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ABSTRACT 

Architecture Generation of Customized Reconfigurable Hardware 
 

Katherine Leigh Compton 
 

Reconfigurable hardware is ideal for use in systems-on-a-chip (SoCs), achieving 

hardware speeds but also flexibility not available with more traditional custom circuitry.  

Traditional FPGA structures can be used in an SoC, but they suffer from significant 

overhead due to their generic nature.  Alternatively, for cases when the application 

domain of the SoC is known, the reconfigurable hardware can be optimized for that 

domain.  The Totem Project focuses on the automatic creation of customized 

reconfigurable architectures, including high-level design, VLSI layout, and associated 

custom place and route tools. 

This thesis focuses on the high-level design phase, or “Architecture Generation”.  

Two distinct categories of reconfigurable architectures can be created: highly optimized 

near-ASIC designs with a very low degree of reconfigurability, and flexible architectures 

with a one-dimensional segmented routing structure.  Each of these design methods 

shows significant improvements through tailoring the architectures to the given 

application area.  The cASIC designs are on average up to 12.3x smaller than an FPGA 

solution with embedded multipliers and 2.2x smaller than a standard cell implementation.  

The more flexible architectures, able to support a wider variety of circuits, are on average 

up to 5.5x smaller than the FPGA solution, and close in area to standard cells. 
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Chapter 1 
 
 
 
Introduction

As chip fabrication techniques continue to advance and become more refined, the 

concept of "System-on-a-Chip" (SoC) will further evolve and grow in popularity.  With 

system components moved from on-board to on-chip, communication times and 

bandwidth are greatly improved, raising the question of exactly what type of hardware to 

include on SoCs.  Reconfigurable hardware [Compton02a] shows great potential for SoC 

use, providing hardware speeds, while maintaining a level of flexibility not available with 

traditional custom circuitry.  This flexibility is the key to allowing both hardware reuse 

and post-fabrication modification. 

The core of a reconfigurable architecture is a set of hardware resources, including 

logic and routing, whose function is controlled by on-chip configuration SRAM.  

Programming the SRAM, either at the start of an application or during execution, allows 

the hardware functionality to be configured and reconfigured, permitting reconfigurable 

systems to implement different algorithms and applications on the same hardware. 

This reusability makes reconfigurable hardware a prime candidate as a subsystem 

for SoCs.  Rather than using separate custom circuits to accelerate each potential 
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application, a single reconfigurable architecture can be used.  This reconfigurable logic 

can implement circuits from each application in hardware as needed. 

Field-programmable gate arrays (FPGAs) [Brown92a, Rose93] are a widely 

available form of reconfigurable hardware.  One major difficulty of using FPGAs for 

DSP, networking, and other applications is their generic design.  FPGAs attempt to fulfill 

the computation requirements of any application that might be needed.  However, 

because different application types have different requirements, a large amount of 

hardware (and silicon area) is wasted if the applications are actually constrained to a 

limited range of computations.  While the flexibility of general-purpose FPGAs has its 

place in situations where computational requirements are not known in advance, 

specialized on-chip hardware is commonly used to obtain greater performance for a 

specific set of compute-intensive calculations. 

Reconfigurable architectures can be made more efficient if the algorithm types are 

known in advance.  In this case, the amount of "useless" hardware and programming 

points that would otherwise occupy valuable area or slow the computations can be 

reduced or removed.  Architectures such as RaPiD [Ebeling96], PipeRench 

[Goldstein00], and Pleiades [Abnous96] target multimedia and DSP domains by using 

coarser-grained units (such as 16-bit ALUs and multipliers in the case of RaPiD), and 

more restricted routing structures to implement the targeted applications more efficiently. 

Even a fixed reconfigurable architecture containing coarse-grained units can 

suffer overheads when the logic and routing resources deviate significantly from the 
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needs of the circuits implemented using this hardware.  To address this issue, the RaPiD 

group has proposed the synthesis of custom RaPiD arrays for different application sets 

[Cronquist99b].  While specialized reconfigurable architectures are theoretically 

beneficial, they would be impractical in practice if they needed to be manually designed 

for each application group.  Each of these optimized reconfigurable structures can be 

quite different, depending on the application requirements.  Unfortunately, this 

contradicts a fundamental principle of FPGAs and reconfigurable hardware: quick time-

to-market with low design costs. 

Therefore, an automatic solution that allows designers to create reconfigurable 

structures for a given range of computations should be considered.  These application 

domains could include cryptography, DSP or a sub-domain of DSP, specific scientific 

data analysis, or any other compute-intensive area.  This concept is different from 

traditional ASICs in that some level of hardware programmability is retained.  This 

programmability gives the custom architecture a measure of flexibility beyond what is 

available in an ASIC, and provides the benefits of run-time reconfigurability.  Run-time 

reconfiguration can then be employed to allow for near ASIC-level performance with a 

much smaller area overhead due to the re-use of area-intensive hardware components.  

The resulting automatically-generated reconfigurable hardware will then be embedded 

into an SoC or ASIC design. 

The Totem Project [Compton01, Compton02d, Phillips02, Sharma02, 

Compton03, Sharma03] is an attempt to automatically generate custom reconfigurable 
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architectures based on an input set of applications.  The project goal is to provide a fully 

automatic design path, greatly decreasing the cost of new architecture development.  This 

includes the high-level architecture design, the transistor level layout of those 

architectures, and place and route tools supporting the customized architectures. 

The work presented here focuses on the high-level architecture design, also 

known as architecture generation.  Depending on the algorithms and the stated 

parameters, this architecture generation could provide a design anywhere within the range 

between ASICs and FPGAs.  Very constrained computations would be primarily fixed 

ASIC logic, while more unconstrained domains would require near-FPGA functionality.  

The issues involved in these two types of specialized architecture generation will be 

discussed, and algorithms will be presented that demonstrate significant area savings over 

less-specialized designs.  It should be stressed that these architectures are custom 

reconfigurable logic and are intended to be implemented directly into silicon, not an 

FPGA structure.  The very constrained ASIC-like architectures, discussed in Chapter 6, 

are on average up to 12.3x smaller than an FPGA implementation and 2.2x smaller than a 

standard cell layout.  The more flexible architectures, discussed in Chapter 7, support a 

wider variety of circuits and are on average up to 5.5x smaller than FPGA 

implementations.   

This dissertation is organized as follows: 
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• Chapter 2: Reconfigurable Computing provides technical background, 

discussing the structure and operation of FPGAs and other types of 

reconfigurable hardware. 

• Chapter 3: Reconfigurable Hardware in SoCs describes current systems 

employing reconfigurable logic in Systems-on-a-Chip. 

• Chapter 4: Research Framework provides architectural details of RaPiD 

[Ebeling96, Cronquist99a], the structural basis for the work presented 

here, and provides a description of the overall Totem tool flow. 

• Chapter 5: Logic Generation describes the method used to create the logic 

portion of the reconfigurable architectures, which is common to both 

architecture generation methods presented in Chapter 6 and Chapter 7.  It 

also seeks to define key terminology required for discussing 

reconfigurable architecture generation using a set of netlists as the 

specification. 

• Chapter 6: Configurable ASIC presents two different algorithms, Greedy 

and Clique Partitioning, for the generation of very ASIC-like customized 

reconfigurable architectures. 

• Chapter 7: Flexible Architectures discusses three algorithms, Greedy 

Histogram, Add Max Once, and Add Min Loop, used to create more 

flexible specialized architectures in the RaPiD design style. 
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• Chapter 8: Track Placement focuses on one of the design issues from 

Chapter 7, the arrangement of a pre-determined quantity of routing 

resources within a single channel.  The track placement problem is defined 

and a metric is presented to measure track placement quality.  An optimal 

algorithm to perform track placement is given, along with a near-optimal 

relaxed version. 

• Chapter 9: Flexibility Testing discusses methods that can be used to test 

the flexibility of generated reconfigurable architectures.  The flexibility of 

the architecture generation algorithms from Chapter 7 is then analyzed 

using these techniques. 

• Chapter 10: Conclusions summarizes the contributions of this work, and 

lists a number of areas of future effort. 
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Chapter 2 
 
 
 
Reconfigurable Computing 

Two primary methods exist in conventional computing for the execution of 

algorithms. One method utilizes hardwired technology, either an Application Specific 

Integrated Circuit (ASIC), or a group of individual components forming a board-level 

solution, to perform the operations in hardware.  ASICs are designed to perform a 

specific computation quickly and efficiently, but cannot be altered after fabrication. 

Modification of the circuit requires redesign and re-fabrication of the chip.  This is an 

expensive process, especially when replacing ASICs in a large number of deployed 

systems.  Board-level circuits are also somewhat inflexible, often requiring a board 

redesign and replacement in the event of changes to the application. 

The second method provides a far more flexible solution.  Software-programmed 

microprocessors execute a set of instructions to perform a computation.  System 

functionality can be altered without hardware changes simply by reprogramming the 

software.  However, the price of this flexibility is performance, which is far below that of 

an ASIC.  Also, microprocessors consume more power than an ASIC.  The processor 

must read each instruction from memory, decode its meaning, and only then execute it.  
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This leads to a high execution overhead for each individual operation.  Additionally, the 

possible instructions that may be used by a program are determined at the processor 

design time.  Any other operations that are to be implemented must be built out of one or 

more existing instructions.  

Reconfigurable computing fills the gap between hardware and software, achieving 

greater performance than software, while maintaining a higher level of flexibility than 

hardware.  Reconfigurable devices, including field-programmable gate arrays (FPGAs), 

contain an array of computational elements whose functionality is determined through 

multiple programmable configuration bits.  These elements, also known as logic blocks, 

are connected using a set of programmable routing resources.  Custom digital circuits are 

mapped to reconfigurable hardware by computing the logic functions of the circuit within 

the logic blocks, and using the configurable routing to connect the blocks together to 

form the necessary circuit. 

FPGAs and reconfigurable computing have been shown to accelerate a variety of 

applications.  Data encryption can leverage both parallelism and fine-grained data 

manipulation.  An implementation of the Serpent Block Cipher in the Xilinx Virtex 

XCV1000 shows a throughput increase by a factor of over 18 compared to a Pentium Pro 

PC running at 200MHz [Elbirt00].  Additionally, a reconfigurable computing 

implementation of sieving for factoring large numbers (useful in breaking encryption 

schemes) was accelerated by a factor of 28 over a 200 MHz UltraSparc workstation 

[Kim00a].  The Garp architecture shows a comparable speed-up for DES [Hauser97], as 
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does an FPGA implementation of an elliptic curve cryptography application [Leung00].  

PNN classification has been accelerated by a factor of 63 using reconfigurable hardware 

[Chang99], and the SPIHT wavelet-based image compression algorithm has been 

accelerated by a factor of 457 [Fry02]. 

Other recent applications shown to exhibit significant speedups using 

reconfigurable hardware include: automatic target recognition [Rencher97]; string pattern 

matching [Weinhardt99]; Golomb Ruler Derivation [Dollas98, Sotiriades00]; transitive 

closure of dynamic graphs [Huelsbergen00]; Boolean satisfiability [Zhong98]; data 

compression [Huang00]; and genetic algorithms for the traveling salesman problem 

[Graham96]. 
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Figure 2.1: Compute-intensive sections of application code are mapped onto the reconfigurable 
hardware. 

In order to achieve these performance benefits while supporting a wide range of 

applications, reconfigurable systems usually combine reconfigurable logic with a general-

purpose microprocessor.  The processor performs operations that cannot be done 

efficiently in the reconfigurable logic, such as data-dependent control and some memory 
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accesses, while computational cores are mapped to the reconfigurable hardware, as in 

Figure 2.1.  This reconfigurable logic consists of either commercial FPGAs or custom 

configurable hardware. 

Compilation environments for reconfigurable hardware range from tools that 

assist programmers in hand mapping of a circuit to hardware, to complete automated 

systems that take a circuit description in a high-level language and translate it into a 

configuration for a reconfigurable system.  The first step in the design process is 

partitioning a program into the sections that will be implemented in hardware and the 

sections executed in software on the host processor.  Computations destined for 

reconfigurable hardware are synthesized into a gate level or register transfer level circuit 

description.  This circuit is mapped onto the logic blocks within the reconfigurable 

hardware during the technology mapping phase.  These mapped blocks are then placed 

into the specific physical blocks within the hardware, and the pieces of the circuit are 

connected using the reconfigurable routing.  After compilation, the circuit is ready to be 

implemented by the reconfigurable hardware at run-time.  These steps, when performed 

using an automatic compilation system, require little effort by the programmer to utilize 

the reconfigurable hardware.  However, performing some or all of these operations 

manually frequently results in a more highly optimized circuit for performance-critical 

applications. 

Since FPGAs must pay an area penalty because of their reconfigurability, device 

capacity is a concern.  Assuming that the hardware can only be programmed at power-up, 
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a very large programmable device might be required to implement all of the functions in 

a program that can benefit from hardware-acceleration.  Alternately, if a smaller device is 

used not all the functions may fit within the device, leaving some of the acceleration 

potential untapped. 

Additional areas of the program may be accelerated by reusing the reconfigurable 

hardware during program execution, a process known as run-time reconfiguration (RTR).  

While this computing style allows for the acceleration of a greater portion of an 

application, it also limits the potential acceleration by introducing configuration 

overhead.  Because configuration can take milliseconds or longer, rapid and efficient 

configuration is a critical issue.  Configuration compression and configuration caching 

are examples of methods that can be used to reduce this overhead [Li02]. 

This chapter provides a brief overview of the hardware and software issues of 

reconfigurable computing.  First is a discussion of the technology required for 

reconfigurable computing, followed by an examination of the various hardware structures 

used in reconfigurable systems.  Next is a brief look at the software required to 

implement algorithms on reconfigurable systems.  Finally, run-time reconfigurable 

systems are discussed, which further utilize the intrinsic flexibility of configurable 

computing platforms by optimizing the hardware not only for different applications, but 

also for different operations within a single application. 

This chapter does not cover every technique and research project in the area of 

reconfigurable computing.  For a comprehensive overview of the field, there are a 



 

 

12

number of survey articles on the topic, covering more recent work [Compton02a], or 

older techniques and systems [Rose93, Hauck96, Vuillemin96, Mangione-Smith97, 

Hauck98a]. 

2.1 Technology 

Some of the concepts behind reconfigurable computing have existed for some 

time [Estrin63].  Even general-purpose processors use some of the same basic ideas, such 

as reusing computational components for independent computations, and using 

multiplexers to control the routing between these components.  However, the term 

reconfigurable computing, as it is used in current research, refers to systems 

incorporating some form of hardware programmability—customizing hardware operation 

using a number of physical control points.  These control points can be changed at 

different points in time, allowing the same hardware to execute different applications.  

Recent advances in reconfigurable computing are primarily derived from the technologies 

developed for FPGAs in the mid-1980s.  FPGAs were originally created to serve as a 

hybrid device between PALs and Mask-Programmable Gate Arrays (MPGAs).  Like 

PALs, FPGAs are fully electrically programmable; the physical design costs are 

amortized over multiple application circuit implementations, and the hardware 

customizations can occur almost instantaneously.  Like MPGAs, FPGAs can implement 

very complex computations on a single chip, with current devices containing the 

equivalent of over a million gates.  Because of these features, FPGAs had been primarily 
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viewed as glue-logic replacement and rapid-prototyping vehicles.  However, the 

flexibility, capacity, and performance of these devices has opened up completely new 

avenues in high performance computation, forming the basis of reconfigurable 

computing. 

2.1.1 Configurable Hardware 
Most current FPGAs and reconfigurable devices are SRAM-programmable1 

(Figure 2.2a), meaning that SRAM bits are connected to the configuration points in the 

FPGA, and programming the SRAM bits configures the FPGA.  Thus, these chips can be 

programmed and reprogrammed about as easily as a standard static RAM.  In fact, one 

research project, the PAM project [Vuillemin96], considers a group of one or more 

FPGAs to be a RAM unit that performs computation between the memory write (sending 

the configuration information and input data) and memory read (reading the results of the 

computation).  This led to the term “Programmable Active Memory” or PAM. 

DATA

READ or WRITE

Q

Q
Routing
Resource #1

P

Routing
Resource #2DATA

READ or WRITE

Q

Q
Routing
Resource #1

P

Routing
Resource #2

 
                                             (a)                                                      (b) 

Figure 2.2: (a) A programming bit for SRAM-based FPGAs [Xilinx94, Hauck98a] and (b) a 
programmable routing connection. 

                                                 

1 The term “SRAM” is technically incorrect for many FPGA architectures, given that the 
configuration memory may or may not support random access.  In fact, the configuration memory tends to 
be continually read in order to perform its function.  However, this is the generally accepted term in the 
field and correctly conveys the concept of static volatile memory using an easily understandable label. 
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One example of how the SRAM configuration points can be used is to control 

routing within a reconfigurable device [Chow99].  To configure the routing on an FPGA, 

typically a pass gate structure is employed (Figure 2.2b).  Here the programming bit will 

turn on a routing connection when it is configured with a true value, allowing a signal to 

flow from one wire to another, and will disconnect these resources when the bit is set to 

false.  With a proper interconnection of these elements, which may include millions of 

routing choice points within a single device, a rich routing fabric can be created. 
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                                            (a)                                                          (b) 

Figure 2.3: (a) A D flip-flop with optional bypass, and (b) a 3-input LUT [Hauck98a]. 

Another example of how these configuration bits may be used is to control 

multiplexers, which choose between the output of different logic resources within the 

array.  For example, to provide optional state-holding elements, a D flip-flop (DFF) may 

be included with a multiplexer to select whether the latched or unlatched signal value will 

be forwarded (Figure 2.3a).  In circuits that require state-holding elements, the 

programming bits that control the multiplexer are configured to select the DFF output, 

while circuits not requiring this functionality can choose the bypass route.  Similar 



 

 

15

structures can choose between other on-chip functionalities, including fixed-logic 

computation elements, memories, carry chains, or other functions. 

Finally, the configuration bits may be used as control signals for a computational 

unit or as the basis for computation itself.  As a control signal, a configuration bit may 

determine whether an ALU performs an addition, subtraction, or other logic 

computations.  Alternatively, the configuration bits themselves form the result of the 

computation with a structure such as a lookup table, also known as a LUT (Figure 2.3b).  

These LUTs are essentially small memories provided for computing arbitrary logic 

functions.  LUTs can compute any function of N inputs (where N is the number of 

control signals for the LUT’s multiplexer) by programming the 2N programming bits with 

the truth table of the desired function.  Thus, if all programming bits except the one 

corresponding to the input pattern 111 were set to zero, a 3-input LUT would act as a 3-

input AND gate, while programming it with all ones except in 000 would instead 

compute a NAND. 

2.1.2 Traditional FPGAs 
Before discussing the detailed architecture design of reconfigurable devices in 

general, the logic and routing of FPGAs will be described.  These concepts apply directly 

to reconfigurable systems using commercial FPGAs, such as PAM [Vuillemin96] and 

Splash 2 [Arnold92, Buell96].  Hardware concepts that apply specifically to architectures 

designed for reconfigurable computing, and variations on the generic FPGA description 
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provided here, are discussed following this section.  More detailed surveys of FPGA 

architectures can be found elsewhere [Brown92a, Rose93]. 

Since the introduction of FPGAs in the mid-1980s, many different investigations 

have examined what computation element(s) should be built into the array [Rose93], 

including FPGAs with PAL-like product term arrays, multiplexer-based functionality, or 

basic fixed functions such as simple NAND and XOR gates.  Many of these types of 

architectures have been built.  However, it is fairly well established that the best function 

block for a standard FPGA, a device whose primary role is the implementation of random 

digital logic, is the one found in the first devices deployed—the LUT (Figure 2.3b).  As 

previously described, an N-input LUT is essentially a memory that can compute any 

function of up to N inputs when programmed appropriately.  This flexibility, with 

relatively simple routing requirements (each input requires routing to a single multiplexer 

control input) is very powerful for logic implementation.  Although LUTs are less area-

efficient than fixed logic blocks, such as a standard NAND gate, most current FPGAs use 

less than 10% of their chip area for logic, devoting the majority of the silicon real estate 

to routing resources. 

The typical FPGA contains a logic block with one or more 4-input LUT(s), 

optional D flip-flops (DFF), and some form of fast carry logic (Figure 2.4).  The LUTs 

allow any function to be implemented, providing generic logic resources.  The flip-flop 

can be used for pipelining, registers, state-holding functions for finite state machines, or 

any other situation where clocking is required.  Flip-flops typically include 
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programmable set/reset lines and clock signals, which may come from global signals 

routed on special resources, or via the standard interconnect structures from some other 

input or logic block.  The fast carry logic is a special resource provided in the cell to 

speed up carry-based computations, including addition, parity, wide AND operations, and 

other functions.  These resources bypass the general routing structure, connecting directly 

between neighbors in the same column.  Since very few routing choices exist in the carry 

chain, this results in less delay on the computation.  The inclusion of these resources can 

significantly speed up carry-based computations. 

4-LUT

carry 
logic

Cout Cin

OUT

DFF

I1  I2  I3  I4

4-LUT

carry 
logic

Cout Cin

OUT

DFF

I1  I2  I3  I4

 
Figure 2.4: A basic logic block, with a 4-input LUT, carry chain, and a D-type flip-flop with 

bypass. 

In addition to experimentation in FPGA logic block architectures, investigation of 

interconnect structures has also been done.  As logic blocks have basically standardized 

on LUT-based structures, routing resources have become primarily island-style, with 

logic surrounded by general routing channels. 
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Figure 2.5: A generic island-style FPGA routing architecture. 

Most FPGA architectures organize their routing structures as a relatively smooth 

sea of routing resources, allowing fast and efficient communication along rows and 

columns of logic blocks.  As shown in Figure 2.5, the logic blocks are embedded in a 

general routing structure, with input and output signals attaching to the routing fabric 

through connection blocks.  The connection blocks provide programmable multiplexers, 

selecting signals in the given routing channel that will be connected to the logic block’s 

terminals.  Signals flow from the logic block into the connection block, then along longer 

wires within the routing channels.  At the switchboxes, connections between the 

horizontal and vertical routing resources allow signals to change their routing direction.  

Once a signal has traversed through routing resources and intervening switchboxes, it 

arrives at the destination logic block through one of its local connection blocks.  In this 
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manner, relatively arbitrary interconnections can be achieved between the logic blocks in 

the system. 

Within a given routing channel, many different lengths of routing resources may 

exist.  Some local interconnections may only move between adjacent logic blocks (i.e. 

carry chains), providing high-speed local interconnect.  Medium length lines may run the 

width of several logic blocks, providing longer distance interconnect.  Finally, long lines 

that run the entire chip width or height may provide for more global signals.  Also, many 

architectures contain special “global lines” that provide high-speed, and often low skew, 

connections to all of the logic blocks in the array.  These are primarily used for clocks, 

resets, and other truly global signals. 

While the routing architecture of an FPGA is typically quite complex—the 

connection blocks and switchboxes surrounding a single logic block typically have 

thousands of programming points—they are designed to support fairly arbitrary 

interconnection patterns.  Most users ignore the exact details of these architectures and 

allow the automatic physical design tools to choose appropriate resources to achieve a 

given interconnect pattern. 

2.2 Hardware 

Reconfigurable computing systems use FPGAs or other programmable hardware 

to accelerate algorithm execution by mapping compute-intensive calculations to the 

reconfigurable substrate.  These hardware resources are frequently coupled with a 
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general-purpose microprocessor responsible for controlling the reconfigurable logic and 

executing program code that cannot be efficiently accelerated.  In very closely coupled 

systems, the reconfigurability lies within customizable functional units on the regular 

datapath of the microprocessor.  Alternatively a reconfigurable computing system can be 

as loosely coupled as a networked stand-alone unit.  Most reconfigurable systems are 

categorized somewhere between these two extremes, frequently with the reconfigurable 

hardware acting as a coprocessor to a host microprocessor.  The programmable array 

itself can be comprised of one or more commercially available FPGAs, or can be a 

custom device designed specifically for reconfigurable computing. 

The design of the actual computation blocks within the reconfigurable hardware 

varies from system to system.  Each unit of computation, or logic block, can be as simple 

as a 3-input lookup table (LUT), or as complex as a 16-bit ALU.  This difference in block 

size is commonly referred to as the granularity of the logic block, where the 3-bit LUT is 

an example of a fine-grained computational element, and a 16-bit ALU is an example of a 

coarse-grained unit.  Finer grained blocks are useful for bit-level manipulations, while the 

coarse-grained blocks are better optimized for standard datapath applications.  Some 

architectures employ different sizes or types of blocks within a single reconfigurable 

array in order to efficiently support different types of computation.  For example, 

memory is frequently embedded within the reconfigurable hardware to provide temporary 

data storage, forming a heterogeneous structure composed of both logic blocks and 

memory blocks [Ebeling96, Altera98, Lucent98, Marshall99, Xilinx01]. 
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The routing between the logic blocks within the reconfigurable hardware is also 

of great importance.  Routing contributes significantly to the overall area of the 

reconfigurable hardware.  However, when the percentage of logic blocks used in an 

FPGA becomes very high, automatic routing tools can have difficulty achieving the 

necessary connections between the blocks.  Therefore, good routing structures are 

therefore essential to ensuring a design can be successfully placed and routed onto the 

reconfigurable hardware. 

Once a circuit has been programmed onto reconfigurable hardware, it can be used 

by the host processor during program execution.  The run time operation of a 

reconfigurable system occurs in two distinct phases: configuration and execution.  The 

host processor controls the programming of the hardware by sending it a stream of 

configuration data, which is used to define the actual hardware operation.  Configurations 

can be loaded either only at the start of the program, or periodically during runtime, 

depending on the design of the system.  Further discussion of run-time reconfiguration 

(the dynamic reconfiguration of devices during execution) appears in section 2.4. 

The actual execution model of the reconfigurable hardware varies among systems.  

For example, the NAPA system [Rupp98] by default suspends the execution of the host 

processor during execution on the reconfigurable hardware.  However, simultaneous 

computation can occur with the use of fork and join primitives, similar to multiprocessor 

programming.  REMARC [Miyamori98] is a reconfigurable system that uses a pipelined 

set of execution phases within the reconfigurable hardware.  These pipeline stages 



 

 

22

overlap with the pipeline stages of the host processor, allowing for simultaneous 

execution.  In the Chimaera system [Hauck97], the reconfigurable hardware is constantly 

executing based upon the input values held in a subset of the host processor’s registers.  

A call to the Chimaera unit is in actuality only a fetch of the result value.  This value is 

stable and valid after the correct input values have been written to the registers and have 

filtered through the computation. 

2.2.1 Microprocessor Coupling 
Frequently, reconfigurable hardware is coupled with a traditional microprocessor.  

Programmable logic is sometimes inefficient at implementing certain operations, such as 

variable-length loops and branch control.  In order to run an application in a 

reconfigurable computing system most efficiently, those areas of the program that cannot 

be easily mapped to the reconfigurable logic are executed on a host microprocessor.  

Meanwhile, the areas with a high density of computation that can benefit from 

implementation in hardware are mapped to the reconfigurable logic.  Additionally, 

current run-time reconfigurable hardware generally requires an external structure, such as 

a processor, to control when reconfigurations should occur, and which configurations 

should be loaded. 

For the systems that use a microprocessor in conjunction with reconfigurable 

logic, there are several ways in which these two computation structures may be coupled, 

as Figure 2.6 shows.  First, reconfigurable hardware can be used solely to provide 
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reconfigurable functional units within a host processor [Razdan94, Wittig96, Hauck97].  

This allows for a traditional programming environment with the addition of custom 

instructions that may change over time.  Here, the reconfigurable units execute as 

functional units on the main microprocessor datapath, with registers used to hold the 

input and output operands. 
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Figure 2.6: Different levels of coupling in a reconfigurable system [Hauck98a].  Reconfigurable 
logic is shaded. 

Second, a reconfigurable unit may be used as a coprocessor [Hauser97, 

Miyamori98, Rupp98, Chameleon00].  A coprocessor is generally larger than a functional 

unit, and can perform computations without the constant supervision of the host 

processor.  Instead, the processor initializes the reconfigurable hardware and either sends 

the necessary data to the logic, or provides information on the location of the data in 

memory.  The reconfigurable unit performs the actual computations independently of the 

main processor, and returns the results after completion.  This type of coupling allows the 

reconfigurable logic to operate for a large number of cycles without intervention from the 
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host processor, and generally permits the host processor and the reconfigurable logic to 

execute simultaneously.  This reduces the overhead incurred by the use of the 

reconfigurable logic, compared to a reconfigurable functional unit that must 

communicate with the host processor each time a reconfigurable “instruction” is used.  

An idea that is a hybrid between the first and second coupling methods is the use of 

programmable hardware within a configurable cache [Kim00b].  In this situation, the 

reconfigurable logic is embedded into the data cache, which can be used as either a 

regular cache or as an additional computing resource, depending on the target application. 

Third, an attached reconfigurable processing unit [Vuillemin96, Annapolis98, 

Laufer99] behaves like an additional processor in a multiprocessor system or an 

additional compute engine accessed semi-frequently through external I/O.  The host 

processor's data cache is not visible to the attached reconfigurable processing unit, 

leading to a greater delay in communication between the host processor and the 

reconfigurable hardware when communicating configuration information, input data, and 

results. The communication is performed through specialized primitives similar to 

multiprocessor systems.  This type of reconfigurable hardware allows a great deal of 

computation independence by shifting large chunks of a computation over to the 

reconfigurable hardware. 

Finally, the most loosely coupled form of reconfigurable hardware is an external 

stand-alone processing unit [Quickturn99a, Quickturn99b], which communicates 

infrequently with a host processor (if present).  This model is similar to networked 
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workstations, where processing can occur for very long periods of time without much 

communication.  However, the large multi-FPGA systems such as those from Quickturn 

are marketed towards emulation rather than reconfigurable computing. 

Each of these styles has distinct benefits and drawbacks.  The tighter the 

integration of the reconfigurable hardware, the more frequently it can be used within an 

application or set of applications due to a lower communication overhead.  However, the 

hardware is unable to operate for significant portions of time without intervention from a 

host processor, and the amount of reconfigurable logic available is often quite limited.  

The more loosely coupled styles allow for greater parallelism in program execution, but 

suffer from higher communications overhead.  In applications that require a great deal of 

communication, this can reduce or remove any acceleration benefits gained through the 

use of reconfigurable hardware. 

2.2.2 Logic Block Granularity 
Most reconfigurable hardware is based upon a set of computation structures that 

are repeated to form an array.  These structures, commonly called logic blocks or cells, 

vary in complexity from a very small and simple block that can calculate a function of 

only three inputs, to a structure that is essentially a 16-bit ALU.  Some of these block 

types are configurable – the actual operation is determined by a set of loaded 

configuration data.  Other blocks are fixed structures, and the configurability lies in the 
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connections between them.  Granularity refers to the size and complexity of the 

computing blocks. 
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Figure 2.7: The functional unit from a Xilinx 6200 cell [Xilinx96]. 

An example of a very fine-grained logic block can be found in the Xilinx 6200 

series of FPGAs [Xilinx96], shown in Figure 2.7.  The functional unit from one of these 

cells can implement any two-input function and some three-input functions.  Although 

this type of architecture is useful for very fine-grained bit manipulation, it is too fine-

grained to efficiently implement many types of circuits, such as multipliers.  Similarly, 

finite state machines are frequently too complex to easily map to a reasonable number of 

very fine-grained logic blocks.  However, finite state machines are also too dependent 

upon single bit values to be efficiently implemented in a very coarse-grained architecture.  

This type of circuit is more suited to an architecture that provides more connections and 

computational power per logic block, while still providing sufficient capability for bit-

level manipulation. 

The logic cell in the Altera FLEX 10K architecture [Altera98] is a fine-grained 

structure that is somewhat coarser than the 6200.  This architecture mainly consists of a 
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single 4-input LUT with a flip-flop.  Also, there is specialized carry chain circuitry that 

helps to accelerate addition, parity, and other operations that use a carry chain.  These 

types of logic blocks are useful for fine-grained bit-level manipulation of data, which is 

frequently found in encryption and image processing applications.  Because the cells are 

fine-grained, computation structures of arbitrary bit widths can be created, which allows 

the implementation of datapath circuits that are based on data widths not implemented on 

the host processor (5 bit multiply, 21 bit addition, etc).  Reconfigurable hardware can not 

only take advantage of small bit widths, but also large data widths.  When a program uses 

bit widths in excess of what is normally available in a host processor, the processor must 

perform the computations using a number of extra steps to accommodate the full data 

width.  A fine-grained architecture can implement the full bit width in a single step, 

without the fetching, decoding, and execution of additional instructions, provided enough 

logic cells are available. 

