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Abstract

Multi-Kernel Macah

Adam Knight

The Mosaic tool chain is a set of tools used to program applications onto coarse grained 

reconfigurable architecture (CGRAs) based coprocessor accelerators. The front end of this is 

a C-based language called Macah, which is used to program applications and benchmarks. 

Prior  to  the work described here only single  sequential  kernels  of computation  could be 

effectively programmed using this language. I have expanded on the libraries already present 

in  the  language  by  adding  an  additional  API  to  introduce  multi-kernel  support.  The 

improvements are shown to improve Macah by allowing multi-kernel development, as well 

as support syntax changes that improve the ease of development for most applications. In 

creation of this API I also implemented a version of a Positron Emission Tomography (PET) 

event  detection  algorithm  in  both  single  and  multi-kernel  variants  for  testing  and 

benchmarking multi-kernel Macah.



Table of Contents
1 Introduction.............................................................................................................................1
2 Hybrid Micro-Parallel System Model.....................................................................................1
3 Mosaic.....................................................................................................................................4
4 Macah......................................................................................................................................5

4.1 Streams............................................................................................................................6
4.2 Kernel Blocks..................................................................................................................7
4.3 FOR Loops...................................................................................................................... 9
4.4 Shiftable Arrays...............................................................................................................9
4.5 Architecture-Dependent Pseudoconstants.......................................................................9
4.6 Using the Macah Compiler........................................................................................... 10

5 Multi-Kernel Macah..............................................................................................................11
5.1 Multi-Kernel API.......................................................................................................... 15

5.1.1 Configuration Block.............................................................................................. 16
5.1.2 Tasks...................................................................................................................... 16
5.1.3 Pstreams.................................................................................................................17
5.1.4 Data Structure Redundancy...................................................................................18
5.1.5 API Functions........................................................................................................ 18
5.1.6 Multi-Kernel Syntax and Application................................................................... 21

6 Application Performance Metrics......................................................................................... 23
7 Positron Emission Tomography Event Detection Application.............................................25

7.1 Background................................................................................................................... 25
7.2 Event Detection.............................................................................................................27
7.3 Implementations............................................................................................................30
7.4 Single Kernel Implementation...................................................................................... 30
7.5 Multi-Kernel Implementation....................................................................................... 32
7.6 Optimizations................................................................................................................ 33
7.7 Performance Results......................................................................................................37

8 Conclusions...........................................................................................................................39
8.1 Future Work...................................................................................................................41

9 References.............................................................................................................................41



List of Figures
Figure 1: Hybrid Micro-Parallel model. [1]...............................................................................2
Figure 2: Mosaic Tool Chain. [3]...............................................................................................4
Figure 3: Multi-Kernel code in old style..................................................................................13
Figure 4: Floor plan example data flow structure. First kernel in red and the second in blue.14
Figure 5: Possible resource allocation for a two kernel application. Kernel 1 is allocated to 
the elements within the red box and kernel 2 within the blue box..........................................15
Figure 6: Macah data structure hierarchy.................................................................................16
Figure 7: Multi-Kernel code in new style. The same function as Fig. 3..................................23
Figure 8: Whole Body PET scan. [6].......................................................................................25
Figure 9: Positron emission decay [6]..................................................................................... 26
Figure 10: PET Detector and ring configuration.[6]................................................................27
Figure 11: Example of PET data pulses after filtering.............................................................28
Figure 12: Pulse normalization. Reference pulse in red and pulse under consideration in blue. 
The black point is the first point of the pulse under consideration pulse................................29
Figure 13: Pseudo code for PET event detection algorithm.................................................... 30
Figure 14: Single kernel PET data flow................................................................................... 31
Figure 15: Abstract diagram of single kernel with multiple data streams...............................32
Figure 16: Multi-kernel structure.............................................................................................33
Figure 17: Critical section of code for reduction of II. Prior to optimization..........................35
Figure 18: Critical section of code for reduction of II. After optimization..............................36
Figure 19: Resources vs. II for Single-kernel version of PET Application.............................38
Figure 20: Resources vs. II for threshold kernel......................................................................39

Index of Tables
Table 1: Summary of important API functions........................................................................ 21
Table 2: II and number of iterations for various versions of PET application.........................37



1

1 Introduction
There has been a large push to develop alternate models of computing beyond the traditional 

sequential  processor.  Coprocessor architectures with coarse grained reconfigurable arrays  

(CGRA) and normal sequential processors working in parallel are one such type. However, 

programing for these hybrid devices is a difficult problem because the CGRAs used vary 

widely and most tools and languages are specific to a single type of coprocessor. The Macah 

language,  along with the  Mosaic  tool  chain,  attempts  to  create  a  system that  will  allow 

programs  written  in  a  more  generalized  language  to  be  mapped  to  a  variety  of  CGRA 

accelerator architectures.

My work has been in Macah application development and in support of the Macah portion of 

the  tool  chain.  In  this  capacity  I  have  implemented  a  new  API  for  Macah  that  allows 

programs with multiple kernels, which are blocks of sequentially written code intended to be 

accelerated on the CGRA. By allowing multiple kernels, developers have more tools at their 

disposal for describing and coding complex streaming applications. This additional API also 

supports a major change in Macah syntax intended to promote easier coding of all Macah 

applications. In the development of the API I also implemented an initial test application 

based on Positron Emission Tomography event detection.

2 Hybrid Micro-Parallel System Model
The Hybrid Micro-Parallel (HMP) architecture model proposed in [1] is composed of two 

different  processing  components  operating  in  parallel.  It  is  an  extension  of  the  normal 
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sequential  von Neumann machine and describes a  variety  of  computers.  This abstraction 

from actual architectures to the model allows the programmer writing applications for these 

systems to be presented with the essential features and constraints without being burdened 

with specific  details.  It  also allows for the development  of programs that are  capable of 

running on multiple different implementations of the HMP type model architecture. The main 

components of the HMP architecture are shown in Figure 1.

