

NORTHWESTERN UNIVERSITY

Architecture Generation of Customized Reconfigurable Hardware

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Electrical & Computer Engineering

By

Katherine Leigh Compton

EVANSTON, ILLINOIS

December 2003

 ii

© Copyright Katherine Leigh Compton 2003
All Rights Reserved

 iii

ABSTRACT

Architecture Generation of Customized Reconfigurable Hardware

Katherine Leigh Compton

Reconfigurable hardware is ideal for use in systems-on-a-chip (SoCs), achieving

hardware speeds but also flexibility not available with more traditional custom circuitry.

Traditional FPGA structures can be used in an SoC, but they suffer from significant

overhead due to their generic nature. Alternatively, for cases when the application

domain of the SoC is known, the reconfigurable hardware can be optimized for that

domain. The Totem Project focuses on the automatic creation of customized

reconfigurable architectures, including high-level design, VLSI layout, and associated

custom place and route tools.

This thesis focuses on the high-level design phase, or “Architecture Generation”.

Two distinct categories of reconfigurable architectures can be created: highly optimized

near-ASIC designs with a very low degree of reconfigurability, and flexible architectures

with a one-dimensional segmented routing structure. Each of these design methods

shows significant improvements through tailoring the architectures to the given

application area. The cASIC designs are on average up to 12.3x smaller than an FPGA

solution with embedded multipliers and 2.2x smaller than a standard cell implementation.

The more flexible architectures, able to support a wider variety of circuits, are on average

up to 5.5x smaller than the FPGA solution, and close in area to standard cells.

 iv

Acknowledgments

There are a large number of people that have contributed to this dissertation,

either in terms of content or support during its creation. First I want to mention my friend

and advisor, Scott Hauck. He taught me how to be a successful PhD student, and

provided nearly gentle shoves in the right direction when needed.

There were a number of graduate students at the University of Washington that

contributed to this work. Akshay Sharma provided the Totem place and route tool. Kim

Motonaga and Shawn Phillips provided area numbers for the manual layouts of the logic

components I use as well as the areas of the standard cell implementations of the netlists.

Ken Eguro and Todd Owen gathered the FPGA data used in my comparisons. Ken was

also critical during a late-night struggle to ensure the FPGA area measurements were as

fair to the FPGA as possible. I would like to thank Carl Ebeling, Chris Fisher, Larry

McMurchie, Darren Cronquist, Mike Scott and others for their work on RaPiD, which

provided both a starting point for my work and the RaPiD-C compiler for creating

application netlists. Also, several people from the University of Washington were

instrumental in writing the RaPiD-C applications that later became the compiled netlists.

On a different note, I am grateful for the funding that supported my graduate

work. What could be better than being paid to learn? My funding sources include an

NSF Fellowship, a Motorola UPR grant, and a Cabell Dissertation-Year Fellowship.

 v

I would also like to thank Prith Banerjee for providing me with a desk to work at

after my research group moved from Northwestern to the University of Washington, and

the ECE staff who helped me with administrative functions I suddenly had to perform on

my own.

A large number of graduate students, faculty, and other FPGA researchers

provided mental and emotional support as well as guidance for both the dissertation

writing and job search process. These include, but are in no way limited to: Mark Chang,

Scott Hauck, Pramod Joisha, Miriam Leeser, Guy Lemieux, Janak Parekh, Satnam Singh,

Russ Tessier, Keith Underwood, and Steve Wilton. I am also grateful for the weekly

diversions provided by my friends Bohuš Blahut and Anne Willmore. Finally, I would

like to thank my family and husband for making my PhD possible, and for being there

when I needed them.

 vi

Dedication

I dedicate this dissertation to my advisor, Scott Hauck, to my family (all of them),

and most importantly to my loving husband, Jason Compton.

 vii

Contents

List of Figures ..x

List of Tables ... xiv

Chapter 1 Introduction...1

Chapter 2 Reconfigurable Computing...7
2.1 Technology ...12

2.1.1 Configurable Hardware..13
2.1.2 Traditional FPGAs...15

2.2 Hardware...19
2.2.1 Microprocessor Coupling...22
2.2.2 Logic Block Granularity ..25
2.2.3 Heterogeneous Arrays..29
2.2.4 Routing Resources ...31
2.2.5 One-Dimensional Structures..34
2.2.6 Hardware Summary ...36

2.3 Software ..37
2.4 Run-Time Reconfiguration ...43

2.4.1 Fast Configuration ...45
2.5 Reconfigurable Computing Summary ..50

Chapter 3 Reconfigurable Hardware in SoCs..53
3.1 Reconfigurable Subsystems ..54
3.2 Systems-on-a-Programmable-Chip (SoPCs) ..56

Chapter 4 Research Framework ..59
4.1 RaPiD..60

4.1.1 Datapath Architecture ..61
4.1.2 Control Architecture ..62
4.1.3 RaPiD-C Compiler...63

4.2 Totem Project..64
4.2.1 High-Level Architecture Design..66
4.2.2 Physical Layout..67
4.2.3 Place and Route..69

4.3 Testing Framework ...70
4.3.1 Standard Cells ..71
4.3.2 FPGA ...72

 viii

4.3.3 RaPiD...74
4.3.4 Relative Areas..76

Chapter 5 Logic Generation ..79
5.1 Type and Quantity of Units...79
5.2 Binding vs. Physical Moves..80
5.3 Adapting Simulated Annealing...83

Chapter 6 Configurable ASICs..89
6.1 Logic Generation ..90
6.2 Routing Generation...91

6.2.1 Greedy..94
6.2.2 Bipartite..95
6.2.3 Clique...99

6.3 Results...102
6.4 Summary ...109

Chapter 7 Flexible Architectures...111
7.1 Flexible Architectural Style ..112
7.2 Logic Generation ..113
7.3 Routing Generation...114

7.3.1 Shared Concepts...115
7.3.2 Greedy Histogram..122
7.3.3 Regular Architectures ..127

7.4 Results...133
7.4.1 Area..133
7.4.2 Flexibility...138

7.5 Summary ...140

Chapter 8 Track Placement..142
8.1 Problem Description ...145
8.2 Track Placement Algorithms ..150

8.2.1 Brute Force Algorithm...151
8.2.2 Simple Spread Algorithm ..152
8.2.3 Power2 Algorithm..153
8.2.4 Optimal Factor Algorithm..155
8.2.5 Relaxed Factor Algorithm..161

8.3 Algorithm Comparison ...169
8.4 Summary ...173

Chapter 9 Flexibility Testing...175
9.1 Circuit Generator ..176

 ix

9.1.1 Circuit Profiling ...177
9.1.2 Domain Profiling ...178
9.1.3 Circuit Creation..179

9.2 Synthetic Circuit Validation ...184
9.3 Testing Flexibility...186

9.3.1 Single Circuit Flexibility..186
9.3.2 Domain Flexibility ...188

9.4 Other Uses...194
9.5 Summary ...195

Chapter 10 Conclusions...197
10.1 Contributions...198
10.2 Future Work ..200

References ...202

 x

List of Figures

Figure 2.1: Compute-intensive sections of application code are mapped onto the
reconfigurable hardware. ...9

Figure 2.2: (a) A programming bit for SRAM-based FPGAs [Xilinx94, Hauck98a] and
(b) a programmable routing connection...13

Figure 2.3: (a) A D flip-flop with optional bypass, and (b) a 3-input LUT [Hauck98a]. ..14

Figure 2.4: A basic logic block, with a 4-input LUT, carry chain, and a D-type flip-flop
with bypass...17

Figure 2.5: A generic island-style FPGA routing architecture. ...18

Figure 2.6: Different levels of coupling in a reconfigurable system [Hauck98a].
Reconfigurable logic is shaded. ...23

Figure 2.7: The functional unit from a Xilinx 6200 cell [Xilinx96].26

Figure 2.8: One cell in the RaPiD-I reconfigurable architecture [Ebeling96].28

Figure 2.9: (a) Segmented and (b) hierarchical routing structures.33

Figure 2.10: (a) A traditional two-dimensional island-style routing structure, and (b) a
one-dimensional routing structure.. ...35

Figure 2.11: Three possible design flows for algorithm implementation on a
reconfigurable system. ...38

Figure 2.12: Applications which are too large to entirely fit on the reconfigurable
hardware can be partitioned into two or more smaller configurations that can occupy
the hardware at different times. ...43

Figure 4.1: A single cell from the RaPiD architecture [Cronquist99a, Scott01].61

Figure 4.2: The three major components of the Totem Project ...65

Figure 5.1: (a) Binding assigns instances of a netlist to physical components. (b) Physical
moves reposition the physical components themselves. ..81

Figure 5.2: Two different example netlists that could be used in architecture generation.82

 xi

Figure 5.3: The initial physical placement and bindings of an architecture created for the
netlists of Figure 5.2. ...84

Figure 5.4: A physical move performed during the placement operation.85

Figure 5.5: A rebinding performed during the placement operation.86

Figure 5.6: The final placement of the architecture created for the netlists from Figure 5.2
after a series of moves such as those illustrated in Figure 5.4 and Figure 5.5...........86

Figure 6.1: cASIC routing architecture created for the example from Chapter 5.............92

Figure 6.2: Pseudocode for the Greedy cASIC generation technique.95

Figure 6.3: An example graph which does not produce the optimal solution when
bipartite matching is used recursively..96

Figure 6.4: Pseudocode for the recursive maximum weight bipartite matching cASIC
technique. ...97

Figure 6.5: Pseudocode of the maximum weight bipartite matching graph algorithm
[Shier99] used by the Bipartite cASIC generation algorithm from Figure 6.4..........98

Figure 6.6: An improved solution to the graph of Figure 6.3 found using clique
partitioning...100

Figure 6.7: The pseudocode of the Clique cASIC generation algorithm.........................101

Figure 6.8: Pseudocode of the clique partitioning graph algorithm [Dorndorf94] used by
the Clique cASIC generation algorithm from Figure 6.7.102

Figure 6.9: Comparative area results of the different cASIC routing generation
algorithms, normalized to the Clique Overlap result for each application.104

Figure 7.1: Flexible routing architecture created for the example from Chapter 5.115

Figure 7.2: Examples of the different types of routing tracks, (a) local tracks, and (b)
distance tracks with bus connectors (represented by the squares on the tracks).116

Figure 7.3: An extreme example of a non-distributed routing architecture.....................118

Figure 7.4: A distributed routing architecture..118

Figure 7.5: Calculating the unroutable cross-section for the placement of Figure 5.6. ...119

 xii

Figure 7.6: An example situation where an unmodified left-edge routing algorithm leads
a routing generation algorithm to construct a more expensive solution.120

Figure 7.7: Pseudocode summary of the fast greedy router used within the flexible
routing generation algorithms presented in this chapter. ...122

Figure 7.8: Pseudocode for the main body of the Greedy Histogram generation algorithm.
..123

Figure 7.9: Sub-functions for the Greedy Histogram Algorithm from Figure 7.8.125

Figure 7.10: Pseudocode for the main body of the Add Max Once flexible routing
generation algorithm. ...128

Figure 7.11: The pseudocode for a subfunction used by both the Add Max Once
algorithm in Figure 7.10 and the Add Min Loop algorithm in Figure 7.13.............129

Figure 7.12: An example of AMO creating a more costly solution than necessary.130

Figure 7.13: The pseudocode for the Add Min Loop algorithm......................................132

Figure 7.14: Comparative area results of the different flexible routing generation
algorithms, Greedy Histogram (GH), Add Max Once (AMO), and Add Min Loop
(AML). ...136

Figure 8.1: Two different track placements for the same type of tracks, (a) a very poor
one and (b) a very good one...143

Figure 8.2: Two examples of reconfigurable architectures with segmented channels. ...145

Figure 8.3: An alternate placement for the architectures in Figure 8.2 that maintains
perfect smoothness of breaks, but is intuitively less routable than the placement in
Figure 8.2b. ..146

Figure 8.4: Diversity score for two different track placements for the same track
placement problem: (a) a poor placement, and (b) a good placement.147

Figure 8.5: A track placement problem solved using (a) Simple Spread solution and a (b)
Brute Force solution...153

Figure 8.6: An example of the operation of Power2 at each of three S values for a case
with one length-2 track, one length-4 track, and three length-8 tracks....................155

 xiii

Figure 8.7: The breaks from tracks of length Smax are emulated by the breaks of
placeholder tracks of length Snext for the next iteration..159

Figure 8.8: The pseudocode for the Optimal Factor algorithm.160

Figure 8.9: The Relaxed Algorithm code that replaces the main while loop in the Optimal
Algorithm...162

Figure 8.10: A track arrangement (top), corresponding topography (middle), and the ideal
topography for these tracks (bottom)...163

Figure 8.11: The relaxed placement function. ...164

Figure 8.12: The density based placement function and the function to calculate the
number of tracks to add to a given region in the newest plain.165

Figure 8.13: An example of a breaks[] array for K = 24, and the corresponding tracks[]
array for Snext = 6..168

Figure 8.14: This function does not create actual placeholder tracks to represent tracks
with S > Snext, but it does fill the tracks[] array in such a way as to simulate all
previously placed tracks being converted to segment length Snext...........................168

Figure 8.15: A comparison of Relaxed and Simple Spread to the Brute Force method,
with respect to numT (left), numS (center), and maxTS (right).170

Figure 8.16: Relaxed Factor, Power2, and Simple Spread comparison for cases with only
power-of-two S values. ..171

Figure 8.17: The number of tracks in our target architecture required to successfully place
and route all netlists in an application using the given track placement algorithm. 173

Figure 9.1: A directed graph of a sample RaPiD netlist to be profiled............................178

Figure 9.2: Steps in the creation of an example synthetic circuit graph.180

 xiv

List of Tables

Table 4.1: Eight applications used to test Totem architectures. ..71

Table 4.2: The areas of the eight different applications from Table 4.1 implemented using
standard cells..72

Table 4.3: The FPGA areas of the eight different applications from Table 4.1.74

Table 4.4: The RaPiD areas of the eight different applications from Table 4.1.76

Table 4.5: The areas of all of the netlists from Table 4.1 using each of the implementation
methods, normalized to the standard cell area. ..78

Table 4.6: The areas of each of the applications from Table 4.1 using each of the
implementation methods, normalized to the standard cell area.78

Table 5.1: The calculation of the new temperature Tnew based on the percentage of moves
accepted, Raccept. ...88

Table 6.1: The areas of the routing structures created by the Bipartite cASIC generation
methods using both the ports and the overlap methods. ..103

Table 6.2: The areas, in mm2, of the eight different applications from Table 4.1, as
implemented with the three cASIC algorithms..106

Table 6.3: Area improvements calculated over the reference architectures, then averaged
across all applications. ...107

Table 7.1: A table of the number of routing tracks created for each application by each
routing generation algorithm..134

Table 7.2: The areas, in mm2, of the eight different applications from Table 4.1, as
implemented with the three flexible routing architecture generation algorithms. ...137

Table 7.3: A summary of area comparisons between the different implementation
techniques. ...137

Table 7.4: Initial flexibility study of the generated architectures.139

 xv

Table 9.1: A comparison of characteristics of generated synthetic circuits to those of the
original circuits. ...185

Table 9.2: A table listing the % likelihood that the original parent netlist can be placed
and routed onto an architecture created from a synthetic circuit based on the parent
characteristics...187

Table 9.3: A table indicating the percentage of architectures having enough logic to
implement the given original netlists. ..191

Table 9.4: Success rates, in percentages, of routing original netlists onto architectures
created by each of the three flexible routing generation algorithms from a set of
synthetic benchmarks created from a domain profile. ...192

 1

Chapter 1

Introduction

As chip fabrication techniques continue to advance and become more refined, the

concept of "System-on-a-Chip" (SoC) will further evolve and grow in popularity. With

system components moved from on-board to on-chip, communication times and

bandwidth are greatly improved, raising the question of exactly what type of hardware to

include on SoCs. Reconfigurable hardware [Compton02a] shows great potential for SoC

use, providing hardware speeds, while maintaining a level of flexibility not available with

traditional custom circuitry. This flexibility is the key to allowing both hardware reuse

and post-fabrication modification.

The core of a reconfigurable architecture is a set of hardware resources, including

logic and routing, whose function is controlled by on-chip configuration SRAM.

Programming the SRAM, either at the start of an application or during execution, allows

the hardware functionality to be configured and reconfigured, permitting reconfigurable

systems to implement different algorithms and applications on the same hardware.

