
Performance of Partial Reconfiguration in FPGA
Systems: A Survey and a Cost Model

KYPRIANOS PAPADIMITRIOU, APOSTOLOS DOLLAS

Technical University of Crete

and

SCOTT HAUCK

University of Washington

Fine-grain reconfigurable devices suffer from the time needed to load the configuration bitstream.
Even for small bitstreams in partially reconfigurable FPGAs this time cannot be neglected. In this
paper we survey the performance of the factors that contribute to the reconfiguration speed. Then,
we study an FPGA-based system architecture and with real experiments we produce a cost model
of partial reconfiguration (PR). This model is introduced to calculate the expected reconfiguration
time and throughput. In order to develop a realistic model we take into account all the physical
components that participate in the reconfiguration process. We analyze the parameters that affect
the generality of the model and the adjustments needed per system for error-free evaluation. We
verify it with real measurements, and then we employ it to evaluate existing systems presented
in previous publications. The percentage error of the cost model when comparing its results with
the actual values of those publications varies from 36% to 63%, whereas existing works report
differences up to two orders of magnitude. Present work enables a user to evaluate PR and decide
whether it is suitable for a certain application prior entering the complex PR design flow.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Modeling techniques

General Terms: Experimentation, Measurement, Performance, Theory, Verification

Additional Key Words and Phrases: Reconfigurable Computing, Field Programmable Gate Ar-
rays, Partial Reconfiguration, Reconfiguration Time

1. INTRODUCTION

During recent years many applications that exploit the dynamic nature of recon-
figurable devices have been developed. Due to their SRAM-based technology, both
fine-grain and coarse-grain reconfigurable devices can be reprogrammed potentially
unlimited times. This reconfigurability can serve as the vehicle to customize the
design of applications even during operation in order to improve their performance

Author’s address: K. Papadimitriou and A. Dollas are with the Micropocessor and Hardware
Laboratory, ECE Dpt., Technical University of Crete, Kounoupidiana Campus, 73100, Greece. S.
Hauck is with the Adaptive Computing Machines and Emulators Laboratory, EE Dpt., University
of Washington, Seattle, WA 98195, USA.
Part of this work was conducted while K. Papadimitriou was with the University of Washington
as a visiting predoctoral student.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · Kyprianos Papadimitriou et al.

in terms of different aspects, such as speed, power, and area. In this work we fo-
cus on fine-grain partially reconfigurable (PR) devices. Previous published work
has shown that i)specialized circuits can operate at higher speeds vs. their general
static counterparts [McKay et al. 1998], ii)chip area is saved by programming only
the physical resources that are needed in each operation phase [Gholamipour et al.
2009], iii)power can be saved by programming only the circuit that is needed, which
allows for static leakage reduction, and by programming optimized circuits, which
allows for dynamic power reduction [Noguera and Kennedy 2007; Paulsson et al.
2008].
The configuration data produced to program a reconfigurable device is called a

bitstream. When only a portion of a PR device is to be reconfigured a partial
bitstream is produced. Although fine-grain devices like FPGAs offer customization
at the bit-level allowing for great flexibility, at the same time they require large
bitstreams to be configured as opposed to the coarse-grain devices. This induces a
considerable reconfiguration time, which cannot be neglected even for devices sup-
porting partial reconfiguration. Usually, published reconfiguration times refer to the
configuration port of the chip only [Lysaght et al. 2006]. There exist works propos-
ing the incorporation of PR in their systems, which use such theoretical values and
due to unrealistic assumptions the results are questionable. When incorrectly used
the reconfiguration time might deviate one or two orders of magnitude from the
realistic value [Griese et al. 2004; Galindo et al. 2008]. For “real-world” systems a
more holistic approach is needed, taking into account all the system components
that contribute to the total reconfiguration overhead, such as the internal and ex-
ternal memory, the internal configuration port, the reconfiguration controller, the
FPGA configuration memory, and the connections means. As today FPGA plat-
forms are used as final products and not just for rapid system prototyping, partial
reconfiguration can play a significant role, and thus it would be useful to effectively
precalculate its overhead.
Performance evaluation frameworks are being developed in order to leverage ex-

isting partial reconfiguration design flows with design space exploration at the early
stages of development [Hsiung et al. 2008]. Our work relies on experiments with
a “real-world” platform used as reference, and with straightforward math, we con-
struct a model to evaluate reconfiguration time for new platforms without being
necessary to enter the tedious PR design flow. The model is verified by comparing
the results with real measured data and is used to evaluate previously published
systems. Our contributions are:

—a survey with the most recent works on measuring reconfiguration times of PR
FPGAs, and an investigation of the performance margins for different system
setups.

—an analysis of the system factors that contribute to the reconfiguration overhead
of which a designer should be aware to evaluate the PR system.

—the formulation of a cost model1 to evaluate reconfiguration in platforms using
an embedded processor to control the reconfiguration; the proposed model does

1available on line in [PRCC 2010].

ACM Journal Name, Vol. V, No. N, Month 20YY.

Performance of Partial Reconfiguration in FPGA Systems: A Survey and a Cost Model · 3

not rely on the throughput of the configuration port alone, and it can be used to
compute the reconfiguration time without performing experiments.

The paper is structured as follows: Section 2 has the basics of partial recon-
figuration and discusses recent works that include measurement of reconfiguration
time. In Section 3 we categorize different system setups of published works, and we
analyze the characteristics that affect the performance of reconfiguration. Section
4 describes the reference system architecture. Section 5 analyzes the components
that contribute to the total reconfiguration time and proposes the cost model. In
Section 6 we first verify the model and then use it on different platforms and com-
pare its results with real measurements appeared in previous publications of other
researchers, in order to extract the percentage error. Also we discuss the merits and
limitations of the model. Finally, Section 7 summarizes the benefits of our work.

2. STATE OF THE ART

Several vendors are striving to develop devices supporting partial reconfiguration.
Xilinx offers the largest FPGA matrices which incorporate this feature, and most
research efforts on this field use devices from this vendor. We focus on these devices
and we provide some background on partial reconfiguration technology along with
the corresponding terminology. Then we discuss recent works that measure the re-
configuration time and throughput on “real-world” platforms with modern FPGAs.
Some of them include theoretical formulas to calculate the expected results.

2.1 Background on Partial Reconfiguration

The generic structure of the Xilinx Virtex FPGAs is shown in Figure 1. It is
a Virtex-II/Pro device [Xilinx Inc. 2007a], one of the most widely used FPGA
devices with partial reconfiguration capability. The newer Virtex-4 and Virtex-
5 FPGAs have similar structure. It comprises an embedded processor such as a
hardcore PowerPC or a softcore Microblaze, a reconfigurable array, the Processor
Local Bus (PLB) [IBM Inc. 2000] and the less efficient On-Chip Peripheral Bus
(OPB) [IBM Inc. 2001]. The processor is attached on the PLB bus, which com-
municates with the OPB through a bridge. The modules implemented in the array
logic can be attached to the buses and act as peripherals to the processor. The
array is 2-D fine-grain heterogeneous, mainly composed of configurable logic blocks
(CLBs), hardcore memory blocks (BRAMs), hardcore DSP units (MULTs) and I/O
resources. Each CLB contains look up tables (LUTs), flip-flops, multiplexers and
gates that are configured to implement the design logic. The array can be config-
ured either externally or internally, by a processor or a dedicated reconfiguration
controller. The serial JTAG, the SPI and the parallel SelectMAP allow for exter-
nal configuration, whereas the parallel Internal Configuration Access Port (ICAP)
allows for internal - partial only - configuration. The ICAP in Virtex-II/Pro has
a width of 8-bits, whereas Virtex-4 and Virtex-5 families support 16-bit and 32-
bit transfers as well. The maximum operational frequency of ICAP suggested by
the vendor is 100 MHz. A BRAM attached to the ICAP caches the configuration
bits before they are loaded to the FPGA configuration memory. An IP core called
OPBHWICAP [Xilinx Inc. 2006] is provided by the vendor which is connected on
the OPB bus as a slave peripheral, and enables a processor to access the configu-

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Kyprianos Papadimitriou et al.

ICAP

O
P

B

PLB

Fig. 1. The Virtex II-Pro FPGA resources and configuration frames.

ration memory through the ICAP, by using a library and software routines. For
the Virtex-4 and Virtex-5 FPGAs, the XPSHWICAP [Xilinx Inc. 2007b] has been
released, which works similarly with the OPBHWICAP, but it is connected on the
PLB bus allowing for lower-latency reconfiguration.

The configuration memory of Virtex-II/Pro is arranged in vertical frames that are
one bit wide and stretch from the top edge to the bottom edge of the device. They
are the smallest addressable segments of the device’s configuration memory space,
so all operations must act on entire configuration frames. They do not directly
map to any single piece of hardware; rather, they configure a narrow vertical slice
of many physical resources [Xilinx Inc. 2007a]. A pad frame is added at the end
of the configuration data to flush out the pipeline of the reconfiguration processing
machine in order for the last valid frame to be loaded. Therefore, to write even
one frame to the device it is necessary to clock in two frames; the configuration
data frame plus a pad frame. In the newer Virtex devices, the structure and the
PR technology is essentially the same, with a few changes. In the previous Virtex-
II/Pro family the frame size is not fixed as it is proportional to the entire height of
the device, which differs amongst the parts. By contrast, in Virtex-4 and -5 families
the frame spans a fixed height of the device; its width is one bit. Moreover, the OPB
bus is not suggested anymore due to its low performance, and although it will not

ACM Journal Name, Vol. V, No. N, Month 20YY.