The micro-parallel engine (MPE) consists of a workspace memory, processing elements, and 

control resources. The specific quantity and type of processing elements (PE) vary depending 

on  the  specific  MPE  implemented.  The  workspace  memory  itself  is  an  abstraction 

representing the combined registers and memory structures distributed throughout the MPE, 

Figure 1: Hybrid Micro-Parallel model. [1]
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and as with the PE the specific distribution depends on the implementation. However, this 

memory  is  always  assumed  to  be  smaller  then  the  main  memory.  These  two  memories 

communicate  through  a  bidirectional  channel,  which  acts  as  the  primary  method  of 

communication between the processor and MPE. Its bandwidth is constrained in the same 

way that the main memory to sequential processor bandwidth is constrained, and is often 

designed to support high bandwidth for specific memory access patterns.

The system has a single thread of control that alternates between the sequential processor and 

the  MPE. The parts  of the program with low parallelism are executed on the sequential 

processor, while computationally intensive parallelizable portions of the code are run on the 

MPE.  Due  to  the  costs  associated  with  switching  between  the  two  modes,  including 

initialization and configuration, only sections of code that require a significant amount of 

computation run on the MPE.

An example of this type of architecture is an FPGA coprocessor system where the FPGA acts 

as  the  MPE  alongside  a  standard  sequential  processor.  In  this  case  the  FPGA's  LUTs, 

registers,  and  block  RAM  act  as  the  workspace  memory.  Commonly  used  Graphics 

Processing Units (GPUs), seen in most consumer computers, are yet another example. The 

GPU is specifically designed to perform graphics operations quickly and in parallel, relieving 

the burden from the CPU and performing them much more quickly then the CPU would be 

able to alone.
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3 Mosaic
The purpose of Mosaic [3] is to take programs written for these HMP type architectures and 

map  them  to  specific  architectures,  which  can  then  be  simulated.  This  allows  for  the 

exploration of several  different areas of interest  including application development,  CAD 

tools, and coarse grained architectures. The full tool chain is illustrated in Figure 2.

Programs are written in a C derived language called Macah and its complier transforms the 

application code in to a control data flow graph (CDFG). The CDFG contains all  of the 

control and data dependencies needed to execute the accelerated code. This CDFG, along 

Figure 2: Mosaic Tool Chain. [3]
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with a data path graph (DPG) generated by an architecture generator tool, is fed into a unified  

schedule, place, and route tool (SPR). The SPR tool generates a configuration of the DPG 

and provides a measurement of the application's initiation interval (II), and the dependency 

loop in the CDFG that is limiting the II. These two pieces of data are useful for application  

optimizations, but are architecture-specific. To get around the architecture specific nature of 

SPR's profiling results there is an additional mode useful for application programmers. SPR 

Analyze  performs  similarly  to  normal  SPR  but  works  without  an  input  DPG  from  the 

architecture  generator.  The  resulting  II  is  a  lower  bound  on  the  application's  II  based 

primarily on the dependencies between instructions and not the resource limitations  of a 

particular architecture.

4 Macah
Macah [2] is a language based on C, but unlike that language it forces the programmer to 

think about some of the abstract architectural features present in the HMP model. It provides 

the functionality of C along with threads and extensions designed to help program HMP 

coprocessor accelerators.

Programming  for  accelerators  is  generally  difficult  because  they  require  the  use  of 

unconventional languages or compilers which are often platform specific. They are especially  

weak at handling more complex input-dependent control and data access patterns. Macah and 

its complier make it easier to write complex platform-agnostic applications for accelerators 

by balancing the strengths of the programmer and the compiler.
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The accelerators that the language targets take advantage of a high degree of parallelism to 

achieve substantial gains over traditional sequential processors. To do this the language must 

be  able  to  allocate  local  data  structures  to  workspace  memory,  use  the  higher  latency 

bandwidth to main memory efficiently, and pipeline loops so that operations from different 

loop iterations can execute concurrently. The main additional language features in Macah are 

streams, kernel blocks, FOR loops, and shiftable arrays.

4.1 Streams

Streams  are  abstractly  just  first  in  first  out  (FIFO)  unidirectional  channels  that  provide 

communication  and  synchronization  between  threads  of  an  application.  As  a  rule  all 

communication between processes within the accelerator is done through streams. There are 

two uses for streams in Macah programs. Memory access streams provide access to main 

memory for accelerated threads of an application. These streams are only attached to a single 

kernel and either send data from main memory through the stream, or take data off a stream 

and write it back to memory. The other type of stream is used within the MPE and connects 

two  asynchronous  accelerated  threads  and  is  used  both  for  communication  and 

synchronization between them. These threads are asynchronous in that they perform their 

operations  independently  of  each  other  and  can  only  affect  each  other  with  either  the 

presence of or lack of data on a connecting stream. By definition a Macah stream must have 

both a sender and receiver thread defined before it is called or the system will exit with an 

error. This is to prevent streams not being properly formed prior to use.

The streams are created and manipulated with calls to functions in the PStreams library. To 
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create a stream a create function called pstream_create is used as shown below:

stream = pstream_create(sizeof(int));

The create function requires the size of the data type being sent over the stream. A single 

stream can only support a single data type and if two different types are needed, doubles and 

ints for example, then either two streams are needed or you convert the data types before and 

after the streams.

Streams  by  default  use  blocking  sends  and  receives,  which  are  sufficient  for  most 

applications, and which serve to synchronize the threads as well as provide communication. 

The send and receive commands are shown below:

Send: stream <! data;

Receive: var <? stream;

There also are non-blocking send and receive functions available which require an additional 

argument that stores the success or failure of the operation. These operations are used less 

frequently since in many applications there is no useful work to be performed without data.  