A number of reconfigurable systems use a medium-grained logic block [Xilinx94, 

Hauser97, Haynes98, Lucent98, Marshall99].  Garp [Hauser97] is designed to perform a 

number of different operations on up to four 2-bit inputs.  Another medium-grained 

structure was designed to be embedded inside a general-purpose FPGA to implement 

multipliers of a configurable bit-width [Haynes98].  The logic block used in the 

multiplier FPGA is capable of implementing a 4×4 multiplication, or can be cascaded 

into larger structures.  The CHESS architecture [Marshall99] also operates on 4-bit 

values, with each cell acting as a 4-bit ALU.  Medium-grained logic blocks can 
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implement datapath circuits of varying bit widths, similar to the fine-grained structures.  

The ability to perform more complex operations of a greater number of inputs permits 

this structure to efficiently implement a wider variety of operations. 
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Figure 2.8: One cell in the RaPiD-I reconfigurable architecture [Ebeling96].  The registers, RAM, 
ALUs, and multiplier all operate on 16-bit values.  The multiplier outputs a 32-bit result, split into 
the high 16 bits and the low 16 bits.  All routing lines shown are 16-bit wide busses.  The short 
parallel lines on the busses represent configurable bus connectors. 

Very coarse-grained architectures are used primarily to implement word-width 

datapath circuits.  Because the logic blocks used are optimized for large computations, 

they perform these operations much more quickly (and consume less chip area) than a set 

of smaller cells connected to form the same type of structure.  Because their composition 

is static, they cannot leverage optimizations in the size of operands.  The RaPiD-I 

architecture [Ebeling96], shown in Figure 2.8, and the Chameleon architecture 

[Chameleon00], are examples of very coarse-grained designs.  Each of these architectures 

is composed of word-sized adders, multipliers, and registers.  Even when adding numbers 
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smaller than the full word size, all of the bits in the full word size are computed, which 

can result in unnecessary area and speed overheads.  However, these coarse-grained 

architectures are much more efficient than fine-grained architectures for implementing 

functions closer to their basic word size. 

An alternate form of a coarse-grained system consists of logic blocks that are very 

small processors, potentially each with its own instruction memory and/or data values.  

The REMARC architecture [Miyamori98] is composed of an 8×8 array of 16 bit 

processors.  Each of these processors uses its own instruction memory in conjunction 

with a global program counter.  This style of architecture closely resembles a single-chip 

multiprocessor with much simpler component processors, as the system is meant to be 

coupled with a host processor.  The RAW project [Moritz98] is another example of a 

reconfigurable architecture based on a multi-processor design. 

The granularity of the FPGA can also have an effect on the reconfiguration time 

of the device.  This is an important issue for run-time reconfiguration, discussed in 

further depth in section 2.4.  A fine-grained array has many configuration points to 

perform very small computations, and thus requires more data bits during configuration. 

2.2.3 Heterogeneous Arrays 
Greater performance or flexibility in computation can be achieved in 

reconfigurable systems through the use of a heterogeneous structure, where the 

capabilities of the logic cells vary throughout the system.  For example, reconfigurable 
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systems may provide multiplier function blocks embedded within the reconfigurable 

hardware [Ebeling96, Haynes98, Chameleon00, Xilinx02, Altera03a].  Because 

multiplication is a difficult computation to implement efficiently in a traditional FPGA 

structure, the custom multiplication hardware embedded within a reconfigurable array 

allows a system to perform even that function well. 

Another common structure used in heterogeneous devices is a memory block.  

Memory blocks can be scattered throughout the reconfigurable hardware, permitting the 

storage and quick access of frequently used data and variables due to the proximity of the 

memory to the logic blocks that access it.  Embedded  memory structures come in two 

forms.  The first is simply the use of available LUTs as RAM structures, such as in the 

Xilinx 4000 series [Xilinx94] and Virtex [Xilinx01] FPGAs.  Although making these 

very small blocks into a larger RAM structure introduces overhead to the memory 

system, it does provide local, variable width memory structures. 

The second form is that of the dedicated memory block.  Several architectures 

include memory blocks within their array, including some of the Xilinx [Xilinx01, 

Xilinx02] and Altera [Altera98, Altera03a] FPGAs, Actel’s ProASIC 500K series 

[Actel02], and the CS2000 RCP (Reconfigurable Communications Processor) device 

from Chameleon Systems, Inc. [Chameleon00].  These memory blocks have greater 

performance in large sizes than similar-sized structures built from many small LUTs.  

While these structures are somewhat less flexible than the LUT-based memories, they 

also allow some customization.  For example, the Altera FLEX 10K FPGA [Altera98] 
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provides embedded memories with a limited total number of wires, but allows a trade-off 

between the number of address lines and the data bit width. 

When embedded memories are not used for data storage by a particular 

configuration, their occupied area need not be wasted.  By using the address lines of the 

memory as function inputs and the values stored in the memory as function outputs, 

logical expressions of a large number of inputs can be emulated [Altera98, Cong98, 

Wilton98, Heile99].  Since there may be more than one value output from the memory on 

a read operation, the memory structure can perform multiple different computations (one 

for each bit of data output), provided all the necessary inputs appear on the address lines.  

In this manner, the embedded RAM behaves the same as a very large multi-output LUT.  

Therefore, embedded memories allow a programmer or a synthesis tool to adjust between 

logic and memory usage in order to achieve higher area efficiency. 

Furthermore, some commercial FPGA companies have included entire 

microprocessors as embedded structures within their FPGAs.  Altera’s ARM9-based 

Excalibur device combines reconfigurable hardware with an embedded ARM9 processor 

core [Altera01], and the Xilinx Virtex-II Pro FPGA includes up to four PowerPC 

processor cores [Xilinx03a].  These types of devices are also discussed in section 3.2. 

2.2.4 Routing Resources 
Interconnect resources in a reconfigurable architecture connect the programmable 

logic elements of the device together.  These resources are usually configurable, where 
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the path of a signal is determined at compile or run-time rather than fabrication time.  

This flexible interconnect between logic blocks or computational elements allows a wide 

variety of circuit structures with different interconnect requirements to be mapped to the 

reconfigurable hardware.  For example, the routing for FPGAs is generally island-style, 

with logic surrounded by routing channels containing several wires of potentially 

different lengths.  This type of routing architecture can vary in a number of features, 

including the ratio of wires to logic in the system, the length of the wires, and whether the 

wires are connected in a segmented or hierarchical manner. 

Designing efficient routing structures for FPGAs and reconfigurable systems 

involves examining the logic vs. routing area trade-off within reconfigurable 

architectures.  One group has argued that the interconnect should constitute a much 

higher proportion of area in order to allow for successful routing under high logic 

utilization conditions [Takahara98].  However, efficient routing usage may be of more 

importance than high LUT utilization [DeHon99].  Routing resources occupy a much 

larger part of the area than the logic resources, so the most area-efficient designs are 

frequently those that optimize their use of the routing resources.  Additionally, the 

amount of required routing does not grow linearly with the amount of logic present, so 

larger devices require even greater amounts of routing per logic block than small ones 

[Trimberger97]. 

There are two different types of structures used to provide local and global 

routing resources, as shown in Figure 2.9.  Segmented routing [Betz99, Chow99] 
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accommodates local communications traffic with short wires that can be connected 

together with switchboxes to emulate longer wires.  Segmented routing structures 

frequently also contain separate longer wires that allow signals to travel efficiently over 

long distances without passing through a great number of switches. 

 
                                    (a)                                                                          (b) 

Figure 2.9: (a) Segmented and (b) hierarchical routing structures.  The white boxes are logic 
blocks, while the dark boxes are connection switches. 

Hierarchical routing [Aggarwal94, Lai97, Tsu99] is another style of routing 

architecture.  Routing within a group, or cluster, of logic blocks occurs at the local level, 

and these wires only connect within that cluster.  At the boundaries of these clusters 

longer wires connect the different clusters together.  This is potentially repeated at a 

number of levels.  The idea behind using hierarchical structures is that most 

communication should be local and only a limited amount will traverse long distances 

(provided good placements are found for implemented circuits). 
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Because routing can occupy a large percentage of a reconfigurable device, careful 

selection of the routing structure is critical to FPGA design.  If the available wires are 

much longer than what is needed to route a signal, the excess wire is wasted.  On the 

other hand, if the wires available are shorter than necessary, the signal must either pass 

through switchboxes connecting short wires into longer ones, or through levels of the 

routing hierarchy.  This induces additional delay, slowing the overall operations of the 

circuit, and the switchbox circuitry occupies area that could be better used for additional 

logic or wires. 

There are some alternatives to the island-style of routing resources.  Architectures 

such as RaPiD [Ebeling96], Lattice’s ORCA4 [Lattice03], and CHESS [Marshall99] have 

bus-based routing, where multiple bits are routed together as a bundle.  This type of 

routing is also common in the one-dimensional type of architecture, as discussed in the 

next section. 

2.2.5 One-Dimensional Structures 
Most current FPGAs are of the two-dimensional variety, as shown in Figure 

2.10a.  This allows for a great deal of flexibility because a signal can be routed on a 

nearly arbitrary path, but providing this level of routing flexibility requires a great deal of 

routing area.  It also complicates the placement and routing software, because it must 

consider a very large number of possibilities. 
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                      (a)                                                                           (b) 

Figure 2.10: (a) A traditional two-dimensional island-style routing structure, and (b) a one-
dimensional routing structure.  The white boxes represent logic elements. 

One solution is to use a more one-dimensional style of architecture, depicted in 

Figure 2.10b.  Here, placement is restricted along one axis.  Routing is simplified, 

because it is generally along a single dimension as well.  However, this restriction can 

become a drawback when implementing circuits with heavy routing requirements.  A 

two-dimensional implementation can sometimes provide a wider variety of connections 

(with a corresponding increase in silicon area) that can be made between two points, 

sometimes allowing a tool to route around a bottleneck.  If the cross-section of signals in 

a one-dimensional array exceeds the number of available tracks, there are no other 

options, and the routing process will fail.   However, routing architectures of both types 

will fail if the routing requirements of the netlist exceeds the available routing resources 

of the hardware. 

Several different reconfigurable systems have been designed with a one-

dimensional routing structure.  Both Garp [Hauser97] and Chimaera [Hauck97] are 

structures that provide cells which compute a small number of bit positions, and a row of 
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these cells together computes the full data word.  Since a row can only be used by a 

single configuration, and each configuration occupies some number of complete rows, 

these designs are essentially one-dimensional.  Although multiple narrow-width 

computations can fit within a single row, these structures are optimized for word-based 

computations that occupy the entire row.  The NAPA architecture [Rupp98] is similar, 

with a full column of cells acting as the atomic unit for a configuration, as is PipeRench 

[Cadambi98, Goldstein00]. 

In some systems, the computation blocks in a one-dimensional structure operate 

on word-width values instead of single bits, so busses are routed instead of individual 

values.  This can decrease the required routing time, because the bits of a bus are 

considered together rather than as individual routes.  As shown in Figure 2.8, RaPiD 

[Ebeling96] is a one-dimensional design that includes only word-width processing 

elements.  The different computation units are organized in a single dimension along the 

horizontal axis.  The general flow of information follows this layout, with the major 

routing busses laid out in a horizontal manner.  All routing is of word-sized values, so all 

routing is of busses, not individual wires. 

2.2.6 Hardware Summary 
The design of reconfigurable hardware varies greatly from system to system.  The 

reconfigurable logic may be used as a configurable functional unit or a multi-FPGA 

stand-alone unit.  Within the reconfigurable logic itself, the complexity of the core 
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computational units, or logic blocks, vary from very simple to extremely complex, some 

implementing a 4-bit ALU or even a 16×16 multiplication.  These blocks are not required 

to be uniform throughout the array, and using different types of blocks can add high-

performance functionality in specialized computation circuitry, or expanded storage in 

embedded memory blocks.  Routing resources also offer a variety of choices, primarily in 

the amount, length, and organization of the wires.  Systems have been developed that fit 

into many different points within this design space. 

2.3 Software 

Although reconfigurable hardware has been shown to provide significant 

performance benefits for some applications, it will be ignored by application 

programmers unless they can easily incorporate its use into their systems.  This requires a 

software design environment able to create configurations for the reconfigurable 

hardware.  This software can range from a software assist in manual circuit creation to a 

complete automated circuit design system.  Manual circuit description is a powerful 

method for the creation of high-quality circuit designs.  However, it requires extensive 

knowledge of the particular reconfigurable system employed, plus a significant amount of 

design time.  Alternatively, an automatic compilation system provides a quick and easy 

way to program for reconfigurable systems.  It makes the use of reconfigurable hardware 

more accessible to general application programmers, but quality may suffer. 
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Figure 2.11: Three possible design flows for algorithm implementation on a reconfigurable 
system.  Grey stages indicate manual effort on the part of the designer, while white stages are done 
automatically.  The dotted lines represent paths to improve the resulting circuit.  It should be noted 
that the middle design cycle is only one of the possible compromises between automatic and 
manual design. 

Both for manual and automatic circuit creation, the design process proceeds 

through a number of distinct phases, shown in Figure 2.11.  Circuit specification is the 

process of describing the functions to be placed on the reconfigurable hardware.  This can 

be done by simply writing a program in C that represents the functionality of the 

algorithm to be implemented in hardware.  It can also be as complex as specifying the 

inputs, outputs, and operation of each basic building block in the reconfigurable system.  

Between these extremes is circuit specification using generic complex components, such 

as adders and multipliers, which will be mapped to the actual hardware later in the design 

process.  For descriptions in a high level language (HLL), such as C/C++ or Java, or ones 

using complex building blocks, this code must be compiled into a netlist of gate-level 

components.  Gates or computational components (such as ALUs and multipliers) are 
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created to perform the arithmetic and logic operations within the program, and structures 

to handle the program control, such as loop iterations and branching operations.  Given a 

structural description, either generated from a HLL or specified by the user, each 

complex structure is replaced with a network of basic gates that performs that function. 

Once a detailed gate-level circuit description is created, it must be translated to 

the logic elements of the reconfigurable hardware.  This stage is called technology 

mapping, and it is dependent upon the exact target architecture.  For a LUT-based 

architecture, this stage partitions the circuit into a number of small sub-functions, each 

mapped to its own LUT.  Some architectures, such as the Xilinx 4000 series [Xilinx94], 

contain multiple LUTs per logic cell.  These LUTs can be used either separately to 

generate small functions, or together to generate some wider-input functions.  By taking 

advantage of multiple LUTs and the internal routing within a single logic cell, sub-

circuits containing too many inputs to implement using a single LUT can efficiently be 

mapped into the FPGA architecture. 

For reconfigurable structures with embedded memory blocks, the mapping stage 

may also consider using these memories as logic units when they are not used for data 

storage.  The memories act as very large LUTs, where the number of inputs is equal to 

the number of address lines.  In order to use these memories as logic, the mapping 

software must analyze how much of the memory blocks are actually used as storage in a 

given mapping.  It must then determine which are available to implement logic, and what 

parts of the circuit are best mapped to the memory [Cong98, Wilton98]. 
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After mapping the circuit, the resulting blocks must be placed onto the 

reconfigurable hardware.  Each block is assigned to a specific location within the 

hardware, ideally close to the other logic blocks with which it communicates.  As FPGA 

capacities increase, the placement phase of circuit mapping becomes more and more time 

consuming.  Floorplanning is a technique that can alleviate some of this cost.  A 

floorplanning algorithm first partitions the logic cells into clusters, where cells with a 

large amount of communication are grouped together.  Next, the clusters are placed as 

units onto regions of the reconfigurable hardware.  Once this global placement is 

complete, the actual placement algorithm performs detailed placement of the individual 

logic blocks within the boundaries assigned to the cluster [Sankar99]. 

The use of a floorplanning tool is particularly helpful for situations where the 

circuit structure being mapped is of a datapath type.  Large computational components or 

macros that are found in datapath circuits are frequently composed of highly regular 

logic.  These structures are placed as entire units, and their component cells are restricted 

to the floorplanned location [Shi97, Emmert99].  This encourages the placer to find a 

very regular placement of these logic cells, potentially resulting in a higher performance 

circuit layout.  Another technique for the mapping and placement of datapath elements is 

to perform these steps simultaneously [Callahan98].  This method also exploits the 

regularity of the datapath elements to generate mappings and placements quickly and 

efficiently. 
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Floorplanning is also important when dealing with hierarchically structured 

reconfigurable hardware.  In these architectures, the available resources are grouped by 

the logic or routing hierarchy of the hardware.  Because performance is best when routing 

lengths are minimized, the placement should group cells into a logic cluster on the 

hardware if those cells require a great deal of inter-communication or form part of a 

critical path of the circuit [Krupnova97, Senouci98]. 

After the optional floorplanning step, the individual logic blocks are placed into 

specific logic cells.  The simulated annealing technique [Sechen88, Shahookar91, Betz97, 

Sankar99] is commonly used.  This method takes an initial placement of the system, 

which can be generated (pseudo-) randomly, and performs a series of “moves” on that 

layout.  A move is simply the changing of the location of a single logic cell, or the 

exchanging of locations of two logic cells.  These moves are attempted one at a time 

using random target locations.  If a move improves the layout, then the layout is changed 

to reflect that move.  If a move is considered to be undesirable, then it is only accepted 

some of the time.  Initially, many “bad” moves are accepted.  As the algorithm 

progresses, the likelihood of accepting a bad move decreases until very few undesirable 

moves are accepted at the end of execution.  Also, the degree to which a move increases 

the cost affects its probability of acceptance, with mildly bad moves more likely to be 

accepted than very bad moves.  Accepting a few bad moves helps to avoid any local 

minima in the placement space. Other algorithms exist that are more deterministic 

[Gehring96, Callahan98, Budiu99], although they search a smaller area of the placement 
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space for a solution, and therefore may be unable to find a solution which meets 

performance requirements if a design uses a high percentage of the reconfigurable 

resources. 

In the final step, the different reconfigurable components comprising the 

application circuit are connected during the routing stage.  Particular signals are assigned 

to specific portions of the routing resources of the reconfigurable hardware.  This can 

become difficult if the placement causes many connected components to be placed far 

from one another, because signals that travel long distances use more routing resources 

than those that travel shorter ones.  A good placement is therefore essential to the routing 

process. 

Limited routing resources present challenges to routing for FPGAs and 

reconfigurable systems.  The goal of general hardware design is to minimize the number 

of routing tracks used in a channel between rows of computation units, but the channels 

can be made as wide as necessary.  In reconfigurable systems, however, the number of 

available routing tracks is determined at fabrication time, and therefore the routing 

software must perform within these boundaries.  Thus, FPGA routing concentrates on 

minimizing congestion within the available tracks [Brown92b, McMurchie95, Chan97, 

Wu97].  Because routing is one of the more time-intensive portions of the design cycle, it 

can be helpful to determine if a placed circuit can be routed before actually performing 

the routing step.  This quickly informs the designer if changes need to be made to the 

layout or if a larger reconfigurable structure is required [Wood97, Swartz98]. 
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2.4 Run-Time Reconfiguration 

The areas of a program that can be accelerated through the use of reconfigurable 

hardware are frequently too numerous or complex to be loaded simultaneously onto the 

available hardware.  In these cases, it is beneficial to be able to swap different 

configurations in and out of the reconfigurable hardware as they are needed during 

program execution, as in Figure 2.12.  This concept is known as run-time reconfiguration 

(RTR). 
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Figure 2.12: Applications which are too large to entirely fit on the reconfigurable hardware can be 
partitioned into two or more smaller configurations that can occupy the hardware at different 
times. 

Run-time reconfiguration is based upon the concept of virtual hardware, which is 

similar to virtual memory.  Here, the physical hardware is much smaller than the sum of 

the resources required by each configuration.  Instead of reducing the number of mapped 

configurations, they can instead be swapped in and out of the actual hardware as they are 

needed.  Because run-time reconfiguration allows more sections of an application to be 
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mapped into hardware than can be fit in a non-run-time reconfigurable system, a greater 

portion of the program can be accelerated. 

During a single program’s execution, configurations are swapped in and out of the 

reconfigurable hardware.  Some of these configurations will likely require access to the 

results of other configurations.  Configurations that are active at different periods in time 

need a method to communicate with one another.  This communication can be performed 

through the use of registers [Ebeling96, Cadambi98, Rupp98, Scalera98], the contents of 

which can remain intact between reconfigurations.  This allows one configuration to store 

a value, and a later configuration to read back that value for use in further computations.  

An alternative for reconfigurable systems that do not include state-holding devices is to 

write the result back to registers or memory external to the reconfigurable array, which is 

then read back by successive configurations [Hauck97]. 

Because run-time reconfigurable systems involve reconfiguration during program 

execution, the reconfiguration must be done as efficiently and as quickly as possible.  

This is in order to ensure that the overhead of the reconfiguration does not eclipse the 

benefit gained by hardware acceleration.  Stalling execution of either the host processor 

or the reconfigurable hardware because of configuration is clearly undesirable.  In the 

DISC II system, from 25% [Wirthlin96] to 71% [Wirthlin95] of execution time is spent 

in reconfiguration, while in the UCLA ATR work this figure can rise to over 98.5% 

[Mangione-Smith99].  If the delays caused by reconfiguration are reduced, performance 
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can be greatly increased.  Therefore, fast configuration is important for run-time 

reconfigurable systems, and is discussed more in the following section. 

2.4.1 Fast Configuration 
There are a number of different approaches that reduce configuration overhead.  

First, the configuration architecture can make switching configurations faster.  Second, 

loading of the configurations can be timed such that the configuration overlaps as much 

as possible with the execution of instructions by the host processor.  Third, compression 

techniques can be introduced to decrease the amount of configuration data that must be 

transferred to the system.  Finally, the actual process of transferring the data from the 

host processor to the reconfigurable hardware can be modified to include a configuration 

cache, which would provide a faster reconfiguration. 

Configuration Architectures 

There are several configuration memory styles that can be used with 

reconfigurable systems.  A single context device is a serially programmed chip that 

requires a complete reconfiguration to change any of the programming bits.  This is the 

most common type of commercial device, yet as discussed later, it is not as conducive to 

reconfigurable computing as some other designs.  A complete reprogram of a single 

context chip can require milliseconds to seconds. 

A multicontext device has multiple layers of programming bits, each of which can 

be active at a different point in time.  Each of these layers can be thought of as a separate 
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single context memory, and one context can be in execution while another context is 

being loaded in the background.  The benefit is not only overlapping FPGA execution 

and configuration, but also switching between the programmed contexts very quickly, 

sometimes even in a single clock cycle. 

Devices that can be selectively programmed without a complete reconfiguration 

are called partially reconfigurable.  The partially reconfigurable architecture is also more 

suited to run-time reconfiguration than the single context, because small areas of the 

array can be modified without requiring reprogramming of the entire logic array.  

However, inefficiencies can arise in partially reconfigurable architectures if two partial 

configurations are supposed to be located at overlapping physical locations on the FPGA.  

If these configurations are repeatedly used one after another, they must be swapped in 

and out of the array each time.  This type of conflict could negate much of the benefit 

achieved by partially reconfigurable systems. 

A better solution allows the final placement of the configurations to occur at run-

time, allowing for run-time relocation of those configurations [Li00, Compton02c].  

Using relocation, a new configuration may be placed onto the reconfigurable array where 

it will cause minimum conflict with other needed configurations already present on the 

hardware.  A number of different systems support run-time relocation, including 

Chimaera [Hauck97], Garp [Hauser97], and PipeRench [Cadambi98, Goldstein00]. 

Even with relocation, partially reconfigurable hardware can still suffer from some 

placement conflicts.  Over time, as a partially reconfigurable device loads and unloads 
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configurations, the location of the unoccupied area on the array is likely to become 

fragmented, similar to what occurs in memory systems when RAM is allocated and 

deallocated.  There may be enough empty area on the device to hold an incoming 

configuration, but it may be distributed throughout the array.  A configuration normally 

requires a contiguous region of the chip, so it would have to overwrite a portion of a valid 

configuration in order to be placed onto the reconfigurable hardware.  However, a system 

that incorporates the ability to perform defragmentation of the reconfigurable array could 

consolidate the unused area by moving valid configurations to new locations [Diessel97, 

Compton02c].  This area can then be used by incoming configurations, without 

overwriting any of the moved configurations. 

Configuration Prefetching 

Performance improves when the hardware reconfiguration overlaps with 

computations performed by the host processor, because programming the reconfigurable 

hardware requires from milliseconds to seconds to accomplish.  Overlapping 

reconfiguration and processor execution prevents the host processor from stalling while it 

is waiting for the configuration to finish, and hides the configuration time from the 

program execution.  Configuration prefetching [Hauck98b] attempts to leverage this 

overlap by determining when to initiate reconfiguration of the hardware in order to 

maximize overlap with useful computation on the host processor.  It also seeks to 
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minimize the chance that a configuration will be prefetched falsely, incorrectly 

overwriting a configuration that will be needed. 

Configuration Compression 

Unfortunately, there will always be cases when configuration overheads cannot be 

successfully hidden using a prefetching technique.  This can occur when a conditional 

branch occurs immediately before the use of a configuration, potentially making a 100% 

correct prefetch prediction impossible, or when multiple configurations or contexts must 

be loaded in quick succession.  In these cases, the delay incurred is minimized when the 

amount of data transferred from the host processor to the reconfigurable array is 

minimized.  Configuration compression can be used to compact this configuration 

information [Hauck98c, Hauck99, Li99, Dandalis01]. 

One form of configuration compression has already been implemented in a 

commercial system.  The Xilinx 6200 series of FPGA [Xilinx96] contains wildcarding 

hardware, which provides a method to program multiple logic cells in a partially 

configurable FPGA with a single address and data value.  This is accomplished by setting 

a special register to indicate which of the address bits should behave as "don’t-care" 

values, resolving to multiple addresses for configuration.  For example, suppose two 

configuration addresses, 00010 and 00110, are both to be programmed with the same 

value.  By setting the wildcard register to 00100, the address value sent is interpreted as 

00X10 and both these locations are programmed using either of the two addresses above 
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in a single operation.  Furthermore, “Don’t Care” values in the configuration stream 

could be used to allow areas with similar but not identical configuration data values to 

also be programmed simultaneously [Li99].  Wildcarding can be used to reduce 

configuration time [Hauck98c] as well as the storage required for the configuration.  

Also, partially reconfigurable systems can take advantage of previously programmed 

areas of the hardware.  If two successive configurations share some configuration data, 

those configuration locations need not be reprogrammed.  Configuration time can be 

reduced through the identification of these common components and the calculation of 

the incremental configurations that must be loaded [Luk97, Shirazi98]. 

Alternately, similar operations can be grouped together to form a single 

configuration that contains extra control circuitry in order to implement the various 

functions within the group [Kastrup99].  By creating larger configurations from groups of 

smaller configurations, more operations can be present on chip simultaneously, reducing 

the configuration overhead.  However, this method imposes some area and execution 

penalties, creating a trade-off between reduced reconfiguration overhead and faster 

execution with a smaller area. 

Configuration Caching 

Because much of the delay caused by configuration is due to the distance between 

the host processor and  the reconfigurable hardware, as well as the reading of the 

configuration data from a file or main memory, a configuration cache can potentially 
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reduce the cost of reconfiguration [Deshpande99, Li00].  Storing the configurations in a 

fast memory very close to the reconfigurable array instead of the main memory of the 

system accelerates data transfer during reconfiguration and reduces the overall 

configuration time required.  Additionally, a configuration cache can allow for 

specialized direct output to the reconfigurable hardware [Compton00].  This output can 

leverage the close proximity of the cache by providing high-bandwidth communications 

that would facilitate wide parallel loading of the configuration data, further reducing 

configuration times. 

2.5 Reconfigurable Computing Summary 

Reconfigurable computing is emerging as an important area of research in 

computer architectures and software systems.  An application can be greatly accelerated 

by placing the computationally intense portions of an application onto reconfigurable 

hardware.  Reconfigurable computing combines many benefits of both software and 

ASIC implementations.  Like software, the mapped circuit is flexible, and can be changed 

over the lifetime of the system.  Similar to an ASIC, reconfigurable systems provide a 

method to map circuits into hardware.  Reconfigurable systems therefore have the 

potential to achieve far greater performance than software as a result of bypassing the 

fetch-decode-execute cycle of traditional microprocessors, and possibly exploiting a 

greater degree of parallelism. 
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Reconfigurable hardware systems come in many forms, including a configurable 

functional unit integrated directly into a CPU; a reconfigurable coprocessor coupled with 

a host microprocessor; and a multi-FPGA stand-alone unit.  The level of coupling, 

granularity of computation structures, and form of routing resources are all key points in 

the design of reconfigurable systems.  The use of heterogeneous structures can also 

greatly add to the overall performance of the final design. 

Compilation tools for reconfigurable systems range from simple tools that aid in 

the manual design and placement of circuits, to fully automatic design suites that create 

circuits and wrapper software executables from program code written in a high-level 

language.  The variety of tools available allows designers to choose between manual and 

automatic circuit creation for any or all of the design steps.  Although automatic tools 

greatly simplify the design process, manual creation is still important for performance-

driven applications. 

Finally, run-time reconfiguration provides a method to accelerate a greater portion 

of a given application by allowing the configuration of the hardware to change over 

execution time.  Because of the delays associated with configuration, this style of 

computing requires that reconfiguration be performed in a very efficient manner.  

Multicontext and partially reconfigurable FPGAs are both designed to improve the time 

required for reconfiguration.  Hardware optimizations, such as wildcarding, run-time 

relocation, and defragmentation, further decrease configuration overhead in a partially 
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reconfigurable design.  Software techniques to enable fast configuration, including 

prefetching and incremental configuration calculation, can also reduce overhead. 

Reconfigurable computing systems provide a high-performance alternative to 

software-only implementations due to their ability to greatly accelerate program 

execution, providing a high-performance alternative to software-only implementations.  

However, no one hardware design has emerged as the clear pinnacle of reconfigurable 

design.  Although general-purpose FPGA structures have standardized into LUT-based 

architectures, groups designing hardware for reconfigurable computing are also exploring 

the use of heterogeneous structures and word-width computational elements.  Those 

designing compiler systems face the task of improving automatic design tools to the point 

where they may achieve mappings comparable to manual design for even high-

performance applications.  Within both of these research categories lies the additional 

topic of run-time reconfiguration.  While some work has been done in this field as well, 

research must continue to attain faster and more efficient reconfiguration.  Further study 

into each of these topics is necessary in order to harness the full potential of 

reconfigurable computing. 
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Chapter 3 
 
 
 
Reconfigurable Hardware in SoCs 

Two different architectural categories have emerged for the use of reconfigurable 

hardware on a system-on-a-chip (SoC).  The first is a reconfigurable subsystem, included 

as one of the many SoC components, and distinct from other fixed components.  In this 

case, the reconfigurable hardware can be offered as a separate component to an SoC 

designer.  Alternately, fully designed SoCs are marketed which include a reconfigurable 

logic component.  Reconfigurable subsystems are described in section 3.1. 

The other architectural category is classified as systems-on-a-programmable-chip 

(SoPCs).  Here, the entire SoC is built from a reconfigurable fabric, with a few fixed 

resources embedded on the chip.  Most SoC functionality is implemented using the 

reconfigurable logic.  SoCs with embedded reconfigurable logic have a higher 

performance potential because fixed blocks tend to be more efficient than programmable 

logic configured to perform the same function.  However, SoPCs provide a much greater 

flexibility, allowing a larger percentage of the hardware to be reprogrammed.  Also, 

SoPCs can provide a lower cost solution for custom SoCs because programmable logic 
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can be configured to implement the required circuitry instead of requiring a chip to be 

fabricated to customize fixed hardware.  SoPCs are discussed further in section 3.2. 

3.1 Reconfigurable Subsystems 

Many academic reconfigurable architecture are either explicitly intended or could 

be used for SoC designs.  Some of these architectures contain reconfigurable functional 

units within a host processor [Razdan94, Wittig96, Hauck97].  Others are intended to be 

coprocessors [Ebeling96, Hauser97, Miyamori98, Goldstein00] for a host 

microprocessor.  Finally, some systems such as Pleiades [Abnous98] actually focus on a 

reconfigurable interconnection network to connect a microprocessor to other 

computational units, some of which may also be programmable.  