Performance of Partial Reconfiguration in FPGA Systems: A Survey and a Cost Model · 5

likely be supported in the future it remains optional within the infrastructure. The
PLBv4.6 (also called XPS) is now the default, which provides more bandwidth, less
latency and it is more deterministic and stable as compared with the OPB. Also,
PLB allows for simultaneous read and write transfers and can be instantiated as
either a shared bus, or for point-to-point connections; the latter option reduces the
latency of transfers between the modules connected on the bus.
The PR design flow suggested for complex designs is the module-based flow

[Lysaght et al. 2006]. One or more areas of the FPGA are defined as partially
reconfigurable regions (PRR). For each PRR more than one module called partially
reconfigurable modules (PRM), can be created and imported. A partial bitstream
is generated to create each PRM. During operation, the PRMs can be swapped in
and out of the corresponding PRR without interrupting the remaining hardware.

2.2 Reconfiguration Time and Throughput

Table I has some of the most representative works measuring the reconfiguration
time, sorted according to the publication year2. It contains the characteristics of
“real-world” platforms, along with the respective reconfiguration time and through-
put measured with hardware and/or software means, such as a logic analyzer and
software time-stamps. The first column has the Reference. The Storage column
has the memory means from which the bitstream is loaded to the configuration
memory. The next column consolidates the type, the bit-width and the operational
frequency in MHz of the Configuration port, e.g. ICAP8@100 refers to the 8-bit
ICAP port running at 100 MHz. In case a characteristic is missing it means the
information is not provided by the authors. The column Cntlr refers to the type of
reconfiguration controller. The prefixes “v-” and “c-” define whether the solution
is furnished by the “vendor” or by the authors as a “custom” solution respectively.
Thus the c-OPB and the c-PLB refer to a custom reconfiguration controller located
on the OPB or the PLB bus respectively, whereas the v-OPB and the v-XPS refer
to the vendor’s OPBHWICAP and XPSHWICAP solutions respectively that are
controlled by an embedded processor (alternatively a custom core can be imple-
mented to interface with the vendor’s OPBHWICAP and XPSHWICAP). The last
three columns have the Bitstream Size (BS) in KBytes, the corresponding Recon-
figuration Time (RT) in msec and the system’s Actual Reconfiguration Throughput
(ARTP) in MBytes/sec. The values are included as published, and in the rare case a
value is not explicitly reported in a reference we calculate it, e.g. the fraction of the
bitstream size over the reconfiguration time calculates the actual reconfiguration
throughput and vice-versa with the formula ARTP = BS

RT ⇔ RT = BS
ARTP . All ex-

periments of Table I concern Virtex-II and Virtex-4 FPGAs, mainly the XC2VP30,
XC4FX20 and XC4FX60 devices. The 8-bit ICAP corresponds to the Virtex-II,
and the 32-bit to the Virtex-4 FPGA families.
Along with the Table I, we discuss partially reconfigurable systems by concentrat-

ing on i)the type of the external storage from which the partial bitstream is loaded
to the array, ii)the type of the reconfiguration controller, iii)the measurement of the

2At this point we preferred to sort Table I according to the publication year (first column) than
according to the reconfiguration throughput (last column). A categorization according to the
throughput is provided in the following Table.

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Kyprianos Papadimitriou et al.

Table I. Reconfiguration-related characteristics and measured reconfiguration time
and throughput. The Bitstream Size (BS) is in KBytes, the Reconfiguration
Time (RT) in milliseconds, and the Actual Reconfiguration Throughput (ARTP)
in MBytes/sec.

Reference Storage Conf. Port Cntlr BS RT ARTP

[Fong et al. 2003] PC/RS232 ICAP8 c-HW 34.8 6,200 0.005

[Griese et al. 2004] PC/PCI SMAP8@25 c-HW 57.0 14.328 3.88

[Gelado et al. 2006] BRAMPPC ICAP8 v-OPB 110.0 25.99 4.13

[Delahaye et al. 2007] SRAM ICAP8 v-OPB 25.7 0.510 49.20

[Papadimitriou et al. 2007] BRAMPPC ICAP8@100 v-OPB 2.5 1.67 1.46

[Papadimitriou et al. 2010] CF ICAP8@100 v-OPB 14.6 101.1 0.15

[Claus et al. 2007] DDR ICAP8@100 c-PLB 350.75 3.75 91.34

[Claus et al. 2007] DDR ICAP8@100 v-OPB 90.28 19.39 4.66

[Claus et al. 2008] DDR ICAP8@100 c-PLB 70.5 0.803 89.90

[Claus et al. 2008] DDR ICAP8@100 v-OPB 70.5 15.0 4.77

[Claus et al. 2008] DDR2 ICAP32@100 c-PLB 1.125 0.004 295.40

[Claus et al. 2008] DDR2 ICAP32@100 v-OPB 1.125 0.227 5.07

[French et al. 2008] DDR2 ICAP32@66 v-OPB 514.0 112.0 4.48

[Manet et al. 2008] DDR2/ZBT ICAP32@100 c-OPB 166.0 0.47 353.20

[Liu et al. 2009] DDR2 ICAP32@100 v-OPB 79.9 135.6 0.61

[Liu et al. 2009] DDR2 ICAP32@100 v-XPS 80.0 99.7 0.82

[Liu et al. 2009] DDR2 ICAP32@100 v-OPB 75.9 7.8 10.10

[Liu et al. 2009] DDR2 ICAP32@100 v-XPS 74.6 4.2 19.10

[Liu et al. 2009] DDR2 ICAP32@100 c-PLB 81.9 0.991 82.10

[Liu et al. 2009] DDR2 ICAP32@100 c-PLB 76.0 0.323 234.50

[Liu et al. 2009] BRAMICAP ICAP32@100 c-PLB 45.2 0.121 332.10

reconfiguration process and its phases, and iv)the theoretical formulas to calculate
the expected reconfiguration time and throughput. Regarding the configuration
port we focus on ICAP which offers the fastest way to partially reconfigure the
array.

Commonly, the partial bitstreams are stored in an external non-volatile memory.
Therefore a host PC can be used which, after the system startup, transfers the
bitstream to the FPGA either through PCI [Griese et al. 2004] or serial port [Fong
et al. 2003]. For embedded solutions a compact flash located on the FPGA plat-
form is preferred, which is the case for most works of Table I. Other non-volatile
memories that can be used are linear flash, SPI flash, and platform flash PROM.
After the system boots, the bitstream can be loaded to a high-speed memory, either
off-chip or on-chip, in order to perform faster reconfiguration. If only the compact
flash is used, a longer reconfiguration time is required [Papadimitriou et al. 2007].
More on the advantages and disadvantages of different memory types are available
in [Möller et al. 2006].

With respect to the type of reconfiguration controller various solutions exist,
each of which can be employed depending on the application needs. Some works
used the OPBHWICAP [Gelado et al. 2006; Papadimitriou et al. 2007; Delahaye

ACM Journal Name, Vol. V, No. N, Month 20YY.

Performance of Partial Reconfiguration in FPGA Systems: A Survey and a Cost Model · 7

et al. 2007; Claus et al. 2007; Claus et al. 2008; French et al. 2008; Liu et al. 2009]
whereas a few experimented with the XPSHWICAP [Liu et al. 2009]. On the other
hand, customized reconfiguration controllers aim to speedup reconfiguration and/or
release the processor time to other tasks, such as the reconfiguration management
under the supervision of an operating system [Santambrogio et al. 2008]. This can
be done either through Direct Memory Access (DMA) with a customized controller
on the OPB [Manet et al. 2008] or the PLB bus [Claus et al. 2007; Claus et al. 2008;
Liu et al. 2009], or with a PLB master connected directly with the controller of the
external memory, allowing for burst transmissions [Liu et al. 2009]. Moreover, to
speed up reconfiguration, partial bitstreams can be loaded immediately after the
system startup into large on-chip memory implemented with BRAMs attached to
the reconfiguration controller [Liu et al. 2009]. In general, the systems with the
processor acting as the reconfiguration controller suffer from long delays due to the
large time needed to access its program memory to call and execute the software
instructions. Also, when several modules are connected to the bus the delay is longer
and unstable due to the contention between reconfiguration and data transfers.

The distinct phases during reconfiguration can vary depending on the system
setup. The measured times mainly concern the phase to pull the bitstream from the
off-chip memory to the local memory of the processor, copy it from the local memory
of the processor to the ICAP, and send it from the ICAP to the FPGA configuration
memory [Gelado et al. 2006; Papadimitriou et al. 2007; French et al. 2008]. These
subtasks iterate until the entire partial bitstream is written to the configuration
memory [Papadimitriou et al. 2010]. For specific systems other subtasks have been
measured, such as the time for configuration code analysis to guarantee safety,
initialization and start time of the reconfiguration controller [Griese et al. 2004],
the time to send the adequate instructions to the ICAP [Gelado et al. 2006], and the
time to copy the configuration data from user space to kernel space in Linux [French
et al. 2008]. In all systems the largest overhead comes from the bitstream transfer
from the external memory to the on-chip memory [Griese et al. 2004; Papadimitriou
et al. 2007; 2010], and from the processor to the ICAP through the bus [Gelado
et al. 2006; French et al. 2008; Delahaye et al. 2007].

