Programming Architectures
For
Run-Time Reconfigurable Systems

Master’'s Thesis

December 1999

Katherine Compton
Dept. of ECE
Northwestern University
Evanston, IL USA

Advisor:

Scott Hauck
University of Washington
Seattle, WA USA



Programming Architectures For
Run-Time Reconfigurable Systems

Katherine Compton
Department of ECE
Northwestern University
Evanston, IL USA
kati@ece.nwu.edu

Abstract

Dueto its potential to greatly accelerate a wide variety of applications, reconfigurable computing has
become a subject of agreat deal of research. By mapping the compute-intensive sectionsof an application
to reconfigurable hardware, custom computing systems exhibit significant speedups over traditional

microprocessors. However, the number and frequency of these har dware-mapped sections of code are
limited by the requirement that the speedups provided must outweigh the considerable time cost of
configuration. The ability to relocate and defragment configurations on an FPGA can dramatically
decrease the overall configuration overhead incurred by the use of the reconfigurable hardware. This
increasestheviability of mapping portionsof the programthat wer e previously considered to betoo costly.
We therefore explore the adaptation of a simplified Xilinx 6200 series FPGA for relocation and

defragmentation. Because of the complexities involved with this structure, we also present a novel

architecture designed from the ground up to provide relocation and defragmentation support with a
negligible areaincrease over a generic partially reconfigurable FPGA.

Introduction

There are two primary methods in traditional computing for the execution of algorithms. One method is to use an
Application Specific Integrated Circuit, or ASIC, to perform the operations in hardware. Because these ASICs are
designed specifically to perform a given computation, they are very fast and efficient when executing the exact
computation for which they were designed. However, after fabrication the circuit cannot be atered. Instead, are-
design and re-fabrication of the chipisnecessary if any part of itscircuit requires modification. Thisisan expensive
process, especialy when one considers the difficultiesin replacing ASICsin alarge number of deployed systems.

Microprocessorsareafar moreflexible solution. Processorsexecute aset of instructionsto perform acomputation.
By changing the software instructions, the functionality of the system is altered without changing the hardware.
However, the downside of this flexibility is that the performance suffers and is far below that of an ASIC. The
processor must read each instruction from memory, determine its meaning, and only then executeit. Additionaly,
the set of instructions that may be used by a program is determined at the fabrication time of the processor. Any
other operations that are to be implemented must be built out of existing instructions, resulting in a high execution
overhead for each operation.

Reconfigurable computing allows designers to harness the power of hardware while still providing the flexibility of
software. Reconfigurable computing systems use Field Programmable Gate Arrays (FPGASs) or FPGA-like
hardware to accelerate algorithm execution by mapping compute-intensive calculations to the reconfigurable
substrate. These hardware resources are frequently coupled with a general -purpose microprocessor that is
responsible for controlling the reconfigurable logic and executing program code that cannot be efficiently
accelerated. The programmable array itself can be comprised of one or more commercially available FPGAS, or can
be a custom device designed specifically for reconfigurable computing.



Run-time reconfiguration expands upon the idea of reconfigurability by providing the ability to change the
reconfigurable hardware not only between applications, but also within a single application. Over the course of
program execution different configurations can be loaded into the FPGA to perform different hardware-optimized
computations at different pointsintime. Thisallowsalarger percentage of a program to be accelerated in hardware.
However, the cost of reconfiguration is quite high. In some situations, configuration overhead can comprise over
98.5% of execution time [Smith99]. This amount of overhead has the potential to eclipse the benefits gained
through use of the reconfigurable hardware. Therefore, it isessential to the principle of run-time reconfiguration to
reduce the configuration overheads.

This thesis examines the effect of the programming architecture of an FPGA on the configuration overhead
encountered in RTR applications. Three primary FPGA types are first compared to determine the relative
configuration overhead cost. One of these models, the partially reconfigurable FPGA, is pogrammed in an
addressable fashion. A variation on this type of FPGA is also presented which further lowers reconfiguration
overheads. We add the ability to perform relocation of the configurations, which alows the final placement within
the FPGA to be determined at runtime, and discuss how this idea may be applied to the Xilinx 6200, a commercia
partialy reconfigurable FPGA [Xilinx96]. We then present a new FPGA programming architecture that includes
relocation as well as providing a mechanism for run-time defragmentation of the configurations within the array to
consolidate unused resources. Using relocation and defragmentation together, the configuration overheads
encountered when using a partially reconfigurable FPGA design can be further reduced, increasing the efficiency of
run-time reconfiguration.

First we provide a short background in reconfigurable computing. Next, we present our area models used in
comparison of the FPGA types, as well as the performance results of the comparison. In order to leverage the
advantages of relocation, we then examine the refitting of the Xilinx 6200 architecture into a rel ocation-enabled
FPGA. Next we discuss the difficulties involved in actually using the 6200 for relocation and defragmentation.
Finaly, we will propose a novel architecture designed specifically for partial reconfiguration, relocation and
defragmentation.

Background — Reconfigurable Computing

Reconfigurable computing is intended to fill the gap between hardware and software, achieving potentially much
higher performance than software, while maintaining a higher level of flexibility than hardware. This type of
computing is based upon Field Programmable Gate Arrays (FPGASs). These devices contain an array of
computational elements whose functionality is determined through multiple SRAM configuration bits. These
elements, also known aslogic blocks, are connected using a set of routing resourcesthat are al'so programmable. In
this way, custom circuits can be mapped to the FPGA by computing the logic functions of the circuit within the
logic blocks, and using the configurable routing to connect the blocks together to form the necessary circuit.

Field-Programmable Gate Arrays

Most current FPGAs are SRAM -programmable (Figure 1 left). SRAM bitsare connected to the configuration points
in the FPGA, and programming the SRAM bits configures the FPGA. Thus, these chips can be programmed and

reprogrammed as easily as a standard static RAM. To configure the routing on an FPGA, typically a passgate
structure is employed (Figure 1 middle). Here the programming bit will turn on a routing connection when it is
configured with atrue value, allowing asignal to flow from onewireto another, and will disconnect these resources
when the bit is set to false. With aproper interconnection of these elements, which may include millions of routing

choice points within asingle device, arich routing fabric can be created.
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Figur e 1: Programming bit for SRAM -based FPGAs[Xilinx94] (left), aprogrammabl e routing connection
(middle) and a 3-input LUT (right).

In order to implement logic functions there are typically multiplexers with programming bits connected to the
control and/or datainputs. These muxes choose between the output of different logic resources within the array.

For example, to provide optional stateholding elements a D flip-flop (DFF) may be included with a mux selecting
whether to forward the laiched or unlatched signal value. Thus, for systems that require stateholding the

programming bits controlling the mux would be configured to select the DFF output, while systems that do not need
this function would choose the bypass route that sends theinput directly to the output. Similar structures can choose
between other on-chip functionalities, such as fixed logic computation elements, memories, carry chains, or other
functions.

Lookup-tables (LUTS), which are essentially small memories provided for computing arbitrary logic functions, can
aso beincluded. These elements can cothute any function of N inputs (where N is the number of control signals
for the LUT’ s mux) by programming the 2™ programming bitswith thetruth table of the desired f unction (seeFigure
1right). Thus, if all programming bits except the one corresponding to the input pattern 111 were set to zero a 3-
input LUT would act as a 3-input AND gate, while programming it with al ones except in 000 would compute an
OR.

Routing structures for FPGASs have typicaly focused on island-style layouts. In this type of structure, the logic
blocks are surrounded by general routing channels, running both horizontally and vertically. The input and output
signals of the blocks are connected to the channel s through programmabl e connection blocks. Switchboxes are used
at the juncture of horizontal and vertical wiresto allow signals to change routing direction at those points. Figure2
illustrates the basics of thistype of routing design. Using these structures, relatively arbitrary interconnections can
be achieved.
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Figure 2: A genericidand-style FPGA routing architecture.



Reconfigurable Hardware

There are many different architectures designed for use in reconfigurable computing. One of the primary variations
between these architecturesisthe degree of coupling (if any) with ahost microprocessor. Programmablelogictends
to be inefficient at implementing certain types of operations, such as variable-length loop and branch control. In
order to most efficiently run an application in a reconfigurable computing system, the areas of the program that
cannot easily be mapped to the reconfigurable logic are executed on a host microprocessor. Meanwhile, the areas
that can benefit from implementation in hardware are mapped to the reconfigurablelogic. For the systemsthat usea
microprocessor in conjunction with reconfigurable logic, there are several ways in which these two computation
structures may be coupled (see Figure 3).
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Figure 3: Different levels of coupling in areconfigurable system. Reconfigurable logic i s shaded.

First, reconfigurable hardware can be used solely to provide reconfigurable functional units within ahost processor
[Razdan94, Hauck97]. This alows for a traditional programming environment with the addition of custom
instructions that may change over time. Here, the reconfigurable units execute as functional units on the main
microprocessor datapath, with registers used to hold the input and output operands.

Second, a reconfigurable unit may be used as a coprocessor [Wittig96, Hauser97, Miyamori98, Rupp98]. A

coprocessor is in genera larger than a functional unit, and is able to perform computations without the constant
supervision of the host processor. Instead, the processor initializes the reconfigurable hardware and either sendsthe
necessary datato thelogic, or provides information on where this data might be found in memory. The coprocessor
performs the actual computations independently of the main processor, and returns the results after completion.

Although there is more communication overhead for the computation data and result values than with the
reconfigurable functional unit, the coprocessor model can greatly reduce the frequency with which this overhead is
encountered for long or repeated computations. Coupling with this method can aso increase parallelism by

permitting the host processor and the reconfigurable logic to execute simultaneously.