This reusability makes reconfigurable hardware a prime candidate as a subsystem

for SoCs. Rather than using separate custom circuits to accelerate each potential

2

application, a single reconfigurable architecture can be used. This reconfigurable logic

can implement circuits from each application in hardware as needed.

Field-programmable gate arrays (FPGAs) [Brown92a, Rose93] are a widely

available form of reconfigurable hardware. One major difficulty of using FPGAs for

DSP, networking, and other applications is their generic design. FPGAs attempt to fulfill

the computation requirements of any application that might be needed. However,

because different application types have different requirements, a large amount of

hardware (and silicon area) is wasted if the applications are actually constrained to a

limited range of computations. While the flexibility of general-purpose FPGAs has its

place in situations where computational requirements are not known in advance,

specialized on-chip hardware is commonly used to obtain greater performance for a

specific set of compute-intensive calculations.

Reconfigurable architectures can be made more efficient if the algorithm types are

known in advance. In this case, the amount of "useless" hardware and programming

points that would otherwise occupy valuable area or slow the computations can be

reduced or removed. Architectures such as RaPiD [Ebeling96], PipeRench

[Goldstein00], and Pleiades [Abnous96] target multimedia and DSP domains by using

coarser-grained units (such as 16-bit ALUs and multipliers in the case of RaPiD), and

more restricted routing structures to implement the targeted applications more efficiently.

Even a fixed reconfigurable architecture containing coarse-grained units can

suffer overheads when the logic and routing resources deviate significantly from the

3

needs of the circuits implemented using this hardware. To address this issue, the RaPiD

group has proposed the synthesis of custom RaPiD arrays for different application sets

[Cronquist99b]. While specialized reconfigurable architectures are theoretically

beneficial, they would be impractical in practice if they needed to be manually designed

for each application group. Each of these optimized reconfigurable structures can be

quite different, depending on the application requirements. Unfortunately, this

contradicts a fundamental principle of FPGAs and reconfigurable hardware: quick time-

to-market with low design costs.

Therefore, an automatic solution that allows designers to create reconfigurable

structures for a given range of computations should be considered. These application

domains could include cryptography, DSP or a sub-domain of DSP, specific scientific

data analysis, or any other compute-intensive area. This concept is different from

traditional ASICs in that some level of hardware programmability is retained. This

programmability gives the custom architecture a measure of flexibility beyond what is

available in an ASIC, and provides the benefits of run-time reconfigurability. Run-time

reconfiguration can then be employed to allow for near ASIC-level performance with a

much smaller area overhead due to the re-use of area-intensive hardware components.

The resulting automatically-generated reconfigurable hardware will then be embedded

into an SoC or ASIC design.

The Totem Project [Compton01, Compton02d, Phillips02, Sharma02,

Compton03, Sharma03] is an attempt to automatically generate custom reconfigurable

4

architectures based on an input set of applications. The project goal is to provide a fully

automatic design path, greatly decreasing the cost of new architecture development. This

includes the high-level architecture design, the transistor level layout of those

architectures, and place and route tools supporting the customized architectures.

The work presented here focuses on the high-level architecture design, also

known as architecture generation. Depending on the algorithms and the stated

parameters, this architecture generation could provide a design anywhere within the range

between ASICs and FPGAs. Very constrained computations would be primarily fixed

ASIC logic, while more unconstrained domains would require near-FPGA functionality.

The issues involved in these two types of specialized architecture generation will be

discussed, and algorithms will be presented that demonstrate significant area savings over

less-specialized designs. It should be stressed that these architectures are custom

reconfigurable logic and are intended to be implemented directly into silicon, not an

FPGA structure. The very constrained ASIC-like architectures, discussed in Chapter 6,

are on average up to 12.3x smaller than an FPGA implementation and 2.2x smaller than a

standard cell layout. The more flexible architectures, discussed in Chapter 7, support a

wider variety of circuits and are on average up to 5.5x smaller than FPGA

implementations.

This dissertation is organized as follows:

5

• Chapter 2: Reconfigurable Computing provides technical background,

discussing the structure and operation of FPGAs and other types of

reconfigurable hardware.

• Chapter 3: Reconfigurable Hardware in SoCs describes current systems

employing reconfigurable logic in Systems-on-a-Chip.

• Chapter 4: Research Framework provides architectural details of RaPiD

[Ebeling96, Cronquist99a], the structural basis for the work presented

here, and provides a description of the overall Totem tool flow.

• Chapter 5: Logic Generation describes the method used to create the logic

portion of the reconfigurable architectures, which is common to both

architecture generation methods presented in Chapter 6 and Chapter 7. It

also seeks to define key terminology required for discussing

reconfigurable architecture generation using a set of netlists as the

specification.

• Chapter 6: Configurable ASIC presents two different algorithms, Greedy

and Clique Partitioning, for the generation of very ASIC-like customized

reconfigurable architectures.

• Chapter 7: Flexible Architectures discusses three algorithms, Greedy

Histogram, Add Max Once, and Add Min Loop, used to create more

flexible specialized architectures in the RaPiD design style.

6

• Chapter 8: Track Placement focuses on one of the design issues from

Chapter 7, the arrangement of a pre-determined quantity of routing

resources within a single channel. The track placement problem is defined

and a metric is presented to measure track placement quality. An optimal

algorithm to perform track placement is given, along with a near-optimal

relaxed version.

• Chapter 9: Flexibility Testing discusses methods that can be used to test

the flexibility of generated reconfigurable architectures. The flexibility of

the architecture generation algorithms from Chapter 7 is then analyzed

using these techniques.

• Chapter 10: Conclusions summarizes the contributions of this work, and

lists a number of areas of future effort.

 7

Chapter 2

Reconfigurable Computing

Two primary methods exist in conventional computing for the execution of

algorithms. One method utilizes hardwired technology, either an Application Specific

Integrated Circuit (ASIC), or a group of individual components forming a board-level

solution, to perform the operations in hardware. ASICs are designed to perform a

specific computation quickly and efficiently, but cannot be altered after fabrication.

Modification of the circuit requires redesign and re-fabrication of the chip. This is an

expensive process, especially when replacing ASICs in a large number of deployed

systems. Board-level circuits are also somewhat inflexible, often requiring a board

redesign and replacement in the event of changes to the application.

The second method provides a far more flexible solution. Software-programmed

microprocessors execute a set of instructions to perform a computation. System

functionality can be altered without hardware changes simply by reprogramming the

software. However, the price of this flexibility is performance, which is far below that of

an ASIC. Also, microprocessors consume more power than an ASIC. The processor

must read each instruction from memory, decode its meaning, and only then execute it.

8

This leads to a high execution overhead for each individual operation. Additionally, the

possible instructions that may be used by a program are determined at the processor

design time. Any other operations that are to be implemented must be built out of one or

more existing instructions.

Reconfigurable computing fills the gap between hardware and software, achieving

greater performance than software, while maintaining a higher level of flexibility than

hardware. Reconfigurable devices, including field-programmable gate arrays (FPGAs),

contain an array of computational elements whose functionality is determined through

multiple programmable configuration bits. These elements, also known as logic blocks,

are connected using a set of programmable routing resources. Custom digital circuits are

mapped to reconfigurable hardware by computing the logic functions of the circuit within

the logic blocks, and using the configurable routing to connect the blocks together to

form the necessary circuit.

FPGAs and reconfigurable computing have been shown to accelerate a variety of

applications. Data encryption can leverage both parallelism and fine-grained data

manipulation. An implementation of the Serpent Block Cipher in the Xilinx Virtex

XCV1000 shows a throughput increase by a factor of over 18 compared to a Pentium Pro

PC running at 200MHz [Elbirt00]. Additionally, a reconfigurable computing

implementation of sieving for factoring large numbers (useful in breaking encryption

schemes) was accelerated by a factor of 28 over a 200 MHz UltraSparc workstation

[Kim00a]. The Garp architecture shows a comparable speed-up for DES [Hauser97], as

9

does an FPGA implementation of an elliptic curve cryptography application [Leung00].

PNN classification has been accelerated by a factor of 63 using reconfigurable hardware

[Chang99], and the SPIHT wavelet-based image compression algorithm has been

accelerated by a factor of 457 [Fry02].

Other recent applications shown to exhibit significant speedups using

reconfigurable hardware include: automatic target recognition [Rencher97]; string pattern

matching [Weinhardt99]; Golomb Ruler Derivation [Dollas98, Sotiriades00]; transitive

closure of dynamic graphs [Huelsbergen00]; Boolean satisfiability [Zhong98]; data

compression [Huang00]; and genetic algorithms for the traveling salesman problem

[Graham96].

wwwwww() {
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwww

wwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwww

w
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwww

wwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

w
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwww
www

wwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwww

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwww

w
w
wwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwww
ww
wwwwwwwww

w

Reconfigurable
Fabric

A
pp

lic
at

io
n

So
ur

ce
 C

od
e

wwwwww() {
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwww

wwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwww

w
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwww

wwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

w
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwww
www

wwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwww

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwww

w
w
wwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwww
ww
wwwwwwwww

w

Reconfigurable
Fabric

A
pp

lic
at

io
n

So
ur

ce
 C

od
e

Figure 2.1: Compute-intensive sections of application code are mapped onto the reconfigurable
hardware.

In order to achieve these performance benefits while supporting a wide range of

applications, reconfigurable systems usually combine reconfigurable logic with a general-

purpose microprocessor. The processor performs operations that cannot be done

efficiently in the reconfigurable logic, such as data-dependent control and some memory

10

accesses, while computational cores are mapped to the reconfigurable hardware, as in

Figure 2.1. This reconfigurable logic consists of either commercial FPGAs or custom

configurable hardware.

Compilation environments for reconfigurable hardware range from tools that

assist programmers in hand mapping of a circuit to hardware, to complete automated

systems that take a circuit description in a high-level language and translate it into a

configuration for a reconfigurable system. The first step in the design process is

partitioning a program into the sections that will be implemented in hardware and the

sections executed in software on the host processor. Computations destined for

reconfigurable hardware are synthesized into a gate level or register transfer level circuit

description. This circuit is mapped onto the logic blocks within the reconfigurable

hardware during the technology mapping phase. These mapped blocks are then placed

into the specific physical blocks within the hardware, and the pieces of the circuit are

connected using the reconfigurable routing. After compilation, the circuit is ready to be

implemented by the reconfigurable hardware at run-time. These steps, when performed

using an automatic compilation system, require little effort by the programmer to utilize

the reconfigurable hardware. However, performing some or all of these operations

manually frequently results in a more highly optimized circuit for performance-critical

applications.

Since FPGAs must pay an area penalty because of their reconfigurability, device

capacity is a concern. Assuming that the hardware can only be programmed at power-up,

11

a very large programmable device might be required to implement all of the functions in

a program that can benefit from hardware-acceleration. Alternately, if a smaller device is

used not all the functions may fit within the device, leaving some of the acceleration

potential untapped.

Additional areas of the program may be accelerated by reusing the reconfigurable

hardware during program execution, a process known as run-time reconfiguration (RTR).

While this computing style allows for the acceleration of a greater portion of an

application, it also limits the potential acceleration by introducing configuration

overhead. Because configuration can take milliseconds or longer, rapid and efficient

configuration is a critical issue. Configuration compression and configuration caching

are examples of methods that can be used to reduce this overhead [Li02].

This chapter provides a brief overview of the hardware and software issues of

reconfigurable computing. First is a discussion of the technology required for

reconfigurable computing, followed by an examination of the various hardware structures

used in reconfigurable systems. Next is a brief look at the software required to

implement algorithms on reconfigurable systems. Finally, run-time reconfigurable

systems are discussed, which further utilize the intrinsic flexibility of configurable

computing platforms by optimizing the hardware not only for different applications, but

also for different operations within a single application.

This chapter does not cover every technique and research project in the area of

reconfigurable computing. For a comprehensive overview of the field, there are a

12

number of survey articles on the topic, covering more recent work [Compton02a], or

older techniques and systems [Rose93, Hauck96, Vuillemin96, Mangione-Smith97,

Hauck98a].

2.1 Technology

Some of the concepts behind reconfigurable computing have existed for some

time [Estrin63]. Even general-purpose processors use some of the same basic ideas, such

as reusing computational components for independent computations, and using

multiplexers to control the routing between these components. However, the term

reconfigurable computing, as it is used in current research, refers to systems

incorporating some form of hardware programmability—customizing hardware operation

using a number of physical control points. These control points can be changed at

different points in time, allowing the same hardware to execute different applications.

Recent advances in reconfigurable computing are primarily derived from the technologies

developed for FPGAs in the mid-1980s. FPGAs were originally created to serve as a

hybrid device between PALs and Mask-Programmable Gate Arrays (MPGAs). Like

PALs, FPGAs are fully electrically programmable; the physical design costs are

amortized over multiple application circuit implementations, and the hardware

customizations can occur almost instantaneously. Like MPGAs, FPGAs can implement

very complex computations on a single chip, with current devices containing the

equivalent of over a million gates. Because of these features, FPGAs had been primarily

13

viewed as glue-logic replacement and rapid-prototyping vehicles. However, the

flexibility, capacity, and performance of these devices has opened up completely new

avenues in high performance computation, forming the basis of reconfigurable

computing.

2.1.1 Configurable Hardware
Most current FPGAs and reconfigurable devices are SRAM-programmable1

(Figure 2.2a), meaning that SRAM bits are connected to the configuration points in the

FPGA, and programming the SRAM bits configures the FPGA. Thus, these chips can be

programmed and reprogrammed about as easily as a standard static RAM. In fact, one

research project, the PAM project [Vuillemin96], considers a group of one or more

FPGAs to be a RAM unit that performs computation between the memory write (sending

the configuration information and input data) and memory read (reading the results of the

computation). This led to the term “Programmable Active Memory” or PAM.

DATA

READ or WRITE

Q

Q
Routing
Resource #1

P

Routing
Resource #2DATA

READ or WRITE

Q

Q
Routing
Resource #1

P

Routing
Resource #2

 (a) (b)

Figure 2.2: (a) A programming bit for SRAM-based FPGAs [Xilinx94, Hauck98a] and (b) a
programmable routing connection.

1 The term “SRAM” is technically incorrect for many FPGA architectures, given that the
configuration memory may or may not support random access. In fact, the configuration memory tends to
be continually read in order to perform its function. However, this is the generally accepted term in the
field and correctly conveys the concept of static volatile memory using an easily understandable label.

14

One example of how the SRAM configuration points can be used is to control

routing within a reconfigurable device [Chow99]. To configure the routing on an FPGA,

typically a pass gate structure is employed (Figure 2.2b). Here the programming bit will

turn on a routing connection when it is configured with a true value, allowing a signal to

flow from one wire to another, and will disconnect these resources when the bit is set to

false. With a proper interconnection of these elements, which may include millions of

routing choice points within a single device, a rich routing fabric can be created.

DFF

OUT

BYPASS

SIGNAL

P1
P2

P3
P4

P5
P6

P7
P8

I1 I3I2

OUT

DFF

OUT

BYPASS

SIGNAL

P1
P2

P3
P4

P5
P6

P7
P8

I1 I3I2

OUT

 (a) (b)

Figure 2.3: (a) A D flip-flop with optional bypass, and (b) a 3-input LUT [Hauck98a].

Another example of how these configuration bits may be used is to control

multiplexers, which choose between the output of different logic resources within the

array. For example, to provide optional state-holding elements, a D flip-flop (DFF) may

be included with a multiplexer to select whether the latched or unlatched signal value will

be forwarded (Figure 2.3a). In circuits that require state-holding elements, the

programming bits that control the multiplexer are configured to select the DFF output,

while circuits not requiring this functionality can choose the bypass route. Similar

15

structures can choose between other on-chip functionalities, including fixed-logic

computation elements, memories, carry chains, or other functions.

Finally, the configuration bits may be used as control signals for a computational

unit or as the basis for computation itself. As a control signal, a configuration bit may

determine whether an ALU performs an addition, subtraction, or other logic

computations. Alternatively, the configuration bits themselves form the result of the

computation with a structure such as a lookup table, also known as a LUT (Figure 2.3b).

These LUTs are essentially small memories provided for computing arbitrary logic

functions. LUTs can compute any function of N inputs (where N is the number of

control signals for the LUT’s multiplexer) by programming the 2N programming bits with

the truth table of the desired function. Thus, if all programming bits except the one

corresponding to the input pattern 111 were set to zero, a 3-input LUT would act as a 3-

input AND gate, while programming it with all ones except in 000 would instead

compute a NAND.

