

Multi-Kernel Macah Support and Applications

Adam Knight

A thesis
submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Electrical Engineering

University of Washington

2010

Program Authorized to Offer Degree:
Department of Electrical Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a master’s thesis by

Adam Knight

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Scott A. Hauck

Carl Ebeling

 Date:__________________________________

University of Washington

Abstract

Multi-Kernel Macah

Adam Knight

The Mosaic tool chain is a set of tools used to program applications onto coarse grained

reconfigurable architecture (CGRAs) based coprocessor accelerators. The front end of this is

a C-based language called Macah, which is used to program applications and benchmarks.

Prior to the work described here only single sequential kernels of computation could be

effectively programmed using this language. I have expanded on the libraries already present

in the language by adding an additional API to introduce multi-kernel support. The

improvements are shown to improve Macah by allowing multi-kernel development, as well

as support syntax changes that improve the ease of development for most applications. In

creation of this API I also implemented a version of a Positron Emission Tomography (PET)

event detection algorithm in both single and multi-kernel variants for testing and

benchmarking multi-kernel Macah.

Table of Contents
1 Introduction...1
2 Hybrid Micro-Parallel System Model...1
3 Mosaic...4
4 Macah..5

4.1 Streams..6
4.2 Kernel Blocks..7
4.3 FOR Loops.. 9
4.4 Shiftable Arrays...9
4.5 Architecture-Dependent Pseudoconstants...9
4.6 Using the Macah Compiler... 10

5 Multi-Kernel Macah..11
5.1 Multi-Kernel API.. 15

5.1.1 Configuration Block.. 16
5.1.2 Tasks.. 16
5.1.3 Pstreams...17
5.1.4 Data Structure Redundancy...18
5.1.5 API Functions.. 18
5.1.6 Multi-Kernel Syntax and Application... 21

6 Application Performance Metrics... 23
7 Positron Emission Tomography Event Detection Application...25

7.1 Background... 25
7.2 Event Detection...27
7.3 Implementations..30
7.4 Single Kernel Implementation.. 30
7.5 Multi-Kernel Implementation... 32
7.6 Optimizations.. 33
7.7 Performance Results..37

8 Conclusions...39
8.1 Future Work...41

9 References...41

List of Figures
Figure 1: Hybrid Micro-Parallel model. [1]...2
Figure 2: Mosaic Tool Chain. [3]...4
Figure 3: Multi-Kernel code in old style..13
Figure 4: Floor plan example data flow structure. First kernel in red and the second in blue.14
Figure 5: Possible resource allocation for a two kernel application. Kernel 1 is allocated to
the elements within the red box and kernel 2 within the blue box..15
Figure 6: Macah data structure hierarchy...16
Figure 7: Multi-Kernel code in new style. The same function as Fig. 3..................................23
Figure 8: Whole Body PET scan. [6]...25
Figure 9: Positron emission decay [6]... 26
Figure 10: PET Detector and ring configuration.[6]..27
Figure 11: Example of PET data pulses after filtering...28
Figure 12: Pulse normalization. Reference pulse in red and pulse under consideration in blue.
The black point is the first point of the pulse under consideration pulse................................29
Figure 13: Pseudo code for PET event detection algorithm.. 30
Figure 14: Single kernel PET data flow... 31
Figure 15: Abstract diagram of single kernel with multiple data streams...............................32
Figure 16: Multi-kernel structure...33
Figure 17: Critical section of code for reduction of II. Prior to optimization..........................35
Figure 18: Critical section of code for reduction of II. After optimization..............................36
Figure 19: Resources vs. II for Single-kernel version of PET Application.............................38
Figure 20: Resources vs. II for threshold kernel..39

Index of Tables
Table 1: Summary of important API functions.. 21
Table 2: II and number of iterations for various versions of PET application.........................37

1

1 Introduction
There has been a large push to develop alternate models of computing beyond the traditional

sequential processor. Coprocessor architectures with coarse grained reconfigurable arrays

(CGRA) and normal sequential processors working in parallel are one such type. However,

programing for these hybrid devices is a difficult problem because the CGRAs used vary

widely and most tools and languages are specific to a single type of coprocessor. The Macah

language, along with the Mosaic tool chain, attempts to create a system that will allow

programs written in a more generalized language to be mapped to a variety of CGRA

accelerator architectures.

My work has been in Macah application development and in support of the Macah portion of

the tool chain. In this capacity I have implemented a new API for Macah that allows

programs with multiple kernels, which are blocks of sequentially written code intended to be

accelerated on the CGRA. By allowing multiple kernels, developers have more tools at their

disposal for describing and coding complex streaming applications. This additional API also

supports a major change in Macah syntax intended to promote easier coding of all Macah

applications. In the development of the API I also implemented an initial test application

based on Positron Emission Tomography event detection.

2 Hybrid Micro-Parallel System Model
The Hybrid Micro-Parallel (HMP) architecture model proposed in [1] is composed of two

different processing components operating in parallel. It is an extension of the normal

2

sequential von Neumann machine and describes a variety of computers. This abstraction

from actual architectures to the model allows the programmer writing applications for these

systems to be presented with the essential features and constraints without being burdened

with specific details. It also allows for the development of programs that are capable of

running on multiple different implementations of the HMP type model architecture. The main

components of the HMP architecture are shown in Figure 1.

The micro-parallel engine (MPE) consists of a workspace memory, processing elements, and

control resources. The specific quantity and type of processing elements (PE) vary depending

on the specific MPE implemented. The workspace memory itself is an abstraction

representing the combined registers and memory structures distributed throughout the MPE,

Figure 1: Hybrid Micro-Parallel model. [1]

3

and as with the PE the specific distribution depends on the implementation. However, this

memory is always assumed to be smaller then the main memory. These two memories

communicate through a bidirectional channel, which acts as the primary method of

communication between the processor and MPE. Its bandwidth is constrained in the same

way that the main memory to sequential processor bandwidth is constrained, and is often

designed to support high bandwidth for specific memory access patterns.