Third, an attached reconfigurable processing unit [Annapolisd8, Laufer99] behaves asif it isan additional processor
in amulti-processor system. The host processor's data cacheisnot visibleto the attached reconfigurable processing
unit. There is, therefore, a higher delay in communication between the host processor and the reconfigurable
hardware, such as when communicating configuration information, input data, and results. However, this type of
reconfigurable hardware does alow for a great dea of computation independence, by shifting large chunks of a
computation over to the reconfigurable hardware.

Finaly, the most loosely coupled form of reconfigurable hardware is that of an external standal one processing unit
[Quickturn99a, Quickturn99b]. This type of reconfigurable hardware communicates infrequently with a host
processor (if present). The standalone processing unit issimilar to that of networked workstations, where processing
may occur for very long periods of time without a great deal of communication.

Each of these styles has distinct benefits and drawbacks. Thetighter the integration of the reconfigurable hardware,
the more frequently it can be used within an application or set of applications due to a lower communication



overhead. However, the hardware is unable to operate for significant portions of time without intervention from a
host processor, and the amount of reconfigurable logic available is often quite limited. The more loosely coupled
styles alow for greater paralelism in program execution, but suffer from higher communications overhead. In
applicationsthat require agreat deal of communication, this can reduce or remove any acceleration benefits gained
through this type of reconfigurable hardware.

In addition to the level of coupling, the design of the actual computation blocks within the reconfigurable hardware
varies from system to system. Each unit of computation, or logic block, can be as simple as a 3-input look up table
(LUT), or ascomplex asa4-bit ALU. Thisdifferencein block sizeiscommonly referred to asthe granularity of the
logic block, where a 3-bit LUT is an example of a very fine grained computationa element, and a4-bit ALU isan
example of a very coarse grained unit. The finer grained blocks are useful for bit-level manipulations, while the
coarse grained blocks are better optimized for standard datapath applications.

Very fine-grained logic blocks (such as those operating only on 2 or 3 one-bit values) [Xilinx96, Altera98] are
useful for bit-level manipulation of data, as can frequently be found in encryption and image processing
applications. Severa reconfigurable systems use a medium-sized granularity of logic block [Xilinx94, Hauser97,
Haynes98, Lucent98, Marshall99]. A number of these architectures operate on two or more 4-bit wide data words,
in particular. Thisincreasesthetotal number of input linesto the circuit, and provides more efficient computational
structures for more complex problems. Very coarse-grained architectures [Ebeling96, Miyamori98, Moritz98] are
primarily intended for the implementation of word-width datapath circuits. Because the logic blocks used are
optimized for large computations, they will perform these operations much more quickly (and consume less chip
areaq) than a set of smaller cells connected to form the same type of structure.

The routing between the logic blocks within the reconfigurable hardware is also of great importance. Routing
contributes significantly to the overall area of the reconfigurable hardware. Y et, when the percentage of logic
blocks used in an FPGA becomes very high, automatic routing tools frequently have difficulty achieving the
necessary connections between the blocks. Good routing structures are therefore essential to ensure that a design
can be successfully placed and routed onto the reconfigurable hardware. There are two primary methods to provide
both local and global routing resource. Thefirst isthe use of segmented routing [Xilinx94]. In segmented routing,
short wires accommodate local communications traffic. These short wires can be connected together using
switchboxes to emulate longer wires. Optionally, longer wires may aso be included, and signals may transfer
between local and longer-distance routing at connection blocks. Hierarchical routing [Aggarwal 94, Lai97] provides
local routing withinacluster, and longer wires at the boundaries connect the different clusterstogether. Hierarchical
structures are optimized for situations where the most communication should be local and only alimited amount of
communication will traverse long distances.

For any FPGA-based reconfigurable hardware that is coupled with ahost processor, there are three distinct phases of
operation: compilation, configuration and execution. The compilation step translates hardware circuit descriptions,
(in the form of high level language programs, gate level diagrams, or somewhere in between) into actual

configuration information to be written to the programming bits of the FPGA for execution. Thefirst major phase
of compilation requires technology mapping to trandate the description into computation blocks that can be
executed by the FPGA’s logic elements. Next, the location of these blocks in the actual FPGA structure is
determined in the placement stage. Finally, therouting phase determines how to connect these blockstogether to re-
form the original computation. The resulting configuration information contains all the logic and routing
programming information to place the configuration at the proper location within the FPGA.

The configuration of the reconfigurable hardware is under the control of the host processor. This host processor
directs a stream of configuration data to the reconfigurable hardware, and this configuration data is used to define
the actual operation of the hardware. Configurations can be loaded solely at startup of a program, or periodically
during runtime, depending on the design of the system. More concepts involved in run-time reconfiguration (the
dynamic reconfiguration of devices during computation execution) are discussed in the next section. Finadly, the
execution model of the reconfigurable hardware variesfrom system to system. Some systems suspend the execution
of the host processor during execution on the reconfigurable hardware. Others allow for simultaneous execution
with techniques similar to the use of fork/join primitivesin multiprocessor programming.



Run-Time Reconfiguration

Frequently, the areas of a program that can be accelerated through the use of reconfigurable hardware are too
numerous or complex to be loaded simultaneously onto the available hardware. For these cases, it isbeneficial to be
able to swap different configurations in and out of the reconfigurable hardware as they are needed during program
execution, as shown in Figure 4. This concept is known as run-time reconfiguration.
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Figure 4: Some applications have more configurations than can fit in the available hardware. In this case,
we would like to re-program the reconfigurable logic during run-time to alow all configurations to be
executed in hardware in atime-multiplexed fashion.
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Run-time reconfiguration is similar to the concept of virtual memory, and therefore the term “virtual hardware” is
sometimes applied to this concept. Here, the physical hardware is much smaller than the sum of the resources
required by each of the configurations. Therefore, instead of reducing the number of configurations that are
mapped, we instead swap them in and out of the actual hardware as they are needed. Because the contents of the
reconfigurable hardware can be changed during runtime, more areas of an application can be mapped to the
hardware. This increased usage of the reconfigurable hardware as a hardware accelerator leads to an overall
improvement in performance.

There are a few different configuration memory styles that can be used with reconfigurable systems. A single
context device is programmed using a serial stream of configuration information, and requires a complete
reconfiguration in order to change any of the programming bits. A multi-context device has multiple layers of
programming bits, each of which can be active at adifferent point intime. An advantage of the multi-context FPGA
over asingle-context architectureisthat it allowsfor an extremely fast context switch (on the order of nanoseconds),
whereas the single-context may take milliseconds or more to reprogram. Devices that can be selectively
programmed without a complete reconfiguration are called partially reconfigurable. The partially reconfigurable
FPGA is aso more suited to run-time reconfiguration than the single-context, because small areas of the array can
be modified without requiring that the entire logic array be reprogrammed. These programming architectures are
described in more depth in alater section.

Fast Configuration

Because run-time reconfigurable systems involve reconfiguration during program execution, the reconfiguration

must be done as efficiently and as quickly as possible in order to ensure that the overhead of the reconfiguration
does not outweigh the benefit gained by hardware acceleration. Stalling execution of either the host processor or the
reconfigurable hardware because of configuration is clearly undesirable. In the DISC Il system, from 25%

[Wirthlin96] to 71% [Wirthlin95] of execution timeis spent in reconfiguration, whileinthe UCLA ATR work this
figure can rise to over 98.5% [Smith99]. If the delays caused by reconfiguration are reduced, performance can be
greatly increased. Therefore, fast configuration isanimportant areaof research for run-time reconfigurable systems.

Some of the previous work in fast reconfiguration is presented in the following section. Our work is also aimed at
the reduction of configuration overheads, but instead through the examination of optimized programming
architectures. These programming architectures can reduce not only the number of times a reconfiguration is
necessary, but also potentially the amount of data sent in each communication.



Previous Methods

A number of different tactics for reducing configuration overhead have been explored. First, loading of the
configurations can be timed such that the configuration overlaps as much as possible with the execution of
instructions by the host processor. Second, compression techniques can be introduced to decrease the amount of
configuration data that must be transferred to the reconfigurable hardware. Third, the actual process of transferring
the data from the host processor to the reconfigurable hardware can be modified to include a configuration cache,
which would provide faster reconfiguration for commonly used configurations.

Configuration Prefetching

Overlapping the actual configuration of the hardware with computations performed by the host processor can help to
mask the requires milliseconds to seconds required for the reconfiguration. This overlapping prevents the host
processor from stalling whileit is waiting for the configuration to finish and hides the configuration time from the
program execution. Configuration prefetching [Hauck98b] attemptsto leverage this overlap by determining when to
initiate reconfiguration of the hardware in order to maximize overlap with useful computation on the host processor.
It also seeks to minimize the chance that a configuration will be prefetched falsely, overwriting the configuration
that is actually used next.

Configuration Compression

Unfortunately, there will always be cases in which the configuration overheads cannot be successfully hidden using
a prefetching technique. This can occur when a conditional branch occurs immediately before the use of a
configuration, potentially making a 100% correct prefetch prediction impossible, or when multiple configurations or
contexts must be loaded in quick succession. In these cases, the delay incurred can be reduced by minimizing the
amount of datatransferred from the host processor to the reconfigurable array. Configuration compression can be
used to compact this configuration information [Hauck98a, Hauck99, Li99].

One form of configuration compression has already been implemented in acommercial system. The Xilinx 6200
series of FPGA [Xilinx96] isapartialy reconfigurable structure that contains wildcarding hardware, which provides
amethod to program multiple logic cells with a single address and data value. A special register is set to indicate
which of the address bits should behave as "don’t-care" values, resolving to multiple addresses for configuration.

For example, suppose two configuration addresses, 00010 and 00110, are both are to be programmed with the same
value. By setting the wildcard register to 00100, the address value sent is interpreted as 00X 10 and both these
locations are programmed using either of the two addresses above in a single operation. [Hauck98a] discusses the
benefits of this hardware, while [Li99] covers a potential extension to the concept, where “don’t care” valuesin the
configuration stream can be used to alow areas with similar but not identical configuration data values to also be
programmed simultaneously.