2.1.2 Traditional FPGAs
Before discussing the detailed architecture design of reconfigurable devices in

general, the logic and routing of FPGAs will be described. These concepts apply directly

to reconfigurable systems using commercial FPGAs, such as PAM [Vuillemin96] and

Splash 2 [Arnold92, Buell96]. Hardware concepts that apply specifically to architectures

designed for reconfigurable computing, and variations on the generic FPGA description

16

provided here, are discussed following this section. More detailed surveys of FPGA

architectures can be found elsewhere [Brown92a, Rose93].

Since the introduction of FPGAs in the mid-1980s, many different investigations

have examined what computation element(s) should be built into the array [Rose93],

including FPGAs with PAL-like product term arrays, multiplexer-based functionality, or

basic fixed functions such as simple NAND and XOR gates. Many of these types of

architectures have been built. However, it is fairly well established that the best function

block for a standard FPGA, a device whose primary role is the implementation of random

digital logic, is the one found in the first devices deployed—the LUT (Figure 2.3b). As

previously described, an N-input LUT is essentially a memory that can compute any

function of up to N inputs when programmed appropriately. This flexibility, with

relatively simple routing requirements (each input requires routing to a single multiplexer

control input) is very powerful for logic implementation. Although LUTs are less area-

efficient than fixed logic blocks, such as a standard NAND gate, most current FPGAs use

less than 10% of their chip area for logic, devoting the majority of the silicon real estate

to routing resources.

The typical FPGA contains a logic block with one or more 4-input LUT(s),

optional D flip-flops (DFF), and some form of fast carry logic (Figure 2.4). The LUTs

allow any function to be implemented, providing generic logic resources. The flip-flop

can be used for pipelining, registers, state-holding functions for finite state machines, or

any other situation where clocking is required. Flip-flops typically include

17

programmable set/reset lines and clock signals, which may come from global signals

routed on special resources, or via the standard interconnect structures from some other

input or logic block. The fast carry logic is a special resource provided in the cell to

speed up carry-based computations, including addition, parity, wide AND operations, and

other functions. These resources bypass the general routing structure, connecting directly

between neighbors in the same column. Since very few routing choices exist in the carry

chain, this results in less delay on the computation. The inclusion of these resources can

significantly speed up carry-based computations.

4-LUT

carry
logic

Cout Cin

OUT

DFF

I1 I2 I3 I4

4-LUT

carry
logic

Cout Cin

OUT

DFF

I1 I2 I3 I4

Figure 2.4: A basic logic block, with a 4-input LUT, carry chain, and a D-type flip-flop with

bypass.

In addition to experimentation in FPGA logic block architectures, investigation of

interconnect structures has also been done. As logic blocks have basically standardized

on LUT-based structures, routing resources have become primarily island-style, with

logic surrounded by general routing channels.

18

Connect
Block

Connect
Block

Connect
Block

Connect
Block

Connect
Block

Connect
Block

Connect
Block

Connect
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Switch
Box

Switch
Box

Switch
Box

Switch
Box

Connect
Block

Connect
Block

Connect
Block

Connect
Block

Connect
Block

Connect
Block

Connect
Block

Connect
Block

Logic
Block
Logic
Block

Logic
Block
Logic
Block

Logic
Block
Logic
Block

Logic
Block
Logic
Block

Switch
Box

Switch
Box

Switch
Box

Switch
Box

Switch
Box

Switch
Box

Switch
Box

Switch
Box

Figure 2.5: A generic island-style FPGA routing architecture.

Most FPGA architectures organize their routing structures as a relatively smooth

sea of routing resources, allowing fast and efficient communication along rows and

columns of logic blocks. As shown in Figure 2.5, the logic blocks are embedded in a

general routing structure, with input and output signals attaching to the routing fabric

through connection blocks. The connection blocks provide programmable multiplexers,

selecting signals in the given routing channel that will be connected to the logic block’s

terminals. Signals flow from the logic block into the connection block, then along longer

wires within the routing channels. At the switchboxes, connections between the

horizontal and vertical routing resources allow signals to change their routing direction.

Once a signal has traversed through routing resources and intervening switchboxes, it

arrives at the destination logic block through one of its local connection blocks. In this

19

manner, relatively arbitrary interconnections can be achieved between the logic blocks in

the system.

Within a given routing channel, many different lengths of routing resources may

exist. Some local interconnections may only move between adjacent logic blocks (i.e.

carry chains), providing high-speed local interconnect. Medium length lines may run the

width of several logic blocks, providing longer distance interconnect. Finally, long lines

that run the entire chip width or height may provide for more global signals. Also, many

architectures contain special “global lines” that provide high-speed, and often low skew,

connections to all of the logic blocks in the array. These are primarily used for clocks,

resets, and other truly global signals.

While the routing architecture of an FPGA is typically quite complex—the

connection blocks and switchboxes surrounding a single logic block typically have

thousands of programming points—they are designed to support fairly arbitrary

interconnection patterns. Most users ignore the exact details of these architectures and

allow the automatic physical design tools to choose appropriate resources to achieve a

given interconnect pattern.

2.2 Hardware

Reconfigurable computing systems use FPGAs or other programmable hardware

to accelerate algorithm execution by mapping compute-intensive calculations to the

reconfigurable substrate. These hardware resources are frequently coupled with a

20

general-purpose microprocessor responsible for controlling the reconfigurable logic and

executing program code that cannot be efficiently accelerated. In very closely coupled

systems, the reconfigurability lies within customizable functional units on the regular

datapath of the microprocessor. Alternatively a reconfigurable computing system can be

as loosely coupled as a networked stand-alone unit. Most reconfigurable systems are

categorized somewhere between these two extremes, frequently with the reconfigurable

hardware acting as a coprocessor to a host microprocessor. The programmable array

itself can be comprised of one or more commercially available FPGAs, or can be a

custom device designed specifically for reconfigurable computing.

The design of the actual computation blocks within the reconfigurable hardware

varies from system to system. Each unit of computation, or logic block, can be as simple

as a 3-input lookup table (LUT), or as complex as a 16-bit ALU. This difference in block

size is commonly referred to as the granularity of the logic block, where the 3-bit LUT is

an example of a fine-grained computational element, and a 16-bit ALU is an example of a

coarse-grained unit. Finer grained blocks are useful for bit-level manipulations, while the

coarse-grained blocks are better optimized for standard datapath applications. Some

architectures employ different sizes or types of blocks within a single reconfigurable

array in order to efficiently support different types of computation. For example,

memory is frequently embedded within the reconfigurable hardware to provide temporary

data storage, forming a heterogeneous structure composed of both logic blocks and

memory blocks [Ebeling96, Altera98, Lucent98, Marshall99, Xilinx01].

21

The routing between the logic blocks within the reconfigurable hardware is also

of great importance. Routing contributes significantly to the overall area of the

reconfigurable hardware. However, when the percentage of logic blocks used in an

FPGA becomes very high, automatic routing tools can have difficulty achieving the

necessary connections between the blocks. Therefore, good routing structures are

therefore essential to ensuring a design can be successfully placed and routed onto the

reconfigurable hardware.

Once a circuit has been programmed onto reconfigurable hardware, it can be used

by the host processor during program execution. The run time operation of a

reconfigurable system occurs in two distinct phases: configuration and execution. The

host processor controls the programming of the hardware by sending it a stream of

configuration data, which is used to define the actual hardware operation. Configurations

can be loaded either only at the start of the program, or periodically during runtime,

depending on the design of the system. Further discussion of run-time reconfiguration

(the dynamic reconfiguration of devices during execution) appears in section 2.4.

The actual execution model of the reconfigurable hardware varies among systems.

For example, the NAPA system [Rupp98] by default suspends the execution of the host

processor during execution on the reconfigurable hardware. However, simultaneous

computation can occur with the use of fork and join primitives, similar to multiprocessor

programming. REMARC [Miyamori98] is a reconfigurable system that uses a pipelined

set of execution phases within the reconfigurable hardware. These pipeline stages

22

overlap with the pipeline stages of the host processor, allowing for simultaneous

execution. In the Chimaera system [Hauck97], the reconfigurable hardware is constantly

executing based upon the input values held in a subset of the host processor’s registers.

A call to the Chimaera unit is in actuality only a fetch of the result value. This value is

stable and valid after the correct input values have been written to the registers and have

filtered through the computation.

2.2.1 Microprocessor Coupling
Frequently, reconfigurable hardware is coupled with a traditional microprocessor.

Programmable logic is sometimes inefficient at implementing certain operations, such as

variable-length loops and branch control. In order to run an application in a

reconfigurable computing system most efficiently, those areas of the program that cannot

be easily mapped to the reconfigurable logic are executed on a host microprocessor.

Meanwhile, the areas with a high density of computation that can benefit from

implementation in hardware are mapped to the reconfigurable logic. Additionally,

current run-time reconfigurable hardware generally requires an external structure, such as

a processor, to control when reconfigurations should occur, and which configurations

should be loaded.

For the systems that use a microprocessor in conjunction with reconfigurable

logic, there are several ways in which these two computation structures may be coupled,

as Figure 2.6 shows. First, reconfigurable hardware can be used solely to provide

23

reconfigurable functional units within a host processor [Razdan94, Wittig96, Hauck97].

This allows for a traditional programming environment with the addition of custom

instructions that may change over time. Here, the reconfigurable units execute as

functional units on the main microprocessor datapath, with registers used to hold the

input and output operands.

Coprocessor

CPU Memory
Caches

I/O
Interface

Attached Processing Unit

Workstation
Standalone Processing Unit

FU

Coprocessor

CPU Memory
Caches

I/O
Interface

Attached Processing Unit

Workstation
Standalone Processing Unit

FU

Figure 2.6: Different levels of coupling in a reconfigurable system [Hauck98a]. Reconfigurable
logic is shaded.

Second, a reconfigurable unit may be used as a coprocessor [Hauser97,

Miyamori98, Rupp98, Chameleon00]. A coprocessor is generally larger than a functional

unit, and can perform computations without the constant supervision of the host

processor. Instead, the processor initializes the reconfigurable hardware and either sends

the necessary data to the logic, or provides information on the location of the data in

memory. The reconfigurable unit performs the actual computations independently of the

main processor, and returns the results after completion. This type of coupling allows the

reconfigurable logic to operate for a large number of cycles without intervention from the

24

host processor, and generally permits the host processor and the reconfigurable logic to

execute simultaneously. This reduces the overhead incurred by the use of the

reconfigurable logic, compared to a reconfigurable functional unit that must

communicate with the host processor each time a reconfigurable “instruction” is used.

An idea that is a hybrid between the first and second coupling methods is the use of

programmable hardware within a configurable cache [Kim00b]. In this situation, the

reconfigurable logic is embedded into the data cache, which can be used as either a

regular cache or as an additional computing resource, depending on the target application.

Third, an attached reconfigurable processing unit [Vuillemin96, Annapolis98,

Laufer99] behaves like an additional processor in a multiprocessor system or an

additional compute engine accessed semi-frequently through external I/O. The host

processor's data cache is not visible to the attached reconfigurable processing unit,

leading to a greater delay in communication between the host processor and the

reconfigurable hardware when communicating configuration information, input data, and

results. The communication is performed through specialized primitives similar to

multiprocessor systems. This type of reconfigurable hardware allows a great deal of

computation independence by shifting large chunks of a computation over to the

reconfigurable hardware.

Finally, the most loosely coupled form of reconfigurable hardware is an external

stand-alone processing unit [Quickturn99a, Quickturn99b], which communicates

infrequently with a host processor (if present). This model is similar to networked

25

workstations, where processing can occur for very long periods of time without much

communication. However, the large multi-FPGA systems such as those from Quickturn

are marketed towards emulation rather than reconfigurable computing.

Each of these styles has distinct benefits and drawbacks. The tighter the

integration of the reconfigurable hardware, the more frequently it can be used within an

application or set of applications due to a lower communication overhead. However, the

hardware is unable to operate for significant portions of time without intervention from a

host processor, and the amount of reconfigurable logic available is often quite limited.

The more loosely coupled styles allow for greater parallelism in program execution, but

suffer from higher communications overhead. In applications that require a great deal of

communication, this can reduce or remove any acceleration benefits gained through the

use of reconfigurable hardware.

2.2.2 Logic Block Granularity
Most reconfigurable hardware is based upon a set of computation structures that

are repeated to form an array. These structures, commonly called logic blocks or cells,

vary in complexity from a very small and simple block that can calculate a function of

only three inputs, to a structure that is essentially a 16-bit ALU. Some of these block

types are configurable – the actual operation is determined by a set of loaded

configuration data. Other blocks are fixed structures, and the configurability lies in the

26

connections between them. Granularity refers to the size and complexity of the

computing blocks.

X1

X2

X3

CLK

D Q

Q

CLR

F

X1

X2

X3

CLK

D Q

Q

CLR

F

Figure 2.7: The functional unit from a Xilinx 6200 cell [Xilinx96].

An example of a very fine-grained logic block can be found in the Xilinx 6200

series of FPGAs [Xilinx96], shown in Figure 2.7. The functional unit from one of these

cells can implement any two-input function and some three-input functions. Although

this type of architecture is useful for very fine-grained bit manipulation, it is too fine-

grained to efficiently implement many types of circuits, such as multipliers. Similarly,

finite state machines are frequently too complex to easily map to a reasonable number of

very fine-grained logic blocks. However, finite state machines are also too dependent

upon single bit values to be efficiently implemented in a very coarse-grained architecture.

This type of circuit is more suited to an architecture that provides more connections and

computational power per logic block, while still providing sufficient capability for bit-

level manipulation.

The logic cell in the Altera FLEX 10K architecture [Altera98] is a fine-grained

structure that is somewhat coarser than the 6200. This architecture mainly consists of a

27

single 4-input LUT with a flip-flop. Also, there is specialized carry chain circuitry that

helps to accelerate addition, parity, and other operations that use a carry chain. These

types of logic blocks are useful for fine-grained bit-level manipulation of data, which is

frequently found in encryption and image processing applications. Because the cells are

fine-grained, computation structures of arbitrary bit widths can be created, which allows

the implementation of datapath circuits that are based on data widths not implemented on

the host processor (5 bit multiply, 21 bit addition, etc). Reconfigurable hardware can not

only take advantage of small bit widths, but also large data widths. When a program uses

bit widths in excess of what is normally available in a host processor, the processor must

perform the computations using a number of extra steps to accommodate the full data

width. A fine-grained architecture can implement the full bit width in a single step,

without the fetching, decoding, and execution of additional instructions, provided enough

logic cells are available.

A number of reconfigurable systems use a medium-grained logic block [Xilinx94,

Hauser97, Haynes98, Lucent98, Marshall99]. Garp [Hauser97] is designed to perform a

number of different operations on up to four 2-bit inputs. Another medium-grained

structure was designed to be embedded inside a general-purpose FPGA to implement

multipliers of a configurable bit-width [Haynes98]. The logic block used in the

multiplier FPGA is capable of implementing a 4×4 multiplication, or can be cascaded

into larger structures. The CHESS architecture [Marshall99] also operates on 4-bit

values, with each cell acting as a 4-bit ALU. Medium-grained logic blocks can

28

implement datapath circuits of varying bit widths, similar to the fine-grained structures.

The ability to perform more complex operations of a greater number of inputs permits

this structure to efficiently implement a wider variety of operations.

R
A
M A

L
U

R
A
M A

L
U

R
A
M

*
H
L

R
A
M

R
A
M A

L
U

R
A
M

R
A
M A

L
U

R
A
M

R
A
M

*
H
L

Figure 2.8: One cell in the RaPiD-I reconfigurable architecture [Ebeling96]. The registers, RAM,
ALUs, and multiplier all operate on 16-bit values. The multiplier outputs a 32-bit result, split into
the high 16 bits and the low 16 bits. All routing lines shown are 16-bit wide busses. The short
parallel lines on the busses represent configurable bus connectors.

Very coarse-grained architectures are used primarily to implement word-width

datapath circuits. Because the logic blocks used are optimized for large computations,

they perform these operations much more quickly (and consume less chip area) than a set

of smaller cells connected to form the same type of structure. Because their composition

is static, they cannot leverage optimizations in the size of operands. The RaPiD-I

architecture [Ebeling96], shown in Figure 2.8, and the Chameleon architecture

[Chameleon00], are examples of very coarse-grained designs. Each of these architectures

is composed of word-sized adders, multipliers, and registers. Even when adding numbers

29

smaller than the full word size, all of the bits in the full word size are computed, which

can result in unnecessary area and speed overheads. However, these coarse-grained

architectures are much more efficient than fine-grained architectures for implementing

functions closer to their basic word size.