The system has a single thread of control that alternates between the sequential processor and

the MPE. The parts of the program with low parallelism are executed on the sequential

processor, while computationally intensive parallelizable portions of the code are run on the

MPE. Due to the costs associated with switching between the two modes, including

initialization and configuration, only sections of code that require a significant amount of

computation run on the MPE.

An example of this type of architecture is an FPGA coprocessor system where the FPGA acts

as the MPE alongside a standard sequential processor. In this case the FPGA's LUTs,

registers, and block RAM act as the workspace memory. Commonly used Graphics

Processing Units (GPUs), seen in most consumer computers, are yet another example. The

GPU is specifically designed to perform graphics operations quickly and in parallel, relieving

the burden from the CPU and performing them much more quickly then the CPU would be

able to alone.

4

3 Mosaic
The purpose of Mosaic [3] is to take programs written for these HMP type architectures and

map them to specific architectures, which can then be simulated. This allows for the

exploration of several different areas of interest including application development, CAD

tools, and coarse grained architectures. The full tool chain is illustrated in Figure 2.

Programs are written in a C derived language called Macah and its complier transforms the

application code in to a control data flow graph (CDFG). The CDFG contains all of the

control and data dependencies needed to execute the accelerated code. This CDFG, along

Figure 2: Mosaic Tool Chain. [3]

5

with a data path graph (DPG) generated by an architecture generator tool, is fed into a unified

schedule, place, and route tool (SPR). The SPR tool generates a configuration of the DPG

and provides a measurement of the application's initiation interval (II), and the dependency

loop in the CDFG that is limiting the II. These two pieces of data are useful for application

optimizations, but are architecture-specific. To get around the architecture specific nature of

SPR's profiling results there is an additional mode useful for application programmers. SPR

Analyze performs similarly to normal SPR but works without an input DPG from the

architecture generator. The resulting II is a lower bound on the application's II based

primarily on the dependencies between instructions and not the resource limitations of a

particular architecture.

4 Macah
Macah [2] is a language based on C, but unlike that language it forces the programmer to

think about some of the abstract architectural features present in the HMP model. It provides

the functionality of C along with threads and extensions designed to help program HMP

coprocessor accelerators.

Programming for accelerators is generally difficult because they require the use of

unconventional languages or compilers which are often platform specific. They are especially

weak at handling more complex input-dependent control and data access patterns. Macah and

its complier make it easier to write complex platform-agnostic applications for accelerators

by balancing the strengths of the programmer and the compiler.

6

The accelerators that the language targets take advantage of a high degree of parallelism to

achieve substantial gains over traditional sequential processors. To do this the language must

be able to allocate local data structures to workspace memory, use the higher latency

bandwidth to main memory efficiently, and pipeline loops so that operations from different

loop iterations can execute concurrently. The main additional language features in Macah are

streams, kernel blocks, FOR loops, and shiftable arrays.

4.1 Streams

Streams are abstractly just first in first out (FIFO) unidirectional channels that provide

communication and synchronization between threads of an application. As a rule all

communication between processes within the accelerator is done through streams. There are

two uses for streams in Macah programs. Memory access streams provide access to main

memory for accelerated threads of an application. These streams are only attached to a single

kernel and either send data from main memory through the stream, or take data off a stream

and write it back to memory. The other type of stream is used within the MPE and connects

two asynchronous accelerated threads and is used both for communication and

synchronization between them. These threads are asynchronous in that they perform their

operations independently of each other and can only affect each other with either the

presence of or lack of data on a connecting stream. By definition a Macah stream must have

both a sender and receiver thread defined before it is called or the system will exit with an

error. This is to prevent streams not being properly formed prior to use.

The streams are created and manipulated with calls to functions in the PStreams library. To

7

create a stream a create function called pstream_create is used as shown below:

stream = pstream_create(sizeof(int));

The create function requires the size of the data type being sent over the stream. A single

stream can only support a single data type and if two different types are needed, doubles and

ints for example, then either two streams are needed or you convert the data types before and

after the streams.

Streams by default use blocking sends and receives, which are sufficient for most

applications, and which serve to synchronize the threads as well as provide communication.

The send and receive commands are shown below:

Send: stream <! data;

Receive: var <? stream;

There also are non-blocking send and receive functions available which require an additional

argument that stores the success or failure of the operation. These operations are used less

frequently since in many applications there is no useful work to be performed without data.

Also, the current assumption for streams in Macah is that they are large enough to

accommodate the application requirements, but currently no specific capacity is specified.

4.2 Kernel Blocks

Kernel blocks are denoted by the keyword “kernel” and designate what code should run on

the accelerator. Macah will attempt to generate an accelerated implementation of this code

for mapping to an accelerator. Code outside of these blocks will be translated to standard C to

8

be run on the accompanying sequential processor.

In order to efficiently use the PEs of the accelerator the kernel code must be pipelined. This

means that different parts of adjacent loop iterations need to be executing simultaneously. In

order to accommodate this, order of execution rules are relaxed and stream sends and

receives are allowed to execute in a different order than explicitly stated in the code. This can

cause deadlocks and requires that the programmer take proper precautions to ensure that data

sent out of a kernel does not require data to be received later in the same kernel. A simple

example of this would where a kernel is both writing and reading to memory. In this case a

deadlock would occur if the memory is expecting a number of sequential writes before a read

and the pipelined kernel performs an out of sequence read and write concurrently causing the

pipeline to stall. The onus is on the programmer to prevent these kinds of deadlocks.