Within partidly reconfigurable systemsthereisan added potential to effectively compressthe amount of datasent to
the reconfigurable hardware. A configuration can possibly re-use configuration information already present on the
array, such that only the areas differing in configuration values must be re-programmed. Therefore, configuration
time can be reduced through the identification of these common components and the cal culation of the incremental
configurations that must be loaded [Luk97, Shirazi9g].

Configuration Caching

Because a great deal of the delay caused by configuration is due to the distance between the host processor and the
reconfigurable hardware, as well as the reading of the configuration data from a file or main memory, a
configuration cache can potentially reduce the costs of reconfiguration [Deshpande99]. By storing the
configurations in fast memory near to the reconfigurable array, the data transfer during reconfiguration is
accelerated, and the overall configuration time required is reduced.



Our Work

This research focuses on the actual programming architecture of the FPGA, and how it affects the configuration
overhead. We first study the overheads shown by the three major programming paradigms for FPGAS. single
context, partially reconfigurable and multi-context. Next we adapt the partialy reconfigurable FPGA to include two
new optimizations, relocation and defragmentation. We will demonstrate how these optimizations can reduce the
configuration overhead even further over the partially reconfigurable FPGA, which is already an improvement over
the single context, serially programmed FPGA.

Basic Programming Architectures

Traditional FPGA structures have been single-context, allowing only one full-chip configuration to be loaded at a
time. However, designers of reconfigurable systems have found this style of configuration to be too limiting and/or
slow to efficiently implement run-time reconfiguration. Thefollowing discussion definesthe single-context device,
and further considers newer FPGA designs (multi-context and partially reconfigurable), along with their impact on
run-time reconfiguration.
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Figure 5: The different basic models of reconfigurable computing: single context, multi-context, and
partially reconfigurable. Each of these designsis shown performing areconfiguration.

Single Context

A single context FPGA is programmed using a serial stream of configuration information. Because only sequential
accessis supported, any change to a configuration on thistype of FPGA requires a complete reprogramming of the
entire chip. Although this does simplify the reconfiguration hardware, it does incur a high overhead when only a
small part of the configuration memory needs to be changed. This type of FPGA is therefore more suited for
applications that can benefit from reconfigurable computing without run-time reconfiguration. Most current
commercial FPGAs are of this style, including the Xilinx 4000 series [Xilinx94], the Altera Flex10K series
[Alterad8], and Lucent’ s Orcaseries [Lucent98]. A single context FPGA isdepicted in Figure 5, top | eft.

In order to implement run-time reconfiguration using a single context FPGA, the configurations must be grouped
into contexts, and each full context is swapped in and out of the FPGA as needed. Because each of these swap
operations involve reconfiguring the entire FPGA, a good partitioning of the configurations between contexts is
essential in order to minimize the total reconfiguration delay. If al the configurations used within a certain time
period are present in the same context, no reconfiguration will be necessary. However, if a number of successive
configurations are each partitioned into different contexts, several reconfigurations will be needed, slowing the
operation of the run-time reconfigurable system.



Partially Reconfigurable

In some cases, configurations do not occupy the full reconfigurable hardware, or only a part of a configuration
requires modification. In both of these situations a partial reconfiguration of the array is required, rather than the
full reconfiguration supported by a single context device. In a partialy reconfigurable FPGA, the underlying
programming bit layer operates like a RAM device. Using addresses to specify the target location of the
configuration dataallowsfor selective reconfiguration of thearray. Frequently, the undisturbed portions of the array
may continue execution, allowing the overlap of computation with reconfiguration. This has the benefit of
potentially hiding some of the reconfiguration latency.

When configurations do not require the entire area available within the array, a number of different configurations
may be loaded into unused areas of the hardware at different times. Since only part of the array is changed at a
given point in time, the entire array does not require reprogramming for each incoming configuration. Additionally,
some applications require the updating of only a portion of amapped circuit, while therest should remain intact, as
shown in Figure 5, bottom left. For example, in afiltering operation in signal processing, a set of constant values
that change slowly over time may be re-initialized to anew value. But the overall computation in the circuit remains
static. Using this selective reconfiguration can greatly reduce the amount of configuration data that must be
transferred to the FPGA. Several run-time reconfigurable systems are based upon a partialy reconfigurable design,
including RaPiD [Ebeling96], Chimaera [Hauck97], PipeRench [Cadambi98], and NAPA [Rupp98].

Unfortunately, since address information must be supplied with configuration data, the total amount of information
transferred to the reconfigurable hardware may be greater than what is required with asingle context design. A full
reconfiguration of the entire array is therefore slower than with the single context version. However, a partially
reconfigurable design isintended for applicationsin which the size of the configurationsis small enough that more
than one can fit on the available hardware simultaneously. Plus, the fast configurations methods presented in a
previous section can help reduce the configuration data traffic requirements.

Multi-Context

A multi-context FPGA includes multiple memory bits for each programming bit location. These memory bits can
be thought of as multiple planes of configuration information, as shown in Figure 5 right. One plane of
configuration information can be active at a given moment, but the device can quickly switch between different
planes, or contexts, of already-programmed configurations. In this manner, the multi-context device can be
considered a multiplexed set of single-context devices, which requires that a context be fully reprogrammed to
perform any modification. This systems does alow for the background loading of a context, where one plane is
active and in execution while an inactive place is in the process of being programmed. Figure 6 shows a multi-
context memory bit, as used in [ Trimberger97].
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Figure 6: A four-bit multi-contexted programming bit [ Trimberger97]. PO-P3 arethe stored programming
bits, while CO-C3 are the chip-wide control lines which select the context to program or activate.

Fast switching between contexts makesthe grouping of the configurationsinto contextsslightly lesscritical, because
if a configuration is on a different context than the one that is currently active, it can be activated in the order of
nanoseconds, as opposed to milliseconds or longer. However, itislikely that the number of contexts within agiven
program islarger than the number of contexts available in the hardware. In this case, the partitioning again becomes
important to ensure that configurations occurring in close temporal proximity arein aset of contextsthat are loaded
into the multi-context device at the same time.



Area Models

In order to compare the costs vs. benefits of the three basic programming architectures, we must compute the
performance of each design given afixed arearesource. We have created area models for each of the programming
architectures, which can be used to determine the area requirements. Because the area requirements of each
programming model differ, the number of programming bits which can fit within the fixed area vary with the
architecture. Therefore, the number of programming bits available to each programming architecture is used as an
input parameter for the simulation program that determines the configuration overhead for each model for each of
the benchmark programs.

To find the area requirements for the different programming models, we consider the major components of the
programming architecture, such as actual programming memory, row decoders, and input/output tri-state buffers.
Each of these components can be generated by replicating smaller tileable structures. We usetileable structures to
allow us to parameterize the architecture and determine the areas in terms of the number of programming bits.

These tiles were created by hand, and their sizes in & were tabulated (Figure 7). The full sizes of the components
were then calculated by multiplying the size of the relevant tiles by the number of those tiles are required, given a
particular number of rows and columns of programming bits. The layouts of the tiles were created using the Magic
VLS layout program.

Because we wish to determine how the structure of the programming architecture affects the total chip area of the
FPGA, we aso must account for the area occupied by the logic and routing. We use the assumption that for a
single-context device, the programming structures occupy 25% of the total chip area [ Trimberger98]. Therefore,
three times the area required by the single context programming structure is used as an approximation of the fixed
area occupied by the logic, routing, and 1/0O structures of the FPGA. Once we have the area in terms of the
programming bits, we can set the area to a fixed size and compute the humber of programming bits that will fit
within that areafor a given programming architecture.
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Figure 7: Tables of tileable component sizes

Structure Details

The single context FPGA area model is composed of atwo-phase shift chain of programming bits, which formsthe
path for the input of configuration data. No other support structures are needed for this particular architecture. For
NRow rows and NCol 32-bit columns of programming bits, the area of the programming structure in | 2 for the
single-context FPGA is:
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single context area = <# prog. bits> * <prog. bit size>
=NRow * (NCol * 32) * 2275.5
=NRow * NCol * 72816

The partially reconfigurable architecture is based upon atraditional addressable RAM structure. The programming
bits are held in 5-transistor SRAM cells. Therow and column decoders used to select the destination |ocation of the
configuration data are both pseudo-NMOS with precharging. Large output tri-state drivers enabled by the column
decoder are required to magnify the weak signals provided by the SRAM cells when reading the configuration data
off of thearray. Theinput of datain 32-bit wordsis controlled by tri-state drivers enabled by the column decoder in
conjunction with awrite enable signal. Figure 8 demonstrates how the tileabl e structures were used to estimate the
area of thisdesign. For NRow (NRow 3 4) rows and NCol (NCol 3 8) 32-hit columns of programming bits, the area
of the programming structurein | % for the partially reconfigurable FPGA is:

partially reconfigurable area = <# prog. bits> * <prog. bit area> + <row decoder area>
+ <column decoder area> + <I/O tri-states area>

=NRow * (NCol * 32) * 1309 + NRow * (476 + 392 ceil (Ig NRow))
+ NCol * (2177.5 + 487.5 * ceil (Ig NCol)) + (NCol * 32) * 11407.5

= NRow * NCol * 41888 + NRow * 476 + NRow * ceil (Ig NRow)) * 392
+ NCol * 367217.5 + NCol * ceil(Ig NCol)) * 487.5

NRow * (476 + 392* Ig NRow) |2

I TR
| _

NRow * NCol * 32* 1309 12

-~

//%

17/

NCol * 327* 11407.5 |2

NCol * (2177.5 + 487.5% Ig NCol) 12

Figure 8: A diagram of how the estimation of the programming structure of the partially reconfigurable
FPGA was calculated. The upper left structure is arow decoder. The small structure below it is the 5-

transistor SRAM cell. The column decoder is in the lower left, and the right hand side shows the 1/0 tri-
state buffers.
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The multi-context design is based on the structure shown in Figure 6. Because we found (see Table 2) that the
partially reconfigurable FPGA design required lesstotal areathan asingle context design composed of ashift chain,
we built each of the contextsin the multi-context device as a partialy reconfigurable plane. In order to configurea
particular location in the multi-context device, not only the row and column addresses but also the context address
must be specified. The context decoder is the same basic structure as the row column decoder. A D latch holdsthe
“active’ programming bit value.