Also,  the  current  assumption  for  streams  in  Macah  is  that  they  are  large  enough  to 

accommodate the application requirements, but currently no specific capacity is specified.

4.2 Kernel Blocks

Kernel blocks are denoted by the keyword “kernel” and designate what code should run on 

the accelerator. Macah will attempt to generate an accelerated implementation of this code 

for mapping to an accelerator. Code outside of these blocks will be translated to standard C to  
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be run on the accompanying sequential processor.

In order to efficiently use the PEs of the accelerator the kernel code must be pipelined. This 

means that different parts of adjacent loop iterations need to be executing simultaneously. In 

order  to  accommodate  this,  order  of  execution  rules  are  relaxed  and  stream sends  and 

receives are allowed to execute in a different order than explicitly stated in the code. This can 

cause deadlocks and requires that the programmer take proper precautions to ensure that data 

sent out of a kernel does not require data to be received later in the same kernel. A simple 

example of this would where a kernel is both writing and reading to memory. In this case a  

deadlock would occur if the memory is expecting a number of sequential writes before a read 

and the pipelined kernel performs an out of sequence read and write concurrently causing the 

pipeline to stall. The onus is on the programmer to prevent these kinds of deadlocks.

There are some restrictions to the code used in a kernel block. First, all function calls inside a 

kernel must be inlineable. Recursive functions, calls through function pointers, and special 

system  calls  are  not  supported  in  kernel  blocks.  Second,  accesses  through  pointers  are 

generally not allowed. There are exceptions for locally declared arrays which are different 

from pointers, and for certain limited cases of pointer dereferencing where it can be inlined 

and simplified to remove the pointer manipulation. Last, all data structures used in a kernel 

must be statically allocated in the workspace memory. When a variable is  accessed both 

inside and outside the kernel, the system can copy it into workspace memory and then back 

out after finishing.
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4.3 FOR Loops

FOR loops are a Macah extension of traditional for loops. The purpose of these loops is to 

allow a programer to specify a  for loop that will be completely unrolled at compile time. 

These unrolled loops can then be pipelined or parallelized to improve performance. Loop 

optimizations have a big influence on performance of an application and can have a large 

impact on memory and bandwidth requirements. Because of this, FOR loops were created in 

order to provide a tool to the programer for determining how the application is parallelized.

4.4 Shiftable Arrays

Shiftable arrays are arrays that support an additional shift operation to the right or left. The 

shift syntax is “array <<= N” for left shifts and “array >>= N” for right shifts. Execution of a 

shift will “move” the contents of the array N units in the correct direction. It should be noted 

that data shifted off the array is lost, and new data shifted on is considered garbage until 

replaced by the user.  These structures are useful in many applications such as FIR filters 

where the algorithm contains a similar construct.

4.5 Architecture-Dependent Pseudoconstants

One of the goals of Macah is to be as platform agnostic as possible. Architecture-Dependent 

Pseudoconstants (ADPC), also known as tuning knobs, help achieve this. ADPCs are 

constants present in the code that can be modified by the compiler in order to adapt an 

application to a particular architecture. They are most typically used to determine array sizes  

or loop limits, and are usually chosen by the compiler from a range of values. One example 

of this type of constant would be in an image processing application such as convolution 

where a portion of the image must be stored on the workspace memory to process on while 
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the full image may be stored in main memory. In this case the ADPCs can be adjusted by the 

compiler to best adapt the size of the workspace image buffer based on the target's resources.

4.6 Using the Macah Compiler

Macah has four modes of compilation, each of which is used for different purposes. The first 

mode is sim which is used to compile the entire application to C code. Any non-kernel code 

is always converted to C with calls to the special libraries as needed for Macah-specific 

structures. This same technique can be used to compile the entire Macah program, including 

the kernel portions. Under this mode the compiler produces an executable file that can be run 

to simulate the application. This mode is the primary tool for application programming and 

basic debugging, because it allows the programmer to check the basic functionality of their 

design.

The next mode is fsim, which like sim converts the entire program into C code, but performs 

additional optimizations. For the application developer this mode is important because it  

generates additional profiling information about the application. After compiling and running 

the resulting simulation, a file is produced that identifies the number of loop iterations the 

kernel performed.

The last two are pre and post SPR. Pre-SPR mode produces a simulation where simplified 

data flow versions of the kernels are generated in Verilog. This mode serves primarily to act 

as a tool chain debugger, but can also be used for basic application testing. Post-SPR mode 

produces the DFG and necessary files to continue to the SPR phase of the tool chain where 

mapping and additional profiling take place.
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5 Multi-Kernel Macah
The addition of multi-kernel  is another step in the evolution of the Macah language that 

brings two main benefits to the language: official support for multiple asynchronous kernel 

blocks and increased ease of programing. There are a number of reasons why introducing 

multi-kernel applications to both Macah and the Mosaic tool chain are beneficial. In many 

signal  processing  and  data  streaming  applications  the  algorithm  will  be  composed  into 

distinct  conceptual  blocks  such as  filters  or  accumulators.  Multi-kernel  Macah gives the 

programer  the  ability  to  construct  these  blocks  as  separate  kernels.  Maintaining  the 

conceptual separation in the actual code makes it potentially easier for the programmer to 

program and relate back to the original algorithm. There are also potentially applications 

where the data flow is complicated enough so that a performance gain can be obtained by 

manually  separating  the  code  into  distinct  kernel  blocks.  Separating  an  algorithm  into 

different kernel blocks also allows the tool chain to distribute the accelerator's resources in 

uneven  ways  to  maximize  performance.  In  general,  addition  of  multi-kernel  gives  the 

programer additional options specifying the structure of an application, and it gives the tools 

additional information when mapping to a specific architecture.