Although some of the above works evaluate the time spent in each reconfiguration
phase, they do not provide a theoretical analysis taking into account the system
characteristics. Some of them calculate the expected reconfiguration throughput
based on the bandwidth of the configuration port only [Claus et al. 2007; Manet
et al. 2008]. However, in [Griese et al. 2004] the authors demonstrated that the
actual reconfiguration throughput deviates one order of magnitude from the theo-
retical bandwidth of the configuration port. In another work this deviation reaches
up to two orders of magnitude [Galindo et al. 2008]. Following the same concept,
Lysaght et al. [Lysaght et al. 2006] reports the reconfiguration times for Virtex-II
Pro and Virtex-4 devices. For example the partial bitstream for 25% of a XC2VP30,
which is equal to 353 KBytes, can be loaded in less than 6 ms when the ICAP op-
erates at 100 MHz and is fully utilized. This has a considerable difference with the
end-to-end system times, and depending on the system setup the actual reconfig-
uration times can take significantly longer, as demonstrated in Table I. Claus et
al. [Claus et al. 2008] provide a more sophisticated model to calculate the expected

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Kyprianos Papadimitriou et al.

reconfiguration throughput and latency. However, this model is based on the char-
acteristics of the configuration port itself only; these are the operational frequency,
the interface width and the frequency of activation of the ICAP’s “BUSY” hand-
shaking signal. This model cannot be safely applied on the Virtex-4 devices due
to the different behavior of the “BUSY” signal in the specific family. Although
this model can be fairly accurate under specific circumstances, if a designer wants
to evaluate a system, (s)he would need to built it first, then evaluate it, and then
examine whether it meets the application needs. We are interested in a model
that will provide better estimation regardless of the maximum throughput of the
configuration port early in the design stage.

3. INVESTIGATION OF THE RECONFIGURATION PERFORMANCE

In this Section we analyze further the characteristics that affect the reconfigura-
tion performance. Table II categorizes the existing approaches according to the
configuration port and its bandwidth, the reconfiguration controller and the stor-
age means. It also summarizes the expected range of the actual reconfiguration
throughput according to the system characteristics. We observe that the through-
put varies heavily depending on the three characteristics.
When comparing the cases A and B where the PowerPC (PPC) processor is the

reconfiguration controller, loading the partial bitstream from the local memory of
the processor implemented with BRAMs offers a speedup of 10x over the compact
flash solution [Papadimitriou et al. 2007]. In case I, where on-chip memory im-
plemented with BRAMs attached to the ICAP is used to fetch the entire partial
bitstream prior reconfiguration takes place, much better results are produced. In
this case a dedicated reconfiguration controller accounts for the high throughput,
as it continuously pulls the prefetched configuration data; this allows for the almost
full utilization of the configuration port [Liu et al. 2009].
In case D where a customized reconfiguration controller located on the PLB bus

is utilized, the reconfiguration throughput reaches almost the bandwidth of the
8-bit ICAP configuration port [Claus et al. 2007; Claus et al. 2008]. However in

Table II. Comparison between the bandwidth of the configuration port and the
actual reconfiguration throughput for different published system setups.

Configuration Port

case Type Bandwidth Cntlr Storage ARTP

A

ICAP8@100 95.3 MB/s

v-OPB CF 0.15 MB/s

B v-OPB BRAMPPC 1.46 MB/s

C v-OPB DDR 4.54-4.77 MB/s

D c-PLB DDR 89.90-91.34 MB/s

E

ICAP32@100 381.5 MB/s

v-OPB DDR2 0.61-11.1 MB/s

F v-XPS DDR2 0.82-22.9 MB/s

G c-OPB DDR2/ZBT 353.2 MB/s

H c-PLB DDR2 82.1-295.4 MB/s

I c-PLB BRAMICAP 332.1-371.4 MB/s

ACM Journal Name, Vol. V, No. N, Month 20YY.

Performance of Partial Reconfiguration in FPGA Systems: A Survey and a Cost Model · 9

case H when the 32-bit ICAP is used, the same setup cannot achieve the configu-
ration port bandwidth. This might be due to the DDR2 SDRAM controller which
is not able to feed the reconfiguration controller fast enough in order to attain the
ICAP bandwidth [Claus et al. 2008; Liu et al. 2009]. High throughput approaching
the theoretical maximum is also achieved in case G with a custom reconfiguration
controller located on OPB [Manet et al. 2008]. In this work, the authors reported
that the throughput was ranging from 0.46 to 353.2 MB/sec for different system
setups depending on the reconfiguration controller and the type of external mem-
ory. Their fastest solution was provided with a custom OPB ICAP reconfiguration
controller when the partial bitstreams were loaded from a high-speed external mem-
ory; however the authors do not report whether the DDR2 SDRAM or the ZBT
SRAM was used. They were not able to reach the maximum throughput due to
the DMA overhead. Also, due to a clock skew problem they sent the configuration
data on the falling edge of the ICAP clock. It is interesting to notice that the
throughput of the best case of the custom OPB controller of [Manet et al. 2008]
which is 353.2 MB/s is higher than the custom PLB controller of [Claus et al. 2008]
which is 295.4 MB/s, despite the fact that the former is attached on the OPB bus
and the latter on the more-efficient PLB bus (see Table I of Section 2). We see
two possible reasons that the system with the OPB reconfiguration controller offers
higher throughput; either i)the bitstreams are fetched from the ZBT SRAM which
provides higher throughput than the DDR2 SDRAM and consequently allows for
higher utilization of the ICAP bandwidth, or ii)if the bitstreams are fetched from
the DDR2 SDRAM, the corresponding controller is implemented more efficiently.
When the processor acts as the reconfiguration controller its settings can affect

significantly the reconfiguration speed. This holds for both the OPBHWICAP and
the XPSHWICAP of cases E and F respectively. Such settings are the selection
of a hardcore processor (e.g PowerPC), or a softcore processor (e.g. Microblaze),
and the incorporation of separate instruction cache and data cache [Liu et al. 2009].
Another study shows that the change of the amount of memory allocated in the pro-
cessor local memory for buffering reads and write calls to the compact flash caused
variations in the reconfiguration time with respect to the number of reconfiguration
frames [Papadimitriou et al. 2010]. Another action towards increase of reconfigura-
tion performance is the replacement of the vendor’s Application Program Interface
(API) that handles the ICAP accesses with a better one [Möller et al. 2006].
Based on the above works we conclude that for recent PR technology on “real-

world” systems:

—The reconfiguration throughput of the system cannot be calculated from the
bandwidth of the configuration port alone. To evaluate the system holistically,
the overhead added by the components participating in the reconfiguration pro-
cess should be taken into account.

—The characteristics that affect the reconfiguration overhead depend on the system
setup, such as the external memory and the memory controller, the reconfigura-
tion controller and its interface with the configuration port, and the user space
to kernel space copy penalty when an operating system running on the processor
controls the reconfiguration.

—A bus-based system that connects the processor, the partially reconfigurable mod-

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Kyprianos Papadimitriou et al.

ule(s), the static module(s), and the configuration port, can be non-deterministic
and unstable due to the contention between data and reconfiguration transfers.

—A large on-chip memory implemented with BRAMs attached to the configuration
port that prefetches the bitstreams after the system boots can allow for fast
reconfiguration. Due to the limited size of BRAMs in FPGAs, the utilization
cost should be considered according to the application needs, i.e. using BRAMs
to prefetch configuration vs. saving BRAMs to deploy the circuits.

—The settings of the processor can affect the reconfiguration time. Moreover, the
size of the local memory of the processor can affect significantly the reconfigu-
ration time. However, similar to the above case the cost of BRAM utilization
should be considered.

—The selection of the reconfiguration controller depends on the application needs,
the available resources, the speed and the power constraints. For example, in case
area is of greater concern than speed, and an operating system executes on an
embedded processor, the latter can undertake the reconfiguration process in order
to avoid the consumption of logic resources to implement a dedicated reconfig-
uration controller. Previous works suggested ways to reduce the reconfiguration
overhead if this is needed [Hauck 1998; Papadimitriou and Dollas 2006].

—Nearly the full bandwidth of the configuration port can be used with a dedi-
cated reconfiguration controller that is either equipped with DMA capabilities,
or acts as a master directly connected to the configuration port allowing for burst
transmissions. Also, effective design choices at the system level should be made
such as the usage of a high-speed memory to store the partial bitstreams after
power-up and an efficient memory controller.

Obviously only the development of an efficient reconfiguration controller can al-
low for the actual reconfiguration throughput to approach the ICAP bandwidth.
However, this is not the common case either due to the system components that
bound the full utilization of the ICAP or the designer’s choices and application
needs. A cost model to precalculate the expected reconfiguration time can assist in
the performance evaluation phase. Moreover, it would be beneficial if this model
could be used early in the design flow in order to either i)prevent the designer from
entering the tedious PR design flow, or, ii)timely change the settings of the system
setup. The evaluation can be done either right after the bitstream estimation of the
partially reconfigurable modules at the initial budgeting stage of the floorplanning
stage, or even after the synthesis results. Although the latter method is less accu-
rate, our experience so far showed that the cost model still produces satisfactory
results.
Several works exploring applications that benefit from partial reconfiguration

can be augmented with a cost model for partial reconfiguration in order to provide
realistic data. For the dynamically reconfigurable network processor proposed in
[Kachris and Vassiliadis 2006] the cost model can calculate the time needed for re-
configuration after which the system will meet the network workload. Bitstreams of
different encoding, encryption and transcoding modules are fairly large and should
be located in an external memory, so, the added overhead before the system is ready
to execute is useful to know. In the field of multi-mode communication systems the

ACM Journal Name, Vol. V, No. N, Month 20YY.