The device changes contexts by first disabling the transistor which connects the global configuration lines to the
short local bus connecting the different contexts within a given programming bit structure. Next, the new context is
enabled. To writeto acontext, the datais placed on the global lines by the input tri-state drivers that are enabled by
the column decoder, and the row decoder enables the ransistor connecting the global and local lines. The
destination context must also be enabled by the context decoder in order to alow the datato be written to astorage
bit.

The transistor connecting the local lines to the global lines of a programming bit is in series with the SRAM
read/write enable transistor and the input tri-state driver. Therefore, thistransistor needsto be quite large to ensure
that the data contained in the SRAM cells are properly overwritten during a write period. We used logical effort
[Sutherland99] to size the transistors appropriately. The SRAM read/write enable transistors are 12| high with 2|
wide polysilicon. As much as possible, we have absorbed the size of the local/globa connection transistor within
the programming bits without increasing the programming bit size. In essence, the size of the transistorsisamortized
over the number of contexts. Theinput tri-state driver sizes were then cal culated based upon these values.

For NRow (NRow?3 4) rows and NCol (NCoal 3 8) 32-bit columns of programming bits, the area of the programming
structurein | ? for amulti-contexted FPGA with 2 contextsis:

multi2 area =<# prog. bits> * <prog. bit area> + <row decoder area>
+ <column decoder area> + <context decoder area>
+ <I1/Otri-states area>

= NRow * (NCol * 32) * 9075 + NRow * (476 + 392 * ceil(lg NRow))
+ NCol * (2177.5 + 487.5* ceil(lgNCal)) + 2* 1148
+ (NCol * 32) * 14722.5

= NRow* NCol * 290400 + NRow* 476 + NRow * ceil (Ilg NRow) * 392
+ NCol * 473297.5 + NCol * ceil(lg NCol) * 487.5 + 2296

Adjusting the areas of the programming bit, the context decoder, and the 1/0 tri-states, the areas computed for the 4
and 8 context FPGAs are:

multi4 area= NRow™* NCol * 418400 + NRow* 476 + NRow * ceil (Ig NRow) * 392
+ NCol * 385937.5 + NCol * ceil(lg NCol) * 487.5 + 5040

multi8 area= NRow* NCol * 674400 + NRow* 476 + NRow * ceil (Ig NRow) * 392
+ NCol * 367217.5 + NCol * ceil(lg NCol) * 487.5 + 13216

Using the area of the single context FPGA, we find that the corresponding areafor the logic and the routing isSNRow
* NCol * 218448. Therefore, we add this value to the equations cal culated above in order to find the total chip area
for the different FPGA structures. Limiting the number of rows (NRow) and the number of 32-bit columns (NCol)
to apower of 2, we summarize the areas of the different programming stylesin Table 1. Figure9illustrateson a
logarithmic scale how the area of each programming architecture increases exponentially with the number of
programming bits.



Programming .
Structure Area Equation ( 9

Serial NRow * NCol * 291264
Partial NRow * NCol * 260336 + NRow* 476 + NRowlg NRow* 392
+ NCol * 367217.5 + NCol IgNCol * 487.5
Multi (2) NRow* NCol * 508848 + NRow* 476 + NRowlg NRow* 392
+ NCoal * 473297.5 + NCol IgNCaol * 487.5 + 2296
Multi (4) NRow* NCol * 636848 + NRow* 476 + NRowlg NRow* 392
+ NCol * 385937.5 + NCol IgNCol * 487.5 + 5040
Multi (8) NRow* NCol * 892848 + NRow* 476 + NRowlg NRow* 392
+ NCol * 367217.5 + NCol IgNCol * 487.5 + 13216

Table 1: The equations to determine the area of an entire FPGA given the number of rows NRow and the
number of 32-bit columns NCol of configuration bits.

Programming AreaFor 220
Structure Programming Bits
Serial 9.544x10° &
Partial 8.547x10° &
Multi (2) 16.694x 10° &
Multi (4) 20.885x10° &
Multi (8) 29.273x10° &

Table 2: The areas required by the different programming architectures given a square layout of 1024 x
1024 programming bits (1024 rows, 32 32-bit columns).
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Figure 9: A graph of the area requirements for the different FPGA programming architectures. The
programming bits here are organized in a square formation, with the number of rows equaling the number
of 1-bit columns. Notethat thisison alogarithmic scale.

Model Performance

Using the full chip arearequirements for the different programming architectures, the area occupied by each can be
set equal, the number of available programming bits can be cal culated, and performance can be measured for afixed
area resource. In order to measure performance, rea -time caching algorithms were designed to control when
configurations should be swapped in and out of the array for each of the FPGA programming architectures [Li0Q].
To demonstrate their validity, these algorithms were compared to lower bound algorithms that were al so devel oped.
The configuration overheads incurred by the different FPGA types given a fixed area resource were calculated by
simulating 8 different benchmark programs, and calculating the mean overhead encountered. These benchmarks
include some compiled for the Garp system [Hauser97], and some created for the Chimaera System [Hauck97]. The
base areafor this comparison was computed to be slightly larger than the largest configuration in order to ensure that
each configuration would fit within the array. Other sizes, such as 1.5 times this area and 2.0 times this area, were
also considered.

A normalized graph of configuration overheads vs. area is shown in Figure 10. The results using both the lower
bound and real-time agorithms are given. The rea -time algorithms developed for this comparison are an upper
bound guideline on what performance is possible for the given architecture. The best performance achievable in
real -time therefore resides somewhere between this upper bound and the lower bound.
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Figure 10: A graph of normalized configuration overheads given a fixed area resource for the different
FPGA programming architectures: single context, partialy reconfigurable, and multi-context with 4
contexts. The plain lines represent the upper bound algorithms, while the lines with the triangl es represent
the lower bound agorithms.

Both the partially reconfigurable and the multi-context designs perform far better for a given area than the single
context. For the median case, where the area of the chip is approximately 1.5 times the area of the largest
configuration, using partial reconfiguration reduces the overhead by a factor of 6.3 over the seria version. The
multi-context design reduces the overhead by afactor of 6.6. Going to one size larger, the partialy reconfigurable
shows an improvement of afactor of asmuch as 7.1 over the serial single-context design, whereasthe improvement
shown by the multi-context design decreasesto afactor of 5.8.

Because the single context FPGA is the most widespread in commercial use, thisindicatesthat moredevelopment is
needed in FPGAS before they can effectively be used for run-time reconfigurable applications. The multi-context
device (with four contexts for this comparison) performs slightly better than the partially reconfigurable device for
smaller areas, as it can switch quickly between contexts. At larger areas, the configuration bounds on overhead
encountered in partially reconfigurable designs fall entirely within the bounds of the overheads seen with the multi-
context device. However, the configuration overhead of the partially reconfigurable FPGA can be further lowered
by adding two further hardware optimizations: rel ocation and defragmentation.

Optimization: Relocation / Defragmentation

Partially reconfigurable systems have the advantage over single-context systems in that they allow a new
configuration to be written to the programmabl e logic while the configurations not occupying that same arearemain
intact and available for future use. Because these configurationswill not have to be reconfigured onto the array, and
because the programming of a single configuration can require the transfer of far less configuration data than the
programming of an entire context, a partially reconfigurable system can incur less configuration overhead than a
single-context FPGA.

However, inefficiencies can arise if two partial configurations have been placed during compilation onto
overlapping physical locations on the FPGA. If these configurations are repeatedly used one after another, they
must be swapped in and out of the array each time. Thistype of ping-pong conflict could negate much of the benefit
achieved by partially reconfigurable systems. A better solution to this problem isto allow thefinal placement of the
configurations to occur at run-time, allowing for run-time relocation of those configurations [ComptonQ0, Li0Q].
Using relocation, a new configuration may be placed onto the reconfigurable array where it will cause minimum
conflict with other needed configurations aready present on the hardware. A number of different systems support
run-time rel ocation, including Chimaera [Hauck97], Garp [Hauser97], and PipeRench [ Cadambi98].



Even with relocation, partially reconfigurable hardware can still suffer from some placement conflictsthat could be
avoided by using an additional hardware optimization. Over time, as a partialy reconfigurable device loads and
unloads configurations, the location of the unoccupied area on the array is likely to become fragmented, similar to
what occursin memory systems when RAM is allocated and deallocated. There could be enough empty area on the
device to hold an incoming configuration, but it may be distributed throughout the array. A configuration normal ly
requires a contiguous region of the chip, so it would have to overwrite a portion of avalid configuration in order to
be placed onto the reconfigurable hardware. A system that in addition to relocation incorporates the ability to
perform defragmentation of the reconfigurable array, however, would be able to consolidate the unused area by
moving valid configurations to new locations [ Diessel 97, Compton00]. The collected unused area can then be used
by incoming configurations, potentially without overwriting any of the moved configurations.

Example of 2D Relocation

Figure 11 illustrates a situation in which relocation could be used. The darkly shaded mapping is already present on
the FPGA. The lightly shaded mapping is a new mapping that is also to be placed on the FPGA. However, since
the first and second configurations have several cell locations in common, they cannot both be present on a
traditional partialy reconfigurable FPGA simultaneoudly.