Commercial reconfigurable sub-systems provide a designer with a pre-designed 

reconfigurable logic structure that can be used as an SoC component.  Actel’s VariCore 

blocks are one of the available reconfigurable IP blocks that can be used for this purpose 

[Actel01].  VariCore designs can be used in densities of 5K to 40K gate equivalents, in 

2.5K gate increments.  M2000 offers a core based on four-input LUTs—the FleXEOS 

[M2000-02].  The typical FleXEOS core provides logic resources equivalent to 

approximately 30K ASIC gates.  Reconfigurable sub-systems are also under development 

from LeopardLogic [LeopardLogic03] and QuickSilver Technology [QuickSilver03], 

though no architectural details are currently available. 
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A few of the available reconfigurable IP blocks differ significantly from 

traditional FPGA structures.  For example, instead of using LUT-type structures, the 

basic building block of Elixent’s D-Fabrix is a 4-bit ALU [Elixent02].  Silicon Hive’s 

reconfigurable cores incorporate extremely coarse-grained units such as ALUs and 

multipliers [SiliconHive03].  Few architectural details are currently available for the 

Silicon Hive cores.  They appear to be an amalgam of reconfigurable hardware and small 

VLIW-based multiprocessors, but still are intended to be coupled with a host processor 

on an SoC.  eASIC’s eASICore differs from the previous reconfigurable cores in terms of 

the degree of reconfigurability.  Its logic structures are reprogrammable, but the routing is 

mask-programmable [eASIC03].  While this leads to a faster overall structure, 

post-fabrication flexibility is severely limited. 

In some cases, available SoCs already incorporate reconfigurable subsystems. 

This programmable logic is generally accessed by an on-chip CPU on a communication 

bus shared with other logic and peripherals [Atmel02, QuickLogic02, Triscend02].  The 

FPSLIC series of devices from Atmel fall into this category [Atmel02].  This design 

contains an 8-bit RISC microprocessor, surrounded by microcontroller peripherals and 

RAM, plus a small amount (5K to 40K gate equivalents) of reconfigurable logic based on 

their AT40K FPGA design. 

The QuickMIPS device from QuickLogic includes significantly more 

reconfigurable logic than many of the other reconfigurable cores – up to 575K gate 

equivalents – which can be accessed by the on-chip 32-bit MIPS RISC processor or 
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peripherals through a bus structure [QuickLogic02].  The Triscend A7 series of 

configurable SoC also uses a 32-bit RISC processor – the ARM7TDMI [Triscend02].  

Devices in this series contain approximately 500-2000 logic cells, each containing a 

single four-input LUT along with fast carry logic and a D flip-flop.  Triscend also 

markets the Triscend E5 [Triscend03], a customizable 8051/52-compatible 

microcontroller that includes a small amount of reconfigurable logic.  The Cypress PSoC 

device family falls somewhere between SoPCs and SoCs with reconfigurable components 

[Cypress03].  The reconfigurable logic is separated from the 8-bit microprocessor at the 

device core, communicating only through an internal system bus.  However, it is the 

reconfigurable logic that has access to off-chip communication, implementing all major 

SoC peripherals.  

3.2 Systems-on-a-Programmable-Chip (SoPCs) 

Frequently, the SoCs marketed by FPGA companies fall into the system-on-a-

programmable chip category [Altera01, Altera03b, Xilinx03a, Xilinx03b, Xilinx03c, 

Xilinx03d].  Since these companies focus on reconfigurable logic, it is natural that they 

would provide solutions based on hardware flexibility, the primary benefit of 

reconfigurable logic.  A custom SoC can be created relatively easily for low cost, and 

later be modified without re-fabrication.  SoPCs are also useful for prototyping SoC 

designs to be fabricated. 
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 These SoPCs can be further divided into two additional sub-categories:  those that 

include one or more fixed processors, and reconfigurable devices large enough to 

implement a full system, optionally including “soft” processor cores.  A soft processor 

core is a processor created from the programmable logic within an FPGA, rather than 

directly into silicon.  This type of processor will normally run slower than a fixed 

processor due to the overhead of programmable logic.  However, using soft cores 

provides a greater deal of flexibility to instantiate the quantity and style of processor 

cores best suited to the application.  Xilinx and Altera both provide soft processor cores 

as well as SoPCs containing hard processor cores [Altera01, Altera03b, Xilinx03a, 

Xilinx03b, Xilinx03c, Xilinx03d]. 

The Xilinx Virtex-II Pro is currently available with up to four PowerPC 405 RISC 

processor blocks [Xilinx03a].  Xilinx also provides two different soft cores:  PicoBlaze, 

an 8-bit microcontroller [Xilinx03b, Xilinx03c], and MicroBlaze, a 32-bit RISC 

processor [Xilinx03d].  These soft cores can be implemented in the Spartan-II, Virtex, 

Virtex-II, and Virtex-II Pro series of FPGAs to create a full SoC using programmable 

logic. 

Altera targets a number of its FPGA models towards SoPC use.  The Excalibur 

devices each contain a single ARM922T RISC processor in a logic array based on the 

Apex 20KE device [Altera01].  Also, Altera’s Nios soft processor core can be 

implemented in a variety of Altera FPGAs, including the FLEX, APEX 20K, APEXII, 
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Mercury, and Cyclone devices [Altera01, Altera03b], and is available in both 16-bit and 

32-bit versions. 
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Chapter 4 
 
 
 
Research Framework 

Current efforts in the Totem Project for automatic generation focus on coarse-

grained architectures suitable for compute-intensive application domains such as digital 

signal processing, compression, and encryption.  The RaPiD architecture [Ebeiling96, 

Cronquist99a] is presently used as a guideline for the generated architectures due to its 

coarse granularity, one-dimensional routing structure, and compiler (described further in 

the next section).  Coarse-grained units match the coarse-grained computations currently 

targeted.  The one-dimensional structure is efficient for many DSP applications, but also 

simplifies the architecture generation process significantly.  Future work in the Totem 

Project will include the two-dimensional case.  Finally, a compiler [Cronquist98] for this 

system is already in place, which aids in the development of application circuits for 

Totem. 

This chapter begins with a description of the RaPiD architecture, emphasizing the 

datapath architecture, but also providing a brief discussion of the control structures and 

the compiler.  Next, a synopsis of the high-level architectural design work (the subject of 

this thesis) and its role in the Totem Project is given, followed by a short discussion of 
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the transistor-level layout and the place and route tools used in the Totem Project.  

Finally, the area comparison methods that will be used to evaluate the Totem 

architectures will be discussed. 

4.1 RaPiD 

The disparity between the coarse-grained nature of many computations, such as 

those needed for DSP, and the fine-grained nature of traditional FPGAs leads to 

inefficiencies in implementations.  The RaPiD system [Cronquist99a], addresses this 

problem by using a very coarse-grained structure.  The term “RaPiD” actually refers to a 

style of reconfigurable architecture, not a particular architecture [Ebeling96].  This style 

of architecture has specialized computational elements such as ALUs, RAM units, and 

multipliers, each operating on full words of data.  The components are then arranged 

along a one-dimensional axis, and connected by word-width routing tracks.  These 

architectures are heavily pipelined, and perform very fast computations on large amounts 

of data.  While the routing flexibility is somewhat lower, the routing architecture 

complexity is also lower, reducing routing area as well as simplifying the routing process.   

A number of RaPiD implementations exist, including RaPiD-I [Ebeling96] and 

RaPiD-Benchmark [Cronquist99a], which is the more recent implementation, and is 

frequently called “RaPiD” for simplicity.  From this point forward, whenever the “RaPiD 

architecture” is discussed, this more recent design is being referenced.  The next few 

sections describe RaPiD’s datapath, control architecture, and compiler in more detail. 
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4.1.1 Datapath Architecture 
As mentioned previously, RaPiD is composed of coarse-grained computational 

units arranged along a one-dimensional axis and connected through a series of word-

width routing tracks.  The logic units are grouped into repeating “cells”, as shown in 

Figure 4.1.  The full architecture is formed by tiling cells horizontally to form a longer 

architecture.   
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Figure 4.1: A single cell from the RaPiD architecture [Cronquist99a, Scott01].  A full architecture 
is composed of some multiple of these cells laid end-to-end. 

The logic units within the cells operate on full words of data, and include 16-bit 

ALUs, 16x16 multipliers, 16-bit wide RAM units, and 16-bit registers.  Each component 

contains a multiplexer on each of its inputs that choose between the signals of each 

routing track.  Each component also has a demultiplexer on each of the outputs that allow 
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the unit to directly output to any of the routing tracks.  Inputs are on the left side of a unit, 

while the outputs are on the right side of the unit. 

The routing architecture itself is a one-dimensional segmented design, where each 

track is composed of as many wires as the word width of the architecture.  Full words of 

data are therefore communicated between the computational units of the architecture.  

There are 14 routing tracks, plus one additional routing track that only contains 

"feedback" wires.  These feedback wires are only permitted to route an output of a unit 

back to one or more of the inputs of a unit.  Additionally, a word-sized "zero" is also 

provided as a possible input to each multiplexer.  The top five routing tracks are local 

routing tracks, including the special feedback track.  These tracks contain short wires for 

fast short-distance communication.  The bottom ten tracks provide longer distance 

routing.  The small squares on these routing tracks are bus connectors, which allow the 

wire segments to be optionally connected to form longer wires.  Additionally, the bus 

connectors provide optional pipeline delays to mitigate the delay added through the use 

of longer wires and routing switches. 

4.1.2 Control Architecture 
The control architecture for RaPiD is a hybrid of configuration points and 

dynamically generated signals [Cronquist99a].  Hardware-programmed configuration 

points require less area than hardware to generate dynamic control signals.  However, 

using only programmed control points reduces the ability to model complex circuit 
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behavior that changes during execution.  Therefore, RaPiD uses a combination of these 

two methods, with approximately 75% of control points field-programmable, and 25% 

generated dynamically.  These types of control are referred to as “hard” and “soft”, 

respectively, though it should be noted that the hard control is not permanently fixed, but 

is instead fixed for any given configuration programmed into RaPiD.  While the 

demultiplexers on the units are controlled by hard bits, the multiplexers use soft control.  

At different points in execution, a unit may require different signals on an input.  Soft 

control bits enable the multiplexer to select different signals depending on the values of 

the control. 

Soft control bits originate with a number of small parallel instruction generators 

(four in the current RaPiD implementation), which execute “microprograms” (a series of 

simple instructions that can include loops) in order to generate instructions for the control 

path.  These instructions are sent through a control path parallel to the datapath of RaPiD, 

which includes programmable LUTs.  Different locations in the RaPiD array can 

therefore decode the instructions into actual control signals (soft control) in different 

ways, allowing for very complex control to be implemented. 

4.1.3 RaPiD-C Compiler 
Implementing complex applications on the RaPiD architecture is facilitated 

through the use of a special compiler [Cronquist98] that converts application code in a C-

like format into circuit netlists.  These circuit netlist files include all datapath and control 
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information (static and dynamic) to allow the circuit to operate on a RaPiD-like 

architecture.  Netlists are somewhat independent of the actual hardware implementation, 

as they only describe the needs of the circuits, not an actual allocation of resources to be 

used.  The allocation of resources is performed by a place and route tool, described later. 

The core of a RaPiD-C program involves one or more for loops.  A special type 

of loop indicates what operations should occur in parallel (spatially), through the use of a 

special inner “Datapath” loop2.  The iterations of this special loop are all executed 

simultaneously.  The number of iterations is user-specified by setting the number of 

“stages” at the beginning of the program, where each stage corresponds to a parallel 

iteration of the loop.  For cases where different stages of the circuit perform different 

tasks, such as initialization/finalization at the edge stages, conditional statements are 

permitted on the reserved variable s, whose value in each stage is that particular stage’s 

index.  This language structure provides a powerful method to specify complex pipelined 

and parallel application circuits.   

4.2 Totem Project 

The goal of the Totem Project is to provide a complete automatic path for the 

creation of custom reconfigurable hardware, targeted for use in systems-on-a-chip 

                                                 

2 This syntax is slightly different from that appearing in the cited document [Cronquist98], as the 
format of the RaPiD-C language has evolved over time, and a more recent description of the language has 
not been published as of the completion of this thesis. 
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(SoCs).  There are three primary components of the project.  The first is the high-level 

architecture generation, which determines the resource requirements and how those 

resources should be arranged.  The second component is the VLSI layout generator, 

which takes a description of the architecture from the high-level architecture generator 

and translates it into actual transistors and layout masks.  The final module is the place 

and route tool that implements circuit netlists on the generated reconfigurable hardware. 
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Figure 4.2: The three major components of the Totem Project 

The communication between these three components is presented in Figure 4.2.  

The architecture generator sends a description of the architecture to both of the other 

tools.  The layout generator and the place and route tool generator negotiate the 

configuration bitstream format.  The layout generator then creates the transistor-level 

layout of the architecture described by the high-level architecture generator.  Meanwhile, 

the place and route tool reads in the architecture description and a set of circuits, and 

generates the appropriate configurations to implement those circuits on the given 
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architecture.  These three pieces of the Totem Project are discussed further in the 

following sections. 

4.2.1 High-Level Architecture Design 
The high-level architecture generation is the subject of this thesis, and is 

described in depth in the next chapters.  Essentially, the architecture generator takes as 

input a description of the targeted application domain, and outputs a description of the 

reconfigurable hardware for that domain.  Currently, the domain is specified by the user, 

who provides a set of RaPiD netlists or a set of user-specified characteristics.  From this 

domain information, a datapath is constructed to execute circuits of the types provided.  

This work focuses on the datapath generation—while control structures will also be 

necessary to provide full functionality, many of the techniques used in the datapath 

generation are expected to extend to the control path. 

It should also be noted that this work does not yet account for pipelining within 

the application circuits when a register only has a single input.  In these cases, at least 

some of this pipelining could be implemented by bus connectors on the routing tracks.  

However, it has not yet been determined how to judge the number of additional data 

registers that will be required in the datapath structures in order to best implement these 

types of netlists, and therefore this is an area of future work. 

During datapath construction, the netlists or characteristics are analyzed to 

determine the number and types of computational units required in the architecture.  Once 
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this information is determined, the logic units are created and arranged along the one-

dimensional axis so as to minimize area and delay (with area currently the primary goal).  

These techniques are presented in Chapter 5. 

The routing structures that connect the computational components are generated 

next.  Two different styles of routing architectures have been investigated.  The first 

results in highly optimized architectures—ASIC-like, but very inflexible.  These 

architectures are referred to as “configurable ASICs”, or cASICs.  The second creates 

architectures in the RaPiD style, with the amounts and types of routing resources 

dependent on the communication needs of the different input circuits.  Chapter 6 

discusses architecture generation in the cASIC style, while Chapter 7 details the RaPiD-

style routing generation methods. 

4.2.2 Physical Layout 
Several techniques are currently under investigation for generating a VLSI layout 

from a Verilog description of a Totem architecture.  These techniques include standard 

cells, template reduction, and circuit generators.  The standard cell method is a traditional 

layout technique, but with a slightly modified set of standard cells optimized for 

reconfigurable layouts, such as such as multiplexers, demultiplexers, and D flip-flops 

[Phillips02]. 

The next layout technique is template reduction, and is based on a subtractive 

technique.  Instead of adding logic and routing resources as needed, this technique begins 
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with a manually designed superset architecture and removes unneeded resources.  

Template architectures would be created for sets of domains.  When creating a custom 

architecture, the closest template is selected.  The place and route tool then implements 

the needed netlists onto the template, and removes unused logic and routing resources.  

The more similar the needed architecture is to the template, the more the final 

architecture benefits from the manual layout of the template. 

Finally, circuit generators allow for highly customizable computational units.  

This method uses macro blocks to implement the logic units of the architecture, and 

calculates where metal wires should be added for the communication structure.  These 

macro blocks can be as simple as a library of defined structures, such as a 16-bit register 

or ALU.  However, a more sophisticated implementation will allow for customizable 

bitwidth and functionality (i.e., an adder instead of a full ALU).  These generators use the 

regularity within many computational components to achieve efficient layouts. 

Together these three layout methods will form the essential path from the 

architecture description to a working VLSI layout.  Architectures close in form to an 

available tileable template will be implemented using template reduction for a more 

efficient layout than could be created using standard cells.  Next, architectures requiring a 

high degree of customization will use circuit generators, provided that customization can 

be accomplished using the available set of functions.  Lastly, architectures that do not fit 

well with either of the previous methods can be implemented using standard cells. 
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4.2.3 Place and Route 
The Totem Project requires a place and route tool for two primary reasons.  First, 

the tool finds a final implementation of the specification netlists on the generated 

architectures.  Since the architecture generator uses simplistic methods to find an 

implementation, a dedicated place and route tool is likely to find a superior solution.  

Second, the tool is needed to implement circuits not included in the original architectural 

specification, which can occur if circuits are designed after the hardware has been 

fabricated.  This tool inputs a simplified compiled RaPiD netlist (which includes only the 

datapath information with pipelining registers removed) and a Verilog architecture 

description, and outputs a bitstream that can be used to configure the generated 

architecture.  Note that the bitstream format may require information from the layout tool 

to obtain the correct ordering of the programming bits. 

The Totem place and route tool [Compton02d, Sharma02] performs two 

operations.  First, a netlist has its logical instances placed into physical components in the 

architecture.  The placement phase is based on the simulated annealing algorithm 

[Sechen88].  The cost function for the simulated annealing operation is based on a 

combination of the maximum (max) and average (avg) signal cross-section throughout 

the architecture [Sharma02]. 

Second, the signals between the instances are mapped to actual wires in the 

hardware that connect the instances’ physical units.  The router uses an iterative, 

negotiation-based routing algorithm that is a modified version of the Pathfinder algorithm 
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[McMurchie95].  A route is found for each signal onto the routing architecture.  Initially, 

signals are permitted to share resources.  The cost of using each individual resource is 

determined by the number of signals sharing that resource, and is updated after each 

iteration.  Signals are rerouted each iteration, but with previously shared resources 

considered increasingly more expensive to use.  Eventually, for each shared resource, all 

but one signal are forced to find alternate routes if possible. 

4.3 Testing Framework 

Eight different applications (each composed of two or more netlists) were used to 

compare the area results of the Totem architectures to a number of existing 

implementation techniques, including standard cell, FPGA, and RaPiD techniques.  These 

applications, along with their member netlists, are listed in Table 4.1.  Five of these are 

real applications used for radar, OFDM, digital camera, speech recognition, and image 

processing.  The remaining three applications are sets of related netlists, such as a 

collection of different FIR filters. 
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Table 4.1: Eight applications used to test Totem architectures, each containing two or more 
distinct netlists.  FIR, Matrix, and Sort are collections of similar netlists, while the others are 
actual applications. 

Application Member Netlists
Radar decnsr, fft16_2nd, psd
OFDM sync, fft64

Camera color_interp, img_filt, med_filt
Speech log32, fft32, 1d_dct40

FIR firsm, firsm2, firsm3, firsymeven, firtm_1st, firtm_2nd
Matrix matmult, matmult4, matmult_bit, limited, limited2
Sort sort_g, sort_rb, sort_2d_g, sort_2d_rb

Image med_filt, matmult, firtm_2nd, fft16_2nd, 1d_dct40  

4.3.1 Standard Cells 
The standard cell layouts of the netlists (converted from RaPiD netlist format to 

Verilog) were created using Cadence in a TSMC 0.18µm process with 6 metal layers.  

Generally, the total area for an application set is the sum of the areas required for the 

netlists.  However, for the application sets which are a collection of very similar netlists 

(FIR, Matrix, and Sort from Table 4.1), this assumption is likely to be incorrect.  

Therefore, to err on the side of caution for these particular cases, the maximum area 

required by any one member netlist is instead used, under the assumption that a small 

amount of additional control circuitry may allow all member netlists to use the same 

hardware.  I/O area is not included, as I/O area is also not measured for the Totem 

architectures.  The standard cell areas for individual netlists as well as the application sets 

are given in Table 4.2. 
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Table 4.2: The areas of the eight different applications from Table 4.1 implemented using standard 
cells in a 0.18µm process.  In most cases, the application area is the sum of the member netlist 
areas.  However, the FIR, Matrix and Sort applications are collections of very similar netlists, so 
to better estimate the standard cell layout area, the maximum member netlist area is instead used. 

Application Netlists Netlist Area 
(mm²)

Application 
Area (mm²)

decnsr 0.160
fft16_2nd 3.073
psd 0.867
sync 2.996
fft64 6.172
color_interp 3.640
img_filt 2.858
med_filt 0.769
log32 22.070
fft32 4.050
1d_dct40 0.404
firsm 2.668
firsm2 2.668
firsm3 2.674
firsymeven 2.846
firtm_1st 1.302
firtm_2nd 1.214
matmult 1.383
matmult4 1.414
matmult_bit 1.348
limited 1.785
limited2 0.517
sort_g 1.541
sort_rb 1.310
sort_2d_g 1.152
sort_2d_rb 1.152
med_filt 0.769
matmult 1.383
firtm_2nd 1.214
fft16_2nd 3.073
1d_dct40 0.404

Sort 1.541

Image 6.843

FIR 2.846

Matrix 1.785

Camera 7.268

Speech 26.523

Radar 4.101

OFDM 9.168

  

4.3.2 FPGA 
The FPGA solution is based on the Xilinx VirtexII FPGA, which uses a 0.15µm 

8-metal-layer process, with transistors at 0.12µm [Xilinx02].  In particular, the die area 

was obtained for an XC2V1000 device [Chipworks02].  This FPGA contains not only 
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LUT-based logic (“slices”), but also embedded RAM and multiplier units, in a proportion 

of 128 slices : 1 multiplier : 1 RAM.  This proportion of resources is used as a tileable 

atomic unit when determining required FPGA area for the designs, as manually-designed 

FPGA cores for SoCs are unlikely to be very customizable except in terms of the quantity 

of total tileable resources. 

The area of an individual tile, which corresponds to approximately 25K system 

“gates” of logic, was computed (using a photograph of the die) to be 1.141mm2.  This 

area was then scaled to a 0.18µm process by multiplying by (.15/.18)2 to yield a final tile 

size of 1.643mm2 to compare all solutions using the same fabrication process.  The 

Verilog files created from individual netlists were placed and routed onto a VirtexII chip, 

and the number of tiles required for the applications were measured.  In this case, the 

total area required by an application is the maximum of the areas required by its member 

netlists, as the hardware resources are reusable.  These areas are given in Table 4.3. 
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Table 4.3: The FPGA areas of the eight different applications from Table 4.1.  The resource usage 
and number of atomic tiles is given for each netlist, and the number of tiles and resulting area 
(converted to a 0.18µm process) is given for each application. 

Application Netlists Slices Mults RAMs Netlist 
Tiles

App. 
Tiles

Application  
Area (mm²)

decnsr 112 0 0 1
fft16_2nd 489 12 12 12
psd 172 4 0 4
sync 2415 2 16 19
fft64 2442 8 36 36
color_interp 512 14 6 14
img_filt 1017 0 13 13
med_filt 29 0 4 4
log32 1304 48 0 48
fft32 626 16 16 16
1d_dct40 29 1 0 1
firsm 368 16 0 16
firsm2 368 16 0 16
firsm3 360 16 0 16
firsymeven 585 16 0 16
firtm_1st 211 4 11 11
firtm_2nd 280 4 8 8
matmult 312 4 12 12
matmult4 344 4 12 12
matmult_bit 956 4 12 12
limited 284 8 8 8
limited2 131 2 0 2
sort_g 1049 0 16 16
sort_rb 1019 0 9 9
sort_2d_g 822 0 12 12
sort_2d_rb 781 0 8 8
med_filt 29 0 4 4
matmult 312 4 12 12
firtm_2nd 280 4 8 8
fft16_2nd 489 12 12 12
1d_dct40 29 1 0 1

16 26.292

12 19.719

16 26.292

12 19.719

14 23.006

48 78.877

12 19.719

36 59.157

FIR

Matrix

Sort

Image

Speech

Camera

OFDM

Radar

 

4.3.3 RaPiD 
The area required to implement the applications on a static RaPiD architecture 

was also calculated [Cronquist99a].  The RaPiD results represent a partially-customized 

FPGA solution.  The RaPiD reconfigurable architecture was designed for the types of 
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netlists used in this testing, and contains specialized coarse-grained computational units 

used by those netlists.  The number of RaPiD cells can be varied, but the resource mix 

and routing design within the cell is fixed. 

To find the area for each application, the minimum number of RaPiD cells needed 

to meet the logic requirements of the application was calculated.  The application’s 

netlists were then placed and routed onto the architecture to verify that enough routing 

resources were present.  If not, and the routing failed, the number of cells was increased 

by one until either all of the application’s netlists could successfully place and route, or 

place and route still failed with 20% more cells than the application logic required.  Table 

4.4 lists the results of these tests. 

Manual layouts of each of the units and routing structures were created in a 

TSMC 0.18µm process with 5 metal layers.  The logic area is simply the sum of the areas 

of the logic units in the architecture.  Routing area is the sum of the areas of the 

multiplexers, demultiplexers, and bus connectors (segmentation points) in the 

architecture.  Routing tracks are directly over the logic units in a higher layer of metal, 

and are therefore not counted as contributing to the area.  In some cases, the RaPiD 

architecture did not have sufficient routing resources to implement a circuit.  The RaPiD 

cell would have to be manually redesigned to fit these netlists.  This illustrates one of the 

primary benefits of an automatic architecture generator – provided enough die area is 

allocated, a solution can always be created.   
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Table 4.4: The RaPiD areas of the eight different applications from Table 4.1.  The area for each 
application is based on the minimum number of cells required to successfully place and route all 
of the netlists in the given applications.  The number of cells needed by each netlist is also given. 

Application Netlists Netlist 
Cells

Netlist     
Area (mm²)

App. 
Cells

Logic     
Area (mm²)

Routing    
Area (mm²)

Application  
Area (mm²)

decnsr 2 0.833
fft16_2nd 12 4.996
psd 6 2.498
sync --- ---
fft64 --- ---
color_interp --- ---
img_filt 19 7.910
med_filt --- ---
log32 192 79.937
fft32 16 6.661
1d_dct40 3 1.249
firsm 16 6.661
firsm2 16 6.661
firsm3 16 6.661
firsymeven 16 6.661
firtm_1st 4 1.665
firtm_2nd 4 1.665
matmult 4 1.665
matmult4 4 1.665
matmult_bit 4 1.665
limited 8 3.331
limited2 2 0.833
sort_g 11 4.580
sort_rb 12 4.996
sort_2d_g 8 3.331
sort_2d_rb 8 3.331
med_filt --- ---
matmult 4 1.665
firtm_2nd 4 1.665
fft16_2nd 12 4.996
1d_dct40 3 1.249

Speech

Camera

OFDM

Radar

FIR

Matrix

Sort

Image

12 4.996

--- ---

2.838 2.158

--- ---

--- ---

192 79.937

------

45.401 34.536

16 6.661

8 3.331

3.783 2.878

1.892 1.439

21 8.743

--- ---

4.966

---

3.777

---

 

4.3.4 Relative Areas 
Previously, FPGAs produced solutions approximately 50x larger than standard 

cell implementations of a given circuit [Stone96].  However, the results of the area tests 

in this chapter indicate that progress has been made to reduce the overhead of 
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reconfigurable hardware.  Table 4.5 lists the areas of the available netlists for each of the 

implementation methods discussed.  According to this data, FPGA implementations using 

the VirtexII FPGA are just under 10x larger than the standard cell implementation.  Some 

of the possible reasons for this 5x improvement in the FPGA area include the use of two 

more metal layers in the VirtexII compared to these standard cell implementation, and the 

embedded multipliers and RAM units in the VirtexII, which were absent from the FPGA 

design used in the previous study. 

The margin between standard cells and reconfigurable hardware shrinks further 

when application areas are compared.  The FPGA and RaPiD resources can be reused 

between the different netlists in an application.  However, a separate circuit layout must 

be created for each netlist in an application using a standard cell technique3.  While the 

FPGA areas are on average nearly 10x larger than standard cell for individual circuits, 

these areas are on average just over 7x larger than standard cell implementations once the 

FPGA hardware is reused for multiple netlists within an application. 

 

                                                 

3 Note that as discussed previously, three of the “applications” are collections of similar netlists.  
To err on the side of caution, it is assumed that the actual standard cell layout for those applications will be 
approximately the size of the largest netlist in the application, and that only a small amount of support 
circuitry would be necessary to allow the layout to perform the other functions as well. 
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Table 4.5: The areas of all of the netlists from Table 4.1 using each of the implementation 
methods, normalized to the standard cell area. 

Netlist Std Cell     
Area (mm²)

FPGA      
Area (mm²)

RaPiD      
Area (mm²)

1d_dct40 1.00 4.07 3.09
color_interp 1.00 6.32 ---
decnsr 1.00 10.25 5.20
fft16_2nd 1.00 6.42 1.63
fft32 1.00 6.49 1.64
fft64 1.00 9.58 ---
firsm 1.00 9.86 2.50
firsm2 1.00 9.86 2.50
firsm3 1.00 9.83 2.49
firsymeven 1.00 9.24 2.34
firtm_1st 1.00 13.88 1.28
firtm_2nd 1.00 10.83 1.37
img_filt 1.00 7.47 2.77
limited 1.00 7.36 1.87
limited2 1.00 6.36 1.61
log32 1.00 3.57 3.62
matmult 1.00 14.26 1.20
matmult4 1.00 13.95 1.18
matmult_bit 1.00 14.62 1.24
med_filt 1.00 8.54 ---
psd 1.00 7.58 2.88
sort_g 1.00 17.06 2.97
sort_rb 1.00 11.29 3.81
sort_2d_g 1.00 17.11 2.89
sort_2d_rb 1.00 12.92 3.27
sync 1.00 10.42 ---
AVERAGE 1.00 9.97 2.42  

Table 4.6: The areas of each of the applications from Table 4.1 using each of the implementation 
methods, normalized to the standard cell area. 

Application Std Cell     
Area (mm²)

FPGA      
Area (mm²)

RaPiD      
Area (mm²)

Radar 1.00 4.81 1.22
OFDM 1.00 6.45 ---
Camera 1.00 3.17 ---
Speech 1.00 2.97 3.01
FIR 1.00 9.24 2.34
Matrix 1.00 11.04 1.87
Sort 1.00 17.06 3.24
Image 1.00 2.88 ---
AVERAGE 1.00 7.20 2.34  
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Chapter 5 
 
 
 
Logic Generation 

As stated previously, this work encompasses two categories of customized 

reconfigurable hardware generation:  highly customized near-ASIC (cASIC) architectures 

and more flexible RaPiD-like designs.  In both cases, it is the routing architecture style 

that differs, while the logic is created using essentially the same methods.  The logic 

architecture is created in two steps: first the number of each type of coarse-grained 

computational unit is determined; then these units are ordered along the horizontal axis.  

Both of these operations are based on the netlists provided by the user as a description of 

the domain for which the reconfigurable architecture is to be created.  This architecture 

contains the logic resources needed to implement each of the netlists one at a time.  

Performing a reconfiguration of the hardware replaces the current netlist with another. 

5.1 Type and Quantity of Units 

The generation of logic structures for cASIC architectures involves first 

determining the type and quantity of functional units required to implement the given 

netlists.  Because the ability to reuse hardware is a key feature of reconfigurable 
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computing, maximum hardware reuse between netlists is forced.  The minimum number 

of total logic units is chosen such that any one of the netlists given as part of the 

architectural specification can operate in its entirety.  In other words, unit use within a 

netlist is not modified or rescheduled.  Therefore, if netlist A uses 12 multipliers and 16 

ALUs, while netlist B uses 4 multipliers and 24 ALUs, a cASIC architecture designed for 

these two netlists would have 12 multipliers and 24 ALUs.  Note that for flexible 

architecture generation, the designer can specify to include additional logic units beyond 

the minimum. 

5.2 Binding vs. Physical Moves 

After the unit quantities and types have been selected, they must be arranged 

along the horizontal axis.  A good ordering will ensure that the number of signals passing 

through any one vertical cut of the architecture is kept low, which reduces the area 

consumed by the routing structures.  Similarly, units communicating with one another 

should be located in close proximity to reduce the delay on the wires between them.  