There are some restrictions to the code used in a kernel block. First, all function calls inside a

kernel must be inlineable. Recursive functions, calls through function pointers, and special

system calls are not supported in kernel blocks. Second, accesses through pointers are

generally not allowed. There are exceptions for locally declared arrays which are different

from pointers, and for certain limited cases of pointer dereferencing where it can be inlined

and simplified to remove the pointer manipulation. Last, all data structures used in a kernel

must be statically allocated in the workspace memory. When a variable is accessed both

inside and outside the kernel, the system can copy it into workspace memory and then back

out after finishing.

9

4.3 FOR Loops

FOR loops are a Macah extension of traditional for loops. The purpose of these loops is to

allow a programer to specify a for loop that will be completely unrolled at compile time.

These unrolled loops can then be pipelined or parallelized to improve performance. Loop

optimizations have a big influence on performance of an application and can have a large

impact on memory and bandwidth requirements. Because of this, FOR loops were created in

order to provide a tool to the programer for determining how the application is parallelized.

4.4 Shiftable Arrays

Shiftable arrays are arrays that support an additional shift operation to the right or left. The

shift syntax is “array <<= N” for left shifts and “array >>= N” for right shifts. Execution of a

shift will “move” the contents of the array N units in the correct direction. It should be noted

that data shifted off the array is lost, and new data shifted on is considered garbage until

replaced by the user. These structures are useful in many applications such as FIR filters

where the algorithm contains a similar construct.

4.5 Architecture-Dependent Pseudoconstants

One of the goals of Macah is to be as platform agnostic as possible. Architecture-Dependent

Pseudoconstants (ADPC), also known as tuning knobs, help achieve this. ADPCs are

constants present in the code that can be modified by the compiler in order to adapt an

application to a particular architecture. They are most typically used to determine array sizes

or loop limits, and are usually chosen by the compiler from a range of values. One example

of this type of constant would be in an image processing application such as convolution

where a portion of the image must be stored on the workspace memory to process on while

10

the full image may be stored in main memory. In this case the ADPCs can be adjusted by the

compiler to best adapt the size of the workspace image buffer based on the target's resources.

4.6 Using the Macah Compiler

Macah has four modes of compilation, each of which is used for different purposes. The first

mode is sim which is used to compile the entire application to C code. Any non-kernel code

is always converted to C with calls to the special libraries as needed for Macah-specific

structures. This same technique can be used to compile the entire Macah program, including

the kernel portions. Under this mode the compiler produces an executable file that can be run

to simulate the application. This mode is the primary tool for application programming and

basic debugging, because it allows the programmer to check the basic functionality of their

design.

The next mode is fsim, which like sim converts the entire program into C code, but performs

additional optimizations. For the application developer this mode is important because it

generates additional profiling information about the application. After compiling and running

the resulting simulation, a file is produced that identifies the number of loop iterations the

kernel performed.

The last two are pre and post SPR. Pre-SPR mode produces a simulation where simplified

data flow versions of the kernels are generated in Verilog. This mode serves primarily to act

as a tool chain debugger, but can also be used for basic application testing. Post-SPR mode

produces the DFG and necessary files to continue to the SPR phase of the tool chain where

mapping and additional profiling take place.

11

5 Multi-Kernel Macah
The addition of multi-kernel is another step in the evolution of the Macah language that

brings two main benefits to the language: official support for multiple asynchronous kernel

blocks and increased ease of programing. There are a number of reasons why introducing

multi-kernel applications to both Macah and the Mosaic tool chain are beneficial. In many

signal processing and data streaming applications the algorithm will be composed into

distinct conceptual blocks such as filters or accumulators. Multi-kernel Macah gives the

programer the ability to construct these blocks as separate kernels. Maintaining the

conceptual separation in the actual code makes it potentially easier for the programmer to

program and relate back to the original algorithm. There are also potentially applications

where the data flow is complicated enough so that a performance gain can be obtained by

manually separating the code into distinct kernel blocks. Separating an algorithm into

different kernel blocks also allows the tool chain to distribute the accelerator's resources in

uneven ways to maximize performance. In general, addition of multi-kernel gives the

programer additional options specifying the structure of an application, and it gives the tools

additional information when mapping to a specific architecture.

Writing applications with multiple kernels was possible with the previous version of Macah,

but it was cumbersome and required the use of Macah library functions that were no longer

officially supported. All benchmarks and applications prior to the improvements discussed in

this section had been single kernel. The one exception is the Positron Emission Tomography

application discussed in section 7. I wrote this application originally in the old style as

12

preparation for designing the new API improvements that introduced official support for

these applications.

Ease of programming is important for Macah because it has a major impact on how long it

takes to get new programers into the system and generating useful code. The old version of

Macah required a fair amount of knowledge of the Macah-specific libraries and their

functions in order to effectively program an application. It also required knowledge of the

pthreads library in order to handle the different threads needed for a single application.

Handling threads and streams, in particular, is cumbersome and prone to causing both

compile and simulation errors that can be difficult to track down. Figure 3 shows a simple

example multi-kernel program written in the old style. The highlighted regions are lines of

code dedicated to stream and thread manipulation. This simple two kernel design requires a

large amount of code overhead just to manage the threads and streams in this simple

example. Changes to the language that accompanied the inclusion of multi-kernel support

help to alleviate the difficulties of writing both single kernel and multi-kernel applications.

These changes remove much of the highlighted code out of the sight of the programmer, and

this management is taken care of by the system. The new API also stores more information

about the design which can be used for a variety of purposes including profiling.