Configuration Incoming
Present on FPGA Configuration Conflicts Reconfiguration
XX
X|x|%
X

Figure 11: In some situations an incoming configuration maps to the same location as an existing
configuration. If theincoming mapping isrelocated, it may be possible to alow both configurations to be
present and operational on the FPGA simultaneously.

However, an FPGA with relocation ability can modify the second configuration to fit the unused space on the grid,
thereby allowing both mappings to be present without one overwriting the other'sinformation. Figure 11 shows the
steps taken to rel ocate the second configuration to available cells.

Modifying the 6200

We have chosen the Xilinx 6200 FPGA [Xilinx96] to adapt for use with configuration relocation because it is a
commercial partially reconfigurable FPGA. In addition, the cell layout and local routing are primarily regular. Each
cell has the same abilities, regardless of location. These cells are arranged in an island-style layout. The local
routing isin the form of nearest-neighbor connections. Longer distancerouting isprovided inahierarchical format,
which iswherewelose heterogeneity. A 4x4 group of logic elements (cells) formsacluster in which length 4 wires
span four logic elements (cells). Signals may only be transferred onto these lines at the border of the 4x4 block.
The next level of the routing hierarchy includes a4x4 group of the smaller 4x4 blocks. These groups have length 16
wires that span the block. Again, these lines may only be written at the border of the group of 4x4 blocks.

Additionally, cells are only able to access nearest neighbor and length 4 wires, so the signals must aso be
transferred to more local routing for reading. This hierarchy continues up until a chip-sized block is formed that
includes chip-length wires.

In order to create the reconfiguration hardware, it is convenient to consider a somewhat idealized FPGA similar to
the 6200. Like the 6200, this idealized FPGA allows random access to any cell in its array. However, we will
assume that its long-distance routing is flexible and can be configured to and from any cell. Theirregularity of the
6200 hierarchical routing is therefore removed. We first determine the basic needs of relocation hardware by
examining this abstract model. A more in-depth technical discussion of the application of relocation to the Xilinx
6200 is presented elsewhere [ ComptonQQ].
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Applying 2D Relocation to the 6200

Each configuration has eight distinct permutations of its structure. Thisdoes not include simple offset operations to
shift the entire configuration to a new location without altering its orientation. An example configuration and its
seven permutations are shown in Figure 12. These seven manipulations can be decomposed into combinations of
three distinct basic movements: a vertical flip, a horizontal flip, and arotation of 90°. Asshownin Figure 12, with
combinations of these movements any basic manipulation can be achi eved.

original rotate 90° flipvertica & flipvertical & flip horizontal flip horizontal & flip vertical flipvertical &
configuration horizontal horizontal & rotate 90° rotate 90°
rotate 90°

Figure 12: The seven primary permutations of a configuration.

When relocating a mapping, there are a few requirements that we need to meet in order for its functionality to be
preserved. First, the routing programmed into each cell must be changed to reflect the overall rotation or flip of the
configuration. Each cell in a mapping can have routing to and from its four immediate neighbor cells that must be
maintained relative to those neighbors when the mapping is moved. For example, if a cell routesto its neighbor to
the east and a horizontal flip is performed, the original cell must now route to that same neighbor which is now
found to its west. Alternately, a cell that routes to a cell to the north and belongs to a configuration that is then

rotated 90° clockwise would be changed to route to the east.

Second, a cell must also be shifted by the same horizontal and vertical offsets as the entire configuration being
relocated. If amapping isto be moved one column to the east and two rowsto the north, each individua cell must
be rel ocated one column to the east and two columnsto the north.  Additionally, each cell must maintain its position
relative to the others so that al routes between cells are preserved. In the rotation example given previoudy, the
northern neighbor must be moved so as to become the eastern neighbor to preserve the correct routing structure.

Third, the relative routing between cells within a configuration must remain intact. The reconfiguration hardware
can operate on a cell-by-cell basisto ensure this, changing input and output directions based on the manipulation or
manipulations being performed. This can be done using either combinational logic or by looking up the final result
in pre-computed tables. Performing translation (shift) operations also involves very little computation. The row and
column offsets are simply added to the origina row and column addresses of each individual cell. No other
manipulations are required for this operation on our idealized 6200 FPGA.

Finally, the relative position of a cell within a configuration must be maintained. While this is easy in a shift
operation where the offset is simply applied to al cells within the configuration, it is more complex for the rotate
and flip operations. These complex manipulations are easiest to conceptualize as operations performed on onelarge
object. In actuality, however, this one large object is made up of many smaller objects. Each of these must be
atered to adifferent degreein order to preserve the original larger object after the manipulation is complete. In our
case, the large object is the full configuration, and the smaller objects are the discrete FPGA cells that form that
configuration. Although al of the cells may beflipped or rotated to the same degree asthe configuration itself, they
each have their own particular offsetsto move in order to preserve the relative arrangement between cellswithin the
configuration.

However, if wetemporarily consider a configuration to occupy the entire array, these operations are simplified into
short equations on a per-cell basis using the original row and column addresses and the maximum row and column
addresses. For example, consider a configuration that is to be flipped horizontally. Cellsthat arein column c will
be relocated to column maxcol - ¢. Changing the column address in this matter ensures that each cell is the same
distance from the west border as it used to be from the east border, and vice versa. Theflip isthen followed by a
shift of the entire configuration to placeit in the desired final location.
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Figure 13: An examplerelocation using a 90° rotation and an offset.

We show an example of arotation and an offset operation in Figure 13 that further demonstratesthisidea. Thecells
in the figure are numbered in order to illustrate the location changes for the cells during the relocation of the
configuration. In order for a mapping to be successfully manipulated, the relative positions and routing (as
represented here by the numbers) should match the original arrangement. Thefirst pane shows an initial mapping.

First the entire array is rotated. In this step, if cell "1" originally routed to cell "2" to the eat, it must now be
changed to route to cell "2" in the south and its position changes from <0,1> to <3,0>. If r is the origina row
position for any cell and c is the original column position, then rotating the mapping changes each cell <c, r> to
<maxcol-r, c>. The next pane shows the entire mapping moved one column to the west. In this case, the position of
each cell changes from <c, r>to <c+m, r> where misthe column tranglation offset. Finally, the mapping is moved
south one row. Here, <c, r> becomes <c, r+n> wheren isthe row trandation offset. For thisexample,m=-1andn
= 1. With aseries of simple calculations, a configuration has been repositioned.

Type Old Location New L ocation
Vertical Flip <c, > <C, maxrow-r>
Horizontal Flip <c, r> <maxcol-c, r>
Rotate 90° <c, r> <maxcol-r, c>
Vertical Offset (by n) <c, r> <c, r+n>
Horizontal Offset (by m) <c, > <c+m, r>

Table 3: The equations to determine the relocated coordinates of acell.

Table 3 details the equations to compute the new location of a cell for each of the five basic manipulations. These
calculations affect the location of each cell, and therefore change the address to which the configuration information
is programmed for that cell. These changes do not affect the actual configuration data. However, any manipulations
that are needed in order to maintain the relative routing between cells doesin fact affect the configuration data.
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Figure 14: The Xilinx 6200 input structure (left) and output structure (right) [Xilinx96].

Each cell's routing and functionality are controlled by multiplexers, that are in turn selected with SRAM
configuration bitslocal to each cell. Therearethreeinputsto thefunction unit withinthe cell, and these threeinputs
come from the three multiplexers X1, X2, and X3 respectively (Figure 14 left). Theoutput of these multiplexerscan
be selected from eight locations. N, S, E, and W are the neighboring cells' outputsto the north, south, east and west,
respectively. N4, S4, E4 and W4 are the specia long distance routes built into the 6200 and are located in the
indicated directions. Outputs of each cell follow similarly and are shown in Figure 14 right.

Cell outputs are chosen from the output of the function unit or from the outputs of other cells (effectively routing
through acell). Two bits of SRAM datafor each multiplexer are needed to select from these four possible outputs.
Figure 15 shows the configuration information for the cell routing. Although these bytes contain the bits labeled
CS, RP, Y2, and Y 3 which control the function unit of the cell, we are interested in examining only the bits which
control the input and output multiplexers. In order to change a cell's configuration the incoming data destined for
these three bytes of SRAM must be altered.

Column DATA BIT

Offset

<1:.0> 7 6 5 4 3 2 1 0
00 North East West South
01 cs X1[2:0] X2[1:0] X3[1:0]
10 RP | Y2[10] Y3[1:0] | X3[2] | X22]

Figure 15: Thethree data bytesthat control the input and output multiplexers a Xilinx 6200 cell [ Xilinx96].

Each mapping manipulation (the rotate 90 degrees and the horizontal and vertical flips) has a distinct set of
operations on the routing information that must be made on a cellular level. For instance, to flip a mapping
verticaly, if anorthern input was selected by any of the multiplexers of some cell, it now must be changed to be a
southern input. We similarly change the output routing — north becomes south, south becomes north, and so forth.
For avertical flip, east/west routing changes do not occur.

The configuration manipulation operations use the configuration bits given in the format shown in Figure 15, and
output new values based on the new orientation of the cell. This can be performed using a different set of logic
equations for each hit of each multiplexer [ComptonQ0].

With the ability to do the three complex movements and the two offset operations, any repositioning of a cell
mapping is possible in our idealized FPGA. A relocation pipeline of five stages can operate on each cell of an
incoming mapping and output a fully relocated mapping. Figure 16 shows this pipeline and its operation on the
example of Figure 11.
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Figure 16: The relocation pipeline and its operation on the example of Figure 11.