An alternate form of a coarse-grained system consists of logic blocks that are very

small processors, potentially each with its own instruction memory and/or data values.

The REMARC architecture [Miyamori98] is composed of an 8×8 array of 16 bit

processors. Each of these processors uses its own instruction memory in conjunction

with a global program counter. This style of architecture closely resembles a single-chip

multiprocessor with much simpler component processors, as the system is meant to be

coupled with a host processor. The RAW project [Moritz98] is another example of a

reconfigurable architecture based on a multi-processor design.

The granularity of the FPGA can also have an effect on the reconfiguration time

of the device. This is an important issue for run-time reconfiguration, discussed in

further depth in section 2.4. A fine-grained array has many configuration points to

perform very small computations, and thus requires more data bits during configuration.

2.2.3 Heterogeneous Arrays
Greater performance or flexibility in computation can be achieved in

reconfigurable systems through the use of a heterogeneous structure, where the

capabilities of the logic cells vary throughout the system. For example, reconfigurable

30

systems may provide multiplier function blocks embedded within the reconfigurable

hardware [Ebeling96, Haynes98, Chameleon00, Xilinx02, Altera03a]. Because

multiplication is a difficult computation to implement efficiently in a traditional FPGA

structure, the custom multiplication hardware embedded within a reconfigurable array

allows a system to perform even that function well.

Another common structure used in heterogeneous devices is a memory block.

Memory blocks can be scattered throughout the reconfigurable hardware, permitting the

storage and quick access of frequently used data and variables due to the proximity of the

memory to the logic blocks that access it. Embedded memory structures come in two

forms. The first is simply the use of available LUTs as RAM structures, such as in the

Xilinx 4000 series [Xilinx94] and Virtex [Xilinx01] FPGAs. Although making these

very small blocks into a larger RAM structure introduces overhead to the memory

system, it does provide local, variable width memory structures.

The second form is that of the dedicated memory block. Several architectures

include memory blocks within their array, including some of the Xilinx [Xilinx01,

Xilinx02] and Altera [Altera98, Altera03a] FPGAs, Actel’s ProASIC 500K series

[Actel02], and the CS2000 RCP (Reconfigurable Communications Processor) device

from Chameleon Systems, Inc. [Chameleon00]. These memory blocks have greater

performance in large sizes than similar-sized structures built from many small LUTs.

While these structures are somewhat less flexible than the LUT-based memories, they

also allow some customization. For example, the Altera FLEX 10K FPGA [Altera98]

31

provides embedded memories with a limited total number of wires, but allows a trade-off

between the number of address lines and the data bit width.

When embedded memories are not used for data storage by a particular

configuration, their occupied area need not be wasted. By using the address lines of the

memory as function inputs and the values stored in the memory as function outputs,

logical expressions of a large number of inputs can be emulated [Altera98, Cong98,

Wilton98, Heile99]. Since there may be more than one value output from the memory on

a read operation, the memory structure can perform multiple different computations (one

for each bit of data output), provided all the necessary inputs appear on the address lines.

In this manner, the embedded RAM behaves the same as a very large multi-output LUT.

Therefore, embedded memories allow a programmer or a synthesis tool to adjust between

logic and memory usage in order to achieve higher area efficiency.

Furthermore, some commercial FPGA companies have included entire

microprocessors as embedded structures within their FPGAs. Altera’s ARM9-based

Excalibur device combines reconfigurable hardware with an embedded ARM9 processor

core [Altera01], and the Xilinx Virtex-II Pro FPGA includes up to four PowerPC

processor cores [Xilinx03a]. These types of devices are also discussed in section 3.2.

2.2.4 Routing Resources
Interconnect resources in a reconfigurable architecture connect the programmable

logic elements of the device together. These resources are usually configurable, where

32

the path of a signal is determined at compile or run-time rather than fabrication time.

This flexible interconnect between logic blocks or computational elements allows a wide

variety of circuit structures with different interconnect requirements to be mapped to the

reconfigurable hardware. For example, the routing for FPGAs is generally island-style,

with logic surrounded by routing channels containing several wires of potentially

different lengths. This type of routing architecture can vary in a number of features,

including the ratio of wires to logic in the system, the length of the wires, and whether the

wires are connected in a segmented or hierarchical manner.

Designing efficient routing structures for FPGAs and reconfigurable systems

involves examining the logic vs. routing area trade-off within reconfigurable

architectures. One group has argued that the interconnect should constitute a much

higher proportion of area in order to allow for successful routing under high logic

utilization conditions [Takahara98]. However, efficient routing usage may be of more

importance than high LUT utilization [DeHon99]. Routing resources occupy a much

larger part of the area than the logic resources, so the most area-efficient designs are

frequently those that optimize their use of the routing resources. Additionally, the

amount of required routing does not grow linearly with the amount of logic present, so

larger devices require even greater amounts of routing per logic block than small ones

[Trimberger97].

There are two different types of structures used to provide local and global

routing resources, as shown in Figure 2.9. Segmented routing [Betz99, Chow99]

33

accommodates local communications traffic with short wires that can be connected

together with switchboxes to emulate longer wires. Segmented routing structures

frequently also contain separate longer wires that allow signals to travel efficiently over

long distances without passing through a great number of switches.

 (a) (b)

Figure 2.9: (a) Segmented and (b) hierarchical routing structures. The white boxes are logic
blocks, while the dark boxes are connection switches.

Hierarchical routing [Aggarwal94, Lai97, Tsu99] is another style of routing

architecture. Routing within a group, or cluster, of logic blocks occurs at the local level,

and these wires only connect within that cluster. At the boundaries of these clusters

longer wires connect the different clusters together. This is potentially repeated at a

number of levels. The idea behind using hierarchical structures is that most

communication should be local and only a limited amount will traverse long distances

(provided good placements are found for implemented circuits).

34

Because routing can occupy a large percentage of a reconfigurable device, careful

selection of the routing structure is critical to FPGA design. If the available wires are

much longer than what is needed to route a signal, the excess wire is wasted. On the

other hand, if the wires available are shorter than necessary, the signal must either pass

through switchboxes connecting short wires into longer ones, or through levels of the

routing hierarchy. This induces additional delay, slowing the overall operations of the

circuit, and the switchbox circuitry occupies area that could be better used for additional

logic or wires.

There are some alternatives to the island-style of routing resources. Architectures

such as RaPiD [Ebeling96], Lattice’s ORCA4 [Lattice03], and CHESS [Marshall99] have

bus-based routing, where multiple bits are routed together as a bundle. This type of

routing is also common in the one-dimensional type of architecture, as discussed in the

next section.

2.2.5 One-Dimensional Structures
Most current FPGAs are of the two-dimensional variety, as shown in Figure

2.10a. This allows for a great deal of flexibility because a signal can be routed on a

nearly arbitrary path, but providing this level of routing flexibility requires a great deal of

routing area. It also complicates the placement and routing software, because it must

consider a very large number of possibilities.

35

 (a) (b)

Figure 2.10: (a) A traditional two-dimensional island-style routing structure, and (b) a one-
dimensional routing structure. The white boxes represent logic elements.

One solution is to use a more one-dimensional style of architecture, depicted in

Figure 2.10b. Here, placement is restricted along one axis. Routing is simplified,

because it is generally along a single dimension as well. However, this restriction can

become a drawback when implementing circuits with heavy routing requirements. A

two-dimensional implementation can sometimes provide a wider variety of connections

(with a corresponding increase in silicon area) that can be made between two points,

sometimes allowing a tool to route around a bottleneck. If the cross-section of signals in

a one-dimensional array exceeds the number of available tracks, there are no other

options, and the routing process will fail. However, routing architectures of both types

will fail if the routing requirements of the netlist exceeds the available routing resources

of the hardware.

Several different reconfigurable systems have been designed with a one-

dimensional routing structure. Both Garp [Hauser97] and Chimaera [Hauck97] are

structures that provide cells which compute a small number of bit positions, and a row of

36

these cells together computes the full data word. Since a row can only be used by a

single configuration, and each configuration occupies some number of complete rows,

these designs are essentially one-dimensional. Although multiple narrow-width

computations can fit within a single row, these structures are optimized for word-based

computations that occupy the entire row. The NAPA architecture [Rupp98] is similar,

with a full column of cells acting as the atomic unit for a configuration, as is PipeRench

[Cadambi98, Goldstein00].

In some systems, the computation blocks in a one-dimensional structure operate

on word-width values instead of single bits, so busses are routed instead of individual

values. This can decrease the required routing time, because the bits of a bus are

considered together rather than as individual routes. As shown in Figure 2.8, RaPiD

[Ebeling96] is a one-dimensional design that includes only word-width processing

elements. The different computation units are organized in a single dimension along the

horizontal axis. The general flow of information follows this layout, with the major

routing busses laid out in a horizontal manner. All routing is of word-sized values, so all

routing is of busses, not individual wires.

2.2.6 Hardware Summary
The design of reconfigurable hardware varies greatly from system to system. The

reconfigurable logic may be used as a configurable functional unit or a multi-FPGA

stand-alone unit. Within the reconfigurable logic itself, the complexity of the core

37

computational units, or logic blocks, vary from very simple to extremely complex, some

implementing a 4-bit ALU or even a 16×16 multiplication. These blocks are not required

to be uniform throughout the array, and using different types of blocks can add high-

performance functionality in specialized computation circuitry, or expanded storage in

embedded memory blocks. Routing resources also offer a variety of choices, primarily in

the amount, length, and organization of the wires. Systems have been developed that fit

into many different points within this design space.

2.3 Software

Although reconfigurable hardware has been shown to provide significant

performance benefits for some applications, it will be ignored by application

programmers unless they can easily incorporate its use into their systems. This requires a

software design environment able to create configurations for the reconfigurable

hardware. This software can range from a software assist in manual circuit creation to a

complete automated circuit design system. Manual circuit description is a powerful

method for the creation of high-quality circuit designs. However, it requires extensive

knowledge of the particular reconfigurable system employed, plus a significant amount of

design time. Alternatively, an automatic compilation system provides a quick and easy

way to program for reconfigurable systems. It makes the use of reconfigurable hardware

more accessible to general application programmers, but quality may suffer.

38

Hard / Soft
Partition

Structural
Description

Technology
Mapping

Place &
Route

C program

Compile To
Netlist

Technology
Mapping

Place &
Route

Hard / Soft
Partition

Gate-Level
Description

Technology
Mapping

Place &
Route

Fully Automatic

Fully Manual

Automatic/Manual
Compromise

Figure 2.11: Three possible design flows for algorithm implementation on a reconfigurable
system. Grey stages indicate manual effort on the part of the designer, while white stages are done
automatically. The dotted lines represent paths to improve the resulting circuit. It should be noted
that the middle design cycle is only one of the possible compromises between automatic and
manual design.

Both for manual and automatic circuit creation, the design process proceeds

through a number of distinct phases, shown in Figure 2.11. Circuit specification is the

process of describing the functions to be placed on the reconfigurable hardware. This can

be done by simply writing a program in C that represents the functionality of the

algorithm to be implemented in hardware. It can also be as complex as specifying the

inputs, outputs, and operation of each basic building block in the reconfigurable system.

Between these extremes is circuit specification using generic complex components, such

as adders and multipliers, which will be mapped to the actual hardware later in the design

process. For descriptions in a high level language (HLL), such as C/C++ or Java, or ones

using complex building blocks, this code must be compiled into a netlist of gate-level

components. Gates or computational components (such as ALUs and multipliers) are

39

created to perform the arithmetic and logic operations within the program, and structures

to handle the program control, such as loop iterations and branching operations. Given a

structural description, either generated from a HLL or specified by the user, each

complex structure is replaced with a network of basic gates that performs that function.

Once a detailed gate-level circuit description is created, it must be translated to

the logic elements of the reconfigurable hardware. This stage is called technology

mapping, and it is dependent upon the exact target architecture. For a LUT-based

architecture, this stage partitions the circuit into a number of small sub-functions, each

mapped to its own LUT. Some architectures, such as the Xilinx 4000 series [Xilinx94],

contain multiple LUTs per logic cell. These LUTs can be used either separately to

generate small functions, or together to generate some wider-input functions. By taking

advantage of multiple LUTs and the internal routing within a single logic cell, sub-

circuits containing too many inputs to implement using a single LUT can efficiently be

mapped into the FPGA architecture.

For reconfigurable structures with embedded memory blocks, the mapping stage

may also consider using these memories as logic units when they are not used for data

storage. The memories act as very large LUTs, where the number of inputs is equal to

the number of address lines. In order to use these memories as logic, the mapping

software must analyze how much of the memory blocks are actually used as storage in a

given mapping. It must then determine which are available to implement logic, and what

parts of the circuit are best mapped to the memory [Cong98, Wilton98].

40

After mapping the circuit, the resulting blocks must be placed onto the

reconfigurable hardware. Each block is assigned to a specific location within the

hardware, ideally close to the other logic blocks with which it communicates. As FPGA

capacities increase, the placement phase of circuit mapping becomes more and more time

consuming. Floorplanning is a technique that can alleviate some of this cost. A

floorplanning algorithm first partitions the logic cells into clusters, where cells with a

large amount of communication are grouped together. Next, the clusters are placed as

units onto regions of the reconfigurable hardware. Once this global placement is

complete, the actual placement algorithm performs detailed placement of the individual

logic blocks within the boundaries assigned to the cluster [Sankar99].

The use of a floorplanning tool is particularly helpful for situations where the

circuit structure being mapped is of a datapath type. Large computational components or

macros that are found in datapath circuits are frequently composed of highly regular

logic. These structures are placed as entire units, and their component cells are restricted

to the floorplanned location [Shi97, Emmert99]. This encourages the placer to find a

very regular placement of these logic cells, potentially resulting in a higher performance

circuit layout. Another technique for the mapping and placement of datapath elements is

to perform these steps simultaneously [Callahan98]. This method also exploits the

regularity of the datapath elements to generate mappings and placements quickly and

efficiently.

41

Floorplanning is also important when dealing with hierarchically structured

reconfigurable hardware. In these architectures, the available resources are grouped by

the logic or routing hierarchy of the hardware. Because performance is best when routing

lengths are minimized, the placement should group cells into a logic cluster on the

hardware if those cells require a great deal of inter-communication or form part of a

critical path of the circuit [Krupnova97, Senouci98].

After the optional floorplanning step, the individual logic blocks are placed into

specific logic cells. The simulated annealing technique [Sechen88, Shahookar91, Betz97,

Sankar99] is commonly used. This method takes an initial placement of the system,

which can be generated (pseudo-) randomly, and performs a series of “moves” on that

layout. A move is simply the changing of the location of a single logic cell, or the

exchanging of locations of two logic cells. These moves are attempted one at a time

using random target locations. If a move improves the layout, then the layout is changed

to reflect that move. If a move is considered to be undesirable, then it is only accepted

some of the time. Initially, many “bad” moves are accepted. As the algorithm

progresses, the likelihood of accepting a bad move decreases until very few undesirable

moves are accepted at the end of execution. Also, the degree to which a move increases

the cost affects its probability of acceptance, with mildly bad moves more likely to be

accepted than very bad moves. Accepting a few bad moves helps to avoid any local

minima in the placement space. Other algorithms exist that are more deterministic

[Gehring96, Callahan98, Budiu99], although they search a smaller area of the placement

42

space for a solution, and therefore may be unable to find a solution which meets

performance requirements if a design uses a high percentage of the reconfigurable

resources.

In the final step, the different reconfigurable components comprising the

application circuit are connected during the routing stage. Particular signals are assigned

to specific portions of the routing resources of the reconfigurable hardware. This can

become difficult if the placement causes many connected components to be placed far

from one another, because signals that travel long distances use more routing resources

than those that travel shorter ones. A good placement is therefore essential to the routing

process.

Limited routing resources present challenges to routing for FPGAs and

reconfigurable systems. The goal of general hardware design is to minimize the number

of routing tracks used in a channel between rows of computation units, but the channels

can be made as wide as necessary. In reconfigurable systems, however, the number of

available routing tracks is determined at fabrication time, and therefore the routing

software must perform within these boundaries. Thus, FPGA routing concentrates on

minimizing congestion within the available tracks [Brown92b, McMurchie95, Chan97,

Wu97]. Because routing is one of the more time-intensive portions of the design cycle, it

can be helpful to determine if a placed circuit can be routed before actually performing

the routing step. This quickly informs the designer if changes need to be made to the

layout or if a larger reconfigurable structure is required [Wood97, Swartz98].