Performance of Partial Reconfiguration in FPGA Systems: A Survey and a Cost Model · 11

Table III. Size of BRAM resources for moderate-sized FPGAs of Virtex-II,-4,and -5 families. The
Table illustrates the maximum size of the bitstreams that can be prefetched in the extreme case
none of the actual circuits utilizes BRAMs.

FPGA BRAM size (KBytes)

XC2VP30 306

XC4FX60 522

XC5VLX50T 270

cost model can be used to calculate the time to load the optimized configurations
of the filters [Gholamipour et al. 2009].
Furthermore, assuming that unlimited amount of on-chip memory is available to

fetch the entire bitstream and then load it at the ICAP’s speed is not realistic. An
analysis on the memory resources required by the circuit itself when deployed in
the field should be performed firstly by the designer. Also, an analysis of the local
memory of the processor and the bitstream size is needed, prior deriving the amount
of BRAMs that can be allocated for bitstream prefetching. Table III shows that
moderate-size FPGAs commonly used for research have limited BRAM resources.
In many cases the amount of on-chip memory imposes limitations to the size of
the bitstreams that can be prefetched; this is obtained from Table I that contains
bitstream sizes for several “real-world” applications.

4. SYSTEM ARCHITECTURE

Initially we present the general architecture of a partially reconfigurable system,
and then we describe in detail a realistic system with a Xilinx Virtex-II Pro FPGA.
It is used as the reference system to develop the cost model.

4.1 General Architectural Model

Figure 2 illustrates the general architectural model of a PR FPGA-based system.
The FPGA main components are the array, the configuration memory that pro-
grams the array, the reconfiguration controller, the configuration port and the on-
chip memory buffer. The connection between them is made either point-to-point
or through a bus. Other system components are the volatile high-speed memory
from which the partial bitstreams are loaded and its memory controller. The mem-
ory controller can reside either off-chip or on-chip implemented as an IP module.
Other necessary components are the non-volatile memory used as a repository for
the partial bitstreams and its controller. However, these are omitted from Figure 2
as after the system boots, the bitstreams can be copied to the high-speed memory
(for faster reconfiguration), and thus they do not need to be involved in the process
again. If the off-chip high-speed memory is left out and each time the bitstream is
loaded directly from the compact flash, throughput becomes flash-dominated and
little transfer speed improvement is possible.
The configuration takes place in two distinct phases shown with the dashed lines.

Once the memory controller is instructed to load the bitstream, it is copied from the
off-chip memory to the on-chip memory buffer. Then the reconfiguration controller
loads the bitstream to the FPGA configuration memory through the configuration
port. These phases occur alternately in succession until the entire bitstream is

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Kyprianos Papadimitriou et al.

C
o
n
f. P

o
rt

Memory

Controller

High-

speed

Memory

On-chip

Memory

Buffer

Reconfig.

Controller

Config.

Memory

Fig. 2. General architectural model and flow of partial reconfiguration.

copied to the configuration memory, except for the case when the entire bitstream
is prefetched in the on-chip memory. If this is desirable (depending on the user
application) and feasible (depending on the available on-chip memory) the first
phase can be executed before reconfiguration is actually needed, i.e. after the system
boots, or, scheduled during system operation before the task is needed for execution.
It is important to notice that the on-chip memory can be composed of separate
memory blocks that communicate hierarchically; this holds for the following system.

4.2 The Reference System

Figure 3 shows a PR system implemented on a platform with a Virtex-II Pro FPGA
[Papadimitriou et al. 2007]. The white boxes are part of the FPGA, while the grey
boxes lie outside of the FPGA. The Device Control Register (DCR) bus is used
for communicating with the status and control registers of the peripherals. The
PPC is attached on the PLB bus and contains two interfaces capable of accessing
memory, the Processor Local Bus (PLB) interface and the On-Chip Memory (OCM)
interface; in the present case we used the first interface by attaching on the bus a
PLB BRAM controller connected with the PPC local memory. The OPBHWICAP
incorporates a finite state machine for control, a configuration cache implemented
with one BRAM (set 2 KBytes by the vendor) and the ICAP. The PRR and the
static part are OPB peripherals. The OPB sysace peripheral is used to interface
with the external System ACE controller in order to communicate with the compact
flash. A DDR controller attached on the PLB controls the DDR SDRAM memory;
however it is not used in the current setup.
The PR system is representative as it belongs to the largest vendor in the field

that supports fine-grain partial reconfiguration. Also, although the PowerPC is
currently used as the embedded processor to control the reconfiguration, the softcore
Microblaze can be used instead, which also supports the reconfiguration functions.
Other custom processors can be used as well but the appropriate functionality
should be developed from the scratch to support reconfiguration.
At this point it is important to discuss the way the bus-based system works. The

IBM CoreConnect infrastructure is the backbone of the internal system connecting
the processor to the peripherals using the PLB, the OPB, and the DCR buses to
build a complete system [IBM Inc. 2000; 2001; 2006]. The DCR bus is used for

ACM Journal Name, Vol. V, No. N, Month 20YY.

Performance of Partial Reconfiguration in FPGA Systems: A Survey and a Cost Model · 13

Table IV. System settings.

Parameters Size

CF sector 512 Bytes

PLB BRAM block 48 KB

stack 6 KB

buffer cache 0.5-4 KB

processor array 0.5-4 KB

ICAP BRAM cache 2 KB

accessing status and control registers within the PLB and OPB masters and slaves.
It off-loads the PLB and the OPB from the lower performance read/write transfers
from/to the status and control registers. It also decreases access latency during
periods of high processor bus utilization. DCR is not part of the system memory
map, and thus it removes configuration registers from the memory address map,
allowing for data transfers to occur independently from, and concurrent with, PLB
and OPB transfers.
In the setup of Figure 3, the PPC is the controller of the reconfiguration process

carried out in three distinct phases that are repeated until the entire bitstream
is written in the configuration memory [Papadimitriou et al. 2010]. These phases
are shown with the dashed lines: i)First the PPC requests the bitstream from the
external storage means (the compact flash in the present case) and writes it in
its local memory (first level of the on-chip memory hierarchy) with block-by-block
transactions, ii)then the PPC transfers the bitstream word-by-word to the ICAP
configuration cache (second level of the on-chip memory hierarchy), and iii)once
the configuration cache is full the PPC instructs the OPBHWICAP to load the
bitstream to the FPGA configuration memory through the ICAP. These actions
are determined with software commands residing in the PPC program memory.
For sake of simplicity we will refer to them as SM-PPC3, PPC-ICAP and ICAP-
CM respectively.
Table IV has the system parameters we configured as fixed and those we varied

to examine their affect on performance. The PPC’s local memory was 48 KBytes
and the stack was 6 KBytes. The buffer cache (bc) defines the amount of memory
for buffering read and write calls to the System ACE controller. The processor
array (pa) is allocated in the PPC local memory to store the configuration data,
and determines the amount of data read from the compact flash per transaction4.
The ICAP cache has fixed size set by the vendor one BRAM, which is equal to 2
KBytes. In order to configure a system with low resources we did not enable the
instruction/data caches and interrupts of the PPC.
Table V has the time spent in the processor calls (which force the transactions)

3SM and CF acronyms are used throughout the paper depending on the type of storage we refer
to, i.e. SM stands for storage means referring to a general type of memory, either volatile or
non-volatile, high-speed or low-speed, and CF stands for the compact flash which is non-volatile
low speed memory.
4Transactions are conducted in multiples of one sector per processor call. A sector is the smallest
unit the compact flash is organized in and is equal to 512 Bytes. Thus we varied the processor
array size in multiples of one sector.

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Kyprianos Papadimitriou et al.

Processor Local Bus On-Chip Peripheral Bus

BRAM

Control

State

Machine

IC
A

P

OPBHWICAP

phase 1: CF-PPC

phase 2: PPC-ICAP

phase 3: ICAP-CM

Device Control Register Bus

DDR

SDRAM

SysACE

cntlr

Compact

Flash

Bus

Bridge

PPC

Memory

PLB_BRAM

_if_cntlr

Static

Part
PRRPPC

DDR

cntlr
sysace

PLB

Arbiter

OPB

Arbiter

Fig. 3. Flow of partial reconfiguration in the reference system with a Virtex-II Pro.

during reconfiguration for different processor array sizes. They were measured with
software time-stamps. It is observed that the processor array dictates the amount
of data transferred during the SM-PPC phase. In the same way it dictates the
transfer in the PPC-ICAP phase. However, in the case the processor array is larger
than the ICAP cache, the amount of data per call is bounded by the latter’s size.
This is illustrated in the fifth row of Table V where the PPC-ICAP time is the same
with the one shown in the above row. Moreover, if the processor array is larger
than the bitstream, the latter is transferred with one processor call and stored in
the processor local memory in its entirety prior the transfer to the ICAP. From the
ICAP side, the configuration cache size is fixed and thus inhibits accommodation
and transfer of the entire bitstream at once. Also, the ICAP cache should be filled
up with 2048 Bytes before it is ready to write the configuration memory. This is
the reason the ICAP-CM time is constant in all cases. For example, in the first
row of Table V where processor array = 512 Bytes, iterations of the first and the
second phases are executed in succession (with the corresponding processor calls)
until the ICAP cache is filled up. In particular, four consecutive iterations of the
two first phases occur until the ICAP cache will become full with 2048 Bytes.
Then, in the third phase, the contents of the ICAP cache are loaded to the FPGA
configuration memory with one transaction (caused by the corresponding processor
call). The foregoing sequence is repeated until the entire bitstream is copied to the
configuration memory.
The above observations revealed the way the reconfiguration operation works. We

processed the data of Table V to obtain a metric that has a meaningful system-level

ACM Journal Name, Vol. V, No. N, Month 20YY.