13

Another benefit of multi-kernel applications is the ability to allocate a different amount of

resources to each individual asynchronous kernel. Splitting up the program into kernels

void readFile (intstream strm, void *args) {

int i;

for(i=0;i<dataSize;i++){

strm <! data[i];

}

}

intstream dStrm = spawn_in_stream_clos (readFile, NULL, sizeof(unsigned int));

intstream * const pdStrm = &dStrm;

intstream kernelStrm = pstream_create(sizeof(unsigned int));

intstream * const pkernelStrm = &kernelStrm;

void Kernel1 (){

pstream_change_sender(*pkernelStrm, pthread_self());

 pstream_change_recver(*pdStrm, pthread_self());

kernel{

for(i=0;i<dataSize;i++){

int temp <? *pdStrm;

*pkernelStrm <! temp;

}

}

}

void Kernel2 (){

pstream_change_recver(*pkernelStrm, pthread_self());

kernel{

for(i=0;i<dataSize;i++){

int temp <? *pkernelStrm;

}

}

}

pthread_t thread1,thread2;

pthread_create_clos(&thread1, NULL, thesholdKernel, NULL);

pthread_create_clos(&thread2, NULL, normKernel, NULL);

pthread_join(thread1, NULL);

pthread_join(thread2, NULL);

Figure 3: Multi-Kernel code in old style.

14

provides additional information to the tools which can be used during floor planning to

determine the amount of resources to assign to each kernel. This affects performance since

the functional II of these kernels when mapped on an accelerator are based on resource

allocation. By also taking into consideration other performance metrics generated by the

tools such as number of iterations and approximate data production and consumption rates it

is possible to effectively floor plan the kernels for balanced performance. A simple example,

shown in Figure 4, is composed of two sequential kernels where the first kernel (red)

consumes data at four times the rate it produces data for the second kernel (blue). Figure 5

shows the resource allocation for this example were the first kernel is assigned 80% of the

available PEs and the second kernel is assigned only 20%. In this example since the first

kernel runs at a faster rate and if both kernels are assigned equal resources then the second is

often starved for data and idle. By assigning more PEs to the first then the second the

production and consumption rates of the two kernels can be balanced.

Figure 4: Floor plan example data flow structure. First kernel in red and the second in blue.

15

5.1 Multi-Kernel API

The multi-kernel API introduces a new hierarchy to Macah applications. The structure is

shown in Figure 6. The configuration stores lists of the tasks and streams associated with this

configuration. Tasks represent the blocks of code in the algorithm and pstreams are the

communication channels between tasks. I wrote the multi-kernel API and then Ben Ylvisaker

[1][2] implemented complier changes updating the Macah syntax, introducing syntax

changes and additional keywords to mask the API function calls.

Figure 5: Possible resource allocation for a two kernel application. Kernel 1 is allocated to the elements within
the red box and kernel 2 within the blue box.

16

5.1.1 Configuration Block

The configuration is the highest level of a Macah program. Its struct stores the complete

global lists containing pointers to all tasks and streams in play in the configuration. A pointer

to this configuration is global and therefore accessible by any function. By definition there

can be only one configuration per Macah program. This makes logical sense because the

configuration represents the complete structure of the program; everything about the

implementation is contained within.

5.1.2 Tasks

Tasks are everything in a Macah program; they contain all of the code executing on both the

Figure 6: Macah data structure hierarchy.

17

sequential processor and the accelerator. For this reason tasks may or may not have kernels

within them. Also, by definition a task can only have one kernel inside it because each task is

abstractly its own thread. This is exactly how Macah programs that are compiled to C and

simulated, each task is given its own thread and then run at once.

The task struct contains the parameters listed below:

• ID

• Name

• Pointer to function

• Task's thread

• List of pointers to input and output streams

• Number of input and output streams in list

The ID and name fields are used for visualizations of the configuration's structure and for the

Verilog module names used later in the Mosaic tool chain. The pointer to function is a pointer

to a data structure generated for the code inside the task by the compiler. There is also a

pointer to this task's assigned thread. Last there are lists of pointers to the input and output

streams associated with this task as the number of streams for each.

5.1.3 Pstreams

The pstreams data structure is part of the pstreams library that existed prior to my work on

the new API. In order to incorporate the new features of the API several new fields were

added to the Pstreams struct. Pointers to the sender and receiver tasks were added, as well as

a name field for the stream.

18

5.1.4 Data Structure Redundancy

From Figure 6 it is clear that there exists a fair amount of redundancy in the data structures

for the API. There are two reasons for this. The first reason for the redundancy is that some

of it is necessary for legacy reasons. Many library functions and benchmarks developed

throughout the life of Macah and Mosaic would fail without the redundancy. One major goal

was to avoid the disruption of other researchers using the Macah libraries and benchmarks,

and to avoid the need to test and correct older code. Also, until the programs written in the

new style can progress through the entire tool chain, the legacy code must be maintained to

ensure that tool chain development can continue with functional benchmarks. The second

reason is that it allows the functions in the API to quickly transverse the data structures

regardless of their starting position. For example if a piece of code possesses a handle on a

pstream and needs to get to the stream's task to check that the threads stored in the pstream

struct are correct. In this situation without a pointer to the task within the stream it would be

necessary to search all tasks' stream lists, starting from the configuration task list, in order to

match the stream to a task. This is extremely cumbersome and slow, and since the memory

cost of the pointers are insignificant there is no reason not to include the redundant

information.

5.1.5 API Functions

The main API functions are designed to generate the complete configuration, including the

data structures discussed in previous sections, and then run the configuration. Most of the

non-utility functions are not designed for direct use by programmers. The compiler

automatically calls the functions as necessary. Use of the functions directly without being

19

very careful would likely cause conflicts with the compiler. The basic steps are as follows:

1. Create and initialize the configuration

2. Create tasks

3. Add all tasks and streams to configuration

4. Connect tasks and streams correctly

5. Run configuration

The creation and initialization of the configuration simply creates a configuration struct with

default values and sets the global pointer to this struct so that all other functions can use it.