Writing applications with multiple kernels was possible with the previous version of Macah, 

but it was cumbersome and required the use of Macah library functions that were no longer  

officially supported. All benchmarks and applications prior to the improvements discussed in 

this section had been single kernel. The one exception is the Positron Emission Tomography 

application discussed  in  section  7.  I  wrote  this  application originally  in  the  old  style  as 



12

preparation for designing the new API improvements that introduced official  support for 

these applications.

Ease of programming is important for Macah because it has a major impact on how long it 

takes to get new programers into the system and generating useful code. The old version of 

Macah  required  a  fair  amount  of  knowledge  of  the  Macah-specific  libraries  and  their 

functions in order to effectively program an application. It also required knowledge of the 

pthreads  library  in  order  to  handle  the  different  threads  needed for  a  single  application. 

Handling  threads  and  streams,  in  particular,  is  cumbersome  and  prone  to  causing  both 

compile and simulation errors that can be difficult to track down. Figure 3 shows a simple 

example multi-kernel program written in the old style. The highlighted regions are lines of 

code dedicated to stream and thread manipulation. This simple two kernel design requires a 

large  amount  of  code  overhead  just  to  manage  the  threads  and  streams  in  this  simple 

example. Changes to the language that accompanied the inclusion of multi-kernel support 

help to alleviate the difficulties of writing both single kernel and multi-kernel applications. 

These changes remove much of the highlighted code out of the sight of the programmer, and 

this management is taken care of by the system. The new API also stores more information 

about the design which can be used for a variety of purposes including profiling.
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Another benefit of multi-kernel applications is the ability to allocate a different amount of 

resources  to  each  individual  asynchronous  kernel.  Splitting  up  the  program into  kernels 

void readFile (intstream strm, void *args) {

int i;

for(i=0;i<dataSize;i++){

strm <! data[i];

}

}

intstream dStrm = spawn_in_stream_clos (readFile, NULL, sizeof(unsigned int));

intstream * const pdStrm = &dStrm;

intstream kernelStrm  = pstream_create(sizeof(unsigned int));

intstream * const pkernelStrm  = &kernelStrm;

void Kernel1 (){

pstream_change_sender(*pkernelStrm, pthread_self());

  pstream_change_recver(*pdStrm, pthread_self());

  

kernel{

for(i=0;i<dataSize;i++){

int temp <? *pdStrm;

*pkernelStrm <! temp;

}

}

}

void Kernel2 (){

pstream_change_recver(*pkernelStrm, pthread_self());

kernel{

for(i=0;i<dataSize;i++){

int temp <? *pkernelStrm;

}

}

}

pthread_t thread1,thread2;

pthread_create_clos( &thread1, NULL, thesholdKernel, NULL);

pthread_create_clos( &thread2, NULL, normKernel, NULL);

  

pthread_join( thread1, NULL);

pthread_join( thread2, NULL);

Figure 3: Multi-Kernel code in old style.
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provides additional  information  to  the  tools which can be used during floor  planning to 

determine the amount of resources to assign to each kernel. This affects performance since 

the  functional  II  of  these  kernels  when mapped on an accelerator  are  based on resource 

allocation.  By also taking into consideration other performance metrics  generated by the 

tools such as number of iterations and approximate data production and consumption rates it 

is possible to effectively floor plan the kernels for balanced performance. A simple example, 

shown  in  Figure  4,  is  composed  of  two  sequential  kernels  where  the  first  kernel  (red) 

consumes data at four times the rate it produces data for the second kernel (blue). Figure 5 

shows the resource allocation for this example were the first kernel is assigned 80% of the  

available PEs and the second kernel is assigned only 20%. In this example since the first 

kernel runs at a faster rate and if both kernels are assigned equal resources then the second is 

often  starved for  data  and idle.  By assigning more  PEs  to  the  first  then the  second the 

production and consumption rates of the two kernels can be balanced.

Figure 4: Floor plan example data flow structure. First kernel in red and the second in blue.
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5.1 Multi-Kernel API

The multi-kernel  API introduces a new hierarchy to Macah applications. The structure is 

shown in Figure 6. The configuration stores lists of the tasks and streams associated with this 

configuration.  Tasks  represent  the  blocks  of  code  in  the  algorithm and  pstreams are  the 

communication channels between tasks. I wrote the multi-kernel API and then Ben Ylvisaker 

[1][2]  implemented  complier  changes  updating  the  Macah  syntax,  introducing  syntax 

changes and additional keywords to mask the API function calls.

Figure 5: Possible resource allocation for a two kernel application. Kernel 1 is allocated to the elements within 
the red box and kernel 2 within the blue box.
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5.1.1 Configuration Block

The configuration is the highest level of a Macah program. Its struct stores the complete 

global lists containing pointers to all tasks and streams in play in the configuration. A pointer 

to this configuration is global and therefore accessible by any function.  By definition there 

can be only one configuration per Macah program. This makes logical sense because the 

configuration  represents  the  complete  structure  of  the  program;  everything  about  the 

implementation is contained within.

5.1.2 Tasks

Tasks are everything in a Macah program; they contain all of the code executing on both the 

Figure 6: Macah data structure hierarchy.
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sequential processor and the accelerator. For this reason tasks may or may not have kernels 

within them. Also, by definition a task can only have one kernel inside it because each task is  

abstractly its own thread. This is exactly how Macah programs that are compiled to C and 

simulated, each task is given its own thread and then run at once.

The task struct contains the parameters listed below:

• ID

• Name

• Pointer to function

• Task's thread

• List of pointers to input and output streams

• Number of input and output streams in list

The ID and name fields are used for visualizations of the configuration's structure and for the 

Verilog module names used later in the Mosaic tool chain. The pointer to function is a pointer  

to a data structure generated for the code inside the task by the compiler. There is also a 

pointer to this task's assigned thread. Last there are lists of pointers to the input and output 

streams associated with this task as the number of streams for each.