Performance of Partial Reconfiguration in FPGA Systems: A Survey and a Cost Model · 15

Table V. Execution time-per-processor-call for different sizes of the processor array. The amount
of data transferred per call is dictated by the minimum of the processor array and the ICAP cache.
In the ICAP-CM phase, the processor call needs 2048 Bytes to perform a transaction.

processor array (Bytes) SM-PPC (ms) PPC-ICAP (ms) ICAP-CM (ms)

512 1.5 0.42

0.02526

1024 2.94 0.83

1536 4.35 1.25

2048 5.79 1.67

2560 (> ICAP cache) 7.24 1.67

Table VI. Average time-per-processor-call. In order to conduct realistic analysis we adhere to the
way the phases are carried out by the corresponding processor calls; the minimum amount of data
for the SM-PPC and PPC-ICAP phases to be carried out is 512 Bytes, while ICAP-CM phase
needs exactly 2048 Bytes.

SM-PPC PPC-ICAP ICAP-CM

1.45 ms (per-512 Bytes) 0.42 ms (per-512 Bytes) 0.02526 ms (per-2048 Bytes)

design correspondent. Specifically, we extracted the “average time-per-processor-
call”. We observe that for the SM-PPC and PPC-ICAP phases, the time per 512
bytes (the smallest unit that can be transferred) is almost constant. For the SM-
PPC this time is ∼ 1.45ms, while for PPC-ICAP it is ∼ 0.42ms. For the ICAP-CM
phase the quantity of 512 Bytes is not the smallest quantity, as exactly 2048 Bytes
are needed to initiate a transfer to the configuration memory. In turn, we formed
the Table VI which will be used in Section 5 to construct the cost model.

4.3 Options Affecting Reconfiguration Performance

Based upon the foregoing observations we list the optional processor features that
can improve reconfiguration speed:

—The processor array puts the upper limit on the amount of configuration data
transferred from the compact flash per processor call. Moreover, when the pro-
cessor array is smaller than the ICAP cache, the former puts a limit on the
amount of configuration data sent to the ICAP cache per processor call.

—Enabling the I-Cache and D-Cache of the processor can improve significantly the
reconfiguration throughput. Although their deactivation accounts for resource
savings, it causes diminishing results in performance. A study for the Virtex-4
has proven that for a system the overall improvement ranges from 16.6 to 23.3
times [Liu et al. 2009].

—The Application Program Interface (API) provided by Xilinx allows for the soft-
ware control of the IP core (OPBHWICAP or XPSHWICAP) for accessing ICAP.
It requires the software controller on the processor to fetch 512-word blocks of the
configuration data and store them in a BRAM attached as cache to the ICAP.
Then the API instructs ICAP to program the configuration memory. This pro-
cess is slow and an improved API can increase the performance. [Möller et al.
2006].

—The stack of the processor should be set at least 4 KBytes. Otherwise the system

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Kyprianos Papadimitriou et al.

hangs while reading from the compact flash.

—Reading from the compact flash is a very slow process. Fetching the configuration
data to a volatile high speed memory after the system boots can improve the
performance.

—Setting the PPC memory on the shared PLB through the PLB BRAM controller
might not be effective. The dedicated On Chip Memory (OCM) interface provides
lower latency and faster access [Lund 2004].

The above conclusions, in combination with the Table II of Section 3, can support
the designer to make initial decisions on the system setup.

5. DEVELOPMENT OF A COST MODEL

Initially we formulated the cost model on the reference system and then we extended
it to suit more generic cases.

5.1 The Cost Model

The total reconfiguration time (RT) can be expressed by the sum of the times spent
in each phase of the reconfiguration process:

RT = RTSM−PPC +RTPPC−ICAP +RTICAP−CM (1)

The phases occur in a successive manner and are repeated until the entire bitstream
is loaded to the configuration memory. Thus we are interested in the aggregate time
spent in each phase. All phases are controlled with software instructions residing
in the processor’s program memory, and there is no overlap between the phases as
the instructions are executed in-order. The processor calls the routines to transfer
the configuration data from the storage means (compact flash in present case) to its
local memory, then to the ICAP configuration cache, and then to the configuration
memory. If for every phase, the number of executed processor calls, the amount
of configuration data per call, and the time per call are known, we will be able
to compute the aggregate reconfiguration time per phase, and finally the total
reconfiguration time. Thus the Equation (1) becomes

RT = SMcalls × SMtime + ICcalls × ICtime + CMcalls × CMtime (2)

To compute the number of processor calls to the compact flash, SMcalls, first
we need to know the amount of data (measured in bytes) to be transferred. If
fs the frame size (measured in bytes) of the corresponding FPGA (e.g. 824 bytes
for XC2VP30 and 164 bytes for all Virtex-4 and Virtex-5), then for n frames,
the amount of reconfiguration bytes including the pad frame is fs × (n + 1). At
this point we recall from Section 4 the way transactions from the compact flash
to the processor are performed. The amount of configuration data transferred
with one transaction depends on the size of the processor array, denoted as pa,
allocated in the processor memory. Its size is defined in multiples of one sector, and
thus transactions are conducted in multiples of one sector with the corresponding
processor call. The number of calls for a given number of reconfiguration frames is

SMcalls =
fs× (n+ 1)

pa
(3)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Performance of Partial Reconfiguration in FPGA Systems: A Survey and a Cost Model · 17

The time per processor call to the compact flash, SMtime, was measured with
software time-stamps. It depends directly on the pa size. From Table VI the time
per 512 bytes has an average value of 1.45 ms. Thus the time per call is

SMtime =
pa× 1.45ms

512
=

pa

353
ms (4)

From Equations (3) and (4) the aggregate time of the 1st phase of reconfiguration
process is

SMcalls × SMtime =
fs× (n+ 1)

353
ms (5)

To compute the time spent in the processor calls for transferring the bitstream
to the ICAP cache we follow the same concept. The amount of configuration data
transferred from the processor local memory to the ICAP cache with one transaction
depends on the pa size, unless the latter is larger than the ICAP cache. In this case
the size of the ICAP cache, denoted as icsize, puts the upper limit on the amount
of bytes transferred per transaction. The reason is that a new write transfer to
the ICAP cache is accepted only if the transfer of the previous configuration data
to the configuration memory has been completed. We introduce a quantity named
block which is

block = min(pa, icsize)

The number of the corresponding processor calls to transfer the bitstream is

ICcalls =
fs× (n+ 1)

block
(6)

The time per processor call to the ICAP cache, ICtime, was measured with software
time-stamps. It depends directly on the block size. As obtained from Table VI the
time spent per 512 bytes has an average value of 0.42 ms. Also, it stops increasing
after the amount of configuration data exceeds the size of ICAP cache as the latter
cannot accept more than 2 KBytes per transaction. Thus the time per call is

ICtime =
block × 0.42ms

512
=

block

1219
ms (7)

From Equations (6) and (7) the aggregate time of the 2nd phase of reconfiguration
process is

ICcalls × ICtime =
fs× (n+ 1)

1219
ms (8)

Similarly, we compute the time spent in the processor calls for loading the con-
tents of the ICAP cache to the configuration memory. The icsize puts the upper
limit on the amount of data written per transaction. The number of the corre-
sponding processor calls to transfer the bitstream is

CMcalls =
fs× (n+ 1)

icsize
(9)

The time per processor call to the configuration memory, CMtime, was measured
with software time-stamps. As shown in Table VI it is steady due to the fixed
volume transfers from the ICAP cache to the configuration memory, which directly

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Kyprianos Papadimitriou et al.

Table VII. Percentage of the time spent in each phase of reconfiguration and the corresponding
measured throughput and theoretical bandwidth. The values concern the reference system.

CF-PPC PPC-ICAP ICAP-CM

%RT 77.28% 22.38% 0.34 %

ARTP (calculated from Table V) 0.33 MB/s 1.17 MB/s 77.32 MB/s

Theoretical Bandwidth (provided in data-sheets) 64 MB/s 95.3 MB/s 95.3 MB/s

depends on the icsize. In Virtex-II Pro the ICAP cache size is limited to one BRAM,
thus icsize = 2048 Bytes. For a different icsize

CMtime =
icsize × 0.02526ms

2048
=

icsize
81077

ms (10)

From Equations (9) and (10) the aggregate time of the 3rd phase of reconfiguration
process is

CMcalls × CMtime =
fs× (n+ 1)

81077
ms (11)

Therefore from the Equations (5), (8), (11), the Equation (2) becomes

RT = fs× (n+ 1)× (
1

353
+

1

1219
+

1

81077
) ms

= fs× (n+ 1)× 3.66× 10−3 ms (12)

where fs is measured in bytes. Equation (12) holds for a PR system where the
bitstreams are loaded directly from a compact flash under the control of a processor.
It is observed that the variables pa and icsize do not affect the reconfiguration time.