The presence of this pointer also determines if the system is in multi-kernel or regular mode.

“Regular” mode is the previous version of Macah. This pointer check allows the complier to

avoid using new functions when running legacy code.

The task creation function takes two arguments. The important one is a pointer to a data

structure present in the libraries called a closure that contains all of the information about the

function representing the code within a task. This closure is used by other Macah library

functions to run the code. The other parameter is a name field used for a variety of

bookkeeping purposes.

Both tasks and streams have their own functions for adding them to the global lists in the

configuration. The configuration's two main functions serve to connect streams to tasks, one

for in ports and one for out ports. These functions use the task ID and stream pointer to

properly add them to the correct task list and configure the other necessary parameters.

20

Running the configuration first requires iterating through all tasks and creating threads and

then calling the library function “pthread_create_clos” to start the task. This function is used

directly in the previous versions of Macah, but is now hidden within the new API. It takes

both a thread and the task's function pointer, which points to a closure, to start the task. After

all tasks have begun, the configuration stream list is processed in order to add the appropriate

threads to the pstreams struct's sender and receiver parameters. We needed to wait until the

thread had been created in the previous step before we could finish registering the streams.

Also by waiting, the streams can be registered together with a single function, without

relying on unsupported functions that use a discontinued set of mutex locks to register one

thread at a time. Last we wait for all the threads to complete before exiting.

A summary of the important functions for the multi-kernel API can be found in Table 1.

21

Function Purpose

init_configuration Initializes the configuration struct. Sets global pointer.

create_task2 Creates a task with default parameters with a pointer
to the function it executes.

add_task_to_config Adds a task to the configuration task list. Creates list
if empty, and expands if full.

add_stream_to_configuration Adds a stream to the configuration stream list.
Creates list if empty, and expands if full.

attach_stream_to_task_in_port Adds a stream to the task in port stream list. Creates
list if empty, and expands if full.

attach_stream_to_task_out_port Adds a stream to the task out port stream list. Creates
list if empty, and expands if full.

run_macah_configuration Runs a Macah configuration generated by the other
functions. Creates and starts threads and makes sure
that streams are properly registered to the correct
threads. Waits for thread completion before exiting.
Also performs any required post processing or data
gathering after completion.

print_macah_config_dot Utility: Produces a graph visualization (.dot format)
of the configuration with labels to show key
features(tasks, kernels, names, etc.).

Table 1: Summary of important API functions.

5.1.6 Multi-Kernel Syntax and Application

An example of the new syntax introduced to make use of the API is shown in Figure 7. The

“configure_tasks {” keyword denotes the beginning of the configuration block. Task

declaration begins with the “task” keyword followed by the task name, and a list of all input

and output streams. Streams are specified as inputs or outputs by the “in_port” and

“out_port” keywords.

22

In order to see the benefit of the new multi-kernel Macah on ease of programming compare

the code in Figure 7 with that in Figure 3. Both sets of code perform the same simple

function and both are highlighted to show code devoted to thread and stream manipulation.

The code in Figure 7 is significantly shorter, as well as being simpler and easier to

understand. The programmer also has to do far less pointer manipulation to achieve a basic

functional program. As an added benefit it is also easier to visualize the structure of the

application directly from the code than it was previously. These benefits should make the

time required to get a new user up to speed and producing functional code far shorter than the

previous version of the Macah language.

23

6 Application Performance Metrics
In order to judge whether or not a specific application is performing well or poorly a metric

is needed. Ideally we would like something that is platform neutral. To accomplish this we

have come up with a metric for Macah applications based on the II provided by SPR analyze

and the number of iterations provided by the compiler's fsim. The result of multiplying these

two parameters together is an approximation of the number of cycles it takes a program to

configure_tasks {

intstream dStrm = pstream_create2(sizeof(int));

intstream kernelStrm = pstream_create2(sizeof(int));

intstream outStrm = pstream_create2(sizeof(int));

task reader(out_port dstrm) {

int i;

for(i=0;i<dataSize;i++){

dstrm <! data[i];

}

}

task t1 (in_port dstrm, out_port kernelStrm){

kernel{

for(i=0;i<dataSize;i++){

int temp <? dStrm;

 kernelStrm <! temp;

}

}

}

task t2 (in_port kernelStrm, out_port outStream){

kernel{

for(i=0;i<dataSize;i++){

int temp <? kernelStrm;

outStream <! temp;

}

}

}

}

Figure 7: Multi-Kernel code in new style. The same function as Fig. 3.

24

complete. In a single kernel application it can then be divided by the number of data points

being processed to get a general sense of the amount of processing per data item. In multi-

kernel programs it is more difficult since the kernels have different II and number of

iterations. A rough approximation for the system performance can be found in some of these

cases by using the largest (II*iterations) value. Even here, if data starvation is causing stalls

in the system it may not accurately represent the performance. The metric does have its

problems but by comparing the number of data items into and out of a kernel to the product a

reasonable estimate of performance can be determined.

25

7 Positron Emission Tomography Event Detection Application

7.1 Background

Positron Emission Tomography (PET) [3][4][5] is a nuclear medical imaging technique that

produces a three dimensional image of a patient's biological processes. An example image is

shown in Figure 8. A short-lived radioactive tracer isotope attached to a biologically active

molecule is introduced into the body. This allows a radiologist to track molecules as they are

transported throughout the body and absorbed in various tissues. In this sense it is very

different from other medical imaging techniques like computed tomography (CT) or

magnetic resonance imaging (MRI) scans which focus on generating structural images of the

body rather than functional.