5.1.3 Pstreams

The pstreams data structure is part of the pstreams library that existed prior to my work on 

the new API. In order to incorporate the new features of the API several new fields were 

added to the Pstreams struct. Pointers to the sender and receiver tasks were added, as well as  

a name field for the stream.
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5.1.4 Data Structure Redundancy

From Figure 6 it is clear that there exists a fair amount of redundancy in the data structures 

for the API. There are two reasons for this. The first reason for the redundancy is that some 

of  it  is  necessary for  legacy reasons.  Many library  functions and benchmarks developed 

throughout the life of Macah and Mosaic would fail without the redundancy. One major goal 

was to avoid the disruption of other researchers using the Macah libraries and benchmarks, 

and to avoid the need to test and correct older code. Also, until the programs written in the 

new style can progress through the entire tool chain, the legacy code must be maintained to 

ensure that tool chain development can continue with functional benchmarks. The second 

reason is  that it  allows the functions in the API to quickly transverse the data structures 

regardless of their starting position. For example if a piece of code possesses a handle on a  

pstream and needs to get to the stream's task to check that the threads stored in the pstream 

struct are correct. In this situation without a pointer to the task within the stream it would be 

necessary to search all tasks' stream lists, starting from the configuration task list, in order to 

match the stream to a task. This is extremely cumbersome and slow, and since the memory 

cost  of  the  pointers  are  insignificant  there  is  no  reason  not  to  include  the  redundant 

information.

5.1.5 API Functions

The main API functions are designed to generate the complete configuration, including the 

data structures discussed in previous sections, and then run the configuration. Most of the 

non-utility  functions  are  not  designed  for  direct  use  by  programmers.  The  compiler 

automatically calls the functions as necessary. Use of the functions directly without being 
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very careful would likely cause conflicts with the compiler. The basic steps are as follows:

1. Create and initialize the configuration

2. Create tasks

3. Add all tasks and streams to configuration

4. Connect tasks and streams correctly

5. Run configuration

The creation and initialization of the configuration simply creates a configuration struct with 

default values and sets the global pointer to this struct so that all other functions can use it. 

The presence of this pointer also determines if the system is in multi-kernel or regular mode. 

“Regular” mode is the previous version of Macah. This pointer check allows the complier to 

avoid using new functions when running legacy code.

The task creation function takes two arguments. The important one is a pointer to a data 

structure present in the libraries called a closure that contains all of the information about the 

function representing the code within a task. This closure is used by other Macah library 

functions  to  run  the  code.  The  other  parameter  is  a  name  field  used  for  a  variety  of 

bookkeeping purposes.

Both tasks and streams have their own functions for adding them to the global lists in the  

configuration. The configuration's two main functions serve to connect streams to tasks, one 

for in ports and one for out ports. These functions use the task ID and stream pointer to 

properly add them to the correct task list and configure the other necessary parameters.
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Running the configuration first requires iterating through all tasks and creating threads and 

then calling the library function “pthread_create_clos” to start the task. This function is used 

directly in the previous versions of Macah, but is now hidden within the new API. It takes 

both a thread and the task's function pointer, which points to a closure, to start the task. After 

all tasks have begun, the configuration stream list is processed in order to add the appropriate  

threads to the pstreams struct's sender and receiver parameters. We needed to wait until the 

thread had been created in the previous step before we could finish registering the streams. 

Also  by  waiting,  the  streams  can  be  registered  together  with  a  single  function,  without 

relying on unsupported functions that use a discontinued set of mutex locks to register one 

thread at a time. Last we wait for all the threads to complete before exiting.

A summary of the important functions for the multi-kernel API can be found in Table 1.
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Function Purpose

init_configuration Initializes the configuration struct. Sets global pointer.

create_task2 Creates a task with default parameters with a pointer 
to the function it executes.

add_task_to_config Adds a task to the configuration task list. Creates list 
if empty, and expands if full.

add_stream_to_configuration Adds a stream to the configuration stream list. 
Creates list if empty, and expands if full.

attach_stream_to_task_in_port Adds a stream to the task in port stream list. Creates 
list if empty, and expands if full.

attach_stream_to_task_out_port Adds a stream to the task out port stream list. Creates 
list if empty, and expands if full.

run_macah_configuration Runs a Macah configuration generated by the other 
functions. Creates and starts threads and makes sure 
that streams are properly registered to the correct 
threads. Waits for thread completion before exiting. 
Also performs any required post processing or data 
gathering after completion.

print_macah_config_dot Utility: Produces a graph visualization (.dot format) 
of the configuration with labels to show key 
features(tasks, kernels, names, etc.).

Table 1: Summary of important API functions.

5.1.6 Multi-Kernel Syntax and Application

An example of the new syntax introduced to make use of the API is shown in Figure 7. The 

“configure_tasks  {”  keyword  denotes  the  beginning  of  the  configuration  block.  Task 

declaration begins with the “task” keyword followed by the task name, and a list of all input  

and  output  streams.  Streams  are  specified  as  inputs  or  outputs  by  the  “in_port”  and 

“out_port” keywords.
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In order to see the benefit of the new multi-kernel Macah on ease of programming compare 

the  code in  Figure 7 with that  in  Figure 3.  Both  sets  of  code  perform the  same simple 

function and both are highlighted to show code devoted to thread and stream manipulation. 