Therefore, the best physical ordering of the units depends on the communication between 

them.  The communication needs between physical units, however, depend on how the 

netlists are implemented on that hardware. 

Before discussing this issue further, some terminology must be defined.  The 

architectural components represent physical structures to be implemented in silicon.   

These differ from netlist instances, which are implemented by the physical components.  
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A netlist instance represents a “need” for a given type of computation at a given point of 

the circuit.  In traditional FPGAs, the LUTs are the physical components, while the netlist 

instances are low-level gates or small logic functions.  In the Totem Project, coarser-

grained architectures and netlists are currently used.  For example, a multiply-accumulate 

netlist contains a multiplier instance followed by adder and register instances.  These 

instances must be implemented by the appropriate type of physical components in the 

hardware. 
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Figure 5.1: (a) Binding assigns instances of a netlist to physical components.  (b) Physical moves 
reposition the physical components themselves. 

There may be multiple units appropriate for a circuit instance, in which case the 

instance must be matched to a specific physical unit.  When using traditional FPGAs, this 

matching is referred to as placement or binding.  For this work, the terms binding or 

mapping are used to describe the process of matching an instance to a component.  A 

physical move describes the act of assigning a physical location to a physical component.  
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Figure 5.1 illustrates the difference between binding and placement.  Using this 

terminology, traditional synthesis for FPGAs requires only bindings, whereas synthesis 

for standard cells involves only physical moves. 

Reconfigurable architecture generation is a unique situation in which both binding 

and physical moves must be considered.  The locations of the physical units must be 

known in order to find the best binding, and the binding must be known to find the best 

physical moves.  Since these processes are inter-related, both binding and physical moves 

are performed simultaneously in this work.  The term placement is used here to refer to 

the combined process of determining a binding of netlists to units and physical locations 

for the units.  The next section describes the algorithm used to find the final placement.  

An example will be presented that demonstrates the logic generation and placement for 

an architecture created from the two netlists in Figure 5.2. 

IN1

IN2 OUT
0

X +
IN1

IN2 OUT
0

XX ++

   
IN1

OUT
IN2

X X +
IN1

OUT
IN2

XX XX ++

 
Figure 5.2: Two different example netlists that could be used in architecture generation.  The light 
netlist performs a multiply-accumulate (MAC), while the dark netlist is a 2-tap FIR filter.  These 
two netlists are used in the example placement process given in the next few figures. 



 

 

83

5.3 Adapting Simulated Annealing 

Simulated annealing [Sechen88] is an algorithm commonly used in FPGA 

placement (binding) to assign netlist instances to physical computation units, and 

standard cell placement to determine locations for actual physical cells.  This algorithm 

operates by taking a random initial placement of elements, and repeatedly attempts to 

move the location of a randomly selected element.  The move is accepted if it improves 

the overall cost of the placement.  To avoid settling in a local minima of the placement 

space, moves that do not improve the cost of the placement are sometimes accepted.  The 

probability of accepting a non-improving move is governed by the current “temperature”.  

At the beginning of the algorithm, the temperature is high, allowing a large proportion of 

bad moves to be accepted.  As the algorithm progresses, the temperature decreases, and 

therefore the probability of accepting a bad move also decreases.  At the end of the 

algorithm almost no bad moves are permitted. 

For reconfigurable architecture generation, the simulated annealing algorithm 

must be adapted, changing what constitutes a “move”.  In FPGA placement a move is 

changing which physical structure implements a specific portion of the netlist logic 

(rebinding), and in ASIC placement a move involves giving a new physical position to a 

standard cell.  For this work, a move can be either of these two possibilities – either 

rebinding a netlist computational instance from one physical unit to another compatible 
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physical unit, or changing the position (ordering) along the 1D axis of a computational 

component. 

The instances of each netlist are arbitrarily assigned initial bindings to physical 

components, which are ordered arbitrarily along the 1D axis.  An example initial 

placement created for the two netlists presented in Figure 5.2 appears in Figure 5.3.  Like 

simulated annealing, a series of moves are used to improve the placement/binding.  The 

probability of attempting a re-binding versus a physical component movement is equal to 

the fraction of total “elements” that are instances instead of physical components.  A 

physical move is shown for the example architecture in Figure 5.4, and a rebinding in 

Figure 5.5. 

OUT

0

IN1

IN2

OUT

IN2
IN1

++XX XX

Initial Placement

 
Figure 5.3: The initial physical placement and bindings of an architecture created for the netlists of 
Figure 5.2.  Color shading indicates component use by the netlists.  For example, when the light 
netlist is in operation, only the left multiplier is used.  When the dark netlist is in operation, both 
multipliers are used.  The architecture can be reconfigured to switch between the light and dark 
netlists. 
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Figure 5.4: A physical move performed during the placement operation.  Top: Before.  Bottom: 
After.  
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Figure 5.5: A rebinding performed during the placement operation.  Top: Before.  Bottom: After. 
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Figure 5.6: The final placement of the architecture created for the netlists from Figure 5.2 after a 
series of moves such as those illustrated in Figure 5.4 and Figure 5.5.  The signal cross-section has 
been greatly reduced from the initial placement shown in Figure 5.3. 

The cost metric is based on the cross-section of signals communicating between 

the bound instances.  At each physical unit location, the cross-section of signals for each 

netlist is determined.  The maximum across the netlists becomes the overall cross-section 

value at that point.  After the cross-section value is calculated for each location, the 
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values are squared, then summed across the locations to yield the overall cost value.  By 

squaring the values before summing across positions, areas with a high cross-section are 

heavily penalized.  The goal in reducing these cross-sections is primarily to minimize the 

area of the routing structure that will be created, because a larger cross-section can lead to 

a taller architecture.  A secondary goal is to decrease the delay of the nets, because the 

longer (and slower) a wire is, the more likely it is to share a span with other wires and 

contribute to a larger cross-section. 

The guidelines presented for VPR [Betz97], a place and route tool for FPGAs, 

govern the initial temperature calculation, number of moves per temperature, and cooling 

schedule.  These values are based on Nblocks, the number of “blocks” in a netlist.  Since 

both netlist instances and physical components are being used, Nblocks is calculated as the 

sum of the instances in each netlist provided plus the number of components created, as 

shown in Equation 5.1.  The initial temperature is calculated by performing Nblocks moves, 

and finding the standard deviation (stddev) of the cost of these Nblocks 

bindings/placements.  The initial temperature calculation is given in Equation 5.2.  

Equation 5.3 presents the VPR calculation of the number of moves (nMoves) performed 

at each temperature.  This calculation is not changed apart from the calculation of Nblocks 

as previously described. 

Equation 5.1: ∑
=

+=
netlists

i
iblocks NinstancessNcomponentN

#

0
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Equation 5.2: stddevTinit *20=   [Betz97] 

Equation 5.3: 33.1)(*10 blocksNnMoves =   [Betz97] 

Finally, the cooling schedule specified by VPR is also used.  The new temperature 

Tnew is calculated according to the percentage of moves that were accepted (Raccept) at the 

old temperature Told.  Table 5.1 details the cooling schedule, indicating how the 

temperature should be updated according to Raccept. 

Table 5.1: The calculation of the new temperature Tnew based on the percentage of moves 
accepted, Raccept.  This cooling schedule is used by VPR [Betz97]. 

Raccept > .96 Tnew = .5 * Told 

.8 < Raccept ≤ .96 Tnew = .9 * Told 

.15 < Raccept ≤ .8 Tnew = .95 * Told 

Raccept ≤ .15 Tnew = .8 * Told 
 

After determining the logic structure and placement, the components must be 

connected together with some sort of routing structure.  As will be discussed in Chapter 

6, the routing can be very specialized, only providing the connections that the input 

circuit set requires.  This leads to a highly optimized architecture with very low 

flexibility.  The other option, discussed in Chapter 7, is to create a more generic, flexible, 

routing structure.  Some specialization is retained, yet sufficient flexibility exists to 

implement circuits beyond the specification set. 
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Chapter 6 
 
 
 
Configurable ASICs 

While the flexibility of traditional FPGA structures is one of their greatest assets, 

it is also one of the largest drawbacks—greater flexibility leads to greater area, delay, and 

power overheads.  Creating customized reconfigurable architectures presents the 

opportunity to greatly reduce these overheads by discarding excess flexibility.  This 

chapter discusses taking this idea to the extreme end of the spectrum – removing all 

unneeded flexibility to produce an architecture as ASIC-like as possible.  This style of 

architecture is referred to as “configurable ASIC”, or cASIC. 

  Like RaPiD [Cronquist99a], cASIC architectures are very coarse-grained, 

consisting of optimized components such as multipliers and adders.  Unlike RaPiD, 

cASICs do not have a highly flexible interconnection network—the only wires and 

multiplexers available are those which are required by the netlists.  This is because 

cASICs are designed for a specific set of netlists, and are not intended to implement 

netlists beyond the specification.  Hardware resources are still controlled by configuration 

bits, though there are much fewer present.  These configuration bits allow for hardware 
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reuse among the specification netlists.  Each netlist in the specification is implemented in 

turn by programming these bits with the appropriate set of values. 

The cASIC architecture generation occurs in two distinct phases.  In the 

placement stage of the generation the computation needs of the algorithms are 

determined, the computational components (ALUs, RAMs, multipliers, registers, etc) are 

created, and the physical elements are ordered along the one-dimensional datapath.  Also, 

the netlist instances must be bound to the physical components.  Both of these operations 

are performed as specified in Chapter 5.  In the routing stage, the actual wires and 

multiplexers needed to connect the different components, including the I/Os, are created.  

The routing stage is discussed in more depth in section 6.2.  After the generation 

algorithms are discussed, an area comparison is given between the architectures created 

with the cASIC techniques, and the standard cell, FPGA, and RaPiD solutions described 

in section 4.1. 

6.1 Logic Generation 

As stated previously, cASIC architectures use very coarse-grained logic blocks 

operating on full words of data.  Computations can be implemented far more efficiently 

by dedicated units, like ALUs and multipliers, than by generic LUTs.  This optimization 

allows the Totem (and RaPiD) architectures to implement algorithms in much less area 

than required by a traditional FPGA.  Totem provides an additional benefit over static 

RaPiD architectures:  the mix and arrangement of the logic resources can be customized 
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to the application netlists.  The architecture generator reads in the target netlists, 

determines the type and quantity of logic units required, and orders these units along the 

one-dimensional axis, as described in Chapter 5.  After the logic is in place, the routing 

must be created to allow the units to be connected together. 

6.2 Routing Generation 

While RaPiD uses a series of regular routing tracks, multiplexers, and 

demultiplexers to connect the units, cASIC architectures provide a more specialized 

communication structure.  The only routing resources included are those which are 

explicitly required by one or more of the netlists.  This section discusses the different 

techniques developed to create the routing structures. 

The routing structure of a custom generated architecture will depend on the 

placement achieved using the techniques of Chapter 5.  At this point, the physical 

locations of the components are fixed, as are the bindings of the netlist instances to those 

components.  The specification netlists define the signals that connect the netlist 

instances to form a circuit.  These instances have been bound in the placement stage, so 

the physical locations of the ports of the signals are known.  Wires are then created to 

implement these signals, allowing each netlist to execute individually on the custom 

hardware. 

In addition to wires, multiplexers and demultiplexers on the ports of the 

components may be created to accommodate the different requirements of the 
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specification netlists.  For example, if netlist A needs an adder to output to a register, but 

netlist B needs the adder to output to a RAM, a demultiplexer is instantiated on the output 

of the adder to direct the signals properly for each netlist.  Similarly, if netlist A has a 

register that receives an input from an adder, but netlist B needs that register to input 

from a multiplier, a multiplexer is created to choose the register input based on which 

netlist is currently active in the architecture.   Figure 6.1 continues the example in 

Chapter 5, showing the generated routing structure for the placement of Figure 5.6.  Note 

that several of the wires here are used to implement signals from both netlists.  Like the 

logic resources, the wires are only used by one netlist at a time—whichever netlist is 

currently programmed onto the architecture.   “Sharing” of routing resources between 

netlists is critical, as the routing architecture can become extremely large if each signal is 

implemented by a dedicated wire. 

IN2
IN1

XXXX 0
OUT

++

 
Figure 6.1:  cASIC routing architecture created for the example from Chapter 5.  Black wires are 
used by both netlists of Figure 5.2, while light wires are only used by the light netlist, and dark 
grey wires and logic are only used by the dark grey netlist.  Logic resources used by both netlists 
show both colors. 

The object of the routing generation phase is to minimize area by sharing wires 

between netlists, while adding as few multiplexers and demultiplexers as necessary.  

Heuristics are used to group signals with similar connections from different netlists into 
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wires.  In order to understand the motivations for the algorithms presented below, the 

routing problem itself must first be discussed.  As with the placement problem, creating 

the routing is two problems combined into one: creating the wires, and assigning of the 

signals to wires.  In many current FPGA architectures, wire lengths can be adjusted for 

each netlist by taking advantage of programmable connections (segmentation points) 

between lengths of wire, potentially forming a single long wire out of several short wires.  

For simplicity, the current Totem cASIC generation algorithms do not provide this 

flexibility. 

The algorithms must somehow determine which sets of signals belong together 

within a wire.  One method is to simply not share at all, which is explored in the No 

Sharing algorithm.  The remaining algorithms, Greedy, Bipartite and Clique, use 

heuristics to determine how the wires should be shared between signals.  The heuristics 

operate by placing signals with a high degree of similarity together into the same wire.  

However, “similarity” can be computed several different ways.  In this work, two 

different definitions of “similarity” were used.  Ports refers to the number of input/output 

locations the signals or wires have in common.  Overlap refers to a common “span”, 

where the span of a signal or wire is bounded by the leftmost source or sink and the 

rightmost source or sink in the placed architecture.  Results for each of these similarity 

types are given in section 6.3.  The procedures used by the Greedy, Bipartite, and Clique 

heuristics are described in the next sections. 
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6.2.1 Greedy 
The greedy algorithm operates by repeatedly merging wires that are very similar.  

To begin, each signal is assigned to its own wire.  Next, a list of correlations between all 

compatible wire pairs (wires that are not both used in the same netlist) is created.  The 

highest correlation value is selected at each iteration, and those two wires are merged.  

All other correlations related to either of the two wires that have been merged are updated 

according to the characteristics of the new shared wire.  If any of the correlations now 

contain a conflict due to the new attributes of the merged wire (i.e., both wires in the 

correlation hold a signal from the same netlist), these correlations are deleted from the 

list, as they are no longer valid.  This process continues until the correlation list is empty, 

and no further wires may be merged.  The pseudocode for this operation is given in 

Figure 6.2. 
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Greedy() { 
 Let overlap(wi,wj) return shared span of wires wi and wj 
 Let ports(wi,wj) return shared ports of wires wi and wj 
 
 Let S = the set of all signals 
 Let W = a set of wires (initially empty) 
 Create one wire for each signal in S, assign the signal to the wire, 
  and add the wire to set W 
 Let L = a list of all pairs of wires in W 

 
  // greedily merge wires 

 Loop { 
  For each pair (wi, wj) of wires in L { 
   If wi and wj contain signals from the same netlist, 
    Delete pair from L 
   Else if (overlap(wi, wj) = 0 and ports(wi, wj) = 0), 
    Delete pair from L 
  } 
  If L empty, quit 
  Find pair (wi, wj) from L with greatest overlap() or ports() value, 
   depending on similarity method used, breaking ties using other  
   similarity 
  Remove pair from L 
  Remove wi and wj from W 
  Make new wire wk = wi ∪ wj, and add it to W 
  Update all pairs in L that refer to wi or wj to refer to wk instead 
 } 
 Return W 
} 

Figure 6.2: Pseudocode for the Greedy cASIC generation technique. 

6.2.2 Bipartite 
The merging of netlists into cASIC architectures is a form of matching problem.  

This might naturally lead one to consider the use of bipartite matching to solve the 

problem.  One  group has already used maximum weight bipartite matching to match 

netlist instances together to form the components [Huang01].  However, there are two 

significant problems with this approach.  The first is that this type of logic construction 

does not consider the physical locations of the instances or their components.  The 

physical locations of components and mapped instances determines the length of wires 
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needed to make the connections between units, and is therefore critical to effective logic 

construction.  Furthermore, that particular work indicated that wires would not be shared 

between signals after the logic was constructed using the bipartite matching method. 

Second, the bipartite matching algorithm was used recursively, matching two 

netlists together, then matching a third netlist to the existing matching, and so on.  While 

any individual matching can be guaranteed to have the maximum weight, the cumulative 

solution may not.  The order in which the netlists are matched can affect the quality of the 

final solution.  This is true even if bipartite matching is not used for the logic construction 

but only for routing construction. 
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Figure 6.3: An example graph which does not produce the optimal solution when bipartite 
matching is used recursively.  First the dark grey nodes are matched to the light grey nodes, and 
then the matching is matched to the white nodes.  The final grouping formed by the bipartite 
matching process is shown at right.  The total weight is the sum of the weights of all the edges 
completely contained within a grouping.  Figure 6.6 shows a superior solution found using clique 
partitioning. 

To demonstrate that the ordering of the netlists has an effect on the quality of the 

resulting solution, a cASIC generation algorithm was created which uses recursive 

maximum weight bipartite matching.  Logic for these architectures is still constructed as 
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discussed in Chapter 5 because of the location issue mentioned previously, but the 

merging of signals into wires is performed using bipartite matching. 

Bipartite() { 
 Let overlap(wi,wj) return shared span of wires wi and wj 
 Let ports(wi,wj) return shared ports of wires wi and wj 
 
 Let N = the set of netlists 
 Let Order = a matrix containing the indices of the netlists in the 
  order they are to be merged, (|Order| = the number of netlists) 
 
 Let S = the set of all signals 
 Let W = a set of wires (initially empty) 
 Create one wire for each signal in S, assign the signal to the wire, 
  and add the wire to set W 
 
 Let L be the set of all wires in W that were created specifically for 
  the signals in netlist NOrder[0] 
 
 For netIndex = 1…|Order|-1 { 
  // L is the cumulative bipartite solution, R is the new netlist 
  Let Weights be |L|x|R| matrix of integers 
  Let R be the set of all wires in W that were created specifically 
   for the signals in netlist NOrder[netIndex]  
  For each li in L { 
   For each rj in R { 
    If method is overlap, 
     Weights[i][j] = overlap(li,rj) 
    Else if method is ports, 
     Weights[i][j] = ports(li,rj) 
   } 
  } 

 
  // perform the maximum weight bipartite matching 
  Let Match = the solution from bipartite_match(L,R,Weights) 
  Empty set L 
  For each pair (li,rj) in Match { 
   Make new wire wk = li ∪ rj, and add it to L 
  } 
 } 
 Return L, the cumulative bipartite solution 
} 

Figure 6.4: Pseudocode for the recursive maximum weight bipartite matching cASIC technique.  
The pseudocode for the maximum weight bipartite matching algorithm itself appears in Figure 6.5. 
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bipartite_match(L,R,Weights) { 
 // perform a maximum weight bipartite matching between the vertices 
 // in L and R with edge weights in Weights[][] 
 Let M be the solution set of pairs (li,rj) to the problem 
  (initially empty) 
 Let X and Y be sets of vertices from L and R respectively, 
  (initially empty) 
 Let PX[i] and PY[j] be arrays of sets of vertex pairs (initially 
  empty), where i = 0…|L| and j = 0…|R| 
 
 Loop { 
  Let X be the set of all vertices in L that have not been matched 
  Let DX[k] = 0 if vertex lk is in X, -∞ otherwise 
  Let DY[k] = -∞ for all vertices rk in R 
 
  While X not empty { 
   // Phase 1: see if adding an edge to the matching helps 
   Empty Y 
   For all pairs (lx, ry) not in M with lx in X { 
    If DX[x] + Weights[x][y] > DY[y], 
     DY[y] = DX[x] + Weights[x][y] 
     Add vertex ry to Y 
     // keep track of the set of changes to the matching 
     PY[y] = PX[x] ∪ (lx, ry) 
    } 
   } 
 
   // Phase 2: see if subtracting an edge from the matching helps 
   Empty X 
   For all pairs (lx, ry) in M with ry in Y { 
    If DY[y] – Weights[x][y] > DX[x], 
     DX[x] = DY[y] – Weights[x][y] 
     Add vertex lx to X 
     // keep track of the set of changes to the matching 
     PY[y] = PY[y] ∪ (lx, ry) 
     PX[x] = PY[y] 
    } 
   } 
  } 
 
  Let ry be an unmatched vertex from R with maximum DY[y] 
  If DY[y] > 0 { 
   // add path PY[y] to M 
   For all vertex pairs (lx,ry) in PY[y] { 
    If (lx,ry) is not in M 
     M = M ∪ (lx,ry) 
    Else 
     M = M - (lx,ry) 
   }    
  } Else return M 
 } 
} 

Figure 6.5: Pseudocode of the maximum weight bipartite matching graph algorithm [Shier99] used 
by the Bipartite cASIC generation algorithm from Figure 6.4. 
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6.2.3 Clique 
The downside of the Greedy and Bipartite techniques is that they merge wires 

based on short-term local benefits, without considering the problem as a whole.  There 

may be cases where merging the two most similar wires at one point prevents a more 

ideal merging later in the algorithm.  Therefore, the Clique algorithm has been 

implemented to globally address the routing creation problem. 

Clique partitioning is a concept from graph algorithms whereby vertices are 

divided into completely connected groups.  In our algorithm each wire is represented by a 

vertex, and the "groups", or cliques, represent physical wires.  The algorithm uses a 

weighted-edge version of clique partitioning to group highly correlated signals together 

into wires, where the correlation value between signals is used as the edge weight.  The 

cliques are then partitioned such that the weight of the edges connecting vertices within 

the same clique is maximized.  Signals that cannot occupy the same wire (signals from 

the same netlist) carry an extremely large negative weight that will prevent them from 

being assigned to the same clique.  Therefore, although signal A may be highly correlated 

with signal B, and signal B is highly correlated with signal C, they will not all be placed 

into the same wire (clique) if signal A conflicts with signal C, due to the large negative 

weight between those vertices.  Figure 6.6 shows the clique partitioning solution to the 

weighted-edge graph from the example of Figure 6.3.. 
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Figure 6.6: An improved solution to the graph of Figure 6.3 found using clique partitioning.  The 
nodes in this graph represent the signals, and each clique (grouping) represents a wire shared by 
the vertices (signals) in the cliques.  The total weight is the sum of all edge weights completely 
contained within a clique. 

Given that weighted clique partitioning of a graph with both negative and positive 

edge weights is NP-Complete, an ejection chain heuristic based on tabu search 

[Dorndorf94] is used.  Vertices are initially assigned to random cliques (where the 

number of cliques equals the number of vertices).  Some cliques are allowed to be empty, 

but all vertices must be assigned to a clique.  The algorithm then iteratively moves each 

vertex from its current clique to a different one.  This is done by each time selecting a 

non-tabu vertex and a new clique for that vertex that will produce the maximum overall 

(not necessarily positive) gain in total weight for the graph.  Once a vertex is moved, it is 

marked tabu until the next iteration. 

After all the vertices have been moved in an iteration, the list of cumulative 

solutions after each move is examined, and the one with the highest total weight is 

chosen.  This solution is then used as the base for the next iteration of moves, and all 
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vertices are marked non-tabu.  This loop continues until none of the cumulative solutions 

in an iteration produces a total weight greater than the base solution for that iteration. 

Clique() { 
 Let S = the set of all signals 
 Let W = the set of wires, initially empty 
 Let Weights be |S|x|S| matrix of integers 

 
  // load weights between signals (vertices) into matrix 
  For each signal si in S { 
   For each signal sj in S { 
    If si = sj, Weights[i][j] = 0 
    Else if si and sj are from the same netlist, Weights[i][j] = -∞ 

   Else Weights[i][j] = edge_weight(si,sj) 
  } 
 } 
 
 // perform the partitioning 
 Let CliqueSol = the solution set of cliques from 
  clique_partition(S,Weights) 
 
 // translate cliques to wires 
 For each clique Ci in CliqueSol { 
  Create a new wire wi, and add it to W 
  For each vertex signal sk in Ci { 
   Assign sk to wi, adding sk’s connections to wk 
  } 
 } 
 Return W 
} 
 
edge_weight(si,sj) { 
 // Find the edge weight between signals (vertices) s1 and s2 
 If method is overlap { 
  Let l(sm) return length of signal sm 
  Let shared(sm,sn) return shared span of signals sm and sn 
  Return 
   2*shared(si,sj) – (l(si)-shared(si,sj)) – (l(sj)-shared(si,sj)) 
 } Else if method is ports { 
  Let p(sm) return the number of ports on signal sm 
  Let shared(sm,sn) return number of ports in common of sm and sn 
  Return 
   2*shared(si,sj) – (p(si)-shared(si,sj)) – (p(sj)-shared(si,sj)) 
 } 
} 

Figure 6.7: The pseudocode of the Clique cASIC generation algorithm.  The pseudocode of the 
clique partitioning graph algorithm itself appears in Figure 6.8. 
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clique_partition(S,Weights) { 
 // perform a clique partitioning of vertices in S 
 // with edge weights in Weights[][] 
 
 Let weight(Ci) = the sum of weights of all edges between the 
  vertices contained by clique Ci 
 Let weight(Sol) = the sum of weights of all cliques in solution Sol 
 
 Let SolList = a list of clique solutions, initially empty 
 Let Sol = clique solutions (i.e., a set of cliques) 
 
 Initialize OldSol to hold |S| cliques 
 Assign each vertex si in S to random clique in OldSol 
 Add Sol to SolList 
 
 Loop { 
  Mark all vertices si in S as not tabu 

 
   While there are non-tabu vertices { 
    For each vertex si that is not tabu { 
     Let Ci be the clique si currently belongs to 
     For each clique Cj ≠ Cj { 
      gainj = ∆ weight(Ci) + ∆ weight(Cj) if si were moved to Cj 
     } 
     Let Cmax = clique with maximum gain 
     Mark vertex si as tabu, and move it to clique Cmax 
     Let Sol = the updated set of cliques, and add it to SolList 
    } 
   } 
   Find solution BestSol with the greatest total weight in SolList 
   If BestSol is first solution in SolList, return BestSol 
   Sol = BestSol 
   Empty SolList 

 } 
} 

Figure 6.8: Pseudocode of the clique partitioning graph algorithm [Dorndorf94] used by the 
Clique cASIC generation algorithm from Figure 6.7. 

6.3 Results 

For the cASIC architecture generation methods, the areas are computed based on 

the manual layouts used for the RaPiD area calculation from section 4.3.3.  Logic area is 

computed using the same method, but the routing area is a more complex computation.  

Area used by multiplexers and demultiplexers are again computed according to manual 
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layouts.  But unlike RaPiD, wire area can add to the total area of the architecture.  A wire 

cross-section of up to 24 can be routed directly over the logic units, so as with RaPiD, 

this routing area is considered “free”.  However, when the routing cross-section is greater 

than 24, the additional cross-section adds to the height of the architecture. 

Table 6.1: The areas of the routing structures created by the Bipartite cASIC generation methods 
using both the ports and the overlap methods.  All possible orderings of the netlists were 
considered, and the minimum, average, and maximum areas are given.  The percent difference 
between the minimum and maximum areas is also given. 

Radar OFDM Camera Speech FIR Matrix Sort Image
# Netlists 3 2 3 2 6 5 4 5
Ports Min 0.075 0.731 0.958 0.476 0.520 0.093 0.183 0.573
Ports Avg 0.076 0.731 0.959 0.476 0.582 0.094 0.185 0.582
Ports Max 0.077 0.731 0.959 0.476 0.629 0.097 0.187 0.589

% Diff 2.273 0.000 0.089 0.000 20.914 4.587 2.337 2.780
Overlap Min 0.093 0.429 0.301 0.371 0.247 0.131 0.248 0.573
Overlap Avg 0.094 0.429 0.305 0.373 0.263 0.140 0.251 0.582
Overlap Max 0.094 0.429 0.307 0.374 0.273 0.145 0.255 0.589

% Diff 0.917 0.000 1.983 0.690 10.345 10.390 2.749 2.780  

First, the Bipartite technique was examined to determine the effect of the order 

that netlists are merged into the cumulative solution.  Table 6.1 lists, for each application, 

the minimum, average, and maximum areas across the solutions for each ordering of the 

netlists.  The percent difference between the minimum and maximum areas is also given.  

When there are only two netlists, there is only one possible ordering, and the minimum 

and maximum values are identical.  However, these results indicate that for any cases 

with more than two netlists, the ordering can affect the final area.  In one case, the routing 

area varies by 20%.  Therefore, this technique may not be appropriate for cases with 

more than two netlists. 
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Figure 6.9:  Comparative area results of the different cASIC routing generation algorithms, 
normalized to the Clique Overlap result for each application.  The Bipartite results given are the 
average across orderings. 

The No Sharing algorithm creates a separate wire for every signal—a completely 

different set of wires is used depending on which netlist is in operation.  This method is 

included to demonstrate the importance of sharing routing resources between netlists.  

Areas are listed for Greedy, the average Bipartite case, and Clique, each with two 

categories:  Ports, and Overlap.  As stated previously, Ports indicates that the similarity 

between signals is computed according to the number of sources and sinks shared by 

those signals.  Overlap indicates that the similarity is computed according to common 

location and length of the signals. 
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An area comparison of the cASIC methods is given in Figure 6.9, which has been 

normalized to the area result of Clique Overlap (which on average produces the smallest 

architectures).  As expected, all three heuristic techniques of both similarity types 

perform better than the No Share algorithm for all applications.  Generally, Clique 

performs better than the other methods, with Clique Overlap on average 2% smaller than 

Bipartite Overlap, 6% smaller than Bipartite Ports, and 13% smaller than Greedy Ports or 

Greedy Overlap.  However, there is clearly room for improvement of the weighting 

calculation used by the Clique Partitioning method, as both Greedy and the average 

Bipartite produce a smaller area in some situations.  Additionally, Clique sometimes 

performs better using Ports, and other times using Overlap.  An improved similarity 

(weight) calculation for the Clique method should therefore incorporate both Ports and 

Overlap similarity techniques. 
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Table 6.2: The areas, in mm2, of the eight different applications from Table 4.1, as implemented 
with the three cASIC algorithms.  The results from Table 4.2 though Table 4.4 are included for 
reference.  For the Greedy and Clique Partitioning cASIC method, results for both Ports and 
Overlap style similarity computations are given.  A summary of these results appears in Table 6.3. 

Radar OFDM Camera Speech FIR Matrix Sort Image
Std. Cell Total 4.101 9.168 7.268 26.523 2.846 1.785 1.541 6.843
FPGA Total 19.719 59.157 23.006 78.877 26.292 19.719 26.292 19.719

Logic 2.838 --- --- 45.401 3.783 1.892 2.838 ---
Routing 2.158 --- --- 34.536 2.878 1.439 2.158 ---

Total 4.996 --- --- 79.937 6.661 3.331 4.996 ---
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.090 1.259 1.441 1.413 1.917 0.829 0.970 1.331
Total 1.523 5.377 3.619 14.161 3.658 1.952 2.163 2.947
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.089 0.938 0.973 0.493 1.011 0.385 0.462 0.664
Total 1.522 5.055 3.151 13.242 2.753 1.508 1.655 2.280
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.093 0.950 0.981 0.493 1.012 0.385 0.462 0.664
Total 1.526 5.068 3.159 13.242 2.754 1.508 1.655 2.281
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.078 0.909 0.842 0.622 0.752 0.090 0.236 0.716
Total 1.511 5.027 3.020 13.370 2.493 1.214 1.428 2.333
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.086 0.456 0.297 0.261 0.262 0.140 0.294 0.216
Total 1.520 4.574 2.475 13.010 2.004 1.264 1.487 1.833
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.075 0.731 0.958 0.476 0.520 0.093 0.183 0.573
Total 1.509 4.849 3.136 13.224 2.262 1.217 1.376 2.190
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.076 0.731 0.959 0.476 0.582 0.094 0.185 0.582
Total 1.509 4.849 3.136 13.224 2.324 1.218 1.378 2.199
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.077 0.731 0.959 0.476 0.629 0.097 0.187 0.589
Total 1.510 4.849 3.137 13.224 2.370 1.221 1.380 2.206
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.093 0.429 0.301 0.371 0.247 0.131 0.248 0.573
Total 1.526 4.547 2.479 13.120 1.989 1.255 1.441 2.190
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.094 0.429 0.305 0.373 0.263 0.140 0.251 0.582
Total 1.527 4.547 2.483 13.121 2.005 1.264 1.444 2.199
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.094 0.429 0.307 0.374 0.273 0.145 0.255 0.589
Total 1.527 4.547 2.485 13.122 2.015 1.269 1.448 2.206

Bipartite Max 
Overlap

Clique       
Ports

Clique 
Overlap

Bipartite Min 
Ports

Bipartite Avg 
Ports

Bipartite Max 
Ports

Bipartite Min 
Overlap
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Overlap

RaPiD

No Share

Greedy      
Ports

Greedy 
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Table 6.3: Area improvements calculated over the reference architectures, then averaged across all 
applications.  The Bipartite results are the average across netlist orderings. 