Figure 8: Whole Body PET scan. [6]

26

The isotope itself is not easily traceable, but as it undergoes positron emission decay it

releases a positron and a neutrino. After traveling a short distance the positron will collide

with an electron, annihilating both particles and producing a pair of high energy gamma

photons, Figure 9. The majority of the photons created during the annihilation event are

produced such that they move at almost 180 degrees from each other, traveling in roughly a

straight line. This phenomenon is what allows us to trace the pairs of photons back to their

source.

A circular array of sensors is used to detect the photons. Normal photodetectors are not able

to detect this frequency of light so these sensors contain scintillator crystals which absorb the

high energy photons and reemit a burst of light in the visible range. These bursts of light can

then be detected by either photomultiplier tubes or silicon photodiodes like those in Figure

10.

Figure 9: Positron emission decay [6]

27

7.2 Event Detection

Two pieces of information are needed from the sensors to approximate the location of the

annihilation event: the location a particular photon hit the sensor and the time it hit the

sensor. The algorithm presented here is to determine the time a particle hit the sensor. The

input data for the algorithm consists of a series of voltage pulses sampled at 125 MHz each,

with a pulse duration of 24 samples, and a max peak amplitude of 1.9 V. Prior to the event

detection the data has been run through a lowpass filter with a cutoff of 16.7 MHz. The

duration of the pulses is consistent between pulses, but the amplitude varies. Example pulse

data after filtering before input into application are shown in Figure 11.

Figure 10: PET Detector and ring configuration.[6]

28

Determining the coarse grain time for an event is simply a matter of determining the first data

point considered to be part of the pulse. However this level of resolution is insufficient for

this type of application, which requires fine grained timing resolution to properly match

photon pairs and reconstruct the image. In order to determine the fine grained start time the

pulse must be extrapolated beyond the set of sampled data. This can be achieved because of

the characterization of the pulses performed by Mike Haselman[5]. This characterization

showed that the pulses were found to have the same shape and duration but different

amplitudes. An ideal pulse was also generated based on the data to serve as a baseline which

can be used to normalize an individual pulse and extrapolate the start of that pulse. Figure 12

illustrates the normalization of an unknown pulse (blue) to a reference pulse (red). Since the

extrapolation is based on the first point it is only necessary to normalize that point shown as

the black point in the figure. The point must be multiplied by a normalization factor derived

by dividing the normalized pulse area by the area of the pulse under consideration. Once the

Figure 11: Example of PET data pulses after filtering.

29

corresponding point in the reference is determined the difference between it and the reference

pulse start can be used to find the fine grained start of the unknown pulse.

The existence of an event is determined using two thresholds. These thresholds can be varied

and have effects on accuracy and error rate. An event is considered to exist when a data point

surpasses the first threshold and its following point surpasses the second. Once an event is

detected a running sum of the 24 data points is computed to determine the area, and then the

pulse's normalization factor is calculated. The first point of the pulse is multiplied by the

factor, and using a lookup table derived from the reference pulse the time difference between

the first point and the true start is determined. The fine grain time is then determined from the

course grained time and this time difference. The pseudo code can be seen in Figure 13.

Figure 12: Pulse normalization. Reference pulse in red and pulse under consideration in blue. The black point is
the first point of the pulse under consideration pulse.

dt

30

7.3 Implementations

The PET event detection application has been implemented in both single kernel and multi-

kernel Macah. The basic algorithm remains the same for both versions, but it is split into two

asynchronous kernels in the multi-kernel version.

7.4 Single Kernel Implementation

The single kernel implementation of the application was created after the multi-kernel

version in order act as a method of comparison and to have another benchmark for the

original Mosaic tool chain. It was written in the original Macah style rather than using the

int n = 0;

int count = 0;

While(data remains){

if(!eventFound){

if(data[n-1] > Threshold_1 && data[n] > Threshold 2){

eventFound = True;

sum=data[n-1]+data[n];

count=2;

}

}else{

sum+=data[n];

count++;

if(count = pulse width){

ratio = ref_area/sum;

normalized_point=first_data_point*ratio;

}

}

n++;

}

Figure 13: Pseudo code for PET event detection algorithm.

31

new syntax and API features. The basic structure is shown in Figure 14.

In addition, this implementation has the additional ability, compared to the multi-kernel

version, to run independent data streams in parallel. This allows it to run data streams from

different sources, which is extremely useful in applications like PET where there are a large

number of data streams coming from independent sensors that need to be processed. This was

achieved by using a Macah FOR loop to add an extra dimension to the two for loops already

present in the algorithm. The abstract diagram of the system is shown in Figure 15. The

number of data streams is defined as an ADPC and can be used to scale it to different

architectures.

Figure 14: Single kernel PET data flow.

32

7.5 Multi-Kernel Implementation

The multi-kernel PET event detection application was originally written in the old Macah

style. The primary purpose was to help explore how the new style should be structured and

what functions the new API would perform. This version was made multi-kernel by using

different threads to represent the asynchronous kernels which were then connected using

streams. Through this the multi-kernel application could be simulated for functionality, but

could not move farther into the tool chain. Several functions used to set up the threads and

streams required use of unsupported functions leftover from an older version of the pstreams

library. The dependence on these functions was removed in the API improvements that made

multi-kernel officially supported. After the API was completed the application was converted

into the new style to test the functionality of the modifications and to provide an early

benchmark.

The multi-kernel implementation of this application is made up of two kernel tasks and two

data flow/memory access tasks. The idea behind splitting the algorithm was to have the first

Figure 15: Abstract diagram of single kernel with multiple data streams.