43

2.4 Run-Time Reconfiguration

The areas of a program that can be accelerated through the use of reconfigurable

hardware are frequently too numerous or complex to be loaded simultaneously onto the

available hardware. In these cases, it is beneficial to be able to swap different

configurations in and out of the reconfigurable hardware as they are needed during

program execution, as in Figure 2.12. This concept is known as run-time reconfiguration

(RTR).

wwwwww() {
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwww

wwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwww

w
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwww

wwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

w
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwww
www

wwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwww

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwww

w
w
wwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwww
ww
wwwwwwwww

w

Reconfigurable
Fabric

A
pp

lic
at

io
n

So
ur

ce
 C

od
e

Figure 2.12: Applications which are too large to entirely fit on the reconfigurable hardware can be
partitioned into two or more smaller configurations that can occupy the hardware at different
times.

Run-time reconfiguration is based upon the concept of virtual hardware, which is

similar to virtual memory. Here, the physical hardware is much smaller than the sum of

the resources required by each configuration. Instead of reducing the number of mapped

configurations, they can instead be swapped in and out of the actual hardware as they are

needed. Because run-time reconfiguration allows more sections of an application to be

44

mapped into hardware than can be fit in a non-run-time reconfigurable system, a greater

portion of the program can be accelerated.

During a single program’s execution, configurations are swapped in and out of the

reconfigurable hardware. Some of these configurations will likely require access to the

results of other configurations. Configurations that are active at different periods in time

need a method to communicate with one another. This communication can be performed

through the use of registers [Ebeling96, Cadambi98, Rupp98, Scalera98], the contents of

which can remain intact between reconfigurations. This allows one configuration to store

a value, and a later configuration to read back that value for use in further computations.

An alternative for reconfigurable systems that do not include state-holding devices is to

write the result back to registers or memory external to the reconfigurable array, which is

then read back by successive configurations [Hauck97].

Because run-time reconfigurable systems involve reconfiguration during program

execution, the reconfiguration must be done as efficiently and as quickly as possible.

This is in order to ensure that the overhead of the reconfiguration does not eclipse the

benefit gained by hardware acceleration. Stalling execution of either the host processor

or the reconfigurable hardware because of configuration is clearly undesirable. In the

DISC II system, from 25% [Wirthlin96] to 71% [Wirthlin95] of execution time is spent

in reconfiguration, while in the UCLA ATR work this figure can rise to over 98.5%

[Mangione-Smith99]. If the delays caused by reconfiguration are reduced, performance

45

can be greatly increased. Therefore, fast configuration is important for run-time

reconfigurable systems, and is discussed more in the following section.

2.4.1 Fast Configuration
There are a number of different approaches that reduce configuration overhead.

First, the configuration architecture can make switching configurations faster. Second,

loading of the configurations can be timed such that the configuration overlaps as much

as possible with the execution of instructions by the host processor. Third, compression

techniques can be introduced to decrease the amount of configuration data that must be

transferred to the system. Finally, the actual process of transferring the data from the

host processor to the reconfigurable hardware can be modified to include a configuration

cache, which would provide a faster reconfiguration.

Configuration Architectures

There are several configuration memory styles that can be used with

reconfigurable systems. A single context device is a serially programmed chip that

requires a complete reconfiguration to change any of the programming bits. This is the

most common type of commercial device, yet as discussed later, it is not as conducive to

reconfigurable computing as some other designs. A complete reprogram of a single

context chip can require milliseconds to seconds.

A multicontext device has multiple layers of programming bits, each of which can

be active at a different point in time. Each of these layers can be thought of as a separate

46

single context memory, and one context can be in execution while another context is

being loaded in the background. The benefit is not only overlapping FPGA execution

and configuration, but also switching between the programmed contexts very quickly,

sometimes even in a single clock cycle.

Devices that can be selectively programmed without a complete reconfiguration

are called partially reconfigurable. The partially reconfigurable architecture is also more

suited to run-time reconfiguration than the single context, because small areas of the

array can be modified without requiring reprogramming of the entire logic array.

However, inefficiencies can arise in partially reconfigurable architectures if two partial

configurations are supposed to be located at overlapping physical locations on the FPGA.

If these configurations are repeatedly used one after another, they must be swapped in

and out of the array each time. This type of conflict could negate much of the benefit

achieved by partially reconfigurable systems.

A better solution allows the final placement of the configurations to occur at run-

time, allowing for run-time relocation of those configurations [Li00, Compton02c].

Using relocation, a new configuration may be placed onto the reconfigurable array where

it will cause minimum conflict with other needed configurations already present on the

hardware. A number of different systems support run-time relocation, including

Chimaera [Hauck97], Garp [Hauser97], and PipeRench [Cadambi98, Goldstein00].

Even with relocation, partially reconfigurable hardware can still suffer from some

placement conflicts. Over time, as a partially reconfigurable device loads and unloads

47

configurations, the location of the unoccupied area on the array is likely to become

fragmented, similar to what occurs in memory systems when RAM is allocated and

deallocated. There may be enough empty area on the device to hold an incoming

configuration, but it may be distributed throughout the array. A configuration normally

requires a contiguous region of the chip, so it would have to overwrite a portion of a valid

configuration in order to be placed onto the reconfigurable hardware. However, a system

that incorporates the ability to perform defragmentation of the reconfigurable array could

consolidate the unused area by moving valid configurations to new locations [Diessel97,

Compton02c]. This area can then be used by incoming configurations, without

overwriting any of the moved configurations.

Configuration Prefetching

Performance improves when the hardware reconfiguration overlaps with

computations performed by the host processor, because programming the reconfigurable

hardware requires from milliseconds to seconds to accomplish. Overlapping

reconfiguration and processor execution prevents the host processor from stalling while it

is waiting for the configuration to finish, and hides the configuration time from the

program execution. Configuration prefetching [Hauck98b] attempts to leverage this

overlap by determining when to initiate reconfiguration of the hardware in order to

maximize overlap with useful computation on the host processor. It also seeks to

48

minimize the chance that a configuration will be prefetched falsely, incorrectly

overwriting a configuration that will be needed.

Configuration Compression

Unfortunately, there will always be cases when configuration overheads cannot be

successfully hidden using a prefetching technique. This can occur when a conditional

branch occurs immediately before the use of a configuration, potentially making a 100%

correct prefetch prediction impossible, or when multiple configurations or contexts must

be loaded in quick succession. In these cases, the delay incurred is minimized when the

amount of data transferred from the host processor to the reconfigurable array is

minimized. Configuration compression can be used to compact this configuration

information [Hauck98c, Hauck99, Li99, Dandalis01].

One form of configuration compression has already been implemented in a

commercial system. The Xilinx 6200 series of FPGA [Xilinx96] contains wildcarding

hardware, which provides a method to program multiple logic cells in a partially

configurable FPGA with a single address and data value. This is accomplished by setting

a special register to indicate which of the address bits should behave as "don’t-care"

values, resolving to multiple addresses for configuration. For example, suppose two

configuration addresses, 00010 and 00110, are both to be programmed with the same

value. By setting the wildcard register to 00100, the address value sent is interpreted as

00X10 and both these locations are programmed using either of the two addresses above

49

in a single operation. Furthermore, “Don’t Care” values in the configuration stream

could be used to allow areas with similar but not identical configuration data values to

also be programmed simultaneously [Li99]. Wildcarding can be used to reduce

configuration time [Hauck98c] as well as the storage required for the configuration.

Also, partially reconfigurable systems can take advantage of previously programmed

areas of the hardware. If two successive configurations share some configuration data,

those configuration locations need not be reprogrammed. Configuration time can be

reduced through the identification of these common components and the calculation of

the incremental configurations that must be loaded [Luk97, Shirazi98].

Alternately, similar operations can be grouped together to form a single

configuration that contains extra control circuitry in order to implement the various

functions within the group [Kastrup99]. By creating larger configurations from groups of

smaller configurations, more operations can be present on chip simultaneously, reducing

the configuration overhead. However, this method imposes some area and execution

penalties, creating a trade-off between reduced reconfiguration overhead and faster

execution with a smaller area.

Configuration Caching

Because much of the delay caused by configuration is due to the distance between

the host processor and the reconfigurable hardware, as well as the reading of the

configuration data from a file or main memory, a configuration cache can potentially

50

reduce the cost of reconfiguration [Deshpande99, Li00]. Storing the configurations in a

fast memory very close to the reconfigurable array instead of the main memory of the

system accelerates data transfer during reconfiguration and reduces the overall

configuration time required. Additionally, a configuration cache can allow for

specialized direct output to the reconfigurable hardware [Compton00]. This output can

leverage the close proximity of the cache by providing high-bandwidth communications

that would facilitate wide parallel loading of the configuration data, further reducing

configuration times.

2.5 Reconfigurable Computing Summary

Reconfigurable computing is emerging as an important area of research in

computer architectures and software systems. An application can be greatly accelerated

by placing the computationally intense portions of an application onto reconfigurable

hardware. Reconfigurable computing combines many benefits of both software and

ASIC implementations. Like software, the mapped circuit is flexible, and can be changed

over the lifetime of the system. Similar to an ASIC, reconfigurable systems provide a

method to map circuits into hardware. Reconfigurable systems therefore have the

potential to achieve far greater performance than software as a result of bypassing the

fetch-decode-execute cycle of traditional microprocessors, and possibly exploiting a

greater degree of parallelism.

51

Reconfigurable hardware systems come in many forms, including a configurable

functional unit integrated directly into a CPU; a reconfigurable coprocessor coupled with

a host microprocessor; and a multi-FPGA stand-alone unit. The level of coupling,

granularity of computation structures, and form of routing resources are all key points in

the design of reconfigurable systems. The use of heterogeneous structures can also

greatly add to the overall performance of the final design.

Compilation tools for reconfigurable systems range from simple tools that aid in

the manual design and placement of circuits, to fully automatic design suites that create

circuits and wrapper software executables from program code written in a high-level

language. The variety of tools available allows designers to choose between manual and

automatic circuit creation for any or all of the design steps. Although automatic tools

greatly simplify the design process, manual creation is still important for performance-

driven applications.

Finally, run-time reconfiguration provides a method to accelerate a greater portion

of a given application by allowing the configuration of the hardware to change over

execution time. Because of the delays associated with configuration, this style of

computing requires that reconfiguration be performed in a very efficient manner.

Multicontext and partially reconfigurable FPGAs are both designed to improve the time

required for reconfiguration. Hardware optimizations, such as wildcarding, run-time

relocation, and defragmentation, further decrease configuration overhead in a partially

52

reconfigurable design. Software techniques to enable fast configuration, including

prefetching and incremental configuration calculation, can also reduce overhead.

Reconfigurable computing systems provide a high-performance alternative to

software-only implementations due to their ability to greatly accelerate program

execution, providing a high-performance alternative to software-only implementations.

However, no one hardware design has emerged as the clear pinnacle of reconfigurable

design. Although general-purpose FPGA structures have standardized into LUT-based

architectures, groups designing hardware for reconfigurable computing are also exploring

the use of heterogeneous structures and word-width computational elements. Those

designing compiler systems face the task of improving automatic design tools to the point

where they may achieve mappings comparable to manual design for even high-

performance applications. Within both of these research categories lies the additional

topic of run-time reconfiguration. While some work has been done in this field as well,

research must continue to attain faster and more efficient reconfiguration. Further study

into each of these topics is necessary in order to harness the full potential of

reconfigurable computing.

 53

Chapter 3

Reconfigurable Hardware in SoCs

Two different architectural categories have emerged for the use of reconfigurable

hardware on a system-on-a-chip (SoC). The first is a reconfigurable subsystem, included

as one of the many SoC components, and distinct from other fixed components. In this

case, the reconfigurable hardware can be offered as a separate component to an SoC

designer. Alternately, fully designed SoCs are marketed which include a reconfigurable

logic component. Reconfigurable subsystems are described in section 3.1.

The other architectural category is classified as systems-on-a-programmable-chip

(SoPCs). Here, the entire SoC is built from a reconfigurable fabric, with a few fixed

resources embedded on the chip. Most SoC functionality is implemented using the

reconfigurable logic. SoCs with embedded reconfigurable logic have a higher

performance potential because fixed blocks tend to be more efficient than programmable

logic configured to perform the same function. However, SoPCs provide a much greater

flexibility, allowing a larger percentage of the hardware to be reprogrammed. Also,

SoPCs can provide a lower cost solution for custom SoCs because programmable logic

54

can be configured to implement the required circuitry instead of requiring a chip to be

fabricated to customize fixed hardware. SoPCs are discussed further in section 3.2.

3.1 Reconfigurable Subsystems

Many academic reconfigurable architecture are either explicitly intended or could

be used for SoC designs. Some of these architectures contain reconfigurable functional

units within a host processor [Razdan94, Wittig96, Hauck97]. Others are intended to be

coprocessors [Ebeling96, Hauser97, Miyamori98, Goldstein00] for a host

microprocessor. Finally, some systems such as Pleiades [Abnous98] actually focus on a

reconfigurable interconnection network to connect a microprocessor to other

computational units, some of which may also be programmable.

Commercial reconfigurable sub-systems provide a designer with a pre-designed

reconfigurable logic structure that can be used as an SoC component. Actel’s VariCore

blocks are one of the available reconfigurable IP blocks that can be used for this purpose

[Actel01]. VariCore designs can be used in densities of 5K to 40K gate equivalents, in

2.5K gate increments. M2000 offers a core based on four-input LUTs—the FleXEOS

[M2000-02]. The typical FleXEOS core provides logic resources equivalent to

approximately 30K ASIC gates. Reconfigurable sub-systems are also under development

from LeopardLogic [LeopardLogic03] and QuickSilver Technology [QuickSilver03],

though no architectural details are currently available.

55

A few of the available reconfigurable IP blocks differ significantly from

traditional FPGA structures. For example, instead of using LUT-type structures, the

basic building block of Elixent’s D-Fabrix is a 4-bit ALU [Elixent02]. Silicon Hive’s

reconfigurable cores incorporate extremely coarse-grained units such as ALUs and

multipliers [SiliconHive03]. Few architectural details are currently available for the

Silicon Hive cores. They appear to be an amalgam of reconfigurable hardware and small

VLIW-based multiprocessors, but still are intended to be coupled with a host processor

on an SoC. eASIC’s eASICore differs from the previous reconfigurable cores in terms of

the degree of reconfigurability. Its logic structures are reprogrammable, but the routing is

mask-programmable [eASIC03]. While this leads to a faster overall structure,

post-fabrication flexibility is severely limited.

In some cases, available SoCs already incorporate reconfigurable subsystems.

This programmable logic is generally accessed by an on-chip CPU on a communication

bus shared with other logic and peripherals [Atmel02, QuickLogic02, Triscend02]. The

FPSLIC series of devices from Atmel fall into this category [Atmel02]. This design

contains an 8-bit RISC microprocessor, surrounded by microcontroller peripherals and

RAM, plus a small amount (5K to 40K gate equivalents) of reconfigurable logic based on

their AT40K FPGA design.

The QuickMIPS device from QuickLogic includes significantly more

reconfigurable logic than many of the other reconfigurable cores – up to 575K gate

equivalents – which can be accessed by the on-chip 32-bit MIPS RISC processor or

56

peripherals through a bus structure [QuickLogic02]. The Triscend A7 series of

configurable SoC also uses a 32-bit RISC processor – the ARM7TDMI [Triscend02].

Devices in this series contain approximately 500-2000 logic cells, each containing a

single four-input LUT along with fast carry logic and a D flip-flop. Triscend also

markets the Triscend E5 [Triscend03], a customizable 8051/52-compatible

microcontroller that includes a small amount of reconfigurable logic. The Cypress PSoC

device family falls somewhere between SoPCs and SoCs with reconfigurable components

[Cypress03]. The reconfigurable logic is separated from the 8-bit microprocessor at the

device core, communicating only through an internal system bus. However, it is the

reconfigurable logic that has access to off-chip communication, implementing all major

SoC peripherals.

3.2 Systems-on-a-Programmable-Chip (SoPCs)

Frequently, the SoCs marketed by FPGA companies fall into the system-on-a-

programmable chip category [Altera01, Altera03b, Xilinx03a, Xilinx03b, Xilinx03c,

Xilinx03d]. Since these companies focus on reconfigurable logic, it is natural that they

would provide solutions based on hardware flexibility, the primary benefit of

reconfigurable logic. A custom SoC can be created relatively easily for low cost, and

later be modified without re-fabrication. SoPCs are also useful for prototyping SoC

designs to be fabricated.