Difficulties of the 6200

Using the rel ocation hardware already discussed, we are potentially able to implement another feature for improved
FPGA configuration: defragmentation. The idea of defragmentation isto shift configurations already present on the
FPGA in order to consolidate unused area. The unused area can then be used to program additional configurations
onto the chip that may not have fit in the previous available space. This is a similar concept to memory

defragmentation, although hereit is extended to two dimensions.

We can use the hardware and movements that we have described to take configurations that are already loaded onto
the cell array and move them elsewhere on the array. If we use the same Rel ocation Pipeline that we have designed,
this operation consists of reading data from the array, running it through the pipeline and writing it back to another
location. Thisisnot the quickest way to achieve defragmentation because it involves both afull configuration read
and afull configuration write. Alternatively, we could sacrifice some of the flexibility provided by the relocation
hardware and employ a defragmentation scheme that simply shifts data directly from cell to cell so that amapping
would be moved horizontaly or vertically in single column or row increments. However, this would add a
significant amount of routing to a 6200-like FPGA, given that connections would have to be added to relay
programming bits from each cell to each of its neighbors. Neither of these two solutionsisideal: one could cause
heavy delays due to configuration reads and writes, while the other creates a high area overhead.

Additionally, defragmenting a 2-D array is a complex operation. Essentially, the FPGA must go through a
floorplanning stage each time it is defragmented, which is a time-consuming process usually performed in
compilation. Although somework has been done on using heuristicsto accel erate this operation [Bazargan00], they
result in wasted space. Because our aim is to reclaim unused area, this is contrary to our goal. This amount of
computation can therefore easily exceed the benefits gained through defragmentation, and cause defragmentationin
the 6200 to become unfeasible. A similar difficulty occurs in relocation. If we required that al configurations
occupy a rectangular area, we could find free locations without a great deal of difficulty by keeping alist of free
rectangles sorted by size. However, add-shaped configurations would make the search for available space an
examination of the FPGA contents on a cell-by-cell basis, which would need to be performed each time a
configuration required relocation.

Another consideration isthat of 1/0. At compiletime, the placement and routing tools connect logic blocks to pins
for input and output. The pin locations must remain fixed despite relocation because of the board-level connections
to the FPGA. Therefore, each time a configuration is moved, the connections between it and the I/O pins it uses
need to be re-routed. Asrouting is an expensive step in the compilation process, it is unlikely that this could be
effectively done at run-time. Alternately, we could use the concept of virtualized 1/0, which is a bus-based
input/output structure that provides a location-independent communication method (this concept is studied in more
depth later). However, for two-dimensional virtualized 1/0, we would need to provide a method for a configuration
to communicate with every pin in the FPGA, which is not practical given the large number of both pins and logic
blocks.
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A further limitation placed on rel ocation by the actual 6200 design isthat in reality we are not able to make arbitrary
movements of mappings. Although the 4-cell spanning routing (N4, E4, etc.) does add some distance routing
capability to the 6200 array, it can only be written to near the borders of a 4x4 grouping of cells. This severely
limits where we can and cannot move mappings. |If a mapping contains 4x4 routing, we are limited to horizonta
and vertical movementsin multiples of four to preservethisrouting. A similar phenomenon occurs at the border of
a 16x16 grouping of cells, and so on up afinal grouping that isthe size of the entire chip.

Although we can create relocation hardware for the simplified 6200 design, introducing the realities of the actual
6200 complicates this hardware significantly. Despiteinitial appearances, the partially reconfigurable 6200 is not
well suited for relocation and defragmentation. While partial reconfigurability is essential to the concept of
relocation and defragmentation, there are a number of other notions that are necessary as well. The next sections
describe these ideas and how they were used in the design of a new architecture created specifically to feasibly
support run-time rel ocation and defragmentation.

New Relocation / Defragmentation Architecture

We propose a hew architecture designed specifically to exploit the benefits of relocation and defragmentation in
order to avoid the difficulties presented by the use of the 6200 for this purpose. We will refer to thisarchitecture as
the R/D (Relocation / Defragmentation) FPGA. First we examine the guidelines used for the design creation, and

then we discuss the details of the actual architecture. Next we show a few examples of the operation of this new

FPGA. We aso examine afew possible extensions to the R/D architecture. Finally, we give performance results
comparing the configuration overhead incurred by our new architecture to that encountered using the serial, partially
reconfigurable, and multi-context FPGAsfor agiven area.

Design Issues

Using a few simple concepts in the design phase of the FPGA, we can ensure that the architecture is suitable for
relocation and defragmentation. The first is that of partial reconfiguration. The ability to selectively program
portions of the FPGA is critical to the philosophy of relocation and defragmentation, since its addressability
provides a way to specify the location of the configuration at run-time. We therefore base the R/D FPGA on a
generic partialy reconfigurable core, as shown in Figure 17 | eft.

i SRAM array SRAM array
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Figure 17: A basic partialy reconfigurable FPGA architecture (Ieft), and the Relocation / Defragmentation
(R/D) FPGA architecture (right).

The second ideaishomogeneity. If each cell inthe structureisidentical, there are no functional obstaclesto moving
a configuration from one location to any other location within the boundaries of the array. In the same manner,
requiring the routing structure to be homogenous removes any placement limitations for routing reasons. This
removes the difficulty that the hierarchical routing structure presentsin the 6200. Although the exact structure of
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thelogic cell and the routing for the R/D FPGA has been left open, we do make homogeneity arequirement. Many
current commercial FPGAs are homogeneous, including the Xilinx 4000 [ Xilinx94].

input lines output lines input lines output lines

_:}> Logic »& _:} Logic % g?/vlljé
=N cdl % =N cdl %

Figure 18: A virtualized 1/O structure with four input lines and two output lines. Two cellsin onerow are
shown here. The input and output lines are shared between rows. Although multiple rows may read an
input line, only onerow at atime may write to any given output line.

B row
output
enable

The third concept is virtuaized 1/0. Using a bus-based input/output structure provides us with a location
independent method to read in and write out data from the individual configurations. Configurations are therefore
not limited by 1/O constraints to be placed near the FPGA pins, plus the 1/0 routing remains unchanged when the
configuration is mapped to a new location. Several architectures aready support this, including Chimaera
[Hauck97], PipeRench [Hauser97], and GARP [Goldstien99]. Alternately, virtualized I/O can be supported without
the use of custom hardware provided that all mappings include bus structures such that adjacent mappings have
connected busses.

One type of virtuaized 1/0 system for a row-based FPGA is shown in Figure 18. Row-based FPGASs are those in
which arow of FPGA cellsformsthe atomic configuration unit, and therefore is not shared between configurations.
This type of FPGA is discussed in more depth in a few paragraphs. The virtualized 1/0 structure shown includes
four global input values per column, and two global output values per column. A cell can select itsinputs from the
globa input lines using a multiplexer. The actual input value read therefore only depends on the setting of the
multiplexer. Inthisstructure, cells can only output to aglobal output line when the corresponding output enableline
isset to high for that cell'srow. These enable lines are global, and acontrol structureisrequired to ensurethat only
one row at atime may output to any given line.

In the Chimaera system for example, there are Content-Addressable-Memories located next to each row of cells.
When the CPU wishes to read the output of a configuration, it sends the configuration number to the array, which
checks this value against the CAM values. If arow's CAM is equal to the configuration number sent by the CPU,
the output is enabled for that row [Hauck97].

The fourth important idea is that of one-dimensionality. Current commercial FPGA architectures are based on a
two-dimensional structure. Movement of configurationsin two dimensions for relocation and defragmentation can
be quite difficult, as there are many different placement possibilities to consider. These complexities can be
removed when the FPGA is designed with a row-based structure similar to Chimaera [Hauck97] and PipeRench
[Goldstein99]. These architectures consider a single row of FPGA cells to be an atomic unit when creating a
configuration, where each row forms a stage of the computation. The number of cellsin arow is arbitrary, but in
general assumed to be the same width as the number of bitsin a data word in the host processor. This, in essence,
reduces the configurations to one-dimensional objects, wherethe only alowablevariationin configuration areaisin
the number of rows used. Rotation, horizontal or vertical flipping, or horizontal offset operations are no longer
necessary. The only operation required for relocating aconfigurationisto changethe vertical offset. Because of the
one-dimensionality, the virtualized /O is also simplified. Instead of including input and output wires along each
column and each row of the FPGA, these lines are only necessary for each column, as described earlier in the
example corresponding to Figure 18.

Although one-dimensionality does reduce some of the placement generality found in the two-dimensional FPGA
architectures, it does provide some benefits for certain applications beyond simplifying relocation and
defragmentation. Providing full 2D routing flexibility requires agreat deal of routing area. It also complicatesthe
placement and routing software, as the software must consider a very large number of possibilities. Using a one-
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dimensional routing structure, placement is restricted along one axis. With a more limited set of choices, the
placement can be performed much more quickly. Routing is also simplified because the mgjority of it isalong a
single dimension as well. This type of structure is best suited for datapath operations that operate on data words.
These types of calculations are least affected by the limitations of one-dimensionality, while still gaining the
advantages of fast placement and routing and simpler 1/0O and routing structures. Thisis essentia to relocation and
defragmentation, which must perform the configuration movements during runtime.

A number of different reconfigurable systems have been designed as one-dimensional architectures. Both Garp
[Hauser97] and Chimaera [Hauck97] are structures which provide cells that compute a small number of bit
positions, and a row of these cells together computes the full data word. A row can only be used by a single
configuration, making these designs one-dimensional. In thismanner, each configuration occupies some number of
complete rows. Although multiple narrow-width computations can fit within a single row, these structures are
optimized for word-based computations that occupy the entire row. The NAPA architecture [Rupp98] is similar,
with a full column of cells acting as the atomic unit for a configuration, as is PipeRench [Cadambi98]. RaPiD
[Ebeling96] is avery coarse-grained one-dimensional reconfigurable architecture that operates only on word-width
valuesinstead of single bits. Therefore, buses are routed instead of individual values, which also decreasesthetime
required for routing since the bits of a bus can be considered together rather than as separate routes.