33

kernel perform the thresholding and pulse summation and the second perform the math

required to determine the fine grain start time of the pulse. The two memory access tasks act

as the data source and sink for the kernel tasks and deal with main memory access. The

thresholding task performs operations on every data point in the set, but the operations are

simple conditionals and additions so it was believed that it would be fast. The math-heavy

second kernel task would need to act irregularly as events were detected and it was believed

that it would be slower since it had to perform more complex operations such as multiplies

and divisions. By moving the math to a separate asynchronous task the thresholding task can

continue to stream the data in and look for events without stopping to perform the

calculations. The math task has more than enough time to perform the calculations before the

next event is ready to be processed. The structure is shown in Figure 16.

7.6 Optimizations

During the development of both versions the divisions were removed from the code and

Figure 16: Multi-kernel structure.

34

replaced with look up tables (LUTs). This was necessary since many accelerators do not

possess ALUs capable of division. In effect this removed many of the slow elements of the

calculation, improving the speed of the system at the cost of additional memory

requirements.

After the initial multi-kernel version of the application was finished, measurements of the

initiation interval (II) and number of iterations were made. The measured II of the application

was larger than expected. In order to reduce it, the algorithm was restructured, moving and

removing lines of code to reduce dependencies.

SPR identified the section with the largest II loop of the code to be in the thresholding

section. In order to reduce the II this loop was analyzed by first producing a DFG of the

critical section by hand. After analyzing the DFG and the code several modifications were

made to the algorithm. Figure 17 shows the code before optimization and Figure 18 shows it

afterward. The original had four independent conditional sections which were converted into

an if else set with nested if statements inside. This stops the system from having to check the

four conditionals each time. By storing the previous value of the data stream the thresholding

can be combined into one if statement. Also in the code in Figure 17 the variable count is

used often in both the conditionals and their bodies. This introduces a dependency chain for

this variable which makes it difficult for the compiler to parallelize the code.

35

while(data remains){

temp = next data from stream

if(temp <= THRESHOLD2 && count == HOLDTIME-1){

sum=0;

firstPoint=NULL;

eventTotal--;

count=0;

}

if(temp > THRESHOLD1 && count == 0){

count=HOLDTIME;

firstPoint=temp;

timestamp=i;

}

if(count > 0){

count--;

sum+=temp;

}

if(count==1){

Send results to next kernel

Reset variables

}

}

Figure 17: Critical section of code for reduction of II. Prior to optimization.

36

The single kernel version also required additional optimizations not strictly required by the

algorithm in order to be correctly mapped to the current Mosaic architectures. They were

introduced to overcome the size limits of the memories used in the generated architectures. In

the PET event detection application the LUT that replaced the area division was originally

16393 entries with each of them taking one word of space in memory. This means that this

one LUT requires more than 16k words of memory while the architecture memories were

1024 words per memory unit. In order to accommodate this several modifications were made

to the program. The first was to reduce the table size from 16k to 10k entries. This was done

by trimming entries below and above specified limits. The limits were determined by finding

the maximum and minimum area values in the data sets available. The next step was to

while(data remains){

temp = next data from stream

if(foundEvent){

if(preVal > THRESHOLD1 && temp > THRESHOLD2){

count=2;

sum=preVal+temp;

foundEvent=1;

firstPoint=preVal;

timestamp=i-1;

}

}else{

sum=sum+temp;

if(count==HOLDTIME-2){

Send results to next kernel

Reset variables

}else{

count++;

}

}

preVal=temp;

}

Figure 18: Critical section of code for reduction of II. After optimization.

37

implement half words: splitting the table in half and storing two 16 bit entries instead of one

32-bit, cutting the table down to 5k entries. Finally, those 5k entries were broken up into 5

distinct memory blocks, each of which could be mapped to a distinct memory in hardware.

7.7 Performance Results

The performance results for several variations of the PET application for an input data set of

20k data points with roughly 550 pulses is shown in Table 2. The II optimizations discussed

in section 7.7 reduce the II of the single kernel version and the multi-kernels thresholding

kernel from 11 to 4 with no change to the number of iterations. These optimizations have

reduced the II significantly without any drawbacks, which is a strong win for the application,

giving it a work per incoming data point of roughly four. Since resource II is not factored into

an architecture neutral approach such as this the II remains the same when the LUT memory

modifications are made to the single kernel. It should be noted the IIs presented here are

minimums and a particular architecture's constraints will determine actual II.

Version of Application
(MK = Multi-Kernel)

II
For multi-kernel:

Threshold kernel/Math kernel

Iterations

MK - ED2 (No optimizations) 11/3 cycles 20002/577

MK - ED3 (II optimized) 4/2 cycles 20002/577

SK - ED_Single2 (No optimizations) 11 20002

SK – ED_Single3 (II optimized) 4 20002

SK – ED_Single6
(II optimized + LUT Memory

Modifications)

4 20002

Table 2: II and number of iterations for various versions of PET application.

The single-kernel resource vs. II tradeoff can be seen in the graph in Figure 19. The resources

38

represented in the graph are clusters in a generated mosaic architecture where each cluster

contains an ALU and memory among other things. As one would expect when the resources

are constricted the II suffers, and, as resources are added, it improves with diminishing

returns. It reaches the minimum II listed in Table 2 after being assigned 6 clusters.

From the results in Table 2 the optimized multi-kernel version's threshold kernel runs on

average approximately 69 times slower then the math kernel at the minimum II. In order to

attempt to balance the loads the threshold kernel needs to receive considerably more

resources during floor planning. Figure 20 shows the II vs. resources for the threshold kernel

for four placements. Similarly to Figure 19 as resources are added the II improves up until it

reaches the minimum II of 4. The math kernel was held constant with only 1 resource and an

II of seven. The threshold kernel has hit its minimum II of four with five clusters and

additional resources would provide no II benefit making the total resource count six. When

Figure 19: Resources vs. II for Single-kernel version of PET Application.