5.2 Model Extension

Using the above Equations, we derive the percentage of the reconfiguration time
(RT) spent in each phase, shown in the first line of Table VII. Also, based upon
the values of the Table V and from the fraction of the amount of bytes transferred
over the transfer time we directly calculate the maximum achievable throughput
(ARTP) of each phase, shown in the second line of Table VII. The throughput refers
to the number of total bytes - including the overhead - successfully delivered per
second. The values in the Table illustrate the magnitude of the difference between
the throughput and the theoretical bandwidth, shown in the second and the third
line of the Table VII respectively. The theoretical bandwidth is determined by the
slowest physical component involved in the corresponding reconfiguration phase,
and it is obtained from the data-sheets; for the first phase this is the compact flash
system, for the second phase it is the access to the ICAP cache, and for the third
phase it is the access to the configuration memory through the ICAP.
Presently, the slowest phase of the reconfiguration process is the SM-PPC, which

consumes 77.28% (see Table VII) of the reconfiguration process. If instead of the
compact flash we use a faster type of external memory the system performance
would increase. To find this speedup we apply Amdahl’s law in a straightforward
manner. The law is concerned with the speedup achievable from an improvement
to a computation that affects a proportion P of that computation where the im-
provement has a speedup of S. The total speedup of applying the improvement

ACM Journal Name, Vol. V, No. N, Month 20YY.

Performance of Partial Reconfiguration in FPGA Systems: A Survey and a Cost Model · 19

is

Speeduptotal =
Timeold
Timenew

=
1

(1− P) + P
S

(13)

We adjust the problem to our case which is concerned with the reconfiguration
speedup achievable from an improvement to the reconfiguration time that affects a
proportion P (which corresponds to the SM-PPC phase) of that reconfiguration time
where the improvement has a speedup of SSM−PPC , which results in

RTCF

RTSM
=

1

(1− P) + P
SSM−PPC

⇔ RTSM = (1− P +
P

SSM−PPC
)×RTCF (14)

where RTCF and RTSM are the reconfiguration times for the reference system
with the compact flash and the optimized system with the faster external storage
respectively. For P = 77.28% and by using the Equation (12) to calculate the
RTCF , the Equation (14) becomes

RTSM = fs× (n+ 1)× (0.83 +
2.83

SSM−PPC
)× 10−3 ms (15)

Equation (15) determines the performance margins when the improvement is ap-
plied on the first phase of the reconfiguration process. It is more generic than
Equation (12) in that it calculates the reconfiguration time not only for compact
flash but for other storage means such as a DDR SDRAM or a ZBT SRAM. If an
identical compact flash to the one of our reference setup is used to load directly the
bitstream, the speedup factor would be SSM−PPC = 1. In case a different storage
is used, a proportional analysis regarding the performance gained over the compact
flash is needed, in order to quantify the SSM−PPC . This analysis along with the
usage and effectiveness of the formula is described in Section 6.
Equation (15) can be used to calculate the reconfiguration throughput of useful

frames, i.e. without the pad frame. The bitstream size that corresponds to the
useful configuration is BS = fs× n. Thus

useful ARTPSM =
BS

RTSM
=

n

n+ 1
× 106

0.83 + 2.83
SSM−PPC

Bytes/s (16)

For the compact flash where SSM−PPC = 1, Equation (16) becomes

useful ARTPCF =
n

n+ 1
× 0.26 MBytes/s (17)

Similarly, we can compute the reconfiguration throughput of each phase from the
corresponding aggregate reconfiguration time provided in Equations (5),(8) and
(11).

5.3 Discussion

Table VII shows clearly that for each phase the throughput vs. the theoretical
bandwidth is degraded considerably. This is due to the distinct components in-
volved in the reconfiguration process. For example, in the PPC-ICAP phase, the
way the PPC sends the configuration data to the ICAP cache has a negative impact
on the reconfiguration time. The processor transfers the data from the PPC local

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Kyprianos Papadimitriou et al.

memory to the ICAP cache in a word-by-word fashion, which is iterated until the
ICAP cache is filled up. We found that to transfer one word 633 PPC cycles are
required when the PPC runs at 300 MHz, which translates to 2.11 µs. We found
this time to be fairly constant. The reason this large amount of cycles is needed is
that the transfer from the PPC local memory to the ICAP is bus-based plus the
function calls residing in the processor local memory are dictated by an Application
Program Interface (API). Moreover the buses operate at 1/3 of the PPC frequency,
i.e. 100 MHz, which accounts for the large number of clock cycles in the processor.
Also, we measured the time spent for the processor call in the ICAP-CM phase. For
our case where the ICAP cache was 2048 Bytes, 7541 cycles of the PPC running at
300 MHz were needed, which translates to 25.26 µs (see Table VI). We repeated
this measurement and we found it to be constant as well. The above delays add
up to the total reconfiguration overhead every time a processor function is called,
as the reconfiguration process is not pipelined, but it is controlled with sequential
functions. Moreover, the throughput is bounded by the slowest CF-PPC phase,
during which several components shown in Figure 3 interact, such as the compact
flash, the external System ACE controller, the OPB sysace module, the PPC mem-
ory and its memory controller, the bus bridge, and the library maintained in the
PPC memory to supervise the transfers.
It is obtained from Equation (15) that the parameters pa and icsize are irrelevant.

In particular, the user needs to be aware only of the frame size, fs, and the number
of frames, n, to calculate the expected reconfiguration time. The former is available
in the data-sheets. The quantity fs× (n+ 1) can be replaced with the number of
reconfiguration bytes, rb, of the partial bitstream

rb = fs× (n+ 1) = (fs× n) + fs = partial bitstream size+ fs (18)

where the partial bitstream size is extracted after running the place & route tool,
or can be estimated from the synthesis results by using the percentage of occupied
area and the size of configuration memory of the corresponding FPGA. Finally, the
SSM−PPC factor is calculated with a proportional analysis described in the next
Section.

6. VERIFICATION AND USAGE

First we verify the cost model on the base compact flash system, and then we use
it to investigate the performance of systems where the bitstreams are loaded from
a DDR memory.

6.1 Verification

We used a platform for cryptography applications that we developed on a Virtex-II
Pro FPGA with the Xilinx PR design flow. Two cryptography modules, the Ad-
vanced Encryption Standard (AES) and the Device Encryption Standard (DES/3DES),
are switched on-the-fly without disturbing the remaining logic. The setup is the
same with the one presented in Figure 3 except that the PPC operates at 100 MHz
instead of 300 MHz. The PPC is the reconfiguration controller and the bitstreams
are loaded directly from the compact flash. Table VIII has the details for the two
designs as well as for the blanking bitstream which is used for power-saving when
none of the cryptography modules is needed. The first two columns show the type

ACM Journal Name, Vol. V, No. N, Month 20YY.

Performance of Partial Reconfiguration in FPGA Systems: A Survey and a Cost Model · 21

Table VIII. Comparison between the calculated and measured reconfiguration times for a partially
reconfigurable cryptography system.

Partial bitstream BS (Bytes) Calculated RT (ms) RT (ms) Diff (ms) %Error

AES 749,737 2,748.19 3,732.16 983.97 26.36%

DES/3DES 744,037 2,727.30 3,649.75 922.45 25.27%

Blanking 673,895 2,470.19 3,359.19 889.00 26.46%

of the partially reconfigurable modules and the measured bitstream size. The third
and the fourth columns have the reconfiguration time as calculated with Equation
(15) and as measured with the software time-stamps, respectively. The fifth column
shows the absolute difference between the calculated and the measured times. The
sixth column has the percentage error of the cost model. This is the metric we used
to express the magnitude of the deviation between the theoretical value (also called
approximate) and the measured value (also called actual). The following formula
was used

%error =
|approximate value− actual value|

actual value
(19)

It is observed that there is a discrepancy between the cost model results and the
measured times. However, the percentage error is fairly constant for all bitstreams.
A factor that contributes to this error is the lower frequency of the processor in
the cryptography system (100 MHz vs. 300 MHz in the reference system), which
accounts for the larger reconfiguration time. As an extension the cost model could
include the processor clock as a factor. Nevertheless, in its present form it estimates
the expected reconfiguration time with a good accuracy, far better than the one
and two orders of magnitude reported in other works [Griese et al. 2004; Galindo
et al. 2008].

6.2 Reaping the Benefits of the Cost Model

We employ the cost model to evaluate PR systems with different setups. In partic-
ular, we study systems in which after boot-up the partial bitstreams are placed in a
DDR; this allows for faster reconfiguration. A DDR controller, either as a discrete
component or implemented as an IP core within the FPGA, is required. In both
cases the DDR controller interfaces with the internal system through the on-chip
buses, i.e. OPB or PLB. The reconfiguration is controlled by the PPC running at
300 MHz. The OPB is 32-bit and the PLB is 64-bit, and with a typical clock of 100
MHz they sustain a maximum throughput of 400 MB/s and 800 MB/s respectively.
We calculate the reconfiguration time and throughput using the Equations (15) and
(16) for different setups. The speedup factor SSM−PPC affects the phase of recon-
figuration process during which the bitstream is loaded from the external storage
means. We calculate it as a fraction of the available bandwidth (BW) - which is
dictated by the slowest component amongst the on-chip bus and the selected DDR
- over the bandwidth of the compact flash; this is expressed with Equation (20). In
the reference system we used to develop the cost model, the theoretical bandwidth

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Kyprianos Papadimitriou et al.