Method Area Method Area Method Area
FPGA 0.20 Std Cells 2.34 Std Cells 7.20
RaPiD 0.48 FPGA 0.38 RaPiD 4.01

No Share 1.63 No Share 2.95 No Share 9.00
Greedy (P) 1.87 Greedy (P) 3.39 Greedy (P) 10.63
Greedy (O) 1.87 Greedy (O) 3.39 Greedy (O) 10.62
Clique (P) 1.94 Clique (P) 3.64 Clique (P) 11.50
Clique (O) 2.16 Clique (O) 3.75 Clique (O) 12.30

Bipartite (P) 1.98 Bipartite (P) 3.72 Bipartite (P) 11.77
Bipartite (O) 2.08 Bipartite (O) 3.76 Bipartite (O) 12.14

Improvement    
Over Std. Cells

Improvement    
Over RaPiD

Improvement    
Over FPGA

 

Table 6.2 gives the areas found by the different cASIC routing generation 

algorithms, with the corresponding standard cell, FPGA, and RaPiD areas listed for 

comparison.  These results are summarized in Table 6.3.  As these tables indicate, cASIC 

architectures are significantly smaller than the corresponding FPGA area for the same 

netlists.  The heuristics range on average from a 10.6x improvement to an 12.3x 

improvement in area, while even the No Sharing algorithm results in a 9x improvement.  

Given the results presented in section 4.3.4, FPGAs without custom embedded 

multipliers and RAMs would be expected to require even more area than the VirtexII for 

these applications. 

Comparisons of cASIC techniques to RaPiD also yield favorable results, with area 

improvements of 3.4x to 3.8x for the cASIC heuristics.  These applications were created 

for RaPiD, and RaPiD has been hand-optimized for DSP-type operations, which make it 

more efficient (2.8x smaller) than a generic FPGA for these applications. 
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Finally, the cASIC heuristic methods also created architectures on average half 

the size of standard cell implementations of the applications.  One of the reasons the 

cASIC architectures are able to achieve such small areas is because the tools use 

full-custom layouts for the computation blocks.  The FIR, Matrix, and Sort architectures 

demonstrate the value of the full-custom units.  In these applications, the standard cell 

area is estimated to be the size of the largest member netlist (as explained in section 

4.3.1).  Even with the overhead of adding reconfigurability, these cASIC area results are 

close to or slightly better than the standard cell implementation.  The largest benefits, 

however, occur in the cases where an application has several differently-structured 

netlists, and a separate circuit must be created for each member netlist in a standard cell 

implementation.  By reusing components for different netlists, the cASIC architectures 

achieve areas on the order of a full-custom implementation (generally assumed 2-3x 

smaller than standard cells). 

The cASIC method of architecture creation therefore has significant area benefits 

for situations in which standard cells are generally considered instead of FPGAs for 

efficiency reasons.  Finally, a full-custom manual layout could be created for these 

applications that might be smaller than the cASIC architectures.  However, this would 

require considerably more design time, which can be quite expensive, and may not 

always be possible due to production deadlines. 
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6.4 Summary 

This chapter described the cASIC style of architecture, and presented three 

different heuristics to create these designs.  The first uses a greedy approach, the second 

uses recursive maximum weight bipartite matching, while the third uses a more 

sophisticated graph-based algorithm called clique partitioning to merge groups of similar 

signals into wires.  Two different methods to measure this signal similarity were 

discussed, one based on the common ports of the signals, and the other based on the 

common span (overlap).  The results of the chapter indicate that a better similarity 

measurement would be a combination of the two, incorporating both ports and signal 

overlap. 

The area comparison also demonstrates the inefficiencies introduced by the 

flexibility of FPGAs.  While the generic structure is critical for implementing as wide a 

variety of circuits as possible, it is that flexibility that causes it to require 12x more area 

than a cASIC architecture.  The VirtexII FPGA does, however, perform much better than 

earlier designs due to the use of coarse-grained multiplier and RAM units.  The RaPiD 

architecture extends the use of coarse-grained units to the entire architecture, but is 

customized to DSP as a whole.  If the application set is only a subset of DSP, further 

optimization opportunities exist, with cASIC techniques achieving up to 3.8x area 

improvements over the RaPiD solution.  This chapter also demonstrated another key 

benefit cASIC generation has over the use of a static architecture such as RaPiD.  In 
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cASIC generation, if enough area is allotted on the SoC die, an architecture can be 

created for any set of netlists.   On the other hand, the RaPiD resource mix is fixed.  For 

some applications, this structure may not have the correct logic mix for the application, 

leading to copious wasted area.  Alternately, a static structure may not provide a rich 

enough routing fabric, as was demonstrated in this chapter.  Finally, the area results 

presented here indicate that cASIC architecture design is not only an excellent alternative 

to FPGA structures when the target circuits are known, but also a viable alternative to 

standard cell implementations, with architectures under half the size. 
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Chapter 7 
 
 
 
Flexible Architectures 

Chapter 6 concerned the automatic creation of coarse-grained architectures with 

only the minimum amount of reconfigurability required to implement a given application 

set.  The applications, in RaPiD netlist format, formed the architecture specification, and 

the generation tool created a very ASIC-like design.  This type of design is unlikely to be 

flexible enough to handle any changes, such as bug-fixes, upgrades, or additional 

algorithms.  Instead the focus was to provide for a high degree of hardware re-use among 

the applications, assuming the full application set was known in advance. 

This chapter instead concentrates on the generation of flexible reconfigurable 

routing architectures for the Totem Project, exploring a number of different heuristics.  

The automatic generation of routing architectures is critical to reconfigurable architecture 

design.  An architecture could contain an overabundance of logic units, but unless these 

units can be connected to implement a required circuit, the architecture is useless.  On the 

other hand, an architecture with the minimum number of computational units required by 

the application can be used, provided enough routing resources are available. 
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The next few sections describe the structure of both the logic and the routing of 

the flexible architectures, with the primary focus on the generation of the routing 

structures.  The algorithms used to generate the routing structures will be discussed in 

depth, with accompanying pseudocode.  The area results of the architecture generation 

algorithms are then given, and compared to the standard cell, FPGA, and RaPiD results 

from Chapter 6.  Finally, a quick flexibility comparison of the architectures is presented, 

with a more in-depth flexibility examination given in Chapter 9. 

7.1 Flexible Architectural Style 

The goal of the Totem flexible architecture generation is to automatically create 

an architecture customized for a particular application set, with some extra resources if 

desired for future flexibility.  These flexible architectures are in the same style as RaPiD 

[Ebeling96, Cronquist99a], with coarse units, 1D design, word-sized routing, bus 

connectors, and multiplexers/demultiplexers.  A detailed description of the RaPiD 

architecture is given in section 4.1.  There are some differences between RaPiD and the 

generated architectures, as well as between distinct generated architectures.  The first 

difference is in terms of the logic composition, including quantity of units, proportions of 

types of units, and arrangements along the 1D axis of the architecture.  The routing 

architecture also changes, with the quantity, types (local/distance), and segment lengths 

of the tracks altered depending on the needs of the netlists.  In RaPiD, each local track 

contains some wires that span four logic units and some wires that span five, whereas 
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Totem architectures are restricted to only one wire length per track (wire length is defined 

as the number of logic units spanned). Like RaPiD, Totem architectures restrict each 

track to only be one type: local or distance. 

While RaPiD has a fixed logic mix and set of routing tracks, the Totem 

algorithms can vary these particular features to achieve a more customized architecture.  

Essentially, RaPiD becomes one architectural instance that the flexible architecture 

generation tool could create.  However, the tool should be able to create architectures 

both larger and smaller, depending on the specified domain.  For example, RaPiD was 

designed specifically for DSP operations.  If a user only needs a small set of FIR filters, 

flexible architecture generation will be able to automatically create an architecture more 

optimized than RaPiD for FIR filters.  Likewise, if the tool is presented with a set of 

netlists which require more resources than the RaPiD architecture might provide, the 

generation tool will still be able to create an architecture which can implement those 

netlists. 

7.2 Logic Generation 

The logic generation step for flexible architecture generation is a slightly 

modified version of the logic generation described in Chapter 5 and used for the cASIC 

designs.  Among the changes is the ability to specify additional logic resources.  The tool 

outputs the minimum number of each type of unit required to implement the given 

netlists, and the user can specify if he or she wishes to add more.  Simulated annealing 
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[Sechen88] is then used to simultaneously find a physical placement of the units and a 

mapping of the netlists to those physical components. 

Unlike in Chapter 5, logic components can be forced to be spaced evenly 

throughout the architecture.  Some of the routing generation algorithms focus on the 

creation of a very regular structure (for which there should be a regular logic structure).  

In this case, the physical units are first spread evenly though the architecture.  The 

simulated annealing phase is then used to bind the netlist instances to physical 

components, much like traditional FPGA placement.  The physical components are not 

moved during this operation.  The physical placement and netlist mapping are needed to 

determine the connectivity requirements of the circuits for the routing generation stage. 

7.3 Routing Generation 

After this placement is performed, the routing algorithms heuristically generate 

the configurable routing structure based on the signal locations and lengths within the 

application netlists.  At the highest level of these algorithms, each essentially iteratively 

adds routing tracks until all signals from all the netlists in the problem can be routed onto 

the architecture.  After all the tracks have been added, the user is given the opportunity to 

increase the routing tracks over the calculated minimum to provide additional flexibility.  

Figure 7.1 illustrates an example flexible routing architecture that might be created from 

the final placement of Figure 5.6. 
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++XXXX

 
Figure 7.1: Flexible routing architecture created for the example from Chapter 5.  The vertical 
lines represent the multiplexers and demultiplexers that are on every port of each unit.  Black 
wires are used by both netlists of Figure 5.2, while light wires are only used by the light netlist.  
Dark grey wires and logic are only used by the dark grey netlist.  Logic resources used by both 
netlists show both colors. 

7.3.1 Shared Concepts 
Each of the routing generation algorithms shares a few key concepts.  The first is 

the difference between local and distance routing tracks. Local tracks, which are the 

upper routing tracks in RaPiD (Figure 4.1), and also appear in Figure 7.2a, are used for 

short connections.  The length of a wire can be determined by finding the indices of the 

furthest units a wire can reach, and subtracting the left index from the right index.  A wire 

that spans from the outputs of unit 11 to the inputs of unit 13 would therefore be 

considered a length 2 wire.  A special track, the topmost shown in Figure 4.1 and Figure 

7.2, is a track containing length 0 wires.  These wires are also called "feedback" wires, as 

they only route from a unit's outputs to that unit's inputs. 

Distance routing tracks are the bottom ones in RaPiD, and also appear in Figure 

7.2b. These tracks include the added flexibility that longer wires can be created from 

shorter ones through the bus connectors.  Each bus connector can be independently 

programmed to provide either a connection or a disconnect, and also provides an optional 
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pipeline delay.  This allows for a great deal of routing flexibility, but can add delay as a 

signal passes through the bus connector, and adds a not-insignificant area penalty. 
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(a)                                                                                (b) 

Figure 7.2: Examples of the different types of routing tracks, (a) local tracks, and (b) distance 
tracks with bus connectors (represented by the squares on the tracks).  The “wire length” of each 
track is given to the right of the track. 

Some arbitrary restrictions have been placed on the wire lengths allowable for the 

two different types of tracks, based on experience with the RaPiD architecture.  The local 

tracks are allowed to have wire lengths of up to 8.  The motivation here is that the local 

track wires are intended for short, fast connections, and at 8 or more units apart, the 

connections are no longer all that "local".  For distance wires, there are two separate 

restrictions.  First, distance wires have a minimum length of 8, because any shorter wire 

length in a distance track would add significant area overhead with the resulting bus 

connectors (which would potentially also slow down longer connections significantly).  

Finally, the distance routing tracks have also been restricted to have a wire length no 
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greater than 16.  The architecture generation algorithms did not create very many length-

16 tracks at all, and therefore, longer wire lengths are not permitted. 

Another important concept, along with track type and wire length, is the "offset" 

of the track.  This offset determines the left-right shifting (or “placement”, as discussed in 

Chapter 8) of the track once its wire length has been determined.  Figure 7.3 

demonstrates a type of routing architecture where all tracks have the same offset value.  

This type of routing architecture is referred to as a "non-distributed" architecture.  Note 

how the breaks between local wires and the connectors separating distance wires are 

clustered at identical horizontal positions.  With this type of architecture, the placement 

of a circuit would greatly affect its routability.  The routing choices available to a signal 

can be very dissimilar (and potentially undesirable) depending on the location of the 

signal's source and sink components. 

On the other hand, by carefully choosing offset values for the tracks, an 

architecture closer in design to the one shown in Figure 7.4 can be achieved, which is 

referred to as a "distributed" routing architecture.  Note how the shifting of the tracks 

allows the breaks and bus connectors to be evenly distributed horizontally through the 

architecture.  This type of routing architecture should provide more flexibility in routing, 

as it provides a variety of routing choices for signals connecting to each component.  A 

more in-depth study of track placement issues, along with a description of the algorithm 

used here, is presented in Chapter 8. 
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Figure 7.3: An extreme example of a non-distributed routing architecture. Bus connectors and 
breaks between local wires are clustered at specific horizontal locations.  This leads to a limited 
variety of routing possibilities for each position. 

 
Figure 7.4: A distributed routing architecture.  The breaks and bus connectors are distributed 
through different horizontal locations of the architecture, providing a variety of routing options at 
each position. 

Evaluating Progress During Routing Construction 

Each of the algorithms that will be presented is constructive—tracks are added 

until all signals in the application netlists can be routed onto physical wires.  These 

algorithms operate in a greedy fashion, adding the track type and track length that 

provides the most benefit for the lowest cost.  Cost is assumed to be area and delay, 

where bus connectors consume area and increase delay, and shorter wires are faster than 

long wires.  However, the relative “benefit” of adding different track types or lengths 

must also be measured. 
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At the start of the execution of a routing generation algorithm, no tracks have yet 

been constructed, and therefore all signals are “unroutable”.  As tracks are added, the 

number of unroutable signals decreases.  Therefore, the cross-section of signals that 

cannot yet be routed onto the routing architecture is used to monitor the progress of the 

algorithms.  This is calculated by finding the maximum signal cross-section at any 

component location for each individual netlist, then finding the maximum of these values 

across all netlists.   

XX ++XX
OUT

OUT
0

IN1

IN2

IN1

IN2
/3 /4 /3 /4 /4 /4 /3 /1 /12 2 2 2 2 3 3 2 1
3 4 3 4 4 4 3 2 1 4  

Figure 7.5: Calculating the unroutable cross-section for the placement of Figure 5.6.  The signal 
cross-section is given for each netlist (light grey netlist / dark grey netlist) at each point in the 
placement.  The maximum cross-section across the netlists appears below, and the overall 
cross-section at right. 

This value is also used as a lower bound on the number of tracks that need to be 

added to implement the source netlists.  When the lower bound is determined before any 

tracks are created, it represents the minimum total number of tracks required to make the 

architecture routable for the given netlists.  This lower bound would, however, be an 

improbable solution due to the very high number of bus connectors that would likely be 

required in order to use that few tracks.  Each of the algorithms also uses this lower 
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bound calculation throughout architecture generation as one of the indicators of whether 

or not a particular track is providing any "benefit" to the architecture.  The algorithms 

attempt to add tracks that will decrease the unroutable signal cross-section value. 

Fast Integrated Router 

In order to calculate the cross-section of unroutable signals, the generator must 

determine which signals are and are not routable.  Because this is a frequent operation 

performed within loops, a very fast router (faster than the higher-quality router used for 

"final" routing presented in section 4.2.3) that provides reasonable results is needed.  

Initially, a left-edge algorithm [Hashimoto71] was considered.  However, because not all 

signals will be routable most of the time, and routing decisions affect the construction of 

tracks, this algorithm would not be appropriate. 

s1 s2

w  
Figure 7.6: An example situation where an unmodified left-edge routing algorithm leads a routing 
generation algorithm to construct a more expensive solution.  A left-edge algorithm will route s1 
onto wire w, which causes the creation of another long track to implement signal s2. 

Figure 7.6 illustrates why this is the case.  Signal s1 with a length of 2 appears 

before the length-7 signal s2 in the list of signals sorted by left edge.  Therefore, s1 would 

be routed onto wire w, even though signal s2 might "fit" the wire better.  Signal s2 would 

be considered "unroutable" in this example, and later a routing track would have to be 
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created to implement this signal.  However, if s2 were routed onto wire w, the routing 

generator could instead create a cheaper track to implement s1, leading to an overall more 

efficient solution. 

Therefore, the left-edge algorithm was modified to use a greedy heuristic.  Signals 

are still considered by increasing left edge.  However, rather than routing each signal to 

the leftmost unassigned wire that can implement it, the algorithm also considers how 

closely the span of the signal matches the span of the wire.  Each time a wire/signal pair 

is considered, other signals are considered which could also be routed onto the wire.  The 

signal with the closest “fit” is routed onto the wire.  If the original signal from the 

wire/signal pair was not chosen, that signal is reconsidered on the next iteration.  For the 

routing operation, each netlist is considered a separate problem—signals from different 

netlists can be assigned to the same wire.  The pseudocode for this routing operation is 

given in Figure 7.7. 

The next few sections describe three different routing architecture generation 

algorithms.  The first, Greedy Histogram, obtains solutions where the wire length and 

spacing within each track is uniform, but the breaks between local track wires and the bus 

connectors between distance track wires are not restricted to be distributed throughout the 

architecture.  The remaining two algorithms, Add Max Once and Add Min Loop, focus 

on generating regular architectures, where the logic and routing (breaks and spaces) are 

very evenly distributed.  The goal is to provide some uniformity in the number and type 

of routing resources available to a given signal regardless of where its source instance is 
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actually placed in the architecture.  The details of each algorithm are presented below, 

followed by a comparison of the results obtained by each. 

route_signals(T,S) { 
 // route signals in S onto tracks in T 
 
 Let S’ = array of signals in S, sorted by increasing left edge 
 Let W = array of wires in tracks in T, sorted by increasing left edge 
 
 While S’ not empty { 
  Let s0 = first signal in S’ 
  For each wi in W { 
   If wi already implements signal from s0’s netlist, go to next wi 
   If wi is from a local track and s0 fits in wi { 
    // see if there’s a better signal choice for wi 
    Let sj be the signal in S’ that is from a netlist not 
     already using wi, fits in wi and shares the most span 
     with wi 
    Assign sj to wi and remove it from S’ 
    Break the For Loop 
   } Else if wi is from a distance track and the left edge of s0  
    lies within segment wi { 
    Let sj be the signal in S’ that is from a netlist not 
     already using wi that has a left edge falling within wi  
     and shares the most span with wi and any other needed 
     distance segments 
    Assign sj to wi and any other segments from that distance 
     Track that it requires 
    Break the For loop 
   } 
  } 
 
  If the For loop completed without finding a wire that could 
   implement s0 (regardless of whether or not s0 was the chosen 
   sj), mark s0 as unroutable and remove it from S’ 
 } 
} 

Figure 7.7: Pseudocode summary of the fast greedy router used within the flexible routing 
generation algorithms presented in this chapter. 

7.3.2 Greedy Histogram 
This algorithm attempts to keep the overall number of tracks low, while 

encouraging the use of local tracks over distance tracks in order to avoid introducing a 

large number of bus connectors.  Each track has a specific type and wire length used for 
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all wire segments within that track.  However, no restrictions are made on the offsets that 

can be used.  This creates a potentially non-distributed routing architecture which may 

not have uniform connectivity, and thus may not be as flexible as a more regular 

interconnect architecture.  However, the goal of the algorithm is to customize the routing 

architecture significantly for the applications given (within the limitations of the 

previously described architectural style), and may also handle modified versions of these 

target applications.  The pseudocode for this algorithm is given in Figure 7.8, with its 

sub-functions in Figure 7.9. 

Greedy_Histogram() { 
 Let S = the set of all signals 
 Let U = the set of unroutable signals (initially all signals) 
 Let T be the set of tracks (initially empty) 
 While U not empty { 
  Let H = histogram of U (unroutable signals) by signal length 
  Let length = highest index of H that contains the max value in H 
   
  If (length == 0) 

T = T + get_feedback_track(U) 
  Else if (length < MIN_DISTANCE_LENGTH) 
   T = T + get_local_track(U, length) 
  Else if (length > MAX_LOCAL_LENGTH) { 
   T = T + get_distance_track(U, length) 
  } Else { 
   Let tlocal = get_local_track(U, length) 
   Let tdist = get_distance_track(U, length) 
   Let localsol = routing solution after routing U onto tlocal 
   Let distsol = routing solution after routing U onto tdist 
   If distsol’s unroutable cross-section < localsol’s 
    T = T + tdist 
   Else T = T + tlocal 
  } 
  route_signals(T,S), and update U 
 } 
} 

Figure 7.8: Pseudocode for the main body of the Greedy Histogram generation algorithm.  Sub-
functions appear in Figure 7.9. 
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In this algorithm, tracks are added one at a time within an infinite loop.  The loop 

is broken when all of the netlists can be fully routed onto the architecture using the 

routing procedure discussed in section 7.3.1.  The algorithm chooses the wire length for a 

"new" track by looking at the histogram of the lengths of the unroutable signals.  The 

actual track creation method depends in part upon the wire length chosen, as indicated by 

the pseudocode in Figure 7.8 and its use of the sub-functions of Figure 7.9. 
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get_offset_guess(U, length) { 
 Let H’ = a histogram with indices 0…length-1 
 For all i, 0…length-1 { 
  Let H’[i] = the number of signals of U that would be routable onto 
   a track of the given length at offset i.  
 } 

  Return index offsetGuess of the largest value in the array H’ 
} 
 
get_feedback_track(U) { 
 // feedback signals are efficiently implemented either by special 
 // feedback tracks or regular length-2 local tracks 
 offsetGuess = get_offset_guess(U, 2); 
 Let t1 = length-2 local track with offset offsetGuess 
 Let t2 = feedback track 
 Let sol1 = routing solution after routing U onto t1 
 Let sol2 = routing solution after routing U onto t2 
 If sol1 has lower cross-section than sol2, or cross-sections are same 
  but sol1 routed more signals from U, return t1 
 Else return t2 
} 
 
get_local_track(U, length) { 
 offsetGuess = get_offset_guess(U, length); 
 Let besttrack = local track of given length using offsetGuess 
 Let bestsol = routing solution after routing U onto besttrack 
 For all toffset, 0…length-1 { 
  Let t = local track of given length with offset toffset 
  Let tsol = routing solution after routing U onto t 

If tsol has lower cross-section than bestsol, or cross-sections 
are same but tsol routed more signals 

   Let besttrack = t 
   Let bestsol = tsol 
  } 
 } 
 Return besttrack 
} 
 
get_distance_track(U, length) { 
 offsetGuess = get_offset_guess(U, length); 
 Let besttrack = distance track of given length using offsetGuess 
 Let bestsol = routing solution after routing U onto besttrack 
 For all tlength, MIN_DISTANCE_LENGTH…length { 
  For all toffset, 0…tlength-1 
   t = distance track of length tlength using toffset 

tsol = routing solution after routing U onto t 
If tsol has lower cross-section than bestsol, or cross-sections  
are same but tsol routed more signals 

    Let besttrack = t 
    Let bestsol = tsol 
   } 
  } 
 } 
 Return besttrack 
} 

Figure 7.9: Sub-functions for the Greedy Histogram Algorithm from Figure 7.8. 
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If the length from the histogram is 0, this indicates a feedback signal, which can 

be implemented either on a wire with length 0 or a wire of length 2.  Wires of length 1 

will not fit this type of signal, because they only connect one unit's outputs to the inputs 

of the unit directly to the right.  Both possibilities are tested to see which gives the best 

results in terms of reducing the cross-section of unroutable signals. 

For lengths smaller than the minimum wire length of a distance routing track, all 

possible offsets (from 0 to length-1) are checked to find the best one for that length.  An 

offset "guess" is also calculated by profiling the signals of the chosen length to determine 

the most common required track offset to route those signals.  If none of the other offsets 

that are checked provide better results than the offset guess, that guess is used as the 

chosen offset.   

For lengths greater than the maximum allowable length for local routing tracks, 

all wire lengths allowable for the distance routing tracks are compared, along with all 

possible offsets for each length, to find the track that reduces the histogram the most at 

the chosen length.  The last remaining case is the one where the chosen length could be 

implemented by either a local track or a distance track.  Here the best of each type of 

routing track is found using the methods just described.  These two tracks are then 

compared to find the one that results in the smallest cross-section of unroutable signals, 

choosing the local track in the case of a tie in order to avoid unnecessarily adding bus 

connectors. 
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7.3.3 Regular Architectures 
The next two algorithms generate a distributed routing architecture, where not 

only are the breaks or connectors evenly distributed within each track, but also across 

tracks.  In other words, track offsets are chosen to provide a somewhat consistent level of 

connectivity regardless of location in the architecture.  Figure 7.4 shows an example of 

this type of routing architecture. 

In addition to specifying that the logic and routing be distributed, these algorithms 

also require that wire lengths must be a power of two.  This restriction is common in 

FPGA architectures, and is intended to further generalize the architectures.  Thus, the 

track possibilities are local tracks of length 0, 2, and 4, and distance tracks of length 8 and 

16. 

Add Max Once 

The Add Max Once algorithm is more simple in organization than the Greedy 

Histogram algorithm.  The algorithm begins at the shortest track length and progresses to 

the longest track length, seeing how many tracks of each type can be added while still 

improving the cross-section of unroutable signals.  Tracks of the given type are added 

until no further reductions are possible with more tracks of that type.  One issue with the 

Add Max Once algorithm is that only one type of distance routing track can be added.   

Given enough distance routing tracks of any length, all signals can eventually be routed 

by using the bus connectors to form longer wires when necessary.  Therefore, the 
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algorithm would add enough tracks of the first distance length considered to route all 

remaining signals—no other distance track length would be reached.  Length 8 distance 

routing tracks were chosen because a length of 16 would cause too many tracks to be 

created, and because this is closer to the length chosen by the RaPiD designers.  The 

pseudocode for the algorithm appears below. 

Add_Max_Once() { 
 Let T be the set of tracks (initially empty) 
 Let S = the set of all signals 
 

// add any feedback tracks that help unroutable cross-section 
nTracks = get_maxtracksbenefit(T, S, 0, LOCAL) 
Add nTracks feedback tracks to T 

 route_signals(T,S) 
 

// add any length-2 local tracks that help unroutable cross-section 
nTracks = get_maxtracksbenefit(T, S, 2, LOCAL) 

 Add nTracks local length-2 tracks to T 
 route_signals(T,S) 
 

// add any length-4 local tracks that help unroutable cross-section 
nTracks = get_maxtracksbenefit(T, S, 4, LOCAL) 

 Add nTracks local length-4 tracks to T 
 route_signals(T,S) 
 

// add length-8 distance tracks to route remaining signals 
Let U be the set of unroutable signals 
While U not empty { 
 Add one distance length-8 track to T 
 route_signals(T,S) and update U 
} 

} 

Figure 7.10: Pseudocode for the main body of the Add Max Once flexible routing generation 
algorithm.  The pseudocode for the route_signals() function appears in Figure 7.7, and the 
pseudocode for the get_maxtracksbenefit() function appears in Figure 7.11. 
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get_maxtracksbenefit(T, S, length, type) { 
 // find the point at which adding more tracks of the given type 
 // (distance or local) and given length does not improve 
 // cross-section of unroutable signals 
 
 Let U = the set of all unroutable signals 
 Let maxTracks = |U| 
 Let minCrossSection = cross-section of unroutable signals if 
  maxTracks tracks of given length were to be added to T 

   
 For all nTracks, maxTracks-1…0 { 
  Let crossSection = cross-section of unroutable signals if nTracks 
   tracks of given length were to be added to T 
  If crossSection > minCrossSection { 
   Return nTracks+1 
  } 
 } 
 // cannot improve unroutable cross-section with this length 
 Return 0 
} 

Figure 7.11: The pseudocode for a subfunction used by both the Add Max Once algorithm in 
Figure 7.10 and the Add Min Loop algorithm in Figure 7.13. 

Add Min Loop 

The previous algorithm tends to weight towards the use of distance routing tracks 

because it only considers each wire length and type combination once.  However, it is 

possible that once a distance track is added, using additional local tracks will once again 

reduce the unroutable signal cross-section.  Figure 7.12 gives an example where this is 

the case.  In this example, AMO would not add a length-2 track for signal s2 because that 

would not reduce the cross-section of unroutable signals—the cross-section would remain 

1.  Instead, AMO would implement all of the signals using two length-8 distance tracks, 

as shown in Figure 7.12b.  However, the same problem could be solved using one length-

8 distance track and one length-2 local track.  Therefore, the Add Min Loop algorithm 

has been created in an effort to more accurately generate tracks with local wires.  After 
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each track is added, this algorithm will return to the cheaper tracks to determine if any 

would be useful.  Its pseudocode is presented in Figure 7.13. 

s1 s2 s3

 
(a) 

s3s1

s2  
(b) 

s2

s3s1

 
(c) 

Figure 7.12: An example of AMO creating a more costly solution than necessary. (a) The routing 
generation problem, (b) the AMO solution, and (c) a less costly solution to the same problem. 

This algorithm iteratively adds a small number of tracks to the overall routing 

architecture, until full routability can be achieved.  Only one type of track is added per 

iteration.  Within the loop, the algorithm repeatedly attempt to add tracks in the following 

order:  length 2 local tracks, length 4 local tracks, length 16 distance tracks, and length 8 

distance tracks.  This order is based on an estimated relative cost of the various track 

types.  Bus connectors consume area (priority is given to local tracks, followed by 
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distance tracks with fewer connectors), and short wires are faster than long ones (priority 

within local tracks is given to shorter lengths). 

In the case of the local routing tracks, the algorithm attempts to add as many 

tracks as the length of the wires in the track (providing potentially the full range of offsets 

for that particular track type) per iteration.  For distance routing tracks, which are 

considered to be much more expensive, only a single track can be added per iteration.  

Tracks are only kept if they result in a reduction in the unroutable cross-section.  If any 

tracks are kept, all of the more “expensive” tracks are moved.  So if a local track of 

length 4 is created, any tracks of length 8 or length 16 would be deleted.  Once the 

“cheaper” track is added, the architecture may not need as many “expensive” tracks as 

was earlier computed.  After the track counts are modified accordingly, execution begins 

again from the top of the loop, and the four track types are again considered in the same 

order as before. 

At times, none of the track addition attempts will result in a reduction of the 

unroutable signal cross-section.  In order to break this stalemate, the algorithm first looks 

at which of the attempts made would have reduced the count of unroutable signals the 

most.  A single track of this type and wire length is created, and a new iteration begins.  