Not only does this one-dimensional structure reduce the hardware requirements for the relocation architecture, it
also simplifiesthe software requirementsfor determining where aconfiguration can berelocated to. Itisnolonger a
two-dimensional operation. Also, a defragmentation algorithm that operates in two dimensions with possibly odd-
shaped configurations could be quite cumbersome. [Diessel97] discusses one such method for performing 2-D
defragmentation. However, when the problem is only one-dimensional, an agorithm based on those for memory
defragmentation can be applied.

Architecture of the R/D FPGA

We created the design for the R/D FPGA by using each of the guidelines of the previous section. This section
describes the mgjor components of this new FPGA programming model. Whilethisdesignissimilar to the partially
reconfigurable FPGA in anumber of ways that we will discuss, it has a number of additional architectural features.

Similarly to the partially reconfigurable FPGA, the memory array of the R/D FPGA is composed of an array of
SRAM bits. These bits are read/write enabled by the decoded row address for the programming data. However, the
column decoder, multiplexer, and input tri-state drivers have been replaced with a structure we term the "staging
ared', asshown in Figure 17 right.

This staging areaisasmall SRAM buffer, which is essentially a set of memory cells equal in number to one row of
programming bitsin the FPGA memory array, where arow of logic cells contains anumber of rows of configuration
bits. Each row, and therefore the staging area, contains several words of data. The staging area is filled in an

addressable fashion one word at atime. Once the information for the row is complete in the staging area, the entire
staging areaiswritten in asingle operation to the FPGA's programming memory at the row location indicated by the
row address. In this manner the staging area acts as a small buffer between the master CPU and the reprogrammable
logic. Thisissimilar infunction to astructure proposed by Xilinx [ Trimberger95], and present in their Virtex FPGA

[Xilinx99]. More discussion on the application of relocation and defragmentation to the Virtex FPGA appearsina
later section.

In the staging area of the R/D FPGA, there is a small decoder that enables addressable writes/reads. The column
decoder determines which of the wordsin the staging areais being referenced at a given moment. No row decoder
is required because we construct the staging area such that although there are several columns, there is only one
word-sized row. One output tri-state driver per bit in aword is provided to allow for reading from the staging area
to the CPU.

The chip row decoder includes a slight modification, namely the addition of two registers, a 2:1 multiplexer to
choose between the two registers, and an adder, where these structures are all equal in width to the row address.
Thisalowsavertica offset to be loaded into one or more of the registersto be added to the incoming row address,



which resultsin the new relocated row address. One of the two offset registersisthe "write" offset register, which
holds the rel ocation offset used when writing a configuration. The other offset register isthe "read" register, which
is used during defragmentation for reading a relocated configuration off of the array. The origina row address
supplied to the reconfiguration hardware is smply the row address of that particular row within the configuration.
Therefore, al configurations areinitially “located” starting at address O at the top of the array. For simplicity, this
version of the R/D hardware does not alow configurations to be rel ocated horizontally to different columns.

A basic partialy reconfigurable FPGA requires a column decoder to determine which dataword within arow should
be accessed for reading or writing. However, a column decoder between the staging area and the array is not
necessary in the R/D design. The staging areais equa in width to the array, and therefore each bit of the staging
areais sent out on exactly one column. This providesfor ahigh degree of parallelism when reading from the FPGA
configuration memory to the staging area or writing from the staging areato the FPGA memory, asafull row isread
or written in asingle operation.

Finaly, athough we have stated that our FPGA contains a homogeneous cell and routing structure, as well as
virtualized 1/O, the specifics of these structures are not dictated by the memory structure. The particular designis
unrestricted because the actual architectures do not influence the discussion of the philosophy and operation of the
configuration aspect of the R/D FPGA.

Example of R/D Operation

Figure 19 illustrates the steps involved in writing arow of configuration data to the FPGA SRAM array. Each step
shown uses one read/write clock cycle. The words are loaded into the staging area one at atime. Once the words
areloaded into the staging area, they are all written in a single write cycle to the memory array itself. Although the
figure showsthe wordsloaded in aparticular order into the staging area, thisis not necessarily the case. The staging
area is word-addressable, allowing it to befilled in an arbitrary order. Furthermore, the example shows four words
filling the staging area (the number four was chosen for illustrative purposes only). The staging area can be any
size, but is expected to be at |east several words wide.

- - <
e Ly e
> Ly >
2< 2< 1<
> Ly e
e Ly e
> Ly e
e Ly e
> Ly e
e Ly e
> Ly e
| = L

[YYYYYYYYYYYY) [YYYYYYYYYYYY) _,AE3%44433343%

T | - i O |
< N 2 T3 21
e - e
> > >
2< ] 1<
> > e
e - e
> > e
e - e
> > e
e - e
> > e
> > >

%
%
E

Figure 19: A singlerow of configuration datais written to the FPGA by performing multiple word-sized
writes to the staging area, followed by a single write from the staging areato the array. Each step showsa
singlewrite cycle.
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Figure 20: Anexample of aconfiguration that isrelocated asit iswritten to the FPGA. Writing the datato
the N-word staging arearequires N cycles per row, while writing from the staging areato the array requires
only onecycle.

Relocation of a configuration is accomplished by altering the row address provided to the row decoder. Using a
single row offset and an adder provides a simple way to dynamically relocate individual configurations to fit
available free space. Figure 20 shows the stepsto relocate a configuration asit is being loaded into the FPGA.

First the offset value required to relocate a configuration isloaded. In this case, avalueof "3" iswritten to thewrite
offset register to force theincoming configuration to be rel ocated directly beneath the configuration already present
in the FPGA. Next, the CPU or the DMA loads each configuration row one data word at a time into the staging
area. The entire staging area is then written to the destination row of the FPGA in a single operation. The actual

address of thisrow isdetermined by adding the write offset register to the destination addressfor that row. For each
row of the configuration there are as many writes to the staging area as there are words in arow, followed by one
write from the staging area to the FPGA. This is in addition to the single write to the offset register per

configuration in order to relocate a configuration to an empty location. The total number of read/write cycles to
write aconfiguration to the array is therefore:

<#rows> * (<staging areasize> / <datawordsize> + 1) + 1

If we consider a number of full row width configurations that would have been programmed onto a basic partially
reconfigurable FPGA, we are only adding <# rows> + 1 cycles to the configuration time in order to alow

relocation, and is only one more write than required for current commercial architectures that already use such a
staging area.
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Figure 21: An example of a defragmentation operation. By moving the rows in a top-down fashion for
configurations moving upwards in the array, a configuration will not overwrite itself during
defragmentation.



Defragmentation of the R/D FPGA isonly dlightly more complicated than asimple rel ocation operation. Rows must
be moved from existing locations on the FPGA to new locations without overwriting any necessary data. Thisis
particularly apparent when the new location of aconfiguration partialy overlapsthe current location. Depending on
the order of the row moves, one or more of the rows of information could belost. In particular, if aconfigurationis
to be moved "up" in the array, the rows should be moved in a topmost-first order. For a configuration that isto be
moved "down", the rows should be moved in a bottommost-first order. Figure 21 shows an example of the correct
order to move rows in a configuration to prevent loss of data when the configuration is being moved "up" in the
array. Because each of these movements are of entire rows of configuration information, defragmentation is
performed very quickly.

Here we use both of the offset registers. Theread register isused to store the offset of the original location of the
configuration. The write register holds the offset of the new configuration location. First, using arow address of 0
and aread offset of 6, thetop row of information for the second configuration isread back into the staging area. The
row is then written back out to the new location using the same row address, but a write offset of 4. The address
sent to the row decoder is incremented (although the contents of the two registers remain unchanged), and the
procedure continues with the next row.

Using two registersinstead of one allows each row to be moved with asingle read and a single write, without having
to update the register as to which address to read from or writeto. A 1-bit signal controlsthe 2:1 multiplexer that
chooses between the two offsets. There are also two cycles necessary to initialize the two registers. The total
number of read/write cycles required to move aconfiguration is:

<#rows>* 2+ 2

This structure also allows for partial run-time reconfiguration, where most of the structure of a configuration isleft
as-is, but small parts of it are changed. One example of thistype of operation would be a multiply-accumulate with
aset of constants that change over time, such as with atime-varying finite impulse response (FIR) filter. A generic
exampleisshown in Figure 22. The changed memory cells are shown in adarker shade.
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Figure 22: Portionsof aconfiguration can bealtered at run-time. Thisexample shows small modifications
to asingle row of a configuration. Changed configuration information is shown in a darker shade.

First, the row to be partially programmed must be read back into the staging area. Then this row is partidly
modified (through selectively overwriting the staging area) to include the new configuration. Finally, the modified
row is written back to the array, preserving the configuration information aready present in the row. Thisis
repeated for each altered row in the configuration.