The  code  in  Figure  7  is  significantly  shorter,  as  well  as  being  simpler  and  easier  to 

understand. The programmer also has to do far less pointer manipulation to achieve a basic 

functional  program. As an added benefit  it  is  also easier  to visualize the structure of the 

application directly from the code than it was previously. These benefits should make the 

time required to get a new user up to speed and producing functional code far shorter than the  

previous version of the Macah language.
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6 Application Performance Metrics
In order to judge whether or not a specific application is performing well or poorly a metric 

is needed. Ideally we would like something that is platform neutral. To accomplish this we 

have come up with a metric for Macah applications based on the II provided by SPR analyze 

and the number of iterations provided by the compiler's fsim. The result of multiplying these 

two parameters together is an approximation of the number of cycles it takes a program to 

configure_tasks {

intstream dStrm = pstream_create2(sizeof(int));

intstream kernelStrm = pstream_create2(sizeof(int));

intstream outStrm = pstream_create2(sizeof(int));

task reader(out_port dstrm) {

int i;

for(i=0;i<dataSize;i++){

dstrm <! data[i];

}

}

task t1 (in_port dstrm, out_port kernelStrm){

kernel{

for(i=0;i<dataSize;i++){

int temp <? dStrm;

 kernelStrm <! temp;

}

}

}

task t2 (in_port kernelStrm, out_port outStream){

kernel{

for(i=0;i<dataSize;i++){

int temp <? kernelStrm;

outStream <! temp;

}

}

}

}

Figure 7: Multi-Kernel code in new style. The same function as Fig. 3.
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complete. In a single kernel application it can then be divided by the number of data points 

being processed to get a general sense of the amount of processing per data item. In multi-

kernel  programs  it  is  more  difficult  since  the  kernels  have  different  II  and  number  of 

iterations. A rough approximation for the system performance can be found in some of these 

cases by using the largest (II*iterations) value. Even here, if data starvation is causing stalls  

in the system it  may not  accurately represent  the performance.  The metric does have its 

problems but by comparing the number of data items into and out of a kernel to the product a 

reasonable estimate of performance can be determined.
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7 Positron Emission Tomography Event Detection Application

7.1 Background

Positron Emission Tomography (PET) [3][4][5] is a nuclear medical imaging technique that 

produces a three dimensional image of a patient's biological processes. An example image is 

shown in Figure 8. A short-lived radioactive tracer isotope attached to a biologically active 

molecule is introduced into the body. This allows a radiologist to track molecules as they are 

transported throughout  the body and absorbed in  various tissues.  In  this  sense it  is  very 

different  from  other  medical  imaging  techniques  like  computed  tomography  (CT)  or 

magnetic resonance imaging (MRI) scans which focus on generating structural images of the 

body rather than functional.

Figure 8: Whole Body PET scan. [6]
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The  isotope  itself  is  not  easily  traceable,  but  as  it  undergoes  positron  emission decay it  

releases a positron and a neutrino. After traveling a short distance the positron will collide 

with an electron, annihilating both particles and producing a pair of high energy gamma 

photons,  Figure 9.  The majority of the photons created during the annihilation event are 

produced such that they move at almost 180 degrees from each other, traveling in roughly a 

straight line. This phenomenon is what allows us to trace the pairs of photons back to their 

source.

A circular array of sensors is used to detect the photons. Normal photodetectors are not able 

to detect this frequency of light so these sensors contain scintillator crystals which absorb the 

high energy photons and reemit a burst of light in the visible range. These bursts of light can 

then be detected by either photomultiplier tubes or silicon photodiodes like those in Figure 

10.

Figure 9: Positron emission decay [6]
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7.2 Event Detection

Two pieces of information are needed from the sensors to approximate the location of the 

annihilation event:  the location  a  particular  photon hit  the sensor and the  time it  hit  the 

sensor. The algorithm presented here is to determine the time a particle hit the sensor. The 

input data for the algorithm consists of a series of voltage pulses sampled at 125 MHz each, 

with a pulse duration of 24 samples, and a max peak amplitude of 1.9 V. Prior to the event 

detection the data has been run through a lowpass filter with a cutoff of 16.7 MHz. The  

duration of the pulses is consistent between pulses, but the amplitude varies. Example pulse 

data after filtering before input into application are shown in Figure 11.

Figure 10: PET Detector and ring configuration.[6]
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Determining the coarse grain time for an event is simply a matter of determining the first data  

point considered to be part of the pulse. However this level of resolution is insufficient for 

this  type of application,  which requires  fine grained timing resolution to  properly match 

photon pairs and reconstruct the image. In order to determine the fine grained start time the 

pulse must be extrapolated beyond the set of sampled data. This can be achieved because of 

the  characterization  of  the pulses performed by Mike Haselman[5].  This characterization 

showed  that  the  pulses  were  found  to  have  the  same  shape  and  duration  but  different 

amplitudes. An ideal pulse was also generated based on the data to serve as a baseline which 

can be used to normalize an individual pulse and extrapolate the start of that pulse. Figure 12 

illustrates the normalization of an unknown pulse (blue) to a reference pulse (red). Since the 

extrapolation is based on the first point it is only necessary to normalize that point shown as 

the black point in the figure. The point must be multiplied by a normalization factor derived 

by dividing the normalized pulse area by the area of the pulse under consideration. Once the 

Figure 11: Example of PET data pulses after filtering.
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corresponding point in the reference is determined the difference between it and the reference 

pulse start can be used to find the fine grained start of the unknown pulse.

The existence of an event is determined using two thresholds. These thresholds can be varied 

and have effects on accuracy and error rate. An event is considered to exist when a data point 

surpasses the first threshold and its following point surpasses the second. Once an event is 

detected a running sum of the 24 data points is computed to determine the area, and then the 

pulse's normalization factor is calculated. The first point of the pulse is multiplied by the 

factor, and using a lookup table derived from the reference pulse the time difference between 

the first point and the true start is determined. The fine grain time is then determined from the  

course grained time and this time difference. The pseudo code can be seen in Figure 13.

Figure 12: Pulse normalization. Reference pulse in red and pulse under consideration in blue. The black point is 
the first point of the pulse under consideration pulse.

dt
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7.3 Implementations

The PET event detection application has been implemented in both single kernel and multi-

kernel Macah. The basic algorithm remains the same for both versions, but it is split into two 

asynchronous kernels in the multi-kernel version.