Note that there is a degree of favoritism in case of ties, where cheaper tracks are preferred 

over more expensive ones. 
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Add_Min_Loop() { 
 Let T be the set of tracks (initially empty) 
 Let S = the set of all signals 
 

Let nTracks = minimum number of feedback tracks required to get the 
maximum possible reduction in cross-section of unroutable signals 

 Add nTracks feedback tracks to T 
 
 Loop { 
  route_signals() 
  If all signals routed, break out of loop 
 
  // try adding up to 2 length-2 local tracks 

 nTracks = get_maxtracksbenefit(T, S, 2, LOCAL) 
  If (nTracks > 2) nTracks = 2 
  Add nTracks number of length-2 local tracks to T 
  If (nTracks != 0) { 
   Delete all local tracks from T where track length > 2 
   Delete all distance tracks 
   Jump to start of loop 
  } 
 
  // try adding up to 4 length-4 local tracks 

 nTracks = get_maxtracksbenefit(T, S, 4, LOCAL) 
  If (nTracks > 4) nTracks = 4 
  Add nTracks number of length-4 local tracks to T 
  If (nTracks != 0) { 
   Delete all distance tracks 
   Jump to start of loop 
  } 
 

If adding one length-16 distance track reduces the cross-section 
of unroutable signals { 
 Add one length-16 distance track to T 
 Delete all distance tracks from T where track length < 16 
 Jump to start of loop 
} 
 
If adding one length-8 distance track reduces the cross-section of 
unroutable signals { 
 Add one length-8 distance track to T 
 Jump to start of loop 
} 
 
// if algorithm gets here, none of the ones tried reduced the 
// cross-section of unroutable signals 
Let length, type = length and type of track from above tests that 
produced a solution with the fewest unroutable signals.  If a tie, 
choose based on the order they were considered 
Add one track of that length and type to T 

 } 
} 

Figure 7.13: The pseudocode for the Add Min Loop algorithm.  The pseudocode for the 
route_signals() function appears in Figure 7.7, and the pseudocode for the 
get_maxtracksbenefit() function appears in Figure 7.11. 
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7.4 Results 

The next few sections present comparative results of flexible routing architecture 

generation algorithms.  First, the area results of the algorithms are compared to each 

other.  Next, the resulting areas are also compared to those of the corresponding standard 

cell, FPGA, and RaPiD reference architectures.  Finally, an initial flexibility comparison 

is made between the algorithms, with a more in-depth examination presented in Chapter 

9. 

7.4.1 Area 
The same applications that were used for the cASIC comparisons of section 6.3 

are used here to compare the flexible architectures.  These applications are listed in Table 

4.1.  The standard cell (Table 4.2), FPGA (Table 4.3) and RaPiD (Table 4.4) reference 

architecture results from section 6.3 are also presented here for context.  The areas of the 

flexible architectures are computed using the same methods as the cASIC area 

computations.  Logic area is the sum of the areas of the manually-designed unit layouts; 

routing area is the sum of the areas of the layouts of the multiplexers, demultiplexers, and 

bus connectors.  Again, wire cross-sections of greater than 24 can increase the height of 

the architecture beyond the height required by the logic units, and therefore increase the 

total area of the architecture. 
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Table 7.1: A table of the number of routing tracks created for each application by each routing 
generation algorithm.  A lower bound is also given, and the factor of the bound is given for every 
case. 

Radar OFDM Camera Speech FIR Matrix Sort Image Average 
Factor

Actual 17 34 24 25 18 24 21 21
Bound 11 18 13 13 11 10 11 12
Factor 1.55 1.89 1.85 1.92 1.64 2.40 1.91 1.75
Actual 18 28 25 24 17 21 21 17
Bound 13 21 16 17 11 10 13 12
Factor 1.38 1.33 1.56 1.41 1.55 2.10 1.62 1.42
Actual 18 32 26 27 18 18 21 20
Bound 13 21 16 17 11 10 13 12
Factor 1.38 1.52 1.63 1.59 1.64 1.80 1.62 1.67

AML

AMO

GH 1.86

1.55

1.61

 

Table 7.1 lists the number of routing tracks created by each flexible routing 

generation algorithm, while Figure 7.14 charts the area results.  A lower bound on the 

number of tracks is also given for each application set for each algorithm.  This lower 

bound is based upon the signal cross-section of the placement.  Since the Greedy 

Histogram (GH) method permits the physical units to move during placement, it results in 

a “better” placement that generally has a smaller signal cross section.  On the other hand, 

the Add Max Once (AMO) and Add Min Loop (AML) algorithms have the same lower 

bound, as they use the same placement techniques.  Each of the algorithms result in a 

number of tracks within a factor of 1.5 to 2 of the lower bound.  However, in order to 

actually achieve a track count reaching the lower bound, a large number of bus 

connectors would likely be required in order to provide such a high degree of wire 

sharing between signals from different netlists.  It is unlikely, especially as the number of 

dissimilar netlists in the application increases, that an efficient routing structure would 

result. 
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Figure 7.14 graphs the area of the generated flexible architectures for eight 

different domains.  This figure indicates that while the areas of the architectures created 

by the three different algorithms are somewhat close, there are some notable differences.  

First, the Greedy Histogram algorithm has shown to have some unexpected results.  This 

algorithm was intended to create architectures less flexible, but more optimized, than the 

two regular routing algorithms.  In most cases, this is in fact true.  However, there are 

also a number of applications for which the Greedy Histogram method produces 

architectures that are actually larger than those created by the other algorithms.  One 

likely explanation for this behavior is that the Greedy Histogram algorithm does not 

consider the “big picture” when making decisions.  For example, if the histogram 

indicates that the most common signal length is 11, and the second-most common signal 

length is 12, the algorithm will create a track of length 11, without considering that a 

length-12 track is also able to implement length-11 signals.  This could lead to the 

creation of more tracks than necessary. 

Generally, AMO results in an architecture with fewer tracks, but more bus 

connectors than AML (which emphasizes the use of local tracks when possible).  

However, in an effort to use fewer bus connectors, the AML algorithm may actually 

create more tracks than the AMO algorithm.  These issues are reflected in the area 

results.  For the Radar and Sort applications, both AMO and AML create architectures 

with the same number of tracks.  However, the area of the AMO architectures is slightly 

higher due to a greater number of bus connectors.  This is even more noticeable for the 
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Speech and Camera applications where the AML algorithm actually creates more tracks 

than the AMO algorithm, but still results in smaller architectures.  In other cases, where 

the area of the AML algorithm is higher than that of the AMO algorithm, the AML 

algorithm created a significantly greater number of tracks, increasing the width of 

multiplexers and demultiplexers, and in the case of OFDM, also increasing the height of 

the architecture.  A future generation algorithm that considers the area tradeoff between 

bus connectors and number of tracks could result in smaller architectures than AMO and 

AML in most if not all cases. 
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Figure 7.14: Comparative area results of the different flexible routing generation algorithms, 
Greedy Histogram (GH), Add Max Once (AMO), and Add Min Loop (AML).  The areas have 
been normalized to the Greedy Histogram result. 
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Table 7.2: The areas, in mm2, of the eight different applications from Table 4.1, as implemented 
with the three flexible routing architecture generation algorithms.  The results from Table 4.2 
though Table 4.4 are included for reference.  A summary of these results appears in Table 7.3. 

Radar OFDM Camera Speech FIR Matrix Sort Image
Std. Cell Total 4.101 9.168 7.268 26.523 2.846 1.785 1.541 6.843
FPGA Total 19.719 59.157 23.006 78.877 26.292 19.719 26.292 19.719

Logic 2.838 --- --- 45.401 3.783 1.892 2.838 ---
Routing 2.158 --- --- 34.536 2.878 1.439 2.158 ---

Total 4.996 --- --- 79.937 6.661 3.331 4.996 ---
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.086 0.456 0.297 0.261 0.262 0.140 0.294 0.216
Total 1.520 4.574 2.475 13.010 2.004 1.264 1.487 1.833
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 1.271 15.896 5.651 22.202 1.737 2.138 2.110 2.302
Total 2.705 20.014 7.829 34.950 3.478 3.261 3.303 3.919
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 1.443 16.682 6.591 24.886 1.888 1.224 2.283 2.065
Total 2.877 20.800 8.768 37.635 3.630 2.347 3.476 3.681
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 1.431 17.470 6.168 23.430 1.870 0.930 2.262 2.208
Total 2.865 21.588 8.346 36.179 3.612 2.053 3.455 3.825

GH

AMO

AML

RaPiD

Clique    
Overlap

 

Table 7.3: A summary of area comparisons between the different implementation techniques.  
Area improvements are calculated over the heading implementation, then averaged across all 
applications. 

Method Area Method Area Method Area Method Area
FPGA 0.20 Std Cells 2.34 Std Cells 7.20 Std Cells 1.37
RaPiD 0.48 FPGA 0.38 RaPiD 4.01 FPGA 0.24

Clique (O) 2.16 Clique (O) 3.75 Clique (O) 12.30 RaPiD 0.60
GH 0.90 GH 1.72 GH 5.25 Clique (O) 2.61

AMO 0.91 AMO 1.71 AMO 5.37 GH 1.01
AML 0.92 AML 1.77 AML 5.53 AML 1.02

Improvement Over 
Std Cells

Improvement Over 
RaPiD

Improvement Over 
FPGA

Improvement Over 
AMO

 

Table 7.2 lists the areas of the architectures created using the different flexible 

routing generation heuristics, with the corresponding standard cell, FPGA, and RaPiD 

areas listed for comparison.  These results are summarized in Table 7.3.  As expected, the 

customized flexible architectures are smaller than the corresponding FPGA 
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implementations—from a 5.3x to a 5.5x area improvement.  These results highlight the 

area benefits of optimized reconfigurable computation and routing structures. 

For the applications where a RaPiD implementation was possible, the flexible 

architectures ranged from 56%-58% of the required RaPiD area.  When RaPiD was not 

able to implement an application, the flexible generation algorithms were still able to 

create an architecture.  Again, this is a key feature of the Totem automatic architecture 

generation algorithms—both the logic and routing resource mix can be customized to the 

needs of the specification, and are not limited by a static design. 

Surprisingly, the flexible architectures were also on average close in area to the 

corresponding standard cell layouts.  One of the key benefits of reconfigurable 

architectures is that expensive hardware resources can be reused across netlists.  While 

the added flexibility of segmented routing tracks does significantly increase the flexible 

architecture areas over those of cASIC designs, the results indicate this area increase does 

not overwhelm the area savings of hardware reuse. 

7.4.2 Flexibility 
In addition to area, the algorithms have also been compared on the basis of the 

flexibility of the architectures that they generate.  The tests in this section involve 

examining architectures that were designed for one application, and attempting to 

implement a non-member netlist onto that architecture.  The results for these tests are 

shown in Table 7.4.  For each architecture created, all 26 of our netlists are placed and 
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routed onto the generated architectures.  If a netlist failed placement and/or routing, it 

was attempted on a larger architecture, where the quantity of logic resources was 

increased by 10 or 20 percent, as indicated in the table.  An architecture with a greater 

number of logic resources can sometimes allow for an improved placement, which in turn 

can result in an easier routing operation. 

Naturally, the larger benchmarks tended to generate architectures more capable of 

implementing the other benchmarks.  For example, the Camera and Image applications 

were able to implement far more netlists than the Matrix or Sort applications.  The Sort 

application has the added difficulty that absolutely no multiplier units were required by 

the benchmarks used to create the architectures.  Therefore, increasing the logic on a 

percentage scale does not introduce any multipliers.  All benchmarks that fail to place 

and route onto this architecture require at least one multiplier. 

Table 7.4:  Initial flexibility study of the generated architectures.  All 26 available netlists were 
tested on all generated architectures.  When necessary, the logic in the architecture is increased on 
a % basis to attempt to fit the benchmark.  The rows of this table indicate how many benchmarks 
are source netlists for the architectures (SRC), how many will P&R based on a percent increase in 
logic (0%, 10%, or 20% increase), and how many will fail altogether. 
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SRC 3 3 3 3 3 3 2 2 2 5 5 5 3 3 3 6 6 6 5 5 5 4 4 4
0 8 8 8 18 18 18 16 16 16 11 11 11 9 9 9 5 5 5 3 4 4 1 1 1

10 0 0 0 2 2 2 1 1 1 4 4 4 0 0 0 7 7 7 1 0 0 0 0 0
20 0 0 0 1 1 1 0 0 0 0 0 0 3 3 3 0 0 0 0 0 0 0 0 0

Fail 15 15 15 2 2 2 7 7 7 6 6 6 11 11 11 8 8 8 17 17 17 21 21 21

DCT/FFT FIR Matrix All SortRadar Camera OFDM Image 

 

In most cases, when sufficient physical logic is present to implement a netlist, a 

successful routing can also be found.  However, one of the FIR filter netlists will fail to 
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route on the Matrix Multiplier architecture generated by the Greedy Histogram method, 

even though that architecture has sufficient resources to implement the logic of the 

netlist.  Increasing the logic by 10% allows the netlist instances to be placed onto the 

architectural components in a more routable fashion.  Both Add Max Once and Add Min 

Loop create distributed routing structures, which may contribute to their ability to 

implement that particular FIR filter on their respective Matrix Multiplier architectures 

without an increase in logic. 

7.5 Summary 

This chapter described three different algorithms used to generate flexible Totem 

architectures.  One, Greedy Histogram, was intended to be highly optimized to the 

specification set.  However, this algorithm could be further refined.  The two other 

algorithms, Add Max Once, and Add Min Loop, generate architectures with a high 

degree of regularity, which can lead to a greater ability to implement netlists different in 

structure than those in the architecture specification.  While this flexibility was hinted at 

in the results of section 7.4.2, it will be more strongly demonstrated in Chapter 9.  The 

AMO algorithm focuses on employing segmented distance tracks to reduce total track 

count, while AML instead aims to reduce the number of bus connectors at the expense of 

additional tracks.  The area results reflect these goals, as AMO nearly always resulted in 

a lower track count, but AML on average resulted in a lower area.  A future algorithm 

may incorporate both goals to achieve the lowest area of the flexible algorithms.   
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Much like the previous chapter, the area comparisons presented here demonstrate 

the area benefits of customization.  The flexible Totem architectures were on average 5.3-

5.5x smaller than the equivalent FPGA implementations.  While FPGAs are important for 

situations in which one cannot reliably predict how the hardware will be used, they are 

comparatively inefficient for circumstances when some or all characteristics of the target 

applications are known.  While the RaPiD project addresses this issue to some degree by 

employing coarse-grained computational units, it allows only a limited degree of 

application- or domain-customization by varying the number of cells. 

An architecture generation tool such as presented here can be used to capture 

further optimizations, creating architectures nearly half the area required by RaPiD.  

Furthermore, the generation algorithms are not limited to one particular design, and are 

therefore able to create architectures large enough to implement applications which will 

not fit in the current RaPiD design.  Finally, customized reconfigurable architectures, as 

demonstrated in this chapter, can sometimes even support applications in an area 

comparable to that required by standard cell implementations, due to the efficient layout 

of the coarse-grained logic structures, as well as the ability to reuse resources across the 

netlists. 
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Chapter 8 
 
 
 
Track Placement 

The design of an FPGA interconnect structure has usually been a hand-tuning 

process.  A human designer, with the aid of benchmark suites and trial-and-error, 

develops an interconnect structure that attempts to balance flexibility with silicon 

efficiency.  Often, such as in the previous chapter, the concentration is on picking the 

number and length of tracks – long tracks give global communication but with high 

silicon and delay costs, while short wires can be very efficient if signals travel a relatively 

short distance. 

A topic that can sometimes be ignored is the placement of the breaks between 

wires in the routing tracks.  If there is a symmetric interconnect, with N length-N wires, a 

break is simply placed at each position.  However, for more irregular interconnects, it can 

be difficult to determine the best positioning of these breaks.  Although the break 

positioning can have a significant impact on the routability of an interconnect structure, 

there has been little insight into how to quantify this effect, and optimize the break 

positioning. 
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While a manual solution may be feasible in many cases when examining only a 

single architecture, it is not always practical.  This particular work is motivated by the 

automatic generation of FPGA architectures for systems-on-a-chip.  Here a track 

placement may be performed a very large number of times within the inner loop of an 

architecture generator, such as presented in Chapter 7, and a fast but effective algorithm 

for automatic track placement becomes a necessity.  
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(a)                                                                        (b) 

Figure 8.1: Two different track placements for the same type of tracks, (a) a very poor one and (b) 
a very good one.  In each, the numbers on top indicate position in the architecture, and the 
numbers on the bottom indicate the number of breaks at the given position.  Each track has its 
associated wire length at left, and offset at right. 

Achieving the best track placement requires a careful positioning of the breaks on 

multiple, different-length, routing tracks.  For example, in Figure 8.1b, the breaks 

between wires in the routing tracks are staggered.  This helps to provide similar routing 
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options regardless of location in the array.  If instead all breaks were lined up under a 

single unit, as in Figure 8.1a, a signal might become very difficult to route if its source 

was on one side of the breaks and at least one sink on the other.  For large numbers of 

tracks of different wire lengths, it is challenging to find a solution where the breaks are 

evenly distributed through the array. 

Determining the left-right shifting, or offset, of a track within an architecture is 

referred to as track placement.  The goal, given a predetermined set of tracks with fixed 

length wires, is to pick an offset for each track in order to maximize the routability of the 

architecture.  For simplicity, each track is restricted to contain wires of only one length, 

which is referred to as the track’s S value, or track length.  The actual determination of 

the quantity and S values of tracks is performed during the architecture generation from 

Chapter 7.  Additional information specific to 2D FPGA routing architecture design can 

be found elsewhere [Betz00, Lemieux02, Lemieux03]. 

This chapter discusses the issue of track placement for reconfigurable 

architectures with segmented channel routing (Figure 8.2), such as RaPiD 

[Cronquist99a], Chimaera [Hauck97], Garp [Hauser97], and Triptych [Borriello95].  

First, the track placement problem and a cost metric are defined.  Next, several track 

placement algorithms, including one proven optimal for a subset of these problems, are 

introduced.  Finally, the track placement algorithms are related to the flexible 

reconfigurable architecture generation of Chapter 7.  Further details on the track 

placement problem can be found elsewhere [Compton02b]. 



 

 

145

 
(a) 

G
PR

R
A

M

R
A

M

G
PR

M
U

LT

G
PR

A
LU

A
LU

G
PR

G
PR

R
A

M

A
LU

G
PR

G
PR

R
A

M

R
A

M

G
PR

M
U

LT

G
PR

A
LU

A
LU

G
PR

G
PR

R
A

M

A
LU

G
PR

 
(b) 

Figure 8.2: Two examples of reconfigurable architectures with segmented channels.  At top, (a) 
Garp [Hauser97].  At bottom, (b) RaPiD [Cronquist99a]. 

8.1 Problem Description 

Finding a good track placement is a complex task.  Intuitively, tracks with the 

same S value should be spaced evenly, such as by placing the length-8 tracks from the 

problem featured in Figure 8.1 at offsets 0, 2, 4, and 6.  However, a placement of tracks 

of one S value can affect the best placement for tracks of another S value.  For example, 

Figure 8.1b shows that the length-4 tracks are placed at offsets 1 and 3 in order to avoid 

the break locations of the length 8 tracks.  This effect is called “correlation” between the 
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affected tracks.  Correlations occur between tracks when their S values contain at least 

one common prime factor.  It is these correlations that make track placement difficult. 
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Figure 8.3: An alternate placement for the architectures in Figure 8.2 that maintains perfect 
smoothness of breaks, but is intuitively less routable than the placement in Figure 8.2b. 

From the previous example, one might conclude that the “evenness” or 

“smoothness” of the break distribution could be a possible metric for measuring the 

quality of a track placement would be to compute.  However, the smoothness metric fails 

to capture the idea of maintaining similar routing options for every location in the array.  

The placement in Figure 8.3 has the same smoothness of breaks as the solution in Figure 

8.1b, but is not an equally good solution.  In Figure 8.3, although there are two length-4 

tracks, each logic unit position is at the same location along the length-4 wires in both 

tracks.  On the other hand, the architecture in Figure 8.1b provides for two different 

locations along the length-4 wires at every logic unit position.  In Figure 8.1b, a logic unit 

at position 8 can reach as far left as position 6 or as far right as position 11, depending on 

which length-4 track is used.  The logic unit at position 8 in Figure 8.3 can only route as 

far left as position 6 and as far right as position 9 regardless of which length-4 track is 



 

 

147

chosen.  For this reason, the placement in Figure 8.1b is considered to be superior despite 

the two architectures having the same break smoothness. 

Instead, the goal of a good track placement is to ensure that signals of all lengths 

encounter the fewest routing bottlenecks possible.  To quantitatively measure this 

routability, each possible signal length is examined to determine the region of the 

interconnect that gives the fewest possible routes for this length signal.  Figure 8.4 

demonstrates a technique to find the bottlenecks by calculating the diversity score.  The 

diversity score calculation is given for two different placements of the same track 

problem. 
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(a)                                                            (b) 
Figure 8.4: Diversity score for two different track placements for the same track placement 
problem: (a) a poor placement, and (b) a good placement.  Break indexes are given by the top row 
of numbers.  The dotted lines demark repeating windows of the placement.  For each track, 
segment length S is at left, and offset O is at right.  The number of routing possibilities is given at 
each position for each potential signal length L.  The calculated diversity score is shown at 
bottom. 

Only a four position window is examined, but this is sufficient as the window 

encapsulates the full repeating pattern of breaks of the placement.  The length of the 

window that needs to be considered can be found by taking the LCM of all S values in 
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the problem.  Examining a larger window would simply yield the same results. Within 

this window, the number of tracks at each position that can be used to route a signal of 

the given length towards the right is counted.  The different possible signal lengths (L) 

are listed, and at each position, the number of tracks useable to route that signal length is 

given. 

In Figure 8.4a, two different tracks can be used to route length-2 signals to the 

right at position 6, but at position 5 no tracks are useable.  At right, exactly one track can 

be used to route length-2 signals from any position in our window.  The minimum value 

at each length is found (representing a routing bottleneck for that signal length), and these 

minimums are summed across all L values to determine the diversity score of a track 

placement.  The fewer and smaller the routing bottlenecks, the more routing choices are 

available throughout the architecture, and the higher the diversity score.  An equation for 

the diversity score is given as Equation 8.1.  In this equation, T represents the set of 

tracks to be placed, and O represents the set of offsets assigned to those tracks.   

Equation 8.1: The diversity score for a particular track placement routing problem T and solution 
set of offsets O for the tracks in T can be calculated using the equation: 

∑ ∑ 















=

∈Lall TTi
ii

ositionsp all
positionLOTuncutOTscorediversity ),,,(),(_ min  

where Ti is an individual track and Oi is the offset for that track.  As the equation indicates, the 
minimum is found for all positions, and the sum is calculated of all the minimums at each L value.   

The uncut() function returns a binary result that is 0 if there is a break within the range [position,  
position + L) on track Ti that has been placed at offset Oi, and 1 otherwise. 
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A bound has been determined on the diversity score, as described in Theorem 8.1 

(proven elsewhere [Compton02b]).  Note that comparing diversity scores is only valid 

across different solutions to the same track placement problem.  The method of 

determining the actual quantity and types of tracks was given in Chapter 7.  The 

placement algorithms that will be presented are intended to be used within an inner loop 

of the flexible architecture generation algorithms. 

Theorem 8.1: For all possible offset assignments O to track set T, 

∑ ∑ 







−≤

∈L TTi
iSLTfloorOTscorediversity )/,1min(||),(_  

The focus is on the worst-case (the regions with the fewest possible routes) 

instead of the average case, since the average number of possible routes for a signal is 

independent of track placement.  Changing the offset of a track in a given placement only 

shifts which positions can use that track for the different signal lengths.  If the length-2 

track at offset 0 in Figure 8.2 were shifted to offset 1, the two length-1 signals that that 

track may implement within the window would originate at positions 6 and 8 instead of 5 

and 7.  The length-1 count of uncut signals becomes “0 4 2 4” at positions 5 though 8, 

respectively.  Regardless of the amount of the shift, the same number of breaks remains 

within the window, and therefore the same number of signals of each length can be 

routed—only at different starting positions.  Shifting the track does not affect the sum 

(and therefore the average) for each signal length.  While the average cannot differentiate 
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between the placements in Figure 8.2 and Figure 8.3, the worst-case shows that the 

placement in Figure 8.2b is superior. 

8.2 Track Placement Algorithms 

A number of algorithms, of varying complexity, have been developed to solve the 

track placement problem based on the diversity score cost function.   These track 

placement algorithms, both optimal and heuristic, are discussed in depth in the next few 

sections.  The first algorithm, Brute Force, simply tests all possible track placements, and 

returns a solution with the highest diversity score.  This algorithm, however, runs 

extremely slowly and is impractical for large problems, large architectural explorations, 

or automatic architecture generation.  The next algorithm, Simple Spread, treats sets of 

tracks at each S value as separate problems, spacing tracks evenly within the sets.  While 

this can provide a fast solution, it does not consider the potential correlations between 

tracks of different segment lengths.  Power2 is another very simple algorithm which does 

consider inter-set effects, but is restricted to handle tracks with segment lengths that are 

powers of two. 

The final two algorithms are more complex in operation than the other algorithms, 

yet require significantly less computation time than the Brute Force algorithm.  

Pseudocode for is given for these two algorithms.  The Optimal Factor algorithm 

provably finds an optimal solution based on diversity score, provided the problem meets 

a number of key restrictions.  The Relaxed Factor algorithm is an extension of the 
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Optimal Factor algorithm that can operate without restrictions.  While the Relaxed 

algorithm is not guaranteed to provide an optimal solution in every case, it provides very 

high quality results in most cases. 

8.2.1 Brute Force Algorithm 
Using a brute-force approach, a solution with the highest possible diversity score 

is guaranteed to be found.  However, as with many complex problems, examining the 

entire solution space is a very slow process.  While useful for finding the best possible 

solution for a final design, this method is inappropriate for situations where a large 

number of different routing architectures (each with different types and or quantities of 

tracks) are being examined.  The number of cases that the brute force approach must 

examine for a given problem is given in Equation 8.2. 

Equation 8.2: The number of distinct cases that must be examined by the Brute Force algorithm in 
order to have complete coverage of the solution space.  This is the product over all distinct track 
lengths in the problem of a multi-choose of track length and quantity: 

( )
( )∏ 
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QiSi
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where S is the set of all distinct track lengths in the problem, Si is a particular track length, and Qi 
is the number of tracks with that track length. 

For example, a modest architecture with 8 length-12 tracks, 4 length-6 tracks and 

2 length-4 tracks will require the examination of over 95 million distinct cases using the 

brute force approach.  Given that a track placement algorithm may operate within an 

inner loop of architecture generation, this approach is far too slow.  Instead, it is used to 
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provide a bound on the diversity score.  This bound is then used to experimentally verify 

the results of an optimal algorithm, and provide a frame of reference for the solution 

quality of the other algorithms. 

8.2.2 Simple Spread Algorithm 
As stated previously, the Simple Spread algorithm is a very straightforward 

heuristic for performing track placement.  In this particular algorithm, tracks are grouped 

by segment length.  Each track group is considered as a separate problem.  Each group 

first has any “full sets” (where the number of tracks is equal to the segment length) 

placed with one track at each possible offset for that particular S value.  Once the number 

of tracks in a set is less than the S value for the set, these remaining tracks are spaced 

evenly throughout the possible offsets 0 through S-1 using the equation Oi=floor(S*i/|G|), 

where G is the set of remaining tracks of segment length S, i is the index 0…|G|-1 of a 

particular track in the set, and Oi is the calculated offset of said track.   

This algorithm, while simple in its operation and fast in execution, disregards the 

fact that a placement decision at one S value can affect the quality of a placement 

decision at another due to correlations.  Figure 8.5 shows a small case in which the 

Simple Spread returns a track placement significantly worse than the Brute Force optimal 

placement.  The diversity score for the Simple Spread solution is only 6, whereas the 

Brute Force optimal solution has a diversity score of 9.  Looking at the number of breaks 

occurring at each offset (the bottom row of numbers on each of the diagrams), the 
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solution found by the Brute Force method is significantly smoother than the one found by 

Simple Spread, which leads directly to the difference in diversity scores.  This equation is 

provably optimal for a single track length in isolation, so less-than-optimal results are a 

direct result of interactions between the different S values in a track routing problem, 

which demonstrates the importance of correlations. 
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(a)                                                                      (b) 

Figure 8.5: A track placement problem solved using (a) Simple Spread solution and a (b) Brute 
Force solution.  For each diagram, the top row of numbers indicates the position, and the bottom 
row indicates the number of breaks occurring at the corresponding position.  Each track is labeled 
on its left with its S value and on its right with its assigned offset.  The diversity score of each 
solution is also given in the upper right-hand corner. 

8.2.3 Power2 Algorithm 
The Power2 algorithm, unlike Simple Spread, places more importance on 

compensating for the correlation between the S values of tracks than on the even 

spreading of tracks within a particular S value.  This algorithm, however, is restricted to 

situations where all tracks have S values which are a power of 2.  In this case, the offset 

for a particular track is calculated based on the offsets and S values of all previously 

placed tracks.  While initially this may seem a complex task, it has been simplified such 
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that only the placement of the track immediately previous to the current track must be 

considered. 

First, the tracks in a placement problem are grouped by S value, and these groups 

are sorted in increasing order.  Offsets are then assigned in a particular constant pattern 

dependent upon the S value.  The example of Figure 8.6 gives the patterns for S=2, S=4, 

and S=8, while Equation 8.3 explains how these patterns are determined.  The tracks in 

the group with the smallest S are assigned using the pattern for that S value.  Afterwards, 

the next S group, with its particular pattern, is placed, starting with the offset value that 

would have been next in the previous pattern.  In Figure 8.6 after the length-4 track has 

been placed at offset 1, the length-8 tracks resume placement offset 3, the next offset in 

the length-4 sequence.  The remainder of the length-8 tracks follow the length 8 pattern 

after that point.  This algorithm attempts to maintain a somewhat even density of breaks 

throughout the array.   This does mean that the breaks of a particular S group may not be 

evenly distributed, such as when the quantity of tracks in a group is not a power of 2, but 

the goal of the algorithm is to use the correlations between different S groups to 

compensate.  This is the algorithm used by the regular track placement algorithms in 

Chapter 7. 

Equation 8.3: The recursive calculation of the pattern of offsets for the Power2 track placement 
algorithm.  The pattern for a given length is dependent on the pattern for the previous length prev 
(both restricted to be powers of 2, so if length is 16, prev is 8). 
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Figure 8.6: An example of the operation of Power2 at each of three S values for a case with one 
length-2 track, one length-4 track, and three length-8 tracks.  The offset pattern at each S value is 
given, along with the offset Ostart to use for the first track in that S group based on the placement of 
the previous tracks.  For each diagram, the top row of numbers indicates the position, and the 
bottom row indicates the number of breaks occurring at the corresponding position.  Each track is 
labeled on its left with its S value and on its right with its assigned offset. 

8.2.4 Optimal Factor Algorithm 
A fast algorithm has been developed that, with some restrictions, provably finds 

the optimal solution.  The Optimal Factor algorithm is the culmination of many theorems 

and proofs.  While many of the theorems will be presented here, their proofs can be found 

elsewhere [Compton02b].  This section presents various track placement situations, 

theorems regarding their solutions, and finally the pseudocode for the Optimal Factor 

Algorithm itself. 

As stated previously, correlations across S values can occur when those S values 

share a common factor.  Any optimal algorithm must therefore consider the correlations 
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between breaks not only within a particular S group, but also across S groups.  The 

example of Figure 8.5 illustrates the importance of correlations, and the fact that it is 

transitive.  Because the S=2 group and the S=6 group are correlated (sharing a common 

factor of 2), there is also a correlation between the S=2 group and the S=3 group, and 

consequently, between the S=3 group and the S=4 group.  But if an additional track group 

of S=5 were to be introduced into the problem, it would not share a factor with any other 

track group, and would not introduce further correlations.  Regardless of offset choice, 

the length-5 track would overlap with breaks from each of the other tracks at various 

positions in the architecture.  Therefore, it can be placed independently of the other 

tracks.  This feature is embodied in Theorem 8.2, which is used to divide a track 

placement problem into smaller independent (uncorrelated) problems when possible. 

Theorem 8.2 If T can be split into two sets G1⊂T and G2 = T-G1, where the S values of  
all tracks in G1 are relatively prime with the S values of all tracks in G2, then 
diversity_score(T,O) = diversity_score(G1,O1) + diversity_score(G2,O2), where O is the 
combination of sets O1 and O2.  Thus, G1 and G2 may be solved independently.  