For each row to be altered in the configuration, there is one read of the origina row data, one or more writes to
change the datain the staging area, and a single write back to the array from the staging area. Thisisin additionto a
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singlewriteto an offset register for the configuration offset. Thetotal number of read/write cyclesrequired to place
apartia -row configuration onto the array is:

<# rowsaltered> * 2 + <total # changed words> + 1

Xilinx Virtex for Relocation and Defragmentation

Relocation and defragmentation can also be performed, with some limitations, in one of the current commercial
FPGAs. Aswe have stated previoudly, the staging area of the R/D FPGA is similar to what is present in Xilinx's
Virtex FPGA [Xilinx99]. Inthis FPGA, thisstructureisreferred to as the Frame Data Input Register, where aframe
isacolumn of configuration information (as opposed to our design, which isorganized in rows). Theframe register
isessentially ashift register that isloaded serially with the configuration information for aframe. Thisinformation
is then transferred to the FPGA in parallel to a location supplied by the CPU (making the FPGA partialy
reconfigurable on a frame-by-frame basis). Although the frame register does not contain all of the important
features of the R/D FPGA staging area, it can be used in such away as to provide rel ocation and defragmentation
ability. Instead of performing the relocation of the configuration at the FPGA itself, the CPU would be required to
compute the new destination address of each frame, and send this address to the FPGA. Also, because the Virtex
architecture does not include virtual 1/O hardware, the configurations themselves must include a method to allow
input and output values to be placed on wires desighated as chip-wide busses for those signals. Each configuration
would be required to propagate al of the the bussesrequired in all configurations that could be present onthe FPGA
at the sametime.

However, this method of providing virtualized 1/0 uses the limited FPGA routing resources that may be required for
signals within the actual configuration. Additionally, since the CPU is now responsible for computing the new
addresses of each frame, it is performing many bit-wise address cal culations that are not required in the R/D model
we have presented. Finaly, to providefull partial run-time reconfiguration, the frame register should be addressable
to allow for the partia run-time reconfiguration shown in the last example in the previous section. Although
Xilinx’s Virtex FPGA is similar in design to the R/D FPGA, it is lacking a number of features that would provide
for easy relocation and defragmentation of configurations. However, the similarity it does share with our design
doesindicate the feasibility of our proposed programming structure.

Cache for R/D FPGA

An additional method to reduce the CPU time required for configuration operations would be to attach an on-chip
cache to the staging area, such asin Figure 23. Rows of configuration information could then be held in the cache.
The full details of the actual cache structure are left open. However, the easiest method for uniquely identifying a
given row is through the use of a configuration number in conjunction with the position of the row within that
configuration.
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Figure 23: A cache can be attached to the staging area of the R/D FPGA. Entire configuration rows can be
fetched from the cache into the staging area, eliminating the per-word loading time required to fill the
staging areafrom the CPU. This cache could be built out of either DRAM or SRAM.

For rows of configuration information that are already present in the cache, the CPU would be freed from the
operations necessary to send each word of the row to the staging area. This therefore reduces the latency of
retrieving this row from the CPU's memory, and the actual programming of the array would be performed much
more quickly. The entire row would be read from the cache in a single operation, rather than the multiple word
writes to the staging area from the CPU. Also, the reading of data from the cache could overlap the writing of the
previousvalue. If an entire configuration was held in the cache, the number of read/write cycles required to place it
onto the array would only be:

<# rows> + 2

Model Area and Performance

We modeled the sizes of the basic partialy reconfigurable FPGA and the R/D FPGA using the same structures
presented earlier inthisthesis. Again, the sizesare estimated using the sizes of tileable components. We used small
maodifications to the hardware of a basic partially reconfigurable FPGA design to create our R/D FPGA design.

The column decoder of the partially reconfigurable system was unnecessary in the R/D version because the staging
areais exactly the width of the memory array, and was therefore removed for the R/D size model. There were aso
severa additions to the partially reconfigurable FPGA design to create the R/D FPGA. The staging area structure
includes the addition of staging area SRAM, output drivers to allow the CPU to read the staging area, and the small
decoder for writing to it. Because the row and column decoders serve anidentical function but the orientation of the
row decoder layout makes it smaller, the row decoder layout is used here instead of the column decoder layout.

Additionally, the main row decoder for the array was augmented with two registers, a 2:1 multiplexer for choosing
between the registers, and an adder to sum the offset from one of the registers with the incoming row address.

For NRow (NRow?3 4) rows and NCol (NCal 3 8) 32-bit columns of programming bits, the areaof the programming
structurein | ? for the R/D FPGA is:
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R/D FPGA = <#prog. bits> * <prog. bit area> + <row decoder area> + <I/O tri-state area>
+ <daging areaarea> + <staging row decoder area> + <staging /O tri-state area>
+ 2* <row offset register area> + <adder area> + <2:1 mux area>

= NRow* (NCol * 32) * 1309 + NRow * (476 + 392 ceil(lg NRow))
+ (NCol * 32) * 11407.5 + (NCol * 32) * 1309 + NCol * (476 + 392 * ceil(lg NCal))
+ 32* 11407.5 + 2* ceil(lgNRow) * 8730 + ceil(lg NRow) * 11352 + ceil(lg NRow) * 1156

=NRow * NCol * 41888 + NRow * 476 + NRow * ceil(Ig NRow)) * 392
+ NCol * 407404 + NCol * ceil(Ig NCal)) * 392 + ceil(lg NRow) * 29968 + 365040

Table 4 lists the full-chip area equation for the R/D FPGA along with the equation for the partialy reconfigurable
FPGA for comparison.

Programming . 2
Structure Area Equation (I 9)
Partial NRow * NCol * 260336 + NRow * 476 + NRow Ig NRow * 392
+ NCol * 367217.5 + NCol Ig NCol * 487.5
NRow * NCol * 260336 + NRow * 476 + NRow |g NRow * 392
R/D FPGA + NCol * 407404 + NCol IgNCol * 392 +Ig NRow * 29968
+ 365040

Table 4: The chip area equation for the R/D FPGA. The partially reconfigurable area equation is repeated
here for comparison.

We compared the sizes of the base partially reconfigurable FPGA and the R/D FPGA, each modeled with a megabit
(2%° bits) of configuration datain asquare layout (# rows = # 1 bit columns). There are 1024 rows, addressed using
10 bits. For the columns there are 32 32-bit columns, addressed by five bits. The area of the partialy

reconfigurable array was calculated to be 8547 X 10° & whilethe areaof the R/D FPGA was calcul ated to be 8.549
x 10° &, adifference of .0002%. According to this comparison, the R/D FPGA has only anegligible size increase
over abasic partially reconfigurable FPGA. Figure 24 shows the result of applying relocation and defragmentation
to the partially reconfigurable FPGA, comparing it to the partially reconfigurable and the multi-context designs.
The R/D FPGA halves the configuration overhead shown by the base partially reconfigurable array. Thistrandates
to an improvement by afactor of 11 over the serially-programmed single context FPGA.
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Figure 24: A graph of normalized configuration overheads given a fixed area resource for the different
FPGA programming architectures: partially reconfigurable, multi-context with 4 contexts, and the
Relocation / Defragmentation (R/D) FPGA. The plain lines indicate upper bounds, while the lines with
triangles indicate the lower bounds.

The area of the virtualized 1/0 was not considered for this area model. The area impact would depend on the
number of input and output lines at each column of the array.

Conclusion

Reconfigurable computing is becoming an important part of research in the FPGA and VLSI/CAD communities. By
placing the computationally intense portions of an application onto the reconfigurabl e hardware, that application can
be greatly accelerated. Similar to software-only implementations, the mapped circuit isflexible, and can be changed
over the lifetime of the system or even the course of execution of the application. Additionally, the computations
mapped to the reconfigurable logic are executed in hardware, and therefore have performance similar toan ASIC.
This performance stems from bypassing the fetch-decode-execute cycle of traditional microprocessors as well as
allowing parallel execution of multiple operations.

Run-time reconfiguration provides a method to accelerate a greater portion of a given application by allowing the
configuration of the hardware to change over time. Apart from the benefits of added capacity through the use of
virtua hardware, run-time reconfiguration also allows circuits to be optimized based on run-time conditions. Inthis
manner, performance of areconfigurable system can approach or even surpass that of an ASIC.

The use of relocation and defragmentation greatly reduces the configuration overhead encountered in run-time
reconfigurable computing. While partial reconfiguration can improve the configuration overhead by more than a
factor of 7 over the serially programmed FPGA, the ability to perform relocation and defragmentation of
configurationsincreased this afactor of 11.

We have discussed a method to perform the relocation of configurations on the 6200 that allows horizontal and
vertical flips, horizontal and vertical offsets, and 90° rotations. These five operations allow usto perform any valid
spatial manipulation of a configuration with a simple pipelined set of steps, minimizing the work required by the
CPU. Although a stylized version of the Xilinx 6200 FPGA can be converted to handle relocation and even
defragmentation, the re-introduction of some of the realities of the architecture poses significant drawbacks to our
modifications. The hierarchical routing structure, for example, places constraints upon our ability to relocate
configurations to new locations. The lack of a hardware-based virtual 1/O system requires that the connections
between the configurations and the 1/0 pins they use be re-routed for each relocation. The design isalso lessthan
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ideally suited to defragmentation. One of our solutions was to read the configuration off of the array and reload it,

which could be a time-consuming operation. Alternatively, neighbor-to-neighbor routing for the programming

information could be added to allow configurationsto be shifted on-chip, but would likely cause large areaincreases
and would prohibit complex operations such as flips or rotations. The time complexity of the calculationsinvolved
to compute the new locationsis also very high.

Wethen presented anew architecture design based on the ideas of rel ocation and defragmentation. Thisarchitecture
avoids the position constraints imposed by the actual 6200 design by ensuring a homogeneous logic and routing
structure. The use of the staging area buffer together with the offset registers and the row address adder provide a
quick and simple method for performing relocation and defragmentation of configurations. The one-dimensional
nature causes both the reconfiguration hardware and the software that controls it to be simpler than in the 6200
system.

The R/D FPGA exploits the virtues of relocation and defragmentation in order to reduce the overhead of
configuration, which is a great concern in run-time reconfigurable applications. The architecture is designed to
require little additional run-time effort on the part of the CPU, and requires only anegligible areaincrease (.0002%)
over abasic partially reconfigurable FPGA. Furthermore, because the design shares some key features with a new
commercial FPGA, our R/D FPGA design is a feasible next step in the advancement of FPGA programming
architectures.
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