57

 These SoPCs can be further divided into two additional sub-categories: those that

include one or more fixed processors, and reconfigurable devices large enough to

implement a full system, optionally including “soft” processor cores. A soft processor

core is a processor created from the programmable logic within an FPGA, rather than

directly into silicon. This type of processor will normally run slower than a fixed

processor due to the overhead of programmable logic. However, using soft cores

provides a greater deal of flexibility to instantiate the quantity and style of processor

cores best suited to the application. Xilinx and Altera both provide soft processor cores

as well as SoPCs containing hard processor cores [Altera01, Altera03b, Xilinx03a,

Xilinx03b, Xilinx03c, Xilinx03d].

The Xilinx Virtex-II Pro is currently available with up to four PowerPC 405 RISC

processor blocks [Xilinx03a]. Xilinx also provides two different soft cores: PicoBlaze,

an 8-bit microcontroller [Xilinx03b, Xilinx03c], and MicroBlaze, a 32-bit RISC

processor [Xilinx03d]. These soft cores can be implemented in the Spartan-II, Virtex,

Virtex-II, and Virtex-II Pro series of FPGAs to create a full SoC using programmable

logic.

Altera targets a number of its FPGA models towards SoPC use. The Excalibur

devices each contain a single ARM922T RISC processor in a logic array based on the

Apex 20KE device [Altera01]. Also, Altera’s Nios soft processor core can be

implemented in a variety of Altera FPGAs, including the FLEX, APEX 20K, APEXII,

58

Mercury, and Cyclone devices [Altera01, Altera03b], and is available in both 16-bit and

32-bit versions.

 59

Chapter 4

Research Framework

Current efforts in the Totem Project for automatic generation focus on coarse-

grained architectures suitable for compute-intensive application domains such as digital

signal processing, compression, and encryption. The RaPiD architecture [Ebeiling96,

Cronquist99a] is presently used as a guideline for the generated architectures due to its

coarse granularity, one-dimensional routing structure, and compiler (described further in

the next section). Coarse-grained units match the coarse-grained computations currently

targeted. The one-dimensional structure is efficient for many DSP applications, but also

simplifies the architecture generation process significantly. Future work in the Totem

Project will include the two-dimensional case. Finally, a compiler [Cronquist98] for this

system is already in place, which aids in the development of application circuits for

Totem.

This chapter begins with a description of the RaPiD architecture, emphasizing the

datapath architecture, but also providing a brief discussion of the control structures and

the compiler. Next, a synopsis of the high-level architectural design work (the subject of

this thesis) and its role in the Totem Project is given, followed by a short discussion of

60

the transistor-level layout and the place and route tools used in the Totem Project.

Finally, the area comparison methods that will be used to evaluate the Totem

architectures will be discussed.

4.1 RaPiD

The disparity between the coarse-grained nature of many computations, such as

those needed for DSP, and the fine-grained nature of traditional FPGAs leads to

inefficiencies in implementations. The RaPiD system [Cronquist99a], addresses this

problem by using a very coarse-grained structure. The term “RaPiD” actually refers to a

style of reconfigurable architecture, not a particular architecture [Ebeling96]. This style

of architecture has specialized computational elements such as ALUs, RAM units, and

multipliers, each operating on full words of data. The components are then arranged

along a one-dimensional axis, and connected by word-width routing tracks. These

architectures are heavily pipelined, and perform very fast computations on large amounts

of data. While the routing flexibility is somewhat lower, the routing architecture

complexity is also lower, reducing routing area as well as simplifying the routing process.

A number of RaPiD implementations exist, including RaPiD-I [Ebeling96] and

RaPiD-Benchmark [Cronquist99a], which is the more recent implementation, and is

frequently called “RaPiD” for simplicity. From this point forward, whenever the “RaPiD

architecture” is discussed, this more recent design is being referenced. The next few

sections describe RaPiD’s datapath, control architecture, and compiler in more detail.

61

4.1.1 Datapath Architecture
As mentioned previously, RaPiD is composed of coarse-grained computational

units arranged along a one-dimensional axis and connected through a series of word-

width routing tracks. The logic units are grouped into repeating “cells”, as shown in

Figure 4.1. The full architecture is formed by tiling cells horizontally to form a longer

architecture.

G
PR

R
A

M

R
A

M

G
PR

M
U

LT

G
PR

A
LU

A
LU

G
PR

G
PR

R
A

M

A
LU

G
PR

G
PR

R
A

M

R
A

M

G
PR

M
U

LT

G
PR

A
LU

A
LU

G
PR

G
PR

R
A

M

A
LU

G
PR

Figure 4.1: A single cell from the RaPiD architecture [Cronquist99a, Scott01]. A full architecture
is composed of some multiple of these cells laid end-to-end.

The logic units within the cells operate on full words of data, and include 16-bit

ALUs, 16x16 multipliers, 16-bit wide RAM units, and 16-bit registers. Each component

contains a multiplexer on each of its inputs that choose between the signals of each

routing track. Each component also has a demultiplexer on each of the outputs that allow

62

the unit to directly output to any of the routing tracks. Inputs are on the left side of a unit,

while the outputs are on the right side of the unit.

The routing architecture itself is a one-dimensional segmented design, where each

track is composed of as many wires as the word width of the architecture. Full words of

data are therefore communicated between the computational units of the architecture.

There are 14 routing tracks, plus one additional routing track that only contains

"feedback" wires. These feedback wires are only permitted to route an output of a unit

back to one or more of the inputs of a unit. Additionally, a word-sized "zero" is also

provided as a possible input to each multiplexer. The top five routing tracks are local

routing tracks, including the special feedback track. These tracks contain short wires for

fast short-distance communication. The bottom ten tracks provide longer distance

routing. The small squares on these routing tracks are bus connectors, which allow the

wire segments to be optionally connected to form longer wires. Additionally, the bus

connectors provide optional pipeline delays to mitigate the delay added through the use

of longer wires and routing switches.

4.1.2 Control Architecture
The control architecture for RaPiD is a hybrid of configuration points and

dynamically generated signals [Cronquist99a]. Hardware-programmed configuration

points require less area than hardware to generate dynamic control signals. However,

using only programmed control points reduces the ability to model complex circuit

63

behavior that changes during execution. Therefore, RaPiD uses a combination of these

two methods, with approximately 75% of control points field-programmable, and 25%

generated dynamically. These types of control are referred to as “hard” and “soft”,

respectively, though it should be noted that the hard control is not permanently fixed, but

is instead fixed for any given configuration programmed into RaPiD. While the

demultiplexers on the units are controlled by hard bits, the multiplexers use soft control.

At different points in execution, a unit may require different signals on an input. Soft

control bits enable the multiplexer to select different signals depending on the values of

the control.

Soft control bits originate with a number of small parallel instruction generators

(four in the current RaPiD implementation), which execute “microprograms” (a series of

simple instructions that can include loops) in order to generate instructions for the control

path. These instructions are sent through a control path parallel to the datapath of RaPiD,

which includes programmable LUTs. Different locations in the RaPiD array can

therefore decode the instructions into actual control signals (soft control) in different

ways, allowing for very complex control to be implemented.

4.1.3 RaPiD-C Compiler
Implementing complex applications on the RaPiD architecture is facilitated

through the use of a special compiler [Cronquist98] that converts application code in a C-

like format into circuit netlists. These circuit netlist files include all datapath and control

64

information (static and dynamic) to allow the circuit to operate on a RaPiD-like

architecture. Netlists are somewhat independent of the actual hardware implementation,

as they only describe the needs of the circuits, not an actual allocation of resources to be

used. The allocation of resources is performed by a place and route tool, described later.

The core of a RaPiD-C program involves one or more for loops. A special type

of loop indicates what operations should occur in parallel (spatially), through the use of a

special inner “Datapath” loop2. The iterations of this special loop are all executed

simultaneously. The number of iterations is user-specified by setting the number of

“stages” at the beginning of the program, where each stage corresponds to a parallel

iteration of the loop. For cases where different stages of the circuit perform different

tasks, such as initialization/finalization at the edge stages, conditional statements are

permitted on the reserved variable s, whose value in each stage is that particular stage’s

index. This language structure provides a powerful method to specify complex pipelined

and parallel application circuits.

4.2 Totem Project

The goal of the Totem Project is to provide a complete automatic path for the

creation of custom reconfigurable hardware, targeted for use in systems-on-a-chip

2 This syntax is slightly different from that appearing in the cited document [Cronquist98], as the
format of the RaPiD-C language has evolved over time, and a more recent description of the language has
not been published as of the completion of this thesis.

65

(SoCs). There are three primary components of the project. The first is the high-level

architecture generation, which determines the resource requirements and how those

resources should be arranged. The second component is the VLSI layout generator,

which takes a description of the architecture from the high-level architecture generator

and translates it into actual transistors and layout masks. The final module is the place

and route tool that implements circuit netlists on the generated reconfigurable hardware.

Architecture
Generator

domain
description

architecture
description

VLSI
Layout

Generator

P & R
Tool

Generator

fab-ready
layout

custom
P&R tools

configuration
bitstream
format

Architecture
Generator

domain
description

architecture
description

VLSI
Layout

Generator

P & R
Tool

Generator

fab-ready
layout

custom
P&R tools

configuration
bitstream
format

Figure 4.2: The three major components of the Totem Project

The communication between these three components is presented in Figure 4.2.

The architecture generator sends a description of the architecture to both of the other

tools. The layout generator and the place and route tool generator negotiate the

configuration bitstream format. The layout generator then creates the transistor-level

layout of the architecture described by the high-level architecture generator. Meanwhile,

the place and route tool reads in the architecture description and a set of circuits, and

generates the appropriate configurations to implement those circuits on the given

66

architecture. These three pieces of the Totem Project are discussed further in the

following sections.

4.2.1 High-Level Architecture Design
The high-level architecture generation is the subject of this thesis, and is

described in depth in the next chapters. Essentially, the architecture generator takes as

input a description of the targeted application domain, and outputs a description of the

reconfigurable hardware for that domain. Currently, the domain is specified by the user,

who provides a set of RaPiD netlists or a set of user-specified characteristics. From this

domain information, a datapath is constructed to execute circuits of the types provided.

This work focuses on the datapath generation—while control structures will also be

necessary to provide full functionality, many of the techniques used in the datapath

generation are expected to extend to the control path.

It should also be noted that this work does not yet account for pipelining within

the application circuits when a register only has a single input. In these cases, at least

some of this pipelining could be implemented by bus connectors on the routing tracks.

However, it has not yet been determined how to judge the number of additional data

registers that will be required in the datapath structures in order to best implement these

types of netlists, and therefore this is an area of future work.

During datapath construction, the netlists or characteristics are analyzed to

determine the number and types of computational units required in the architecture. Once

67

this information is determined, the logic units are created and arranged along the one-

dimensional axis so as to minimize area and delay (with area currently the primary goal).

These techniques are presented in Chapter 5.

The routing structures that connect the computational components are generated

next. Two different styles of routing architectures have been investigated. The first

results in highly optimized architectures—ASIC-like, but very inflexible. These

architectures are referred to as “configurable ASICs”, or cASICs. The second creates

architectures in the RaPiD style, with the amounts and types of routing resources

dependent on the communication needs of the different input circuits. Chapter 6

discusses architecture generation in the cASIC style, while Chapter 7 details the RaPiD-

style routing generation methods.

4.2.2 Physical Layout
Several techniques are currently under investigation for generating a VLSI layout

from a Verilog description of a Totem architecture. These techniques include standard

cells, template reduction, and circuit generators. The standard cell method is a traditional

layout technique, but with a slightly modified set of standard cells optimized for

reconfigurable layouts, such as such as multiplexers, demultiplexers, and D flip-flops

[Phillips02].

The next layout technique is template reduction, and is based on a subtractive

technique. Instead of adding logic and routing resources as needed, this technique begins

68

with a manually designed superset architecture and removes unneeded resources.

Template architectures would be created for sets of domains. When creating a custom

architecture, the closest template is selected. The place and route tool then implements

the needed netlists onto the template, and removes unused logic and routing resources.

The more similar the needed architecture is to the template, the more the final

architecture benefits from the manual layout of the template.

Finally, circuit generators allow for highly customizable computational units.

This method uses macro blocks to implement the logic units of the architecture, and

calculates where metal wires should be added for the communication structure. These

macro blocks can be as simple as a library of defined structures, such as a 16-bit register

or ALU. However, a more sophisticated implementation will allow for customizable

bitwidth and functionality (i.e., an adder instead of a full ALU). These generators use the

regularity within many computational components to achieve efficient layouts.

Together these three layout methods will form the essential path from the

architecture description to a working VLSI layout. Architectures close in form to an

available tileable template will be implemented using template reduction for a more

efficient layout than could be created using standard cells. Next, architectures requiring a

high degree of customization will use circuit generators, provided that customization can

be accomplished using the available set of functions. Lastly, architectures that do not fit

well with either of the previous methods can be implemented using standard cells.

69

4.2.3 Place and Route
The Totem Project requires a place and route tool for two primary reasons. First,

the tool finds a final implementation of the specification netlists on the generated

architectures. Since the architecture generator uses simplistic methods to find an

implementation, a dedicated place and route tool is likely to find a superior solution.

Second, the tool is needed to implement circuits not included in the original architectural

specification, which can occur if circuits are designed after the hardware has been

fabricated. This tool inputs a simplified compiled RaPiD netlist (which includes only the

datapath information with pipelining registers removed) and a Verilog architecture

description, and outputs a bitstream that can be used to configure the generated

architecture. Note that the bitstream format may require information from the layout tool

to obtain the correct ordering of the programming bits.

The Totem place and route tool [Compton02d, Sharma02] performs two

operations. First, a netlist has its logical instances placed into physical components in the

architecture. The placement phase is based on the simulated annealing algorithm

[Sechen88]. The cost function for the simulated annealing operation is based on a

combination of the maximum (max) and average (avg) signal cross-section throughout

the architecture [Sharma02].

Second, the signals between the instances are mapped to actual wires in the

hardware that connect the instances’ physical units. The router uses an iterative,

negotiation-based routing algorithm that is a modified version of the Pathfinder algorithm

70

[McMurchie95]. A route is found for each signal onto the routing architecture. Initially,

signals are permitted to share resources. The cost of using each individual resource is

determined by the number of signals sharing that resource, and is updated after each

iteration. Signals are rerouted each iteration, but with previously shared resources

considered increasingly more expensive to use. Eventually, for each shared resource, all

but one signal are forced to find alternate routes if possible.

4.3 Testing Framework

Eight different applications (each composed of two or more netlists) were used to

compare the area results of the Totem architectures to a number of existing

implementation techniques, including standard cell, FPGA, and RaPiD techniques. These

applications, along with their member netlists, are listed in Table 4.1. Five of these are

real applications used for radar, OFDM, digital camera, speech recognition, and image

processing. The remaining three applications are sets of related netlists, such as a

collection of different FIR filters.

71

Table 4.1: Eight applications used to test Totem architectures, each containing two or more
distinct netlists. FIR, Matrix, and Sort are collections of similar netlists, while the others are
actual applications.

Application Member Netlists
Radar decnsr, fft16_2nd, psd
OFDM sync, fft64

Camera color_interp, img_filt, med_filt
Speech log32, fft32, 1d_dct40

FIR firsm, firsm2, firsm3, firsymeven, firtm_1st, firtm_2nd
Matrix matmult, matmult4, matmult_bit, limited, limited2
Sort sort_g, sort_rb, sort_2d_g, sort_2d_rb

Image med_filt, matmult, firtm_2nd, fft16_2nd, 1d_dct40

4.3.1 Standard Cells
The standard cell layouts of the netlists (converted from RaPiD netlist format to

Verilog) were created using Cadence in a TSMC 0.18µm process with 6 metal layers.

Generally, the total area for an application set is the sum of the areas required for the

netlists. However, for the application sets which are a collection of very similar netlists

(FIR, Matrix, and Sort from Table 4.1), this assumption is likely to be incorrect.

Therefore, to err on the side of caution for these particular cases, the maximum area

required by any one member netlist is instead used, under the assumption that a small

amount of additional control circuitry may allow all member netlists to use the same

hardware. I/O area is not included, as I/O area is also not measured for the Totem

architectures. The standard cell areas for individual netlists as well as the application sets

are given in Table 4.2.

72

Table 4.2: The areas of the eight different applications from Table 4.1 implemented using standard
cells in a 0.18µm process. In most cases, the application area is the sum of the member netlist
areas. However, the FIR, Matrix and Sort applications are collections of very similar netlists, so
to better estimate the standard cell layout area, the maximum member netlist area is instead used.