 The fact that correlation is based on common factors can be used to further 

simplify the track placement problem.  Theorem 8.3 states that whenever one track’s S 

value has a prime factor that is not shared with any other track in the problem (or a track 

has a higher quantity of a prime factor than any other track in the problem), the prime 

factor can be effectively removed.  After all “extra” prime factors have been removed, the 

remaining prime factors are all shared by at least two tracks.  This can make interactions 

between tracks more obvious.  For example, if there are 2 length-6 tracks and one length-
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18 track, a 3 can be removed from 18, and then in effect there are 3 length-6 tracks, 

which can be placed evenly using a later theorem (Theorem 8.6).  Note that the S value of 

the length-18 track is not permanently changed, just the S value used during the course of 

track placement.  After the offsets of tracks are determined, the original S values are 

restored if necessary. 

Theorem 8.3: If the Si of unplaced track Ti contains more of any prime factor than the Sj of each 
and every other track Tj (i≠j), then for all solutions O, diversity_score(T, O) = diversity_score(T’, 
O), where T’ is identical to T, except T’i has S’i = Si with the unshared prime factor removed.  This 
rule can be applied recursively to eliminate all unshared prime factors. 

For the rest of the optimal algorithm, the tracks are grouped according to S value 

(where the S value may have been factored using Theorem 8.3).  These groups are then 

sorted in decreasing order, such that the largest S value is considered first.  Any full sets 

are removed using Theorem 8.4, where a full set is defined as a set of N tracks all with Si 

= N.  In other words, when there are enough tracks to fill all potential offset positions 

0…N-1.  If the remainder of the track placement problem can be solved to meet the 

bound of Theorem 8.1, then an overall placement that also meets the bound places one 

track from the full set at each potential offset position for the S value of that set. 

Theorem 8.4:  Given a set G⊂T of tracks, each with S=|G|.  If there exists a solution O’ for tracks 
T’=T-G that meets the bound of Equation 8.1 , then there is also solution O for tracks T that meets 
the bound (and thus is optimal), where each track in G is placed at a different offset 0…|G|-1. 

Note that throughout this algorithm, as well as all of the others, only offsets in the 

range 0 through |Si|-1 are considered for a track with S=Si.  While it is perfectly valid to 

place a track at an offset greater than Si-1, the fact that all wires within the track are of 
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length Si causes a break to be located every Si locations.  Therefore, there will always be a 

break on track Ti within the range 0 to Si-1, which can be found as dictated in Theorem 

8.5. 

Theorem 8.5:  If a track Ti has a break at position P, it will also have a break at position P % Si.  
Therefore, all possible offset locations for track Ti can be represented within the range 0 through 
Si-1 (inclusive). 

The optimal algorithm uses Theorem 8.4 and Theorem 8.6 to space the tracks of 

the largest S value (Smax) evenly.  Then the tracks with the next largest S value (Snext) 

must be placed evenly.  In order to find the best offsets for the second (and successive) 

groups of tracks, the interaction between the breaks of the previously placed tracks and 

those of the new tracks must be considered.  Therefore, the optimal algorithm examines 

the breaks of the previous tracks in terms of the next S value (Snext) in order to determine 

which offsets should be assigned to the next group of tracks to avoid bottlenecks.  The 

previously placed tracks are converted to a set of temporary “placeholder” tracks with 

S=Snext, and with each real break modeled by a break in the same position from a 

placeholder track, as demonstrated by the example of Figure 8.7. This enables the 

algorithm to accurately determine the best offsets for the real tracks for the current S 

value.  This process is repeated within a loop, where Snext now becomes Smax (since the 

tracks of the old Smax have already been placed), and a new Snext is found below the new 

Smax. 



 

 

159

6
6

2
4

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
0 1

6 0

4 2
4 0

Smax

Snext

Real tracks

Placeholders
 

Figure 8.7: The breaks from tracks of length Smax are emulated by the breaks of placeholder tracks 
of length Snext for the next iteration. 

There are a number of restrictions, however, in order to ensure that at each loop 

iteration, (1) the tracks with S=Smax can always be evenly spaced, and (2) the breaks from 

the set of tracks with S=Smax can be exactly represented by some integer number of tracks 

with S=Snext.   These restrictions are outlined in the next two theorems. 

Theorem 8.6: Let Smax be the maximum S value currently in the track placement problem, M be 
the set of all tracks with S = Smax, N = |M|, and Snext be the largest S ≠ Smax.  If N>1, Smax is a 
proper multiple of N, and Snext ≤ Smax*(N-1)/N, then any solution to T that meets the bound must 
evenly space out the N tracks with S = Smax.  That is, for each track Mi, with a position Oi, there 
must be another track Mj with a break at Oi + Smax/N. 

Theorem 8.7: Given a set of tracks G, all of segment length X, where X is evenly divisible by |G|, 
and a solution O with these tracks evenly distributed.  There is another set of tracks G’, all of 
length Y = |G’| * X / |G|, with a solution O’ where the number of breaks at each position is 
identical for solution O of G and solution O’ of G’.  If solution in which G has been replaced with 
G’ meets its bound, the solution with the original G also meets its bound. 
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Optimal_Factor(T) { 
 // Theorem 8.2: Run algorithm independently on relatively prime sets 
 // of tracks 

If T can be split into two sets G1⊂T and G2 = T-G1, where the segment 
length of all elements of G1 are relatively prime with the segment 
length of all elements of G2 { 

  Optimal_Factor(G1) 
  Optimal_Factor(G2) 
  Quit 
 } 
 
 // Theorem 8.3: Factor out unshared prime factors from each track’s S 
 // value 

Initialize Si for each track Ti to the segment length of that track. 
While the Si of any track Ti has more of any prime factor P than the 
Sis of all other tracks, individually, in T { 

  Set Si = Si/P 
 } 
 
 While tracks exist without an assigned Oi { 
  // Theorem 8.4: Place any full sets 
  While there exists a set of G tracks, where Si = |G| { 

For each track in G, assign positions to those without a 
 preassigned Oi, such that there is a track in G at all 
 positions 0≤pos<|G|. 

   Eliminate all tracks in G from further consideration. 
  } 
  If all tracks have their Oi assigned, end. 
 
  // Theorem 8.6: Smax must be evenly divisible by |M|, and require 
  // that Snext ≤ Smax*(|M|-1)/|M| 
  Let Smax = the largest Si amongst unplaced tracks 

Let Snext = the 2nd largest Si amongst unplaced tracks 
  Let M be the set of all tracks with Si = Smax 
  If no track has an assigned position, assign M1’s position O1 to 0. 

Assign all unassigned tracks in M to a position Oi, such that all 
 tracks in M are at a position k*Smax/|M|, for all k 0≤k<|M|. 

  If all tracks have their Oi assigned, end. 
 
  // Theorem 8.7:  Require Snext = c*Smax/|M| for some integer c≥1 
  // Use placeholder tracks of S=Snext to model existing breaks 
  // Snext must be evenly divisible by c to make Th. 6 work 
  Add c placeholder tracks, where for j=0..c-1, Sj = Snext, and  
    Oj = j*Smax/|M| 
  Remove all tracks in M from further consideration 
 } 
} 

Figure 8.8: The pseudocode for the Optimal Factor algorithm.  This algorithm is optimal 
[Compton02b] provided all restrictions listed in the pseudocode are met.  The comments list the 
theorems governing the operations. 
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Using the theorems presented, an optimal algorithm [Compton02b] can be 

constructed provided the restrictions in Theorem 8.6 and Theorem 8.7 are met.  There is 

one additional restriction that is implied through the combination of the two theorems 

above.  Because the tracks at a given S value must be evenly spread, the offsets assigned 

to the placeholder tracks added using Theorem 8.7 in the previous iteration must fall at 

offsets calculated using Theorem 8.6.  This is accomplished by requiring that Snext also be 

evenly divisible by the number of placeholder tracks of that length added during the track 

conversion phase.  Figure 8.8 gives the pseudocode for the Optimal Factor Algorithm.  

This pseudocode is commented to show the relevant theorems for each operation. 

8.2.5 Relaxed Factor Algorithm 
While the Optimal Factor Algorithm does generate track placements that are 

optimal in diversity score, there are significant restrictions controlling its use.  Because 

not all architectures may meet the segment length and track quantity restrictions of the 

optimal algorithm, a relaxed version of the algorithm has also been developed.  This 

relaxed algorithm operates without restrictions on track segment lengths or the quantity 

of tracks of each length, but may not be optimal. 

The general framework of the algorithm remains basically the same as the optimal 

version, although the placement and track conversion phases differ in operation.  

Previously, restrictions were used on track length and quantity to ensure optimality.  In 

the Relaxed Algorithm, a number of heuristics are instead used to intelligently spread the 



 

 

162

tracks’ breaks across the architecture.  Figure 8.9 shows the changes made to the Optimal 

Algorithm’s main while loop for the Relaxed Algorithm.  Figure 8.11 and Figure 8.14 

contain the replacement heuristic functions for the placement and track conversion.  Note 

that there is an additional sub-function that will sometimes be needed for placement, 

shown in Figure 8.12. 

// Place any full sets 
While there exists a set G of tracks where Si of every track Gi equals 
|G| { 
 For each track in G, set their Oi = i (their index in G) 
 Remove all tracks in G from further consideration. 
} 
 
// perform some initializations of structures needed in placement and 
// track conversion 
Initialize tracks[] array to size Smax = largest Si amongst all tracks in 
 T, and fill with 0’s 
Initialize breaks[] array to size K = LCM of Si’s of all tracks in T, and 
 fill with 0’s. 
// Iteratively assign offsets of unplaced tracks w/longest segment length 
While tracks exist in T without an assigned Oi { 
 Let Smax = the largest Si amongst unplaced tracks 
 Let Snext = the largest Si amongst unplaced tracks such that Snext < Smax 
 Let M be the set of all unplaced tracks with Si = Smax 
 Relaxed_Placement(M, tracks[], breaks[]) 
 If all tracks have their Oi assigned, end 
 Remove all tracks in M from further consideration 
 Convert_To_Snext(Snext, tracks[], breaks[]) 
} 

Figure 8.9: The Relaxed Algorithm code that replaces the main while loop in the Optimal 
Algorithm.  Sub-functions for this pseudocode can be found in Figure 8.11 and Figure 8.14. 

In the Relaxed Algorithm, full sets are removed in the same way they were in the 

Optimal Algorithm, except the operation is performed once instead of within the while 

loop.  This is because while the Optimal Algorithm adds new placeholder tracks in the 

loop, potentially creating new full sets, the Relaxed Algorithm does not—the only full 

sets that can exist in the Relaxed Algorithm are present before the loop starts. 
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Figure 8.10: A track arrangement (top), corresponding topography (middle), and the ideal 
topography for these tracks (bottom).  Note that this is an exaggerated example for illustrative 
purposes.  A plain is a series of consecutive values at the lowest elevation, a mountain is a series 
of consecutive values that are higher than the minimum for the array.  The topographies are 
circular, meaning that in the middle diagram, the value at index 23 is part of the same mountain as 
indices 0 through 2. 

The bulk of the changes are in the general placement and placeholder track 

substitution phases.  Again, heuristics are now used in place of restrictions on the 

problems that the algorithm can handle.  The routing architecture can be considered in 

terms of a topography, where elevation at a given location is equivalent to the number of 

breaks at that position.  Because “mountains” represent areas with many breaks, and 

therefore fewer potential routing paths, the algorithm attempts to avoid their creation.  

Instead, it focuses on placing tracks to evenly fill the “plains” in the topography, where 

the breaks from the additional tracks will have a low effect on the overall routability of 
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the resulting architecture.  The top portion of Figure 8.10 shows the plains and mountains 

of a sample topography. 

The pseudocode for the placement portion of the Relaxed Factor algorithm is 

shown in Figure 8.11, with a sub-function in Figure 8.12.  This function uses the tracks[] 

array, which was first initialized in the main body of the algorithm to all 0’s.  This array 

is updated to always be the same size as the segment length of the track group currently 

under consideration (only one segment length is examined at a time).  Each position in 

the array represents a different potential offset that can be chosen for that particular 

segment length, and essentially indicates the number of breaks that will be overlapped 

using the given potential offset. 

Relaxed_Placement(M, tracks[], breaks[]) { 
 Let unplaced be the number of tracks in M that are unplaced. 
 While the number of i’s where tracks[i] = min(tracks[]) is ≤ unplaced 
{ 
  Place one track at each location with tracks[i] = min(tracks[]) 
  Update unplaced, tracks[], breaks[] 
 } 
 If all tracks[i] are the same, space all unplaced tracks in M evenly 
 Else if unplaced tracks remain in M { 
  Let U be the set of unplaced tracks in M 
  Density_Based_Placement(U, unplaced, tracks[]) 
 } 
} 

Figure 8.11: The relaxed placement function.  The function Density_Based_Placement() 
that is used here appears in Figure 8.12. 

Using this information, the algorithm attempts to place tracks at the offsets that 

have the fewest breaks from the already-placed tracks.  The tracks array is updated later 

in the track transformation function, which will be discussed shortly.  For cases where all 
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the values in the tracks[] array are identical, the unplaced tracks of the current segment 

length are spaced evenly. 

Density_Based_Placement(U, unplaced, tracks[], breaks[]) { 
 Find the widest plain in tracks[] 
 If tie, choose the one of these with the widest adjacent mountain 
 If tie, choose randomly from the tied plains 
 

Let root_point be the location at the end of this plain run adjacent 
 to the wider mountain 

 Initialize blockage to the mountain adjacent to root_point 
Initialize next_plain to the plain adjacent to blockage (the plain 
 that does not include root_point, unless blockage is the only 
 mountain in the architecture) 

 Initialize region to next_plain plus blockage 
 
 While (1) { 
  num_to_add = Calculate_Num_Tracks(region, Smax, unplaced, tracks[]) 

Assign num_to_add unplaced tracks from U to next_plain, spaced 
 evenly with respect to each other as well as the boundaries of 
 next_plain 

  Update tracks[], breaks[], and unplaced 
  If at root_point or all are placed, end 

Set blockage to the mountain on the other side of next_plain from 
 the current blockage 
Set next_plain to the plain on the other side of the new blockage 
 from the current next_plain 

  Update region to include new blockage and new next_plain 
 } 
} 
 
Calculate_Num_Tracks(region, Smax, unplaced, tracks[]) { 
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Return either floor(ideal) or ceil(ideal) as num_to_add, whichever yields  
 a smaller abs(potential_density(region, num_to_add) - goal_density) 

} 

Figure 8.12: The density based placement function and the function to calculate the number of 
tracks to add to a given region in the newest plain.  A plain is defined as consecutive positions in 
tracks[] equal to min(tracks[]).  A mountain is defined as consecutive positions in tracks[] not 
equal to min(tracks[]). 

When there are fewer tracks than positions with the minimum number of breaks, 

the plains in the tracks[] array cannot be filled evenly.  In this case, the sub-function in 

Figure 8.12 is used to perform density-based placement.  Again, the goal is to distribute 
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the breaks as uniformly as possible throughout the architecture.  The tracks[] array 

(which holds the number of breaks on placed tracks at each position) is treated as 

circular, with the last position next to position 0.  The density-based placement looks at 

an ever-increasing region of this array and places unplaced tracks to bring the density of 

breaks in that region close to the goal_density.  This goal_density represents a theoretical 

solution with a completely flat topography.  Figure 8.10 illustrates a sample topography, 

with plains and mountains labeled, and the corresponding topography if the goal_density 

could be achieved. 

The region of consideration will initially be a plain and an adjacent mountain.  

The number of breaks that should be added to the areas of lowest elevation (a plain) in 

this region is calculated.  Any given new track can only add at most one break at one 

position in the tracks[] array, as the tracks[] array is always the same size as the current 

tracks’ segment length.  The calculated number of tracks is placed such that the breaks 

are spread evenly through the plain.  The region is updated to include the next plain and 

mountain in the circular path around the tracks[] array.  Again, the number of tracks to 

add to the bottom of the new plain is calculated in order to bring the density of the entire 

region closer to the ideal density.  This pattern continues until the algorithm has traveled 

all the way around the tracks[] array back to the beginning position, and the entire 

tracks[] array has become the region. 

The actual calculation of num_to_add, the number of tracks to add to the plain, is 

somewhat complex.  Ideally, Equation 8.4 should be minimized, where 
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potential_density(region, num_to_add) is the density of the current region if num_to_add 

tracks are added with breaks in that region, and goal_density is the density if all tracks in 

the problem could be added such that the topography could remain perfectly flat 

throughout, as in the bottommost part of Figure 8.10.  Equation 8.5 is the result of solving 

for the ideal number of tracks to be added [Compton02b], where unplaced is the number 

of tracks that have not yet been placed, and size(region) is the number of discrete 

locations in the current region. 

Equation 8.4: abs(potential_density(region, num_to_add) - goal_density) 

Equation 8.5: ideal = ∑∑
∈

−







+

regioni

itrackstracksunplaced
S
regionsize ][)(

max

 

The actual num_to_add is then either the floor() or ceiling() (whichever yields a 

lower result in the original equation to be minimized) of the possibly-fractional ideal, 

since fractional quantities of tracks cannot be placed.  This fraction to integer conversion 

does introduce some error, which can accumulate as the algorithm progresses.  Thus, the 

starting point is chosen such that the widest plain will be considered last, as it can tolerate 

the most error by amortizing it over its wider area. 

Once all tracks with S=Smax have been placed, the algorithm must prepare for the 

next iteration when the tracks with S=Snext are placed.  The effects of all previously 

placed tracks should be considered when placing tracks of length Snext.  The contents of 
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the tracks[] array are therefore in truth more complex than described previously.  The 

tracks[] array simulates the conversion of all previous track lengths to length Snext. 
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Figure 8.13: An example of a breaks[] array for K = 24, and the corresponding tracks[] array for 
Snext = 6.  The lines between the two arrays indicate the locations in the breaks[] array used to 
compute the value of tracks[2]. 

The tracks[] array provides a “global view” of the breaks[] array within the 

potential offset values 0 to Snext-1, as illustrated by Figure 8.13.  It basically records the 

peaks in the breaks array coinciding with each potential offset value that could be 

assigned to the Snext-length tracks.  This translates all of the longer tracks into 

approximate numbers of Snext-length tracks at each offset from 0 to Snext-1 so that the 

effects of these tracks can be considered when placing tracks of length Snext.  The 

pseudocode for converting all previously placed tracks to tracks of length Snext using the 

tracks[] array is given in Figure 8.14. 

Convert_to_Snext(Snext, tracks[], breaks[]) { 
 Replace current tracks[] array with tracks[] array of size Snext 
 For i = 0 to i = Snext-1 

tracks[i] = max(breaks[i+Snext*y]) for all y such that i+Snext*y 
falls within the bounds of the breaks[] array 

} 

Figure 8.14: This function does not create actual placeholder tracks to represent tracks with S > 
Snext, but it does fill the tracks[] array in such a way as to simulate all previously placed tracks 
being converted to segment length Snext. 
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8.3 Algorithm Comparison 

A number of terms are used to describe the problem sets used in the algorithm 

testing.  The value numT refers to the total number of tracks in a particular track 

placement problem, numS refers to the number of discrete S values in the problem, maxS 

is the largest S value in the problem, and maxTS is the maximum number of tracks at any 

one S value in the problem.  The very large search space has also been reduced by only 

considering problems where the number of tracks at each S value is less than the S value 

itself, since Theorem 8.4 strongly implies that cases with S or more tracks of a particular 

S value will yield similar results by placing tracks from any full sets one per potential 

offset.  Cases with only one track, or all track lengths less than 3, are trivial and thus 

ignored.  The three terms, numT, numS, and maxS, along with the restrictions above, 

define the track placement problems tested. 

The first test was to verify that the Optimal Factor yields a best possible diversity 

score in practice as well as theory.  The results of this algorithm were compared to those 

of the Brute Force for all cases with 2≤numT≤8, 1≤numS≤4, and 3≤maxS≤9, which 

represents 5236 different routing problems.  Note that even with these restrictions on the 

problem set, the runtime of Brute Force is over a week of computation on multiple 

machines.  In all cases where a solution could be found using Optimal Factor, the 

resulting diversity score was identical to the Brute Force result.  Furthermore, Relaxed 

Factor was compared to Optimal Factor for this same range, and it was found that within 
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that range, Relaxed Factor produces optimal results for all cases that meet the Optimal 

Factor restrictions. 

Next, the performances of Relaxed Factor and Simple Spread were compared to 

the results of the Brute Force method for the same search space as above to determine the 

quality of the heuristics.  The results, normalized to Brute Force, are shown categorized 

by numT, numS, and maxTS in Figure 8.15.  In these graphs, Min is the worst 

performance of the algorithm at that data point, Max is the best, and Avg is the average 

performance.  In this figure, the Brute Force result is a constant value of 1.  Figure 8.15 

left indicates that both heuristics achieve optimal results in some cases, with Relaxed 

Factor achieving results on average nearly optimal across the entire range.  Simple 

Spread improves with the increasing number of tracks, and both algorithms degrade with 

an increase in the number of different S values, though Relaxed Factor to a lesser degree 

than Simple Spread. 
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Figure 8.15: A comparison of Relaxed and Simple Spread to the Brute Force method, with respect 
to numT (left), numS (center), and maxTS (right).  The diversity scores for each case were first 
normalized to the Brute Force result, which is represented by a horizontal line at the value 1. 
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The upswing of both algorithms’ minimums towards higher values of numT may 

be an artifact of the restrictions used to limit the problem set – since at most 4 unique S 

values are allowed, when there are more than 4 tracks there are at least two tracks with 

the same S value.  Figure 8.15 right shows that as the number of tracks per S value 

increases, the quality of all algorithms improves.  The only exception is for the relaxed 

algorithm when maxTS=1; when there is only one track per S value Relaxed Factor is 

always optimal. All throughout these tests Relaxed Factor is superior to Simple Spread.  

This indicates the critical importance of correlation between S values in track placement.  

Figure 8.15 center also demonstrates that as numS increases, so does the difficulty of 

finding a good solution, as was expected.  Note that the results for both heuristics are 

optimal for the case when there is only one S value, as there are no correlations to 

contend with, and only an even spreading is required. 
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Figure 8.16: Relaxed Factor, Power2, and Simple Spread comparison for cases with only power-
of-two S values.  The results for Power2 and Simple Spread were normalized to the Relaxed 
Factor value. 
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The results of the Power2 algorithm were then compared to those of the other 

heuristics.  For these tests, a different set of track placement problems were used, where 

all S values were a power of two, up to a maxS of 32.  The number of tracks in the tests 

were not restricted beyond the requirement that for each S value, the number of tracks 

must be less than that S value.  These restrictions result in 32,762 different track 

placement problems.  Figure 8.16 left graphs the minimum, average, and maximum 

diversity scores (normalized to the Relaxed Factor result) at each number of tracks 

(numT).  The results of the algorithms become more similar as the number of tracks 

increases.  The performance of the Power2 algorithm is similar to the Relaxed Factor 

algorithm, with Power2 performing better than Relaxed Factor in some cases, and worse 

in others.  Simple Spread performs worse for these tests than the previous because by 

restricted all S values to powers of two, all tracks are correlated. 

Figure 8.16 right graphs the same data as Figure 8.16 left, but instead graphed by 

numS.  In general, performance is relatively consistent regardless of the number of S 

values, with the performance of Power2 again close to that of Relaxed Factor.  The 

exception is when there is only one S value, where correlations do not matter.  Unlike 

Relaxed Factor and Simple Spread, however, Power2 is not always optimal in this case 

because its focus is on properly handling correlations more than even spreading within 

one S value. 
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OFDM Camera Radar
Image 

Processing Sort
Matrix 

Multiply FIR Filters
Simple Spread 27 23 20 23 23 11 20
Relaxed 24 19 13 15 13 10 11  

Figure 8.17: The number of tracks in our target architecture required to successfully place and 
route all netlists in an application using the given track placement algorithm. 

Next, the place and route tool [Compton02d] was used to test the correspondence 

between diversity score and routability of the architectures.  These architectures are based 

on a tileable coarse-grained architecture similar in structure to RaPiD [Ebeling96, 

Cronquist99a].  This architecture has two length-2 local tracks, four length-4 local tracks, 

eight length-4 distance tracks, and eight length-8 distance tracks.  Note that local tracks 

do not allow connections between wire segments to form longer wires.  A test case was 

created for each of seven different multi-netlist applications using each track placement 

algorithm.  By keeping the proportion of track types constant but varying the total 

quantity of tracks, the minimum number of tracks required to successfully place and route 

every netlist in the application onto this target architecture was determined for each track 

placement algorithm.  Figure 8.17 lists the results of this experiment.  Performing track 

placement using Relaxed Factor allowed netlists to be routed with on average 27% (and 

up to 45%) fewer tracks than Simple Spread. 

8.4 Summary 

As demonstrated in this chapter, the track placement problem involves fairly 

subtle choices, including balancing requirements between tracks of the same length, and 
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between tracks of different, but not relatively prime, lengths.  The diversity score quality 

metric was introduced to measure the impact of track placement, and multiple algorithms 

were presented to solve the track placement problem.  One of these algorithms is 

provably optimal for some situations, though it is complex and works for only a relatively 

restricted set of cases.  A relaxed version of the optimal algorithm was also developed, 

which appears to be optimal in all cases meeting the restrictions of the optimal algorithm, 

and whose average appears near optimal (within 1.13%) overall.  While the other simple 

heuristics presented here do have problems in some cases, they provide simple methods 

to obtain good quality results in many cases (particularly the Power2 algorithm, used by 

two algorithms from Chapter 7). 

Track placement algorithms are critical in at least two notable situations.  First, 

automatic track placement is used for automatic reconfigurable architecture generation.  

Second, even in hand designed architectures, the track placements achieved by the 

designers can be improved by carefully considering correlations between track lengths.  

Automatic track placement techniques can be applied by the FPGA designer to their work 

to potentially improve overall quality of the resulting architecture. 
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Chapter 9 
 
 
 
Flexibility Testing 

The design of a reconfigurable architecture differs from the design of a 

conventional ASIC in a key aspect: flexibility.  The quality of an ASIC is generally 

measured in terms of power, performance, and area.  However, with reconfigurable 

hardware, flexibility is equally important, given that the goal of these structures is to 

implement various circuits using a single set of hardware resources.  In particular, 

measuring the flexibility of reconfigurable hardware is very important for automatically 

generated architectures intended for use in systems-on-a-chip.  A designer may create 

many of these architectures, and wish to choose the one best for the purpose at hand on 

the basis of all the comparison metrics, including flexibility. 

The flexibility metric has, however, been largely ignored by the FPGA and 

reconfigurable computing community.  FPGA designs are frequently measured by “gate 

count” or logic block count.  However, many feel that the first metric is primarily 

marketing propaganda and not an effective measure of the size or variety of the circuits 

the design can implement.  The second metric, logic block count, is also undesirable, as it 

is difficult to compare values across architectures with different logic block structures. 
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One possible solution to measure flexibility might be to test the number of 

possible paths in an architecture, combined with the number of logic units.  The more 

placement and routing options available, the more flexible the design.  While this method 

might be effective for the general case when the structure of the implemented circuits is 

completely unknown, it is not ideal for testing domain-specific architectures.  Domain-

specific architectures attempt to omit logic resources and routing options that will not be 

needed by any of the netlists (circuits) within the domain.  In these cases, additional logic 

and routing may not actually contribute to the flexibility (within the domain) of the 

architecture, but only the execution and configuration overhead.  It is critical to consider 

the flexibility within the domain, rather than a more generic measurement. 

Therefore, the flexibility testing methods presented here are based on the ability 

of architectures to implement circuits from the domain, beyond the specification used to 

create the architecture.  A synthetic circuit generator is used to provide a large number of 

circuits for use in the flexibility comparisons.  This chapter begins with a discussion of 

the techniques used to create the synthetic circuits.  The relative flexibilities of the 

architecture generation methods from Chapter 7 are then compared.  Finally, other 

important uses for the synthetic circuit generator are discussed. 

9.1 Circuit Generator 

Previous work in synthetic circuit generation generally operates at the gate level, 

or in the case of FPGAs, in terms of LUTs [Darnauer96, Hutton98, Wilton01, Hutton02].  
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However, the circuits used for the Totem architecture generation discussed in this 

dissertation are much more coarse-grained in nature, using word-width ALUs, 

multipliers, and other large units as the logical components.  In many cases, the 

techniques from another circuit generator are used here [Hutton98, Hutton02], but are 

modified both to compensate for heterogeneity as well as for coarse granularity and the 

structure of RaPiD netlists.  The operation of the circuit generator involves first 

measuring a few key characteristics of a “parent” netlist or netlists.  Then the synthetic 

circuit is generated using these characteristics as guidelines.  The next few sections 

describe the process of profiling netlists, followed by the techniques used to generate the 

synthetic circuits. 

9.1.1 Circuit Profiling 
Circuits are profiled in order to measure key defining characteristics.  These 

characteristics are then used to generate new circuits with structures similar to the 

original parent circuit.  RaPiD netlists currently form the source circuit material, and 

these netlists have a distinct high-level structure.  RaPiD netlists are split into systolic 

stages, where each stage operates in parallel, and communicates only with adjacent 

stages.  Inter-stage communication is limited, as is the number of inputs and outputs of 

the circuit.  For the synthetic circuits to mimic RaPiD netlists, the stage and 

communication structures must be accounted for.  Each netlist is converted to a directed 

graph, and measured for several characteristics, including: 



 

 

178

• I/O requirements of the netlist 
• Number of netlist stages 
• Minimum/maximum connections between stages 
• Minimum/maximum number of delay levels (logic levels) within the 

stages 
• Number of logic nodes 
• % of nodes of each type (ALU, multiplier, etc) 
• Proportion of signals to nodes 
• Proportion of signals that are back edges (sink is a lower delay level than 

the source) 

Figure 9.1 illustrates a sample RaPiD netlist with 28 logic nodes, represented as a 

directed graph.  Note that all multi-terminal signals are split into a set of 2-terminal 

signals for this profiling. 
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Figure 9.1: A directed graph of a sample RaPiD netlist to be profiled.  This netlist has three stages 
(separated by the dashed line).  The left stage has four delay levels, while the others each have 
three delay levels.  Logic units are represented as squares and labeled as different logic types 
(RAM, ALU, multiplier, data register), and signals are represented as arrows.  Back edges are 
signals with the sink at an earlier delay level than the source.  I/Os of the circuit and between 
stages are represented by the dark circles. 

9.1.2 Domain Profiling 
Using a set of circuit profiles as generated in the previous section, a description of 

an application domain can be created.  The minimum, maximum, mean, and standard 

deviation across the set of profiles are computed for each of the circuit characteristics.  

New profile information is generated by choosing values within the given range 
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according to a Gaussian distribution for each characteristic (using the mean and standard 

deviation to describe the function).  The generated profile is then used to create a netlist 

circuit as described in the next section. 

9.1.3 Circuit Creation 
After the circuit characteristics are obtained, either through manual input or 

profiling of one or more circuits, the graph of the synthetic circuit can be created.  The 

goal of this generator is to create a circuit that, when profiled, will have characteristics 

that approximate the circuit characteristics of the specification.  First the general 

structure, or “skeleton” of the circuit graph is created.  Next the logic nodes are created, 

and then the edges are created to connect the logic nodes together to form a directed 

graph.  Figure 9.2 demonstrates these steps for an example synthetic circuit created from 

the profile of Figure 9.1.  Finally, the completed graph describing the circuit is converted 

into an actual netlist. 

Graph Skeleton 

The circuit generator first creates a skeleton for the circuit before creating the 

circuit graph.  The generated circuits need to have the general structure of RaPiD netlists, 

which is enforced by the skeleton.  First the stages of the circuit are instantiated, where 

the number of stages is part of the input specification.  The amount of connectivity 

between stages is also determined at this time.  A random number of inter-stage 

connections is chosen between the minimum and the maximum stage I/O of the 
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specification (inclusive).  The number of stage outputs of one stage is forced to match the 

number of inputs of the next stage.  Next, the number of delay levels for each stage is 

randomly chosen between the minimum and maximum number of delay levels in the 

specification (inclusive).  A sample skeleton created from the profile from Figure 9.1 is 

given in Figure 9.2a.  At this point, the remainder of the circuit can be created. 
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(c) 

Figure 9.2:  Steps in the creation of an example synthetic circuit graph.  (a) The skeleton, 
including the number of stages (white bubbles) and delay levels within the stages (shaded 
bubbles).  The connectivity between stages is also indicated by the arrows.  (b) Logic nodes are 
then added to the skeleton.  (c) Finally, the edges are added to connect the logic nodes. 
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Graph Nodes 

The structure of the skeleton determines the minimum number of nodes that must 

be created in order to create a circuit based on that skeleton.  None of the stages are 

permitted to be empty, and each delay level within each stage must have at least one 

node.  If the number of nodes in the specification is lower than the minimum number 

allowed by the skeleton, the number of nodes is increased to meet the skeletal minimum.  