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

0

2

4

6

8

10

12

Resources

II

39

taken into account the average number of iterations and consumption rates for the application

even at minimum II the threshold can't produce fast enough to keep the math kernel busy.

Comparing the single kernel and multi-kernel floor planes shows that the total number of

resources used for both is six and provide identical performance. For this application there

was no performance benefit to the multi-kernel approach.

8 Conclusions
In this work the benefits of the new features of the multi-kernel API were examined. Also a

sample application created in both the new and old versions of Macah, and in Single and

multi-kernel variations is discussed.

The PET application helps to demonstrate the benefits of coding in the new Macah style, as

well as the potential advantages of multi-kernel applications. The PET event detection

application is not however the quintessential multi-kernel Macah application that clearly

Figure 20: Resources vs. II for threshold kernel.

1.5 2 2.5 3 3.5 4 4.5 5 5.5

0

2

4

6

8

10

12

Resources

II

40

demonstrates the usefulness of this addition to the tool chain. The performance improvement

gained by moving the division in the PET application into LUTs removed much of the reason

for making this application multi-kernel in the first place, as it greatly increased the speed of

the kernel. Also the simple linear nature is not a complicated enough communication pattern

to make the manual separation of the algorithm strictly necessary. As was shown in section

7.7 the single and multi-kernel versions had the same performance and resource

consumption. The math kernel was simply too fast when compared to the thresholding kernel

even with the minimum resource usage. In a case where the application is running multiple

data sets in parallel there may be a gain if the multi-kernel version shares a single math

kernel between multiple thresholding kernels when compared to a parallel single-kernel

version.

The conversion of the LUTs also brought up an issue with memory on these types of co-

processor accelerators, namely the need for larger blocks of memory for storing precomputed

mathematical functions that are ether too slow or impossible to compute on the simple

accelerator processing elements. It is fairly common to use such LUTs to perform divisions

or trigonometric functions in many accelerated applications. If the largest memories on these

distributed systems are too small for the LUT then it is required to break it up either in the

tools or by hand. At the same time these larger LUTs blocks have a limited number of access

ports and communication channels to support access for multiple asynchronous data streams

which would make up for the size problems. Making effective use of small distributed

memories under such circumstances is a problem for these types of systems.

41

The metric used for performance analysis, while adequate for the PET application presented

here, does not translate well to more complex applications. We lack an effective architecture

neutral method for determining both the system level performance of the algorithm but also

the individual kernel performance.

8.1 Future Work

There are many places for improvement involving the multi-kernel Macah, including better

integration of the tools in order to provide a simpler interface and means of extracting

performance and profiling information for the application developer. There is still a great

deal of difficulty in extracting useful performance information about an application quickly

and easily. Improvement of the scripts controlling these actions would allow a faster iterative

process when developing and optimizing applications. We also need to develop a larger set

of multi-kernel applications and benchmarks that more clearly demonstrate the befits of the

system.

9 References
[1] B. Ylvisaker, B. Van Essen, and C. Ebeling, “A Type Architecture for Hybrid Micro-
Parallel Computers,” in IEEE Symposium on Field-Programmable Custom Computing
Machines. IEEE, April 2006.

[2] B. Ylvisaker, A. Carroll, S. Friedman, B. Van Essen, C. Ebeling, D.
Grossman, S. Hauck, "Macah: A "C-Level" Language for Programming Kernels on
Coprocessor Accelerators", Technical Report, 2008.

[3] Allan Carroll, Stephen Friedman, Brian Van Essen, Aaron Wood, Benjamin Ylvisaker,
Carl Ebeling,Scott Hauck, "Designing a Coarse-grained Reconfigurable Architecture for
Power Efficiency", Department of Energy NA-22 University Information Technical

42

Interchange Review Meeting, 2007.

[3] N. Johnson‐Williams, Design of a Real Time FPGAbased Three Dimensional
Positioning Alogorithm for Positron Emission Tomography, M.S. thesis, University of
Washington, Washington, USA, December 2009.

[4] D. Dewitt, An FPGA Implementation of Statistical Based Positioning for Positron
Emission Tomography, M. Eng. thesis, University of Washington, Washington, USA, Jan
2008.

[5] M. Haselman, R. Miyaoka, T. K. Lewellen, S. Hauck, "FPGA-Based Data Acquisition
System for a Positron Emission Tomography (PET) Scanner", ACM/SIGDA Symposium on
Field-Programmable Gate Arrays, 2008.

[6] http://en.wikipedia.org/wiki/File:PET-detectorsystem_2.png

	1 Introduction
	2 Hybrid Micro-Parallel System Model
	3 Mosaic
	4 Macah
	4.1 Streams
	4.2 Kernel Blocks
	4.3 FOR Loops
	4.4 Shiftable Arrays
	4.5 Architecture-Dependent Pseudoconstants
	4.6 Using the Macah Compiler

	5 Multi-Kernel Macah
	5.1 Multi-Kernel API
	5.1.1 Configuration Block
	5.1.2 Tasks
	5.1.3 Pstreams
	5.1.4 Data Structure Redundancy
	5.1.5 API Functions
	5.1.6 Multi-Kernel Syntax and Application

	6 Application Performance Metrics
	7 Positron Emission Tomography Event Detection Application
	7.1 Background
	7.2 Event Detection
	7.3 Implementations
	7.4 Single Kernel Implementation
	7.5 Multi-Kernel Implementation
	7.6 Optimizations
	7.7 Performance Results

	8 Conclusions
	8.1 Future Work

	9 References