Application Netlists Netlist Area
(mm²)

Application
Area (mm²)

decnsr 0.160
fft16_2nd 3.073
psd 0.867
sync 2.996
fft64 6.172
color_interp 3.640
img_filt 2.858
med_filt 0.769
log32 22.070
fft32 4.050
1d_dct40 0.404
firsm 2.668
firsm2 2.668
firsm3 2.674
firsymeven 2.846
firtm_1st 1.302
firtm_2nd 1.214
matmult 1.383
matmult4 1.414
matmult_bit 1.348
limited 1.785
limited2 0.517
sort_g 1.541
sort_rb 1.310
sort_2d_g 1.152
sort_2d_rb 1.152
med_filt 0.769
matmult 1.383
firtm_2nd 1.214
fft16_2nd 3.073
1d_dct40 0.404

Sort 1.541

Image 6.843

FIR 2.846

Matrix 1.785

Camera 7.268

Speech 26.523

Radar 4.101

OFDM 9.168

4.3.2 FPGA
The FPGA solution is based on the Xilinx VirtexII FPGA, which uses a 0.15µm

8-metal-layer process, with transistors at 0.12µm [Xilinx02]. In particular, the die area

was obtained for an XC2V1000 device [Chipworks02]. This FPGA contains not only

73

LUT-based logic (“slices”), but also embedded RAM and multiplier units, in a proportion

of 128 slices : 1 multiplier : 1 RAM. This proportion of resources is used as a tileable

atomic unit when determining required FPGA area for the designs, as manually-designed

FPGA cores for SoCs are unlikely to be very customizable except in terms of the quantity

of total tileable resources.

The area of an individual tile, which corresponds to approximately 25K system

“gates” of logic, was computed (using a photograph of the die) to be 1.141mm2. This

area was then scaled to a 0.18µm process by multiplying by (.15/.18)2 to yield a final tile

size of 1.643mm2 to compare all solutions using the same fabrication process. The

Verilog files created from individual netlists were placed and routed onto a VirtexII chip,

and the number of tiles required for the applications were measured. In this case, the

total area required by an application is the maximum of the areas required by its member

netlists, as the hardware resources are reusable. These areas are given in Table 4.3.

74

Table 4.3: The FPGA areas of the eight different applications from Table 4.1. The resource usage
and number of atomic tiles is given for each netlist, and the number of tiles and resulting area
(converted to a 0.18µm process) is given for each application.

Application Netlists Slices Mults RAMs Netlist
Tiles

App.
Tiles

Application
Area (mm²)

decnsr 112 0 0 1
fft16_2nd 489 12 12 12
psd 172 4 0 4
sync 2415 2 16 19
fft64 2442 8 36 36
color_interp 512 14 6 14
img_filt 1017 0 13 13
med_filt 29 0 4 4
log32 1304 48 0 48
fft32 626 16 16 16
1d_dct40 29 1 0 1
firsm 368 16 0 16
firsm2 368 16 0 16
firsm3 360 16 0 16
firsymeven 585 16 0 16
firtm_1st 211 4 11 11
firtm_2nd 280 4 8 8
matmult 312 4 12 12
matmult4 344 4 12 12
matmult_bit 956 4 12 12
limited 284 8 8 8
limited2 131 2 0 2
sort_g 1049 0 16 16
sort_rb 1019 0 9 9
sort_2d_g 822 0 12 12
sort_2d_rb 781 0 8 8
med_filt 29 0 4 4
matmult 312 4 12 12
firtm_2nd 280 4 8 8
fft16_2nd 489 12 12 12
1d_dct40 29 1 0 1

16 26.292

12 19.719

16 26.292

12 19.719

14 23.006

48 78.877

12 19.719

36 59.157

FIR

Matrix

Sort

Image

Speech

Camera

OFDM

Radar

4.3.3 RaPiD
The area required to implement the applications on a static RaPiD architecture

was also calculated [Cronquist99a]. The RaPiD results represent a partially-customized

FPGA solution. The RaPiD reconfigurable architecture was designed for the types of

75

netlists used in this testing, and contains specialized coarse-grained computational units

used by those netlists. The number of RaPiD cells can be varied, but the resource mix

and routing design within the cell is fixed.

To find the area for each application, the minimum number of RaPiD cells needed

to meet the logic requirements of the application was calculated. The application’s

netlists were then placed and routed onto the architecture to verify that enough routing

resources were present. If not, and the routing failed, the number of cells was increased

by one until either all of the application’s netlists could successfully place and route, or

place and route still failed with 20% more cells than the application logic required. Table

4.4 lists the results of these tests.

Manual layouts of each of the units and routing structures were created in a

TSMC 0.18µm process with 5 metal layers. The logic area is simply the sum of the areas

of the logic units in the architecture. Routing area is the sum of the areas of the

multiplexers, demultiplexers, and bus connectors (segmentation points) in the

architecture. Routing tracks are directly over the logic units in a higher layer of metal,

and are therefore not counted as contributing to the area. In some cases, the RaPiD

architecture did not have sufficient routing resources to implement a circuit. The RaPiD

cell would have to be manually redesigned to fit these netlists. This illustrates one of the

primary benefits of an automatic architecture generator – provided enough die area is

allocated, a solution can always be created.

76

Table 4.4: The RaPiD areas of the eight different applications from Table 4.1. The area for each
application is based on the minimum number of cells required to successfully place and route all
of the netlists in the given applications. The number of cells needed by each netlist is also given.

Application Netlists Netlist
Cells

Netlist
Area (mm²)

App.
Cells

Logic
Area (mm²)

Routing
Area (mm²)

Application
Area (mm²)

decnsr 2 0.833
fft16_2nd 12 4.996
psd 6 2.498
sync --- ---
fft64 --- ---
color_interp --- ---
img_filt 19 7.910
med_filt --- ---
log32 192 79.937
fft32 16 6.661
1d_dct40 3 1.249
firsm 16 6.661
firsm2 16 6.661
firsm3 16 6.661
firsymeven 16 6.661
firtm_1st 4 1.665
firtm_2nd 4 1.665
matmult 4 1.665
matmult4 4 1.665
matmult_bit 4 1.665
limited 8 3.331
limited2 2 0.833
sort_g 11 4.580
sort_rb 12 4.996
sort_2d_g 8 3.331
sort_2d_rb 8 3.331
med_filt --- ---
matmult 4 1.665
firtm_2nd 4 1.665
fft16_2nd 12 4.996
1d_dct40 3 1.249

Speech

Camera

OFDM

Radar

FIR

Matrix

Sort

Image

12 4.996

--- ---

2.838 2.158

--- ---

--- ---

192 79.937

45.401 34.536

16 6.661

8 3.331

3.783 2.878

1.892 1.439

21 8.743

--- ---

4.966

3.777

4.3.4 Relative Areas
Previously, FPGAs produced solutions approximately 50x larger than standard

cell implementations of a given circuit [Stone96]. However, the results of the area tests

in this chapter indicate that progress has been made to reduce the overhead of

77

reconfigurable hardware. Table 4.5 lists the areas of the available netlists for each of the

implementation methods discussed. According to this data, FPGA implementations using

the VirtexII FPGA are just under 10x larger than the standard cell implementation. Some

of the possible reasons for this 5x improvement in the FPGA area include the use of two

more metal layers in the VirtexII compared to these standard cell implementation, and the

embedded multipliers and RAM units in the VirtexII, which were absent from the FPGA

design used in the previous study.

The margin between standard cells and reconfigurable hardware shrinks further

when application areas are compared. The FPGA and RaPiD resources can be reused

between the different netlists in an application. However, a separate circuit layout must

be created for each netlist in an application using a standard cell technique3. While the

FPGA areas are on average nearly 10x larger than standard cell for individual circuits,

these areas are on average just over 7x larger than standard cell implementations once the

FPGA hardware is reused for multiple netlists within an application.

3 Note that as discussed previously, three of the “applications” are collections of similar netlists.
To err on the side of caution, it is assumed that the actual standard cell layout for those applications will be
approximately the size of the largest netlist in the application, and that only a small amount of support
circuitry would be necessary to allow the layout to perform the other functions as well.

78

Table 4.5: The areas of all of the netlists from Table 4.1 using each of the implementation
methods, normalized to the standard cell area.

Netlist Std Cell
Area (mm²)

FPGA
Area (mm²)

RaPiD
Area (mm²)

1d_dct40 1.00 4.07 3.09
color_interp 1.00 6.32 ---
decnsr 1.00 10.25 5.20
fft16_2nd 1.00 6.42 1.63
fft32 1.00 6.49 1.64
fft64 1.00 9.58 ---
firsm 1.00 9.86 2.50
firsm2 1.00 9.86 2.50
firsm3 1.00 9.83 2.49
firsymeven 1.00 9.24 2.34
firtm_1st 1.00 13.88 1.28
firtm_2nd 1.00 10.83 1.37
img_filt 1.00 7.47 2.77
limited 1.00 7.36 1.87
limited2 1.00 6.36 1.61
log32 1.00 3.57 3.62
matmult 1.00 14.26 1.20
matmult4 1.00 13.95 1.18
matmult_bit 1.00 14.62 1.24
med_filt 1.00 8.54 ---
psd 1.00 7.58 2.88
sort_g 1.00 17.06 2.97
sort_rb 1.00 11.29 3.81
sort_2d_g 1.00 17.11 2.89
sort_2d_rb 1.00 12.92 3.27
sync 1.00 10.42 ---
AVERAGE 1.00 9.97 2.42

Table 4.6: The areas of each of the applications from Table 4.1 using each of the implementation
methods, normalized to the standard cell area.

Application Std Cell
Area (mm²)

FPGA
Area (mm²)

RaPiD
Area (mm²)

Radar 1.00 4.81 1.22
OFDM 1.00 6.45 ---
Camera 1.00 3.17 ---
Speech 1.00 2.97 3.01
FIR 1.00 9.24 2.34
Matrix 1.00 11.04 1.87
Sort 1.00 17.06 3.24
Image 1.00 2.88 ---
AVERAGE 1.00 7.20 2.34

 79

Chapter 5

Logic Generation

As stated previously, this work encompasses two categories of customized

reconfigurable hardware generation: highly customized near-ASIC (cASIC) architectures

and more flexible RaPiD-like designs. In both cases, it is the routing architecture style

that differs, while the logic is created using essentially the same methods. The logic

architecture is created in two steps: first the number of each type of coarse-grained

computational unit is determined; then these units are ordered along the horizontal axis.

Both of these operations are based on the netlists provided by the user as a description of

the domain for which the reconfigurable architecture is to be created. This architecture

contains the logic resources needed to implement each of the netlists one at a time.

Performing a reconfiguration of the hardware replaces the current netlist with another.

5.1 Type and Quantity of Units

The generation of logic structures for cASIC architectures involves first

determining the type and quantity of functional units required to implement the given

netlists. Because the ability to reuse hardware is a key feature of reconfigurable

80

computing, maximum hardware reuse between netlists is forced. The minimum number

of total logic units is chosen such that any one of the netlists given as part of the

architectural specification can operate in its entirety. In other words, unit use within a

netlist is not modified or rescheduled. Therefore, if netlist A uses 12 multipliers and 16

ALUs, while netlist B uses 4 multipliers and 24 ALUs, a cASIC architecture designed for

these two netlists would have 12 multipliers and 24 ALUs. Note that for flexible

architecture generation, the designer can specify to include additional logic units beyond

the minimum.

5.2 Binding vs. Physical Moves

After the unit quantities and types have been selected, they must be arranged

along the horizontal axis. A good ordering will ensure that the number of signals passing

through any one vertical cut of the architecture is kept low, which reduces the area

consumed by the routing structures. Similarly, units communicating with one another

should be located in close proximity to reduce the delay on the wires between them.

Therefore, the best physical ordering of the units depends on the communication between

them. The communication needs between physical units, however, depend on how the

netlists are implemented on that hardware.

Before discussing this issue further, some terminology must be defined. The

architectural components represent physical structures to be implemented in silicon.

These differ from netlist instances, which are implemented by the physical components.

81

A netlist instance represents a “need” for a given type of computation at a given point of

the circuit. In traditional FPGAs, the LUTs are the physical components, while the netlist

instances are low-level gates or small logic functions. In the Totem Project, coarser-

grained architectures and netlists are currently used. For example, a multiply-accumulate

netlist contains a multiplier instance followed by adder and register instances. These

instances must be implemented by the appropriate type of physical components in the

hardware.

2

4
1

3

A B C D E A
1

B
2

C
4

D E
3

netlist
(instances)

components

2

4
1

3

A B C D E A
1

B
2

C
4

D E
3

netlist
(instances)

components
(a)

A B C D E D C A E B

components

A B C D E D C A E B

components
(b)

Figure 5.1: (a) Binding assigns instances of a netlist to physical components. (b) Physical moves
reposition the physical components themselves.

There may be multiple units appropriate for a circuit instance, in which case the

instance must be matched to a specific physical unit. When using traditional FPGAs, this

matching is referred to as placement or binding. For this work, the terms binding or

mapping are used to describe the process of matching an instance to a component. A

physical move describes the act of assigning a physical location to a physical component.

82

Figure 5.1 illustrates the difference between binding and placement. Using this

terminology, traditional synthesis for FPGAs requires only bindings, whereas synthesis

for standard cells involves only physical moves.

Reconfigurable architecture generation is a unique situation in which both binding

and physical moves must be considered. The locations of the physical units must be

known in order to find the best binding, and the binding must be known to find the best

physical moves. Since these processes are inter-related, both binding and physical moves

are performed simultaneously in this work. The term placement is used here to refer to

the combined process of determining a binding of netlists to units and physical locations

for the units. The next section describes the algorithm used to find the final placement.

An example will be presented that demonstrates the logic generation and placement for

an architecture created from the two netlists in Figure 5.2.

IN1

IN2 OUT
0

X +
IN1

IN2 OUT
0

XX ++

IN1

OUT
IN2

X X +
IN1

OUT
IN2

XX XX ++

Figure 5.2: Two different example netlists that could be used in architecture generation. The light
netlist performs a multiply-accumulate (MAC), while the dark netlist is a 2-tap FIR filter. These
two netlists are used in the example placement process given in the next few figures.

83

5.3 Adapting Simulated Annealing

Simulated annealing [Sechen88] is an algorithm commonly used in FPGA

placement (binding) to assign netlist instances to physical computation units, and

standard cell placement to determine locations for actual physical cells. This algorithm

operates by taking a random initial placement of elements, and repeatedly attempts to

move the location of a randomly selected element. The move is accepted if it improves

the overall cost of the placement. To avoid settling in a local minima of the placement

space, moves that do not improve the cost of the placement are sometimes accepted. The

probability of accepting a non-improving move is governed by the current “temperature”.

At the beginning of the algorithm, the temperature is high, allowing a large proportion of

bad moves to be accepted. As the algorithm progresses, the temperature decreases, and

therefore the probability of accepting a bad move also decreases. At the end of the

algorithm almost no bad moves are permitted.

For reconfigurable architecture generation, the simulated annealing algorithm

must be adapted, changing what constitutes a “move”. In FPGA placement a move is

changing which physical structure implements a specific portion of the netlist logic

(rebinding), and in ASIC placement a move involves giving a new physical position to a

standard cell. For this work, a move can be either of these two possibilities – either

rebinding a netlist computational instance from one physical unit to another compatible

84

physical unit, or changing the position (ordering) along the 1D axis of a computational

component.

The instances of each netlist are arbitrarily assigned initial bindings to physical

components, which are ordered arbitrarily along the 1D axis. An example initial

placement created for the two netlists presented in Figure 5.2 appears in Figure 5.3. Like

simulated annealing, a series of moves are used to improve the placement/binding. The

probability of attempting a re-binding versus a physical component movement is equal to

the fraction of total “elements” that are instances instead of physical components. A

physical move is shown for the example architecture in Figure 5.4, and a rebinding in

Figure 5.5.

OUT

0

IN1

IN2

OUT

IN2
IN1

++XX XX

Initial Placement

Figure 5.3: The initial physical placement and bindings of an architecture created for the netlists of
Figure 5.2. Color shading indicates component use by the netlists. For example, when the light
netlist is in operation, only the left multiplier is used. When the dark netlist is in operation, both
multipliers are used. The architecture can be reconfigured to switch between the light and dark
netlists.

85

OUT

0

IN1

IN2

OUT

IN2
IN1

++XX XX

swap locationsPhysical Move

OUT

0

IN1

IN2

OUT

IN2
IN1

++XX XX

Figure 5.4: A physical move performed during the placement operation. Top: Before. Bottom:
After.