Table IX. Reconfiguration time (RT) and throughput (ARTP) for setups with various DDR mem-
ories. The values are calculated with the cost model for a partial bitstream of 80 KBytes. They
concern a system, where the DDR controller is implemented as an IP core attached on the OPB
(400 MB/s) or the PLB (800 MB/s) bus.

Storage
Clock(MHz)/
Width(bits)

Bandwidth
(MB/s)

SSM−PPC RTSM (ms) ARTPSM (KB/s)

OPB PLB OPB PLB OPB PLB

CF 32/16 64 1.00 1.00 299.83 299.83 266.82 266.82

DDR

100/8 200 3.13 3.13 142.18 142.18 562.67 562.67

133/8 266 4.16 4.16 123.77 123.77 646.34 646.34

166/8 332 5.19 5.19 112.68 112.68 709.95 709.95

100/16 400 6.25 6.25 105.09 105.09 761.27 761.27

133/16 532 6.25 8.31 105.09 95.88 761.27 834.35

166/16 664 6.25 10.38 105.09 90.34 761.27 885.55

100/32 800 6.25 12.50 105.09 86.54 761.27 924.42

133/32 1064 6.25 12.50 105.09 86.54 761.27 924.42

166/32 1328 6.25 12.50 105.09 86.54 761.27 924.42

of the compact flash was 64 MB/s.

SSM−PPC =

DDR BW

CF BW
if DDR BW ≤ on− chip Bus BW

on− chip Bus BW

CF BW
if DDR BW > on− chip Bus BW

(20)

Table IX has the expected reconfiguration times for a partial bitstream of 80
KBytes (the size is indicative; a different size could be chosen) and the correspond-
ing throughput for various DDR memories when the DDR controller is attached on
the OPB or the PLB bus. These results are drawn in Figure 4. It is observed that
for the fastest DDR memories, the DDR controller on the PLB offers higher perfor-
mance as compared to the OPB. Also, in both cases there is a point beyond which
the transfer from the external storage is no longer the bottleneck of the system.
Therefore, even though the available bandwidth of the external storage increases
considerably, the benefit to the reconfiguration time is negligible.
To explore the effectiveness of our approach we use it to evaluate previously

published systems and we compare our results with the published measured times.
In particular, based on the information included in published works in which the
embedded processor acts as the reconfiguration controller, we calculate the expected
reconfiguration time with our cost model. Then, we compare the result with the
measured times of Table I. These data and their comparison are consolidated in
Table X. In [Liu et al. 2009] the PPC running at 300 MHz is the reconfiguration
controller. A DDR controller is implemented as an IP core attached on the PLB
bus, and has 32-bit interface and 100 MHz clock, which results in a theoretical
bandwidth of 800 MB/s. According to Equation (20) this offers a speedup of 12.5
over the reference system. Equation (15) produces a reconfiguration time of 82.3
ms, denoted in the first row of Table X, which deviates from the published measured
time [Liu et al. 2009] by 39.3%. In that work it was explicitly reported that the
ICache and DCache of the PPC were disabled, which holds for our reference system

ACM Journal Name, Vol. V, No. N, Month 20YY.

Performance of Partial Reconfiguration in FPGA Systems: A Survey and a Cost Model · 23

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

0 200 400 600 800 1000 1200 1400

External Storage Bandwidth (MB/s)

R
e

c
o

n
fi
g

u
ra

ti
o

n
 T

im
e

 (
m

s
)

OPB DDR Cntlr PLB DDR Cntlr

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000 1200 1400

External Storage Bandwidth (MB/s)

R
e

c
o

n
fi
g

u
ra

ti
o

n
 T

h
ro

u
g

h
p

u
t
(K

B
/s

)

OPB DDR Cntlr PLB DDR Cntlr

Fig. 4. Reconfiguration time for a partial bitstream of 80 KBytes and the corre-
sponding throughput for different DDR memory bandwidths. The data are taken
from Table IX.

too. In the second system of Table X, the ICache and DCache of the processor were
enabled. According to [Liu et al. 2009] the activation of the processor caches offers
an overall enhancement of 16.6 times in the reconfiguration time. Using the cost
model and by dividing the result with 16.6 we obtained the time reported in the
second row of the Table, equal to 5 ms, which deviates from the published measured
time by 35.9%. In the same way we extracted the values for all systems of Table X.

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Kyprianos Papadimitriou et al.

Table X. Comparison between the calculated and published reconfiguration times for different
setups of partially reconfigurable systems using the processor to control reconfiguration.

Reference Storage BS(KB)
Calculated
RT(ms)

Published
RT(ms)

%Error

[Liu et al. 2009] DDR2@800MB/s 79.9 82.3 135.6 39.3%

[Liu et al. 2009] DDR2@800MB/s 75.9 5.0 7.8 35.9%

[Claus et al. 2007] DDR@400MB/s 90.3 7.2 19.39 63.1%

[Claus et al. 2008] DDR@400MB/s 70.5 5.6 15.13 62.9%

[Papadimitriou et al. 2010] CF@64MB/s 14.6 57.8 101.1 42.8%

original system

CF@64 MB/s

faster system

DDR@800 MB/s

77.28%

-71.13%

22.38% 0.34%

SM-PPC PPC-ICAP ICAP-CM

Fig. 5. The reconfiguration operation has three independent phases. In the original
system, the SM-PPC phase (dark-gray part) takes 77.28% of the total reconfigu-
ration operation (see Table VII). Making this part 12.5 times faster and leaving
intact the rest of the operation (light-gray and black parts) in the faster system
reduces the total reconfiguration time by 71.13%.

Our analysis allows for the examination of the enhancement margins when using
the DDR memory, which is illustrated in Figure 5. The speedup of SSM−PPC =
12.5 concerns the SM-PPC phase only, which takes the 77.28% of the reconfiguration
time in the original system (see Table VII). This offers a total speedup of 3.46 times
(the speedup is calculated using Equation (13) for P = 77.28% and S = 12.5). It
is obvious that the total improvement from the increase of the external storage
bandwidth becomes saturated, and the transfer from the PPC to the ICAP bounds
now the reconfiguration performance.

6.3 Strengths, Weaknesses and Potential Extensions

Present work is novel in that except for the verification of the cost model, it ex-
amines its effectiveness on systems presented in previous works. The cost model
provides results with a percentage error ranging from 36% to 63% when evaluated
upon published measurements. This error is small considering that other works
relying on the throughput of the configuration port show a discrepancy of two or-
ders of magnitude between the theoretical and the measured values [Griese et al.
2004; Galindo et al. 2008]. Other theoretical models based on the characteristics of
the configuration port, e.g. the ICAP’s “BUSY” signal, cannot be applied to other
FPGA families except for the Virtex-II/Pro, and they focus on custom reconfigu-

ACM Journal Name, Vol. V, No. N, Month 20YY.

Performance of Partial Reconfiguration in FPGA Systems: A Survey and a Cost Model · 25

ration controllers targeting ICAP full utilization [Claus et al. 2008]. Our approach
does not rely on the throughput of the configuration port, nor on characteristics
that vary with the FPGA technology, e.g. behavior of “BUSY” signal differs in
Virtex-II, Virtex-4 and Virtex-5 FPGAs.
The proposed cost model can be augmented with more factors in the same way

the simple model for the compact flash on the reference system was extended to
support other types of external memories. Specifically, the second part of Section 5
was devoted to extend the model with the optimization factor SSM−PPC . Following
the same concept, Equation (15) can be enriched with optimization factors for
the PPC-ICAP and the ICAP-CM phases (namely SPPC−ICAP and SICAP−CM

respectively). To do this further experimentation with a different setup is needed.
In particular, Figure 4 shows that after a specific point the larger bandwidth of
the external memory does not necessarily result in a higher throughput. Instead,
the PPC-ICAP phase becomes the bottleneck as illustrated in Figure 5. Therefore,
other alternatives can be explored such as the usage of the On Chip Memory (OCM)
instead of the PLB memory, which is likely to provide lower latency communication.
Furthermore, the cost model can be extended with a factor that relates to the
impact of changing the processor clock. Experimentation will quantify this as well
to reduce even more the uncertainty for the expected reconfiguration time.
The presented approach considers systems in which the reconfiguration is con-

trolled by the processor. Therefore, it serves users who desire to pre-evaluate their
system without putting the effort to implement a custom reconfiguration controller.
The values we used to develop the cost model were obtained with real measurements
previous published in [Papadimitriou et al. 2007; 2010]. Even though they are of
small scale they were proven adequate to foresee well the reconfiguration perfor-
mance. After we gained insights from the reference system, we developed the model
without delving into details such as the latency of the distinct components involved
in the reconfiguration process. The only factors that someone should consider of is
whether the processor is the reconfiguration controller and its caches are enabled,
and the type of external storage the bitstreams are loaded from. In particular, for
a given system setup, simple characteristics gathered from data-sheets such as the
available bandwidth, the frame size, and the bitstream size are enough to predict
the reconfiguration time.

