FPGA is Xilinx Alveo U55C. The actual running frequency

on the U55C is 200 MHz, and the latency is 41.97 𝜇s.

Table 1: Deployment Configuration

Target FPGA Xilinx Alveo U55C

Precision ap_fixed<16,6>

Frequency 200 MHz

Latency 41.97𝜇s

5 SUMMARY AND OUTLOOK
We develop an automated design workflow based on hls4ml to

deploy LFADS onto an FPGA to accelerate the model for potential

large-scale real-time neuroscience experiments. For efficient imple-

mentation of the model, we studied both PTQ and QAT. Using QAT

it is possible to reduce total number of bits required to 10 bits, com-

pared to the 16 bits required for PTQ, while incurring negligible loss

compared to the floating-point model. For the on-board evaluation,

the 16-bit model demonstrates a latency of 41.97 𝜇s for processing

the data in a single trial, which is relatively small compared to the

O(𝑚𝑠) sampling interval commonly used in neuroscience experi-

ments. The acceleration enables large-scale real-time experiments

and enhances the capacity to process extensive neural recordings.

An AE-based LFADS model is studied for this work. The VAE-based

LFADS should be supported by hls4ml in the near future.

ACKNOWLEDGMENTS
We acknowledge the Fast Machine Learning collective and NSF

A3D3 team as an open community of multi-domain experts and

collaborators. This communities were important for the develop-

ment of this project. We thank Eli Shlizerman, Amy Orsborn, Cole

Hurwitz, and Michael Nolan for valuable discussions at different

stages of the project. This research was funded in part by National

Science Foundation (NSF) grants No. 1934360 and 2117997, and

1934360.

CODE AVAILABILITY STATEMENT
We re-implemented the LFADS in Keras functional API. The model

can be found in the "Tensorflow 2 Keras LFADS" repository available

at https://github.com/XLSMALL/TF2Keras-LFADs, originally

developed by Hurwitz et al. The original work can be found at

https://github.com/HennigLab/tndm. The PTQ model conversion

was done using the hls4ml package found at https://github.com/X

LSMALL/hls4ml/tree/LFADs, and we intend to contribute the QAT

code to hls4ml in the near future.

REFERENCES
[1] Guangyu Robert Yang and Xiao-Jing Wang. 2020. Artificial neural networks

for neuroscientists: a primer. Neuron, 107, 6, 1048–1070. doi: https://doi.org/10
.1016/j.neuron.2020.09.005.

[2] David Sussillo, Rafal Jozefowicz, L. F. Abbott, and Chethan Pandarinath. 2016.

Lfads - latent factor analysis via dynamical systems. arXiv, (Aug. 2016). Ac-
cessed: Aug. 03, 2023. http://arxiv.org/abs/1608.06315.

[3] Chethan Pandarinath et al. 2018. Inferring single-trial neural population dy-

namics using sequential auto-encoders. Nat Methods, 15, 10, (Oct. 2018), 805–
815. doi: 10.1038/s41592-018-0109-9.

[4] John P Cunningham and Byron M Yu. 2014. Dimensionality reduction for

large-scale neural recordings. Nature neuroscience, 17, 11, 1500–1509.
[5] FastML Team. 2021. Fastmachinelearning/hls4ml. https://github.com/fastmach

inelearning/hls4ml.

[6] Cole Hurwitz, Akash Srivastava, Kai Xu, Justin Jude, Matthew G. Perich, Lee E.

Miller, and Matthias H. Hennig. 2021. Targeted neural dynamical modeling.

(2021). arXiv: 2110.14853 [q-bio.NC].
[7] F. Chollet et al. 2015. Keras. https://https://keras.io/.

[8] [SW] TensorFlow Developers, TensorFlow version v2.14.0, Sept. 2023. doi:

10.5281/zenodo.8381573, url: https://doi.org/10.5281/zenodo.8381573.

[9] MatthewG. Perich, Juan A. Gallego, and Lee E.Miller. 2018. A neural population

mechanism for rapid learning. Neuron, 100, 4, (Nov. 2018), 964–976.e7. doi:
10.1016/j.neuron.2018.09.030.

[10] Claudionor N. Coelho Jr et al. 2019. Qkeras. https://github.com/google/qkeras.

[11] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.

2017. Self-normalizing neural networks. CoRR, abs/1706.02515. http://arxiv.org
/abs/1706.02515 arXiv: 1706.02515.

[12] Xilinx. 2023. Overview of arbitrary precision fixed-point data types. https://do

cs.xilinx.com/r/en-US/ug1399-vitis-hls/Overview-of-Arbitrary-Precision-Fi

xed-Point-Data-Types.

2023-10-01 11:57. Page 5 of 1–6.

https://github.com/XLSMALL/TF2Keras-LFADs
https://github.com/HennigLab/tndm
https://github.com/XLSMALL/hls4ml/tree/LFADs
https://github.com/XLSMALL/hls4ml/tree/LFADs
https://doi.org/https://doi.org/10.1016/j.neuron.2020.09.005
https://doi.org/https://doi.org/10.1016/j.neuron.2020.09.005
http://arxiv.org/abs/1608.06315
https://doi.org/10.1038/s41592-018-0109-9
https://github.com/fastmachinelearning/hls4ml
https://github.com/fastmachinelearning/hls4ml
https://arxiv.org/abs/2110.14853
https://https://keras.io/
https://doi.org/10.5281/zenodo.8381573
https://doi.org/10.5281/zenodo.8381573
https://doi.org/10.1016/j.neuron.2018.09.030
https://github.com/google/qkeras
http://arxiv.org/abs/1706.02515
http://arxiv.org/abs/1706.02515
https://arxiv.org/abs/1706.02515
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Overview-of-Arbitrary-Precision-Fixed-Point-Data-Types
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Overview-of-Arbitrary-Precision-Fixed-Point-Data-Types
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Overview-of-Arbitrary-Precision-Fixed-Point-Data-Types

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Fast Machine Learning for Science ICCAD, 2023, November 2, 2023, San Francisco, CA Liu, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

[13] Xilinx. 2023. Xilinx dsp48e2 block. https://docs.xilinx.com/r/en-US/ug958-viva

do-sysgen-ref/DSP48E2.

2023-10-01 11:57. Page 6 of 1–6.

https://docs.xilinx.com/r/en-US/ug958-vivado-sysgen-ref/DSP48E2
https://docs.xilinx.com/r/en-US/ug958-vivado-sysgen-ref/DSP48E2

	Abstract
	1 Introduction
	2 Core Concepts
	2.1 Model Description
	2.2 Dataset and Evaluation Metrics

	3 Implementation
	3.1 HLS implementation: Keras Model
	3.2 QKeras Model
	3.3 HLS implementation: QKeras Model

	4 Results
	4.1 Quantization Results
	4.2 Resource Utilization
	4.3 FPGA Latency

	5 Summary and Outlook
	Acknowledgments