7.4 Single Kernel Implementation

The  single  kernel  implementation  of  the  application  was  created  after  the  multi-kernel 

version in  order  act  as  a  method of  comparison and to  have  another  benchmark for  the 

original Mosaic tool chain. It was written in the original Macah style rather than using the 

int n = 0;

int count = 0;

While(data remains){

if(!eventFound){

if(data[n-1] > Threshold_1 && data[n] > Threshold 2){

eventFound = True;

sum=data[n-1]+data[n];

count=2;

}

}else{

sum+=data[n];

count++;

if(count = pulse width){

ratio = ref_area/sum;

normalized_point=first_data_point*ratio;

}

}

n++;

}

Figure 13: Pseudo code for PET event detection algorithm.
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new syntax and API features. The basic structure is shown in Figure 14.

In  addition,  this  implementation  has  the  additional  ability,  compared  to  the  multi-kernel 

version, to run independent data streams in parallel. This allows it to run data streams from 

different sources, which is extremely useful in applications like PET where there are a large 

number of data streams coming from independent sensors that need to be processed. This was 

achieved by using a Macah FOR loop to add an extra dimension to the two for loops already 

present in the algorithm. The abstract diagram of the system is shown in Figure 15. The 

number  of  data  streams is  defined as  an ADPC and can be used  to  scale  it  to  different 

architectures.

Figure 14: Single kernel PET data flow.
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7.5 Multi-Kernel Implementation

The multi-kernel PET event detection application was originally written in the old Macah 

style. The primary purpose was to help explore how the new style should be structured and 

what functions the new API would perform. This version was made multi-kernel by using 

different  threads to  represent  the asynchronous kernels which were then connected using 

streams. Through this the multi-kernel application could be simulated for functionality, but 

could not move farther into the tool chain. Several functions used to set up the threads and 

streams required use of unsupported functions leftover from an older version of the pstreams 

library. The dependence on these functions was removed in the API improvements that made 

multi-kernel officially supported. After the API was completed the application was converted 

into  the  new style  to  test  the  functionality  of  the  modifications  and to  provide  an  early 

benchmark.

The multi-kernel implementation of this application is made up of two kernel tasks and two 

data flow/memory access tasks. The idea behind splitting the algorithm was to have the first 

Figure 15: Abstract diagram of single kernel with multiple data streams.
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kernel  perform the  thresholding and pulse  summation  and the  second perform the  math 

required to determine the fine grain start time of the pulse. The two memory access tasks act 

as the data source and sink for the kernel tasks and deal with main memory access. The 

thresholding task performs operations on every data point in the set, but the operations are 

simple conditionals and additions so it was believed that it would be fast. The math-heavy 

second kernel task would need to act irregularly as events were detected and it was believed 

that it would be slower since it had to perform more complex operations such as multiplies 

and divisions. By moving the math to a separate asynchronous task the thresholding task can 

continue  to  stream  the  data  in  and  look  for  events  without  stopping  to  perform  the 

calculations. The math task has more than enough time to perform the calculations before the 

next event is ready to be processed. The structure is shown in Figure 16.

7.6 Optimizations

During the development of both versions the divisions were removed from the code and 

Figure 16: Multi-kernel structure.
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replaced with look up tables (LUTs). This was necessary since many accelerators do not 

possess ALUs capable of division. In effect this removed many of the slow elements of the 

calculation,  improving  the  speed  of  the  system  at  the  cost  of  additional  memory 

requirements.

After the initial multi-kernel version of the application was finished, measurements of the 

initiation interval (II) and number of iterations were made. The measured II of the application 

was larger than expected. In order to reduce it, the algorithm was restructured, moving and 

removing lines of code to reduce dependencies. 

SPR identified the section with the largest  II  loop of the code to be in  the thresholding 

section. In order to reduce the II this loop was analyzed by first producing a DFG of the  

critical section by hand. After analyzing the DFG and the code several modifications were 

made to the algorithm. Figure 17 shows the code before optimization and Figure 18 shows it 

afterward. The original had four independent conditional sections which were converted into 

an if else set with nested if statements inside. This stops the system from having to check the 

four conditionals each time. By storing the previous value of the data stream the thresholding 

can be combined into one  if statement. Also in the code in Figure 17 the variable count is 

used often in both the conditionals and their bodies. This introduces a dependency chain for 

this variable which makes it difficult for the compiler to parallelize the code.



35

while(data remains){

temp = next data from stream

if(temp <= THRESHOLD2 &&  count == HOLDTIME-1){

sum=0;

firstPoint=NULL;

eventTotal--;

count=0;

}

if(temp > THRESHOLD1 && count == 0){

count=HOLDTIME;

firstPoint=temp;

timestamp=i;

}

if(count > 0){

count--;

sum+=temp;

}

if(count==1){

Send results to next kernel

Reset variables

}

}

Figure 17: Critical section of code for reduction of II. Prior to optimization.
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The single kernel version also required additional optimizations not strictly required by the 

algorithm in order to be correctly mapped to the current Mosaic architectures. They were 

introduced to overcome the size limits of the memories used in the generated architectures. In  

the PET event detection application the LUT that replaced the area division was originally 

16393 entries with each of them taking one word of space in memory. This means that this 

one LUT requires more than 16k words of memory while the architecture memories were 

1024 words per memory unit. In order to accommodate this several modifications were made 

to the program. The first was to reduce the table size from 16k to 10k entries. This was done 

by trimming entries below and above specified limits. The limits were determined by finding 

the maximum and minimum area values in the data sets  available.  The next step was to 

while(data remains){

temp = next data from stream

if(foundEvent){

if(preVal > THRESHOLD1 && temp > THRESHOLD2){

count=2;

sum=preVal+temp;

foundEvent=1;

firstPoint=preVal;

timestamp=i-1;

}

}else{

sum=sum+temp;

if(count==HOLDTIME-2){

Send results to next kernel

Reset variables

}else{

count++;

}

}

preVal=temp;

}

Figure 18: Critical section of code for reduction of II. After optimization.