The logic nodes are then created, approximately in the same proportions by type (i.e., 

ALU, multiplier, etc) as presented in the specification.  Each stage is then assigned 

enough random nodes to meet its minimum number of nodes.  The remaining nodes (if 

any) are assigned to random stages.  Each node can only be assigned to a single stage. 

Once the nodes are assigned to stages, they must also be assigned to delay levels 

within the stages, where each node may only be assigned to a single delay level within its 

assigned stage.  Only one of the delay levels within each stage requires special 

consideration.  The number of nodes at the last delay level is determined by the 

specification’s average proportion of the last level nodes to the number of stage outputs, 

bounded at the upper end by the number of outputs.  This helps to control the amount of 

inter-stage communication.  This proportion is used with the number of outputs for each 

stage to compute the number of nodes belonging to the last delay level.  Each remaining 

delay level in a stage is assigned a random (unassigned) node from that stage in order to 

ensure each delay level has at least one node.  The remaining nodes are assigned to a 
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random delay level in the stage, not including the last level.  Figure 9.2b shows the 

example skeleton after the logic nodes have been added. 

Graph Edges 

At this point, the logical structure of the circuit is complete, and the edges of the 

graph must be added.  The edges are created in two phases: first the connections within 

each stage, then the connections between stages.  There are several steps involved in the 

creation of the edges within the stages.  First, the delay level assignments must be 

enforced.  For each node, a signal is created that sinks at that node.  The signal’s source 

node is randomly chosen from the immediately previous delay level.  Next, the number of 

inputs to the nodes is enforced.  The number of required inputs depends on the type of 

node—a data register only requires a single input, but an ALU requires two.  Signals are 

created to meet this requirement.  These signals sink at the given node, and source from a 

random node in the stage.  Output constraints are then fulfilled, where each node is 

required to have at least one output.  For any nodes without an output, a signal is created 

that sources from that node, and sinks at a random node in the stage.  Finally, the rest of 

the signals (quantity determined by the parameter of the ratio of signals to nodes) are 

created with random sources and destinations. 

For the above steps, apart from the enforcement of delay levels, the likelihood of 

a signal being a back edge is determined by the parameter of percent of signals that are 

back edges.  If a signal is determined to be a forward edge, its source or sink must be 
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chosen such that the source is from a lower delay level than the sink.  If the signal is 

determined to be a back edge, the source or sink must be chosen such that the source is 

from an equal or higher delay level than the sink, the sink is an ancestor of the source, 

and at least one register must separate them. 

 The second phase of edge generation is connecting the stages.  When creating the 

routing within the stage, temporary stage I/Os are created for each stage (the quantity of 

which is determined during skeleton creation), and the nodes within the stage are 

permitted to connect to these I/Os.  The stages are then connected by creating 

connections between the I/Os of adjoining stages.  The outputs of each stage are paired 

randomly with inputs from the next stage, and a single signal is created to connect the 

pair of I/Os.  Figure 9.2c shows the example circuit graph after the edges have been 

added. 

Final Circuit 

At this point, a directed graph has been created to describe the synthetic circuit.  

This graph then must be converted into the actual circuit format.  The input signals at 

each node are assigned random input ports on that node, after ensuring at least one signal 

per port.  The output signals are assigned random output ports on the node, but in this 

case, not every port is required to have an assigned signal.  Finally, the explicit stage 

structure becomes implicit, as the connections between nodes and the stage I/Os are 

propagated to the inputs of the next stage, as determined by the inter-stage connections. 
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9.2 Synthetic Circuit Validation 

The synthetic circuits are intended to mimic the structure of actual circuits, 

without duplicating those circuits exactly.  To test that this is the case, ten synthetic 

circuits were created for each actual RaPiD netlist available, and the synthetic circuits 

were profiled with the same techniques used to profile the RaPiD netlists.  The profiled 

values were normalized to the characteristics of the original real circuits, and averaged 

across the ten synthetic circuits.  A chart comparing the normalized characteristics of the 

generated circuits is given in Table 9.1.  The data in this chart indicates that in general, 

the synthetic circuits have very similar characteristics to the original circuits.  

Additionally, most standard deviations listed are above zero, which indicates that there is 

some variety in the characteristic values, as desired. 

A few characteristics are less accurately mirrored in the synthetic circuits than 

others.  Among these are the number of instances per delay level, the inter-stage 

communication (stage I/O), percent back edges, and fanin/fanout of individual nodes.  

Future revisions of the synthetic circuit generator should aim to improve the accuracy of 

generation to better follow the specification of these characteristics.  On the whole, 

however, the synthetic circuit generator meets the goals of generating architectures close, 

but not identical to, a given set of characteristics (in this case, profiled directly from real 

netlists).   
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Table 9.1:  A comparison of characteristics of generated synthetic circuits to those of the original 
circuits.  All characteristics were normalized to the original netlists.  The average values and 
standard deviations across ten synthetic circuits are given for each parent circuit.  Blank entries for 
% back edges indicate that no back edges were created in those synthetic circuits. 

Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev
# Inputs 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
# Outputs 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
# Instances 1.01 0.03 1.54 0.10 1.00 0.00 1.02 0.01 1.02 0.02 1.01 0.00 1.00 0.00 1.00 0.00 1.00 0.00
# Signals 0.97 0.05 1.70 0.10 1.20 0.00 0.95 0.03 0.94 0.03 1.02 0.02 1.06 0.02 1.06 0.02 1.06 0.03
Sig:Inst Ratio 0.96 0.03 1.10 0.03 1.20 0.00 0.93 0.03 0.91 0.02 1.01 0.02 1.06 0.02 1.06 0.02 1.06 0.03
# Stages 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
% Backedges 0.31 0.50 0.50 0.29 0.55 0.36 0.67 0.17
Stage I/O 0.50 0.00 1.36 0.15 1.00 0.00 1.03 0.03 1.04 0.03 1.02 0.03 0.39 0.04 0.39 0.04 0.39 0.03
# Delay Levels 1.09 0.12 2.07 0.10 1.00 0.00 0.89 0.09 0.82 0.09 1.09 0.11 0.87 0.03 0.87 0.03 0.94 0.02
Inst / Stage 1.01 0.03 1.54 0.10 1.00 0.00 1.02 0.01 1.02 0.02 1.01 0.00 1.00 0.00 1.00 0.00 1.00 0.00
Inst / Delay Level 0.79 0.09 0.76 0.06 1.00 0.00 1.44 0.15 1.58 0.17 1.07 0.11 0.73 0.04 0.73 0.04 0.68 0.02
Avg Node Fanin 1.14 0.08 1.01 0.02 0.62 0.04 1.00 0.02 1.05 0.04 0.69 0.02 0.88 0.02 0.88 0.02 0.86 0.02
Avg Node Fanout 1.39 0.09 1.06 0.02 0.70 0.04 1.00 0.02 1.05 0.04 0.70 0.02 0.99 0.02 0.99 0.02 0.98 0.02
% registers 1.02 0.05 1.00 0.01 1.00 0.00 1.03 0.02 1.04 0.03 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
% multipliers 0.99 0.03 1.00 0.01 1.00 0.00 0.98 0.01 0.98 0.02 0.99 0.00 1.00 0.00 1.00 0.00 1.00 0.00
% RAMs 1.00 0.00 1.02 0.03 1.00 0.00 0.98 0.01 0.98 0.02 0.99 0.00 1.00 0.00 1.00 0.00 1.00 0.00
% ALUs 0.99 0.03 1.00 0.00 1.00 0.00 0.98 0.01 0.98 0.02 0.99 0.00 1.00 0.00 1.00 0.00 1.00 0.00

firsm3Characteristic fft32 fft64 firsm firsm21d_dct40 color_interp fft16_2nddecnsr

 

Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev
# Inputs 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
# Outputs 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
# Instances 1.00 0.00 1.03 0.02 1.05 0.04 1.00 0.00 1.04 0.03 1.01 0.04 1.00 0.00 1.07 0.04 1.05 0.02
# Signals 1.04 0.01 0.69 0.04 0.79 0.04 0.99 0.02 0.83 0.06 1.04 0.06 1.01 0.01 0.76 0.05 0.74 0.04
Sig:Inst Ratio 1.04 0.01 0.67 0.03 0.76 0.04 0.99 0.02 0.80 0.04 1.03 0.04 1.01 0.01 0.71 0.04 0.70 0.03
# Stages 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
% Backedges 0.58 0.43 0.49 0.24 0.35 0.23 0.34 0.24 0.70 0.39 0.64 0.26
Stage I/O 0.36 0.02 0.81 0.05 0.57 0.12 0.85 0.10 1.15 0.09 0.74 0.11 0.32 0.02 0.54 0.10 0.55 0.09
# Delay Levels 1.01 0.04 0.96 0.06 0.95 0.07 1.17 0.05 0.96 0.03 1.01 0.04 0.96 0.01 0.88 0.06 0.93 0.05
Inst / Stage 1.00 0.00 1.03 0.02 1.05 0.04 1.00 0.00 1.04 0.03 1.01 0.04 1.00 0.00 1.07 0.04 1.05 0.02
Inst / Delay Level 0.62 0.03 1.00 0.05 0.90 0.11 0.91 0.06 1.14 0.05 0.91 0.07 1.16 0.01 0.98 0.10 0.91 0.05
Avg Node Fanin 0.89 0.01 0.70 0.02 0.73 0.02 1.01 0.03 0.73 0.01 0.63 0.02 1.26 0.01 0.74 0.02 0.71 0.02
Avg Node Fanout 0.96 0.01 0.74 0.02 0.77 0.02 1.05 0.03 0.86 0.02 0.70 0.02 1.51 0.01 0.78 0.03 0.74 0.02
% registers 1.00 0.00 1.04 0.04 1.07 0.05 1.00 0.00 1.06 0.05 1.00 0.01 1.00 0.00 1.29 0.17 1.11 0.04
% multipliers 1.00 0.00 0.97 0.02 0.95 0.04 1.00 0.00 0.97 0.03 0.99 0.04 1.00 0.00 0.94 0.04 0.95 0.02
% RAMs 1.00 0.00 0.97 0.02 0.95 0.04 1.00 0.00 0.97 0.03 1.00 0.00 1.00 0.00 0.94 0.04 0.95 0.02
% ALUs 1.00 0.00 0.97 0.02 0.95 0.04 1.00 0.00 0.97 0.03 0.99 0.04 1.00 0.00 0.94 0.04 0.95 0.02

matmult matmult4Characteristic firsymeven firtm_1st firtm_2nd img_filt limited limited2 log32

 

Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev
# Inputs 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
# Outputs 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
# Instances 1.07 0.04 1.00 0.00 1.08 0.03 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
# Signals 0.76 0.05 1.78 0.02 1.79 0.05 1.01 0.02 1.14 0.02 1.01 0.03 1.11 0.02 1.05 0.01
Sig:Inst Ratio 0.71 0.04 1.78 0.02 1.66 0.04 1.01 0.02 1.14 0.02 1.01 0.03 1.11 0.02 1.05 0.01
# Stages 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
% Backedges 0.70 0.39 0.98 0.45
Stage I/O 0.54 0.10 0.90 0.11 1.00 0.00 0.77 0.08 0.71 0.09 0.71 0.08 0.70 0.10 0.35 0.01
# Delay Levels 0.88 0.06 1.44 0.04 1.11 0.13 1.06 0.00 1.05 0.00 1.06 0.00 1.07 0.00 1.04 0.01
Inst / Stage 1.07 0.04 1.00 0.00 1.08 0.03 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
Inst / Delay Level 0.98 0.10 0.66 0.04 1.04 0.12 0.83 0.04 0.81 0.04 0.79 0.04 0.78 0.05 0.64 0.01
Avg Node Fanin 0.74 0.02 0.77 0.01 0.99 0.03 0.76 0.02 0.76 0.01 0.73 0.02 0.72 0.02 0.91 0.01
Avg Node Fanout 0.78 0.03 0.77 0.01 1.41 0.04 0.76 0.02 0.76 0.01 0.73 0.02 0.72 0.02 0.99 0.01
% registers 1.29 0.17 1.00 0.00 1.34 0.12 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
% multipliers 0.94 0.04 1.00 0.00 0.93 0.02 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
% RAMs 0.94 0.04 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
% ALUs 0.94 0.04 1.00 0.00 0.93 0.02 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

syncCharacteristic matmult_bit med_filt psd sort_g sort_rb sort_2d_g sort_2d_rb
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9.3 Testing Flexibility 

A few different techniques have been examined to measure the flexibility of the 

routing architecture generation algorithms from Chapter 7.  First, flexibility measurement 

using circuits generated from single profiles will be discussed, and the generation 

algorithms will be compared using architectures generated from these circuits.  Next, a 

few issues involved in flexibility testing with domain-based synthetic circuits will be 

examined.  A recommended method to test flexibility using these domain circuits is 

presented, followed by an analysis of the routing generation algorithms using this 

technique. 

9.3.1 Single Circuit Flexibility 
First the flexibility of the different architecture generation methods was tested for 

single circuit generation.  Ten circuits were created for each RaPiD netlist, and 

architectures were created using the three techniques of Chapter 7 given a single 

generated circuit as input.  The generated circuits were forced to have the exact same 

logic resources as the parent circuit so that only the flexibility of the routing structures is 

tested.  An attempt was then made to place and route (using the tool described in section 

4.2.3) the parent circuit onto each of the corresponding architectures generated from the 

synthetic circuits.  This is repeated for each parent circuit, for a total of 780 test cases—

three methods used for each of ten circuits generated for each of twenty-six parent 

netlists.   
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Table 9.2:  A table listing the % likelihood that the original parent netlist can be placed and routed 
onto an architecture created from a synthetic circuit based on the parent characteristics.  Results 
are given for each architecture generation method.  The Orig column indicates if the netlist can be 
placed and routed onto an architecture created directly from that netlist. 

Orig % Orig % Orig %
1d_dct40 Y 40 Y 80 N 60
color_interp Y 30 Y 100 Y 100
decnsr N 10 Y 90 N 30
fft16_2nd Y 10 Y 100 Y 100
fft32 Y 10 Y 100 Y 100
fft64 Y 10 Y 100 Y 100
firsm Y 10 Y 100 Y 100
firsm2 Y 10 Y 100 Y 100
firsm3 Y 0 Y 100 Y 100
firsymeven Y 0 Y 100 Y 100
firtm_1st Y 0 Y 100 Y 90
firtm_2nd Y 0 Y 80 Y 90
img_filt Y 20 Y 100 Y 100
limited Y 0 Y 100 Y 100
limited2 Y 30 Y 60 Y 60
log32 Y 90 Y 100 Y 100
matmult Y 0 Y 90 Y 100
matmult4 N 0 Y 100 Y 100
matmult_bit Y 0 Y 100 Y 100
med_filt Y 40 Y 100 Y 90
psd Y 100 Y 100 Y 100
sort_g Y 10 Y 100 Y 100
sort_rb Y 40 Y 100 Y 100
sort_2d_g Y 10 Y 100 Y 90
sort_2d_rb Y 10 Y 100 Y 100
sync Y 0 Y 40 Y 10
AVERAGE

GH AMO AML

18.5 93.8 89.2  

The results, presented in Table 9.2, highlight the flexibility differences of the 

architecture generation methods:  Greedy Histogram (GH), Add Max Once (AMO), and 

Add Min Loop (AML).  Over 80% of the time, GH with synthetic circuits does not result 

in an architecture that is sufficiently flexible to implement the original circuit.  In fact, in 

two cases, the original netlist cannot be placed and routed onto architectures created 

using GH directly from that netlist, as indicated by the Orig column in of Table 9.2.  
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AML similarly fails in two cases.  However, in all cases, the original netlist can be 

successfully placed and routed onto an architecture created from that netlist using AMO. 

On the other hand, both the Add Max Once and Add Min Loop generation 

methods allow a significant percentage of the parent circuits to be implemented on 

architectures created from synthetic netlists.  Using the Add Max Once method, there is a 

94% success rate, while the Add Min Loop method results in an 89% success rate, 

indicating the Add Max Once technique results in architectures which are inherently 

more flexible than either of the two other methods.  This is not unexpected, as Add Max 

Once tends to introduce more distance routing tracks than Add Max Loop, and the 

segmentation points in the distance tracks provide more routing options to the place and 

route tool. 

9.3.2 Domain Flexibility 
In order to test the flexibility of the different routing generation algorithms for a 

given domain, first that domain must be profiled, as described in section 9.1.2.  The 

applications used for testing throughout this work are each composed of two to six 

netlists.  Therefore, the domain architectures were created from five synthetic netlists, as 

this number falls within but at the upper end of this range.  The number of netlists used 

was chosen to be within the range to represent a realistic number of netlists.  However, a 

value near the upper end of the range was chosen under the assumption that the more 

synthetic netlists are used to create an architecture, the wider the variety of circuit 
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structures the architecture will be able to handle, and the more likely it will be able to 

implement the original netlists. 

Generating an architecture from a range of profiles creates architectures less like 

any particular original netlist than if the architecture was created from a single profile.  

The different original netlists whose profiles define the domain may vary considerably in 

their structure or resource requirements.  Plus, the synthetic circuits are generated 

randomly (with a Gaussian distribution) from the ranges of characteristic values.  

Therefore, it is difficult to guarantee that the exact logic mix required by the original 

netlists will be represented by a set of synthetic netlists using domain circuit generation.  

For example, a domain may be specified by two netlists, netlist A and netlist B.  Netlist A 

has 100 units, where 90% are ALUs and 10% are multipliers.  Netlist B has 100 units, 

where 90% are multipliers and 10% are ALUs.  A circuit is generated from the range 

specified by the profiles of the two netlists.  This circuit contains 100 units, 50% of which 

are ALUs and 50% of which are multipliers.  If a domain architecture is created from this 

one netlist alone, neither of the two original netlists could be implemented due to logic 

constraints. 

To examine the issue of logic requirements, the eight application domains were 

profiled to give a range of characteristics.  Next, five synthetic netlists were created from 

each of these range profiles, with the number of logic nodes increased by 0, 10, 20, and 

30 percent beyond the number chosen by the domain circuit generation.  For each domain 

(and each level of logic increase), the synthetic netlists were examined to determine if 
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they would create an architecture with sufficient logic resources to implement the original 

netlists of the domain.  This process was repeated ten times for each domain. 

Table 9.3 lists the success rate as a percentage across all ten trials for each 

domain, for each of the four logic sizes.  The results demonstrate that even by adding 

30% more units to each synthetic netlist, it is by no means guaranteed that there will be 

sufficient logic of the correct type to implement the original netlists.  Choosing to add no 

additional units results in less than a 60% success rate.  Therefore, an improved method is 

required to reliably specify logic requirements for a domain. 

However, this particular test does lead to an interesting result.  In the synthetic 

circuit generation, the routing complexity is given as a proportion to the number of logic 

units.  Therefore, increasing the number of logic units for a synthetic circuit by a 

percentage also increases the number of signals within the circuit, and thus the number of 

wires in the final architecture.  In fact, testing the routability of the parent netlists onto the 

GH architectures with 10% extra logic indicated that this increase was quite significant.  

Only one netlist-architecture combination out of 310 cases fails to route when enough 

logic exists to implement the netlist.  A further test indicated that all of the scenarios with 

sufficient logic for placement route successfully when either the AMO or AML 

architecture generation methods are used.  These results demonstrate that a percentage-

based increase of the logic resources of synthetic circuits is not a good technique to use 

when attempting to differentiate between the flexibilities of the generated architectures. 
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Table 9.3:  A table indicating the percentage of architectures having enough logic to implement 
the given original netlists.  Results are given for the cases when no additional logic is added to the 
synthetic circuit, as well as when 10, 20, and 30 percent additional logic units are added. 

Application Netlists 0 10 20 30
decnsr 100 100 100 100
fft16_2nd 0 0 10 10
psd 100 100 100 100
sync 20 40 40 40
fft64 60 60 60 80
color_interp 100 100 100 100
img_filt 80 90 90 90
med_filt 100 100 100 100
log32 0 0 10 10
fft32 100 100 100 100
1d_dct40 100 100 100 100
firsm 70 70 90 90
firsm2 70 70 90 90
firsm3 70 70 90 90
firsymeven 0 0 0 0
firtm_1st 100 100 100 100
firtm_2nd 100 100 100 100
matmult 10 20 60 60
matmult4 30 30 70 80
matmult_bit 10 20 60 60
limited 10 30 50 60
limited2 100 100 100 100
sort_g 20 50 90 100
sort_rb 0 80 90 100
sort_2d_g 90 100 100 100
sort_2d_rb 100 100 100 100
med_filt 0 0 0 0
matmult 80 80 80 90
firtm_2nd 80 90 100 100
fft16_2nd 30 50 60 80
1d_dct40 100 100 100 100

59.0 66.1 75.5 78.4

Radar

FIR

Speech

Camera

OFDM

AVERAGE

Image

Sort

Matrix
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Table 9.4: Success rates, in percentages, of routing original netlists onto architectures created by 
each of the three flexible routing generation algorithms from a set of synthetic benchmarks created 
from a domain profile.  The minimum logic requirements of the domain were imposed on the 
architectures to assure a successful placement. 

Application Netlists GH AMO AML
decnsr 100.0 100.0 100.0
fft16_2nd 10.0 100.0 100.0
psd 100.0 100.0 100.0
sync 100.0 100.0 100.0
fft64 60.0 100.0 90.0
color_interp 100.0 100.0 100.0
img_filt 100.0 100.0 100.0
med_filt 100.0 100.0 100.0
log32 80.0 100.0 100.0
fft32 100.0 100.0 100.0
1d_dct40 100.0 100.0 100.0
firsm 100.0 100.0 100.0
firsm2 100.0 100.0 100.0
firsm3 100.0 100.0 100.0
firsymeven 50.0 100.0 100.0
firtm_1st 100.0 100.0 100.0
firtm_2nd 100.0 100.0 100.0
matmult 90.0 100.0 100.0
matmult4 90.0 100.0 100.0
matmult_bit 90.0 100.0 100.0
limited 100.0 100.0 100.0
limited2 100.0 100.0 100.0
sort_g 100.0 100.0 100.0
sort_rb 100.0 100.0 100.0
sort_2d_g 100.0 100.0 100.0
sort_2d_rb 100.0 100.0 100.0
med_filt 70.0 90.0 90.0
matmult 100.0 100.0 100.0
firtm_2nd 100.0 100.0 100.0
fft16_2nd 100.0 100.0 100.0
1d_dct40 100.0 100.0 100.0

91.6 99.7 99.4

Radar

OFDM

Camera

Speech

FIR

Matrix

Sort

Image

AVERAGE  

The next domain tests allow for the specification of a minimum logic set.  In this 

flow, the domains are profiled as before, but this time the minimum logic requirements 

are also profiled.  Again five synthetic circuits are generated for each domain (with no 

additional logic).  Architectures are created using the synthetic circuits for each of the 

domain.  If the synthetic circuits do not provide sufficient logic resources of the 
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necessary types (based on the domain minimums), the needed logic units are added 

directly to the architecture without affecting the netlists.  The architectures are therefore 

guaranteed to have sufficient logic for the original netlists of their domain.  The original 

netlists of the domain are then placed and routed onto the architectures.  This process was 

repeated ten times for each domain, and the results are given in Table 9.4. 

This set of domain tests differentiate between the flexibility of the three different 

architecture generation methods.  GH has the lowest flexibility, successfully routing 

91.6% of netlists onto the architecture created for their domain.  AML had a mid-level 

flexibility, with a success rate of 99.4%.  AMO has the highest flexibility, with 99.7% of 

the netlists successfully routed.  These results mirror the predicted flexibility of the three 

algorithms.  GH is inherently less flexible, as it attempts to customize the track-based 

routing architecture as much as possible to the specification netlists, which in this case 

were synthetic.  AMO has the highest flexibility, as it emphasizes the use of distance 

(segmented) routing tracks, which inherently permit a wider variety of choices to the 

routing algorithm.  AML creates a regular routing architecture, more generic than the 

routing created by GH.  Its flexibility is quite similar to that of AMO, the other algorithm 

that creates regular routing architectures.  On the other hand, AML attempts to use less 

area than AMO by using local (non-segmented) routing whenever possible, and so its 

flexibility is slightly lower. 
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9.4 Other Uses 

Synthetic circuit generators might also be used to compare the flexibility of 

existing architectures for domain-specific applications.   The current flexibility testing 

involves generating architectures from synthetic circuits, and testing using the real 

circuits.  This would not be possible in this case, as the architecture is already fixed.  One 

possible method would be to select a set of netlists representative of the domain, and 

generate a large number of synthetic circuits based upon the profiled domain information.  

Next, the designer would attempt to place and route these synthetic circuits onto the 

architectures.  The relative flexibility of each architecture within the application domain 

could then be measured by the percentage of the netlists which can successfully be 

implemented. 

There are also other situations in which synthetic netlists and domain generation 

can be useful for automatic reconfigurable architecture generation.  In many cases, the 

target domain may not be completely specified—either the final netlists are not all 

complete, or the devices will be expected to implement future netlists beyond the 

specification.  If some characteristics of these netlists are known in advance, or at least a 

few of the domain’s netlists are available, synthetic circuits can be created to approximate 

the unknown circuits for the architecture generation. 
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9.5 Summary 

The flexible routing generation techniques of Chapter 7 provide solutions at 

various points in the area/flexibility solution space.  While the methods can easily be 

compared on the basis of area, there was not an established method to evaluate the 

flexibility of the generated architectures.  This chapter therefore discussed a method to 

perform this flexibility comparison through the use of synthetic circuits.  Both the single-

circuit flexibility testing and the enforced minimum domain testing were able to clearly 

differentiate between the architectures generated using the three routing generation 

methods.  The results given for this comparison match predictions from Chapter 7 based 

on the goals of each of the algorithms.  Greedy Histogram algorithm produces the least 

flexible (most specialized) architectures, and Add Max Once technique produces the most 

flexible architectures.  Add Min Loop produces architectures with flexibility close to, but 

lower than, Add Max Once, trading some flexibility for area savings. 

There are other potential uses for the synthetic circuit generation techniques 

described here.  A synthetic circuit can be used to approximate a circuit whose design has 

not yet been completed, allowing for a greater degree of parallelism in the design of the 

reconfigurable hardware and the designs which will use it.  Furthermore, using the 

domain circuit generation, a more full description of a domain can be created to help 

ensure an architecture is sufficiently flexible for future netlists created after the SoC 

fabrication.  Most importantly, though, the flexibility measurement techniques presented 
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in this chapter will allow SoC designers to more thoroughly and intelligently evaluate 

different custom architecture generation techniques to find the best solution for the task at 

hand. 
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Chapter 10 
 
 
 
Conclusions 

Because of its flexibility and ability to run applications in hardware instead of 

software, reconfigurable hardware is well-suited for use on Systems-on-a-Chip (SoCs).    

Structures such as pre-existing FPGA tiles could be used for this purpose.  However, 

commercial FPGAs are very generic, and miss many optimization opportunities for 

coarse-grained computations such as DSP.  Coarse-grained reconfigurable architectures 

have been designed to improve efficiency, but they still target a broad spectrum of 

computations.  As demonstrated by the area comparisons to RaPiD, further customization 

can yield significant area improvements. 

However, custom fabricated SoCs allow for the possibility of customized 

reconfigurable logic.  By creating specialized reconfigurable architectures for the targeted 

application domain, an architecture can be created that possesses the ASIC benefits of 

custom computational and routing resources, while still leveraging the assets of 

reconfigurable computing.  These custom reconfigurable architectures can then be 

embedded into SoCs, yielding highly efficient computing solutions. 
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Unfortunately, the cost in design time and effort involved in the manual creation 

of a new reconfigurable architecture for each type of SoC would be prohibitive.  The 

Totem Project seeks to solve this problem by automating the process of custom 

reconfigurable architecture creation to quickly and easily provide flexible and powerful 

acceleration circuits for SoCs. 

10.1   Contributions 

This work focused on one aspect of the Totem Project: high-level architecture 

generation.  The architecture generator reads a set of application netlists as input, and 

outputs an architecture designed specifically for those netlists.  A number of algorithms 

were presented which created architectures with varying trade-offs in terms of area and 

flexibility. 

Algorithms were presented in Chapter 6 to generate reconfigurable architectures 

close in style to an ASIC, harnessing the specialization benefits of ASICs, yet providing 

the hardware re-use of a reconfigurable architecture.  These techniques yielded 

architectures on average up to 12.3x smaller than the equivalent FPGA solution, and 2.2x 

smaller than standard cells for a given application.  In Chapter 7, algorithms were 

examined that create architectures with a greater degree of flexibility, capable of 

implementing netlists beyond the specification set.  Area improvements of up to 5.5x 

over an FPGA implementation were achieved. 
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 The design of flexible routing architectures highlighted several additional key 

issues that must be considered for custom reconfigurable architecture design.  The first is 

track placement, which is the arrangement of the routing resources with a channel.  

Chapter 8 defined the track placement problem and a metric to measure track placement 

quality.  It also discussed several algorithms that perform automatic track placement, and 

compared the relative track placement qualities achieved by these algorithms.  While a 

provably optimal algorithm was given, this algorithm is highly restricted.  A relaxed 

version of the algorithm was also presented that achieved track placement qualities within 

1.13% of the optimal brute-force solution. 

Finally, a method to compare the relative flexibilities of the generated 

architectures was proposed.  Currently, the only metric available to compare the ability of 

FPGA structures to implement circuits is “effective gates”.  However, this metric refers 

to logic capacity, not necessarily the flexibility of the routing network.  Also, this metric 

has been widely criticized, and is even less appropriate for coarse-grained of domain-

specific architectures.  Chapter 9 discussed the use of a synthetic circuit generator to test 

flexibility.  The relative flexibilities of the three flexible architecture generation 

algorithms from Chapter 7 were then measured.  As expected from the goals of the 

individual generation algorithms, these results indicate that Greedy Histogram is the least 

flexible of the three, Add Max Once is the most flexible, and Add Min Loop has a 

flexibility comparable, but slightly lower than, Add Max Once. 
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This work provides a robust framework to create and evaluate automatically 

generated customized reconfigurable architectures on the basis of both area and 

flexibility.  Because these architectures are generated automatically, several different 

architectures designs can be created in a small fraction of the time required for a single 

manual design.  SoC designers then have the ability to explore and compare architecture 

designs at various points of the solution space in order to find the best Totem architecture 

for each SoC. 

10.2   Future Work 

Currently, the pipelining of the netlists is removed prior to architecture generation 

to simplify the problem.  However, the types of coarse-grained computational domains 

that Totem targets is likely to include highly pipelined netlists.  It is possible sufficient 

pipelining resources, such as an optional pipeline register at each segmentation point, are 

available to route the full netlists onto the generated architectures.  However, the effects 

of pipelining on the architecture generation should be studied. 

While the techniques presented here for automatic reconfigurable architecture 

generation provide significant improvements over other solutions, several improvements 

can be made to the algorithms involved.  An improved clique partitioning weight function 

for the cASIC generation of Chapter 6 which uses a combination of common ports and a 

common span to merge similar signals into physical wires could be examined.  

Furthermore, segmentation points could be employed to potentially reduce the wire cross-
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section within the architecture and provide a higher degree of routing resource sharing 

between netlists. 

The algorithms used for the flexible architecture generation in Chapter 7 can also 

be refined, with the Greedy Histogram method altered to consider situations where 

signals can be implemented using wires of varying lengths.  Another regular routing 

algorithm could be researched which attempts to harness the benefits of both the Add 

Max Once and the Add Min Loop algorithms, emphasizing the cost of both the number of 

segmentation points and the number of routing tracks. 

Finally, the circuit generator used by the flexibility tester discussed in Chapter 9, 

that creates synthetic circuits of appropriate similarity to the original source netlists, is a 

first effort at coarse-grained circuit generation.  A few characteristics of the synthetic 

circuits deviate significantly from the source signal characteristics, and future versions of 

the synthetic circuit generator should attempt to rectify this issue. 
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