7. DISCUSSION SUMMARY

This paper delivers an up-to-date survey and an exploration of the parameters
affecting the reconfiguration performance. A real system is analyzed to identify
the features that increase reconfiguration speed. Using this system as reference
a simple cost model for the early prediction of reconfiguration time is developed.
The model is verified, then used to evaluate several “real-world” systems, and the
results are compared with published measurements. Also, the study quantifies the
improvement of reconfiguration performance given the speedup of data transfer
offered by the DDR memory over the compact flash. Finally, the strengths and
weaknesses of our approach are discussed.
We conclude that experimental evaluation is necessary for revealing the details of

system-level operation. With data gathered from experiments we devised a method

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Kyprianos Papadimitriou et al.

and a cost model currently applied in a category of real PR systems, which can be
enhanced with more parameters to broaden its range of applicability.
Nowadays FPGA platforms are delivered as end-products and the benefits of

partial reconfiguration technology are still being explored in numerous application
domains. With the proposed model an opportunity arises for people not involved
with partial reconfiguration yet but are interested to study whether their applica-
tions can benefit from this technology. We aim to assist researchers from different
domains such as telecommunications, cryptography and networking to estimate the
reconfiguration overhead without entering the complex and rigid PR design flow,
and also to make effective choices of the system setup. Hence, based on specific
constraints they can decide if it is worthwhile to proceed in designing an application
with PR technology by either assigning this task to experts having the know-how
of PR design flow, or putting this effort on their own.

ACKNOWLEDGMENT

The authors wish to thank Dr. Christoforos Kachris for his valuable feedback that
helped improving the initial manuscript. This work was partly funded by Secure,
Mobile visual sensor networks ArchiTecture research project (SMART, project num-
ber: 100032), funded within the ARTEMIS Joint Technology Initiative as a Joint
Undertaking project between the European Commission, the Member States and
the ARTEMIS Industrial Association (ARTEMISIA).

REFERENCES

Claus, C., Muller, F. H., Zeppenfeld, J., and Stechele, W. 2007. A New Framework to
Accelerate Virtex-II Pro Dynamic Partial Self-Reconfiguration. In Proceedings of the IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 1–7.

Claus, C., Zhang, B., Stechele, W., Braun, L., Hübner, M., and Becker, J. 2008. A Multi-
Platform Controller Allowing for Maximum Dynamic Partial Reconfiguration Throughput. In
Proceedings of the IEEE International Conference on Field Programmable Logic and Applica-
tions (FPL). 535–538.

Delahaye, J.-P., Palicot, J., Moy, C., and Leray, P. 2007. Partial Reconfiguration of FP-
GAs for Dynamical Reconfiguration of a Software Radio Platform. In Mobile and Wireless
Communications Summit, 2007. 16th IST. 1–5.

Fong, R. J., Harper, S. J., and Athanas, P. M. 2003. A Versatile Framework for FPGA
Field Updates: An Application of Partial Self-Reconfiguation. In Proceedings of the IEEE
International Workshop on Rapid System Prototyping (RSP). 117–123.

French, M., Anderson, E., and Kang, D.-I. 2008. Autonomous System on a Chip Adaptation
through Partial Runtime Reconfiguration. In Proceedings of the IEEE International Symposium
on Field-Programmable Custom Computing Machines (FCCM). 77–86.

Galindo, J., Peskin, E., Larson, B., and Roylance, G. 2008. Leveraging Firmware in Mul-
tichip Systems to Maximize FPGA Resources: An Application of Self-Partial Reconfiguration.
In Proceedings of the International Conference on Reconfigurable Computing and FPGAs (Re-
ConFig). 139–144.

Gelado, I., Morancho, E., and Navarro, N. 2006. Experimental Support for Reconfigurable
Application-Specific Accelerators. In Proceedings of the Workshop on the Interaction between
Operating Systems and Computer Architecture (WIOSCA), in conjuction with the Interna-
tional Symposium on Computer Architecture (ISCA). 50–57.

Gholamipour, A. H., Eslami, H., Eltawil, A., and Kurdahi, F. 2009. Size-Reconfiguration De-
lay Tradeoffs for a Class of DSP Block in Multi-mode Communication Systems. In Proceedings

ACM Journal Name, Vol. V, No. N, Month 20YY.

Performance of Partial Reconfiguration in FPGA Systems: A Survey and a Cost Model · 27

of the IEEE International Symposium on Field-Programmable Custom Computing Machines
(FCCM). 71–78.

Griese, B., Vonnahme, E., Porrmann, M., and Ruckert, U. 2004. Hardware Support for Dy-
namic Reconfiguration in Reconfigurable SoC Architectures. In Proceedings of the International
Workshop on Field Programmable Logic and Applications (FPL). 842–846.

Hauck, S. 1998. Configuration Prefetch for Single Context Reconfigurable Coprocessors. In Pro-
ceedings of the IEEE International Symposium on Field Programmable Gate Arrays (FPGA).
65–74.

Hsiung, P.-A., Lin, C.-S., and Liao, C.-F. 2008. Perfecto: A Systemc-based Design-space Ex-
ploration Framework for Dynamically Reconfigurable Architectures. ACM Transactions on
Reconfigurable Technology and Systems 1, 3, 1–30.

IBM Inc. 2000. 128-bit Processor Local Bus. Architecture Specifications Version 4.6.

IBM Inc. 2001. On-Chip Peripheral Bus. Architecture Specifications Version 2.1.

IBM Inc. 2006. Device Control Register Bus 3.5. Architecture Specifications.

Kachris, C. and Vassiliadis, S. 2006. Performance Evaluation of an Adaptive FPGA for Network
Applications. In Proceedings of the IEEE International Workshop on Rapid System Prototyping
(RSP). 54–62.

Liu, M., Kuehn, W., Lu, Z., and Jantsch, A. 2009. Run-Time Partial Reconfiguration Speed
Investigation and Architectural Design Space Exploration. In Proceedings of the IEEE Inter-
national Workshop on Field Programmable Logic and Applications (FPL). 498–502.

Lund, K. 2004. PLB vs. OCM Comparison Using the Packet Processor Software. Application
Note: Virtex-II Pro Family XAPP644 (v1.1), Xilinx.

Lysaght, P., Blodget, B., Mason, J., Young, J., and Bridgeford, B. 2006. Enhanced Archi-
tectures, Design Methodologies and CAD Tools for Dynamic Reconfiguration on Xilinx FPGAs.
In Proceedings of the IEEE International Conference on Field Programmable Logic and Appli-
cations (FPL). 1–6.

Manet, P., Maufroid, D., Tosi, L., Gailliard, G., Mulertt, O., Ciano, M. D., Legat, J.-
D., Aulagnier, D., Gamrat, C., Liberati, R., Barba, V. L., Cuvelier, P., Rousseau, B.,
and Gelineau, P. 2008. An Evaluation of Dynamic Partial Reconfiguration for Signal and
Image Processing in Professional Electronics Applications. EURASIP Journal on Embedded
Systems 2008, 11 pages.

McKay, N., Melham, T., and Susanto, K. 1998. Dynamic specialisation of XC6200 FP-
GAs by partial evaluation. In Proceedings of the IEEE International Symposium on Field-
Programmable Custom Computing Machines (FCCM). 308–309.

Möller, L., Soares, R., Carvalho, E., Grehs, I., Calazans, N., and Moraes, F. 2006. In-
frastructure for Dynamic Reconfigurable Systems: Choices and Trade-offs. In Proceedings of
the International Symposium on Integrated Circuits and Systems Design, SBCCI. 44–49.

Noguera, J. and Kennedy, I. O. 2007. Power Reduction in Network Equipment through Adap-
tive Partial Reconfiguration. In Proceedings of the IEEE International Workshop on Field
Programmable Logic and Applications (FPL). 240–245.

Papadimitriou, K., Anyfantis, A., and Dollas, A. 2007. Methodology and Experimental Setup
for the Determination of System-level Dynamic Reconfiguration Overhead. In Proceedings
of the IEEE International Symposium on Field-Programmable Custom Computing Machines
(FCCM). 335–336.

Papadimitriou, K., Anyfantis, A., and Dollas, A. 2010. An Effective Framework to Evaluate
Dynamic Partial Reconfiguration in FPGA Systems. IEEE Transactions on Instrumentation
and Measurement 59, 6, 1642–1651.

Papadimitriou, K. and Dollas, A. 2006. Performance Evaluation of a Preloading Model in
Dynamically Reconfigurable Processors. In Proceedings of the IEEE International Conference
on Field Programmable Logic and Applications (FPL). 901–904.

Paulsson, K., Hubner, M., and Becker, J. 2008. Cost-and Power Optimized FPGA based Sys-
tem Integration: Methodologies and Integration of a Low-Power Capacity-based Measurement
Application on Xilinx FPGAs. In Proceedings of the Design, Automation and Test in Europe
(DATE). 50–55.

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Kyprianos Papadimitriou et al.

PRCC. 2010. Partial Reconfiguration Cost Calculator. http://users.isc.tuc.gr/

~kpapadimitriou/prcc.html.

Santambrogio, M. D., Rana, V., and Sciuto, D. 2008. Operating System Support for On-
line Partial Dynamic Reconfiguration Management. In Proceedings of the IEEE International
Workshop on Field Programmable Logic and Applications (FPL). 455–458.

Xilinx Inc. 2006. OPB HWICAP (v1.00.b) Product Specification DS280 July 26, 2006.

Xilinx Inc. 2007a. Virtex-II Pro and Virtex-II Pro X FPGA User Guide. Datasheet. UG012
(v4.2) November 5, 2007.

Xilinx Inc. 2007b. XPS HWICAP (v1.00.a) Product Specification DS586 November 05, 2007.

ACM Journal Name, Vol. V, No. N, Month 20YY.