37

implement half words: splitting the table in half and storing two 16 bit entries instead of one 

32-bit, cutting the table down to 5k entries. Finally, those 5k entries were broken up into 5 

distinct memory blocks, each of which could be mapped to a distinct memory in hardware.

7.7 Performance Results

The performance results for several variations of the PET application for an input data set of 

20k data points with roughly 550 pulses is shown in Table 2. The II optimizations discussed 

in section 7.7 reduce the II of the single kernel version and the multi-kernels thresholding 

kernel from 11 to 4 with no change to the number of iterations. These optimizations have 

reduced the II significantly without any drawbacks, which is a strong win for the application, 

giving it a work per incoming data point of roughly four. Since resource II is not factored into 

an architecture neutral approach such as this the II remains the same when the LUT memory 

modifications are made to the single kernel. It should be noted the IIs presented here are 

minimums and a particular architecture's constraints will determine actual II.

Version of Application
(MK = Multi-Kernel)

II
For multi-kernel:

Threshold kernel/Math kernel

Iterations

MK - ED2 (No optimizations) 11/3 cycles 20002/577

MK - ED3 (II optimized) 4/2 cycles 20002/577

SK - ED_Single2 (No optimizations) 11 20002

SK – ED_Single3 (II optimized) 4 20002

SK – ED_Single6
(II optimized + LUT Memory 

Modifications)

4 20002

Table 2: II and number of iterations for various versions of PET application.

The single-kernel resource vs. II tradeoff can be seen in the graph in Figure 19. The resources  
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represented in the graph are clusters in a generated mosaic architecture where each cluster 

contains an ALU and memory among other things. As one would expect when the resources 

are  constricted  the  II  suffers,  and,  as  resources  are  added,  it  improves  with  diminishing 

returns. It reaches the minimum II listed in Table 2 after being assigned 6 clusters.

From the results in Table 2 the optimized multi-kernel version's threshold kernel runs on 

average approximately 69 times slower then the math kernel at the minimum II. In order to 

attempt  to  balance  the  loads  the  threshold  kernel  needs  to  receive  considerably  more 

resources during floor planning. Figure 20 shows the II vs. resources for the threshold kernel  

for four placements. Similarly to Figure 19 as resources are added the II improves up until it  

reaches the minimum II of 4. The math kernel was held constant with only 1 resource and an 

II  of  seven.  The  threshold  kernel  has  hit  its  minimum II  of  four  with  five  clusters  and 

additional resources would provide no II benefit making the total resource count six. When 

Figure 19: Resources vs. II for Single-kernel version of PET Application.
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taken into account the average number of iterations and consumption rates for the application 

even at minimum II the threshold can't produce fast enough to keep the math kernel busy. 

Comparing the single kernel and multi-kernel floor planes shows that the total number of 

resources used for both is six and provide identical performance. For this application there 

was no performance benefit to the multi-kernel approach.

8 Conclusions
In this work the benefits of the new features of the multi-kernel API were examined. Also a 

sample application created in both the new and old versions of Macah, and in Single and 

multi-kernel variations is discussed.

The PET application helps to demonstrate the benefits of coding in the new Macah style, as 

well  as  the  potential  advantages  of  multi-kernel  applications.  The  PET event  detection 

application is  not  however  the  quintessential  multi-kernel  Macah application  that  clearly 

Figure 20: Resources vs. II for threshold kernel.
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demonstrates the usefulness of this addition to the tool chain. The performance improvement 

gained by moving the division in the PET application into LUTs removed much of the reason 

for making this application multi-kernel in the first place, as it greatly increased the speed of 

the kernel. Also the simple linear nature is not a complicated enough communication pattern 

to make the manual separation of the algorithm strictly necessary. As was shown in section 

7.7  the  single  and  multi-kernel  versions  had  the  same  performance  and  resource 

consumption. The math kernel was simply too fast when compared to the thresholding kernel 

even with the minimum resource usage. In a case where the application is running multiple 

data  sets in parallel  there may be a gain if  the multi-kernel version shares a single math 

kernel  between  multiple  thresholding  kernels  when  compared  to  a  parallel  single-kernel 

version.

The conversion of the LUTs also brought up an issue with memory on these types of co-

processor accelerators, namely the need for larger blocks of memory for storing precomputed 

mathematical  functions  that  are  ether  too  slow or  impossible  to  compute  on  the  simple 

accelerator processing elements. It is fairly common to use such LUTs to perform divisions 

or trigonometric functions in many accelerated applications. If the largest memories on these 

distributed systems are too small for the LUT then it is required to break it up either in the 

tools or by hand. At the same time these larger LUTs blocks have a limited number of access 

ports and communication channels to support access for multiple asynchronous data streams 

which  would  make up  for  the  size  problems.  Making effective  use  of  small  distributed 

memories under such circumstances is a problem for these types of systems.
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The metric used for performance analysis, while adequate for the PET application presented 

here, does not translate well to more complex applications. We lack an effective architecture 

neutral method for determining both the system level performance of the algorithm but also 

the individual kernel performance.

8.1 Future Work

There are many places for improvement involving the multi-kernel Macah, including better 

integration  of  the  tools  in  order  to  provide  a  simpler  interface  and  means  of  extracting 

performance and profiling information for the application developer. There is still  a great  

deal of difficulty in extracting useful performance information about an application quickly 

and easily. Improvement of the scripts controlling these actions would allow a faster iterative 

process when developing and optimizing applications.  We also need to develop a larger set 

of multi-kernel applications and benchmarks that more clearly demonstrate the befits of the 

system.
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