86

OUT

0

IN1

IN2

OUT

IN2
IN1

++XX XX

change light mappingRebinding

OUT0

IN1

IN2

OUT

IN2
IN1

++XX XX

Figure 5.5: A rebinding performed during the placement operation. Top: Before. Bottom: After.

OUT0

IN1
IN2

OUT
IN2
IN1

++XXXX

Final Placement

Figure 5.6: The final placement of the architecture created for the netlists from Figure 5.2 after a
series of moves such as those illustrated in Figure 5.4 and Figure 5.5. The signal cross-section has
been greatly reduced from the initial placement shown in Figure 5.3.

The cost metric is based on the cross-section of signals communicating between

the bound instances. At each physical unit location, the cross-section of signals for each

netlist is determined. The maximum across the netlists becomes the overall cross-section

value at that point. After the cross-section value is calculated for each location, the

87

values are squared, then summed across the locations to yield the overall cost value. By

squaring the values before summing across positions, areas with a high cross-section are

heavily penalized. The goal in reducing these cross-sections is primarily to minimize the

area of the routing structure that will be created, because a larger cross-section can lead to

a taller architecture. A secondary goal is to decrease the delay of the nets, because the

longer (and slower) a wire is, the more likely it is to share a span with other wires and

contribute to a larger cross-section.

The guidelines presented for VPR [Betz97], a place and route tool for FPGAs,

govern the initial temperature calculation, number of moves per temperature, and cooling

schedule. These values are based on Nblocks, the number of “blocks” in a netlist. Since

both netlist instances and physical components are being used, Nblocks is calculated as the

sum of the instances in each netlist provided plus the number of components created, as

shown in Equation 5.1. The initial temperature is calculated by performing Nblocks moves,

and finding the standard deviation (stddev) of the cost of these Nblocks

bindings/placements. The initial temperature calculation is given in Equation 5.2.

Equation 5.3 presents the VPR calculation of the number of moves (nMoves) performed

at each temperature. This calculation is not changed apart from the calculation of Nblocks

as previously described.

Equation 5.1: ∑
=

+=
netlists

i
iblocks NinstancessNcomponentN

#

0

88

Equation 5.2: stddevTinit *20= [Betz97]

Equation 5.3: 33.1)(*10 blocksNnMoves = [Betz97]

Finally, the cooling schedule specified by VPR is also used. The new temperature

Tnew is calculated according to the percentage of moves that were accepted (Raccept) at the

old temperature Told. Table 5.1 details the cooling schedule, indicating how the

temperature should be updated according to Raccept.

Table 5.1: The calculation of the new temperature Tnew based on the percentage of moves
accepted, Raccept. This cooling schedule is used by VPR [Betz97].

Raccept > .96 Tnew = .5 * Told

.8 < Raccept ≤ .96 Tnew = .9 * Told

.15 < Raccept ≤ .8 Tnew = .95 * Told

Raccept ≤ .15 Tnew = .8 * Told

After determining the logic structure and placement, the components must be

connected together with some sort of routing structure. As will be discussed in Chapter

6, the routing can be very specialized, only providing the connections that the input

circuit set requires. This leads to a highly optimized architecture with very low

flexibility. The other option, discussed in Chapter 7, is to create a more generic, flexible,

routing structure. Some specialization is retained, yet sufficient flexibility exists to

implement circuits beyond the specification set.

 89

Chapter 6

Configurable ASICs

While the flexibility of traditional FPGA structures is one of their greatest assets,

it is also one of the largest drawbacks—greater flexibility leads to greater area, delay, and

power overheads. Creating customized reconfigurable architectures presents the

opportunity to greatly reduce these overheads by discarding excess flexibility. This

chapter discusses taking this idea to the extreme end of the spectrum – removing all

unneeded flexibility to produce an architecture as ASIC-like as possible. This style of

architecture is referred to as “configurable ASIC”, or cASIC.

 Like RaPiD [Cronquist99a], cASIC architectures are very coarse-grained,

consisting of optimized components such as multipliers and adders. Unlike RaPiD,

cASICs do not have a highly flexible interconnection network—the only wires and

multiplexers available are those which are required by the netlists. This is because

cASICs are designed for a specific set of netlists, and are not intended to implement

netlists beyond the specification. Hardware resources are still controlled by configuration

bits, though there are much fewer present. These configuration bits allow for hardware

90

reuse among the specification netlists. Each netlist in the specification is implemented in

turn by programming these bits with the appropriate set of values.

The cASIC architecture generation occurs in two distinct phases. In the

placement stage of the generation the computation needs of the algorithms are

determined, the computational components (ALUs, RAMs, multipliers, registers, etc) are

created, and the physical elements are ordered along the one-dimensional datapath. Also,

the netlist instances must be bound to the physical components. Both of these operations

are performed as specified in Chapter 5. In the routing stage, the actual wires and

multiplexers needed to connect the different components, including the I/Os, are created.

The routing stage is discussed in more depth in section 6.2. After the generation

algorithms are discussed, an area comparison is given between the architectures created

with the cASIC techniques, and the standard cell, FPGA, and RaPiD solutions described

in section 4.1.

6.1 Logic Generation

As stated previously, cASIC architectures use very coarse-grained logic blocks

operating on full words of data. Computations can be implemented far more efficiently

by dedicated units, like ALUs and multipliers, than by generic LUTs. This optimization

allows the Totem (and RaPiD) architectures to implement algorithms in much less area

than required by a traditional FPGA. Totem provides an additional benefit over static

RaPiD architectures: the mix and arrangement of the logic resources can be customized

91

to the application netlists. The architecture generator reads in the target netlists,

determines the type and quantity of logic units required, and orders these units along the

one-dimensional axis, as described in Chapter 5. After the logic is in place, the routing

must be created to allow the units to be connected together.

6.2 Routing Generation

While RaPiD uses a series of regular routing tracks, multiplexers, and

demultiplexers to connect the units, cASIC architectures provide a more specialized

communication structure. The only routing resources included are those which are

explicitly required by one or more of the netlists. This section discusses the different

techniques developed to create the routing structures.

The routing structure of a custom generated architecture will depend on the

placement achieved using the techniques of Chapter 5. At this point, the physical

locations of the components are fixed, as are the bindings of the netlist instances to those

components. The specification netlists define the signals that connect the netlist

instances to form a circuit. These instances have been bound in the placement stage, so

the physical locations of the ports of the signals are known. Wires are then created to

implement these signals, allowing each netlist to execute individually on the custom

hardware.

In addition to wires, multiplexers and demultiplexers on the ports of the

components may be created to accommodate the different requirements of the

92

specification netlists. For example, if netlist A needs an adder to output to a register, but

netlist B needs the adder to output to a RAM, a demultiplexer is instantiated on the output

of the adder to direct the signals properly for each netlist. Similarly, if netlist A has a

register that receives an input from an adder, but netlist B needs that register to input

from a multiplier, a multiplexer is created to choose the register input based on which

netlist is currently active in the architecture. Figure 6.1 continues the example in

Chapter 5, showing the generated routing structure for the placement of Figure 5.6. Note

that several of the wires here are used to implement signals from both netlists. Like the

logic resources, the wires are only used by one netlist at a time—whichever netlist is

currently programmed onto the architecture. “Sharing” of routing resources between

netlists is critical, as the routing architecture can become extremely large if each signal is

implemented by a dedicated wire.

IN2
IN1

XXXX 0
OUT

++

Figure 6.1: cASIC routing architecture created for the example from Chapter 5. Black wires are
used by both netlists of Figure 5.2, while light wires are only used by the light netlist, and dark
grey wires and logic are only used by the dark grey netlist. Logic resources used by both netlists
show both colors.

The object of the routing generation phase is to minimize area by sharing wires

between netlists, while adding as few multiplexers and demultiplexers as necessary.

Heuristics are used to group signals with similar connections from different netlists into

93

wires. In order to understand the motivations for the algorithms presented below, the

routing problem itself must first be discussed. As with the placement problem, creating

the routing is two problems combined into one: creating the wires, and assigning of the

signals to wires. In many current FPGA architectures, wire lengths can be adjusted for

each netlist by taking advantage of programmable connections (segmentation points)

between lengths of wire, potentially forming a single long wire out of several short wires.

For simplicity, the current Totem cASIC generation algorithms do not provide this

flexibility.

The algorithms must somehow determine which sets of signals belong together

within a wire. One method is to simply not share at all, which is explored in the No

Sharing algorithm. The remaining algorithms, Greedy, Bipartite and Clique, use

heuristics to determine how the wires should be shared between signals. The heuristics

operate by placing signals with a high degree of similarity together into the same wire.

However, “similarity” can be computed several different ways. In this work, two

different definitions of “similarity” were used. Ports refers to the number of input/output

locations the signals or wires have in common. Overlap refers to a common “span”,

where the span of a signal or wire is bounded by the leftmost source or sink and the

rightmost source or sink in the placed architecture. Results for each of these similarity

types are given in section 6.3. The procedures used by the Greedy, Bipartite, and Clique

heuristics are described in the next sections.

94

6.2.1 Greedy
The greedy algorithm operates by repeatedly merging wires that are very similar.

To begin, each signal is assigned to its own wire. Next, a list of correlations between all

compatible wire pairs (wires that are not both used in the same netlist) is created. The

highest correlation value is selected at each iteration, and those two wires are merged.

All other correlations related to either of the two wires that have been merged are updated

according to the characteristics of the new shared wire. If any of the correlations now

contain a conflict due to the new attributes of the merged wire (i.e., both wires in the

correlation hold a signal from the same netlist), these correlations are deleted from the

list, as they are no longer valid. This process continues until the correlation list is empty,

and no further wires may be merged. The pseudocode for this operation is given in

Figure 6.2.

95

Greedy() {
 Let overlap(wi,wj) return shared span of wires wi and wj
 Let ports(wi,wj) return shared ports of wires wi and wj

 Let S = the set of all signals
 Let W = a set of wires (initially empty)
 Create one wire for each signal in S, assign the signal to the wire,
 and add the wire to set W
 Let L = a list of all pairs of wires in W

 // greedily merge wires

 Loop {
 For each pair (wi, wj) of wires in L {
 If wi and wj contain signals from the same netlist,
 Delete pair from L
 Else if (overlap(wi, wj) = 0 and ports(wi, wj) = 0),
 Delete pair from L
 }
 If L empty, quit
 Find pair (wi, wj) from L with greatest overlap() or ports() value,
 depending on similarity method used, breaking ties using other
 similarity
 Remove pair from L
 Remove wi and wj from W
 Make new wire wk = wi ∪ wj, and add it to W
 Update all pairs in L that refer to wi or wj to refer to wk instead
 }
 Return W
}

Figure 6.2: Pseudocode for the Greedy cASIC generation technique.

6.2.2 Bipartite
The merging of netlists into cASIC architectures is a form of matching problem.

This might naturally lead one to consider the use of bipartite matching to solve the

problem. One group has already used maximum weight bipartite matching to match

netlist instances together to form the components [Huang01]. However, there are two

significant problems with this approach. The first is that this type of logic construction

does not consider the physical locations of the instances or their components. The

physical locations of components and mapped instances determines the length of wires

96

needed to make the connections between units, and is therefore critical to effective logic

construction. Furthermore, that particular work indicated that wires would not be shared

between signals after the logic was constructed using the bipartite matching method.

Second, the bipartite matching algorithm was used recursively, matching two

netlists together, then matching a third netlist to the existing matching, and so on. While

any individual matching can be guaranteed to have the maximum weight, the cumulative

solution may not. The order in which the netlists are matched can affect the quality of the

final solution. This is true even if bipartite matching is not used for the logic construction

but only for routing construction.

X

Y K

L

A B
30

30 0

20

10
15

40

60

25

0

5

5

Example Graph

A

B

L

K
10

20
30

30

AL

BK

X

Y
20

45
60

25

Recursive Bipartite

X

Y K

L

A B
30

30 0

20

10
15

40

60

25

0

5

5

Total weight = 130
Figure 6.3: An example graph which does not produce the optimal solution when bipartite
matching is used recursively. First the dark grey nodes are matched to the light grey nodes, and
then the matching is matched to the white nodes. The final grouping formed by the bipartite
matching process is shown at right. The total weight is the sum of the weights of all the edges
completely contained within a grouping. Figure 6.6 shows a superior solution found using clique
partitioning.

To demonstrate that the ordering of the netlists has an effect on the quality of the

resulting solution, a cASIC generation algorithm was created which uses recursive

maximum weight bipartite matching. Logic for these architectures is still constructed as

97

discussed in Chapter 5 because of the location issue mentioned previously, but the

merging of signals into wires is performed using bipartite matching.

Bipartite() {
 Let overlap(wi,wj) return shared span of wires wi and wj
 Let ports(wi,wj) return shared ports of wires wi and wj

 Let N = the set of netlists
 Let Order = a matrix containing the indices of the netlists in the
 order they are to be merged, (|Order| = the number of netlists)

 Let S = the set of all signals
 Let W = a set of wires (initially empty)
 Create one wire for each signal in S, assign the signal to the wire,
 and add the wire to set W

 Let L be the set of all wires in W that were created specifically for
 the signals in netlist NOrder[0]

 For netIndex = 1…|Order|-1 {
 // L is the cumulative bipartite solution, R is the new netlist
 Let Weights be |L|x|R| matrix of integers
 Let R be the set of all wires in W that were created specifically
 for the signals in netlist NOrder[netIndex]
 For each li in L {
 For each rj in R {
 If method is overlap,
 Weights[i][j] = overlap(li,rj)
 Else if method is ports,
 Weights[i][j] = ports(li,rj)
 }
 }

 // perform the maximum weight bipartite matching
 Let Match = the solution from bipartite_match(L,R,Weights)
 Empty set L
 For each pair (li,rj) in Match {
 Make new wire wk = li ∪ rj, and add it to L
 }
 }
 Return L, the cumulative bipartite solution
}

Figure 6.4: Pseudocode for the recursive maximum weight bipartite matching cASIC technique.
The pseudocode for the maximum weight bipartite matching algorithm itself appears in Figure 6.5.

98

bipartite_match(L,R,Weights) {
 // perform a maximum weight bipartite matching between the vertices
 // in L and R with edge weights in Weights[][]
 Let M be the solution set of pairs (li,rj) to the problem
 (initially empty)
 Let X and Y be sets of vertices from L and R respectively,
 (initially empty)
 Let PX[i] and PY[j] be arrays of sets of vertex pairs (initially
 empty), where i = 0…|L| and j = 0…|R|

 Loop {
 Let X be the set of all vertices in L that have not been matched
 Let DX[k] = 0 if vertex lk is in X, -∞ otherwise
 Let DY[k] = -∞ for all vertices rk in R

 While X not empty {
 // Phase 1: see if adding an edge to the matching helps
 Empty Y
 For all pairs (lx, ry) not in M with lx in X {
 If DX[x] + Weights[x][y] > DY[y],
 DY[y] = DX[x] + Weights[x][y]
 Add vertex ry to Y
 // keep track of the set of changes to the matching
 PY[y] = PX[x] ∪ (lx, ry)
 }
 }

 // Phase 2: see if subtracting an edge from the matching helps
 Empty X
 For all pairs (lx, ry) in M with ry in Y {
 If DY[y] – Weights[x][y] > DX[x],
 DX[x] = DY[y] – Weights[x][y]
 Add vertex lx to X
 // keep track of the set of changes to the matching
 PY[y] = PY[y] ∪ (lx, ry)
 PX[x] = PY[y]
 }
 }
 }

 Let ry be an unmatched vertex from R with maximum DY[y]
 If DY[y] > 0 {
 // add path PY[y] to M
 For all vertex pairs (lx,ry) in PY[y] {
 If (lx,ry) is not in M
 M = M ∪ (lx,ry)
 Else
 M = M - (lx,ry)
 }
 } Else return M
 }
}

Figure 6.5: Pseudocode of the maximum weight bipartite matching graph algorithm [Shier99] used
by the Bipartite cASIC generation algorithm from Figure 6.4.

99

6.2.3 Clique
The downside of the Greedy and Bipartite techniques is that they merge wires

based on short-term local benefits, without considering the problem as a whole. There

may be cases where merging the two most similar wires at one point prevents a more

ideal merging later in the algorithm. Therefore, the Clique algorithm has been

implemented to globally address the routing creation problem.

Clique partitioning is a concept from graph algorithms whereby vertices are

divided into completely connected groups. In our algorithm each wire is represented by a

vertex, and the "groups", or cliques, represent physical wires. The algorithm uses a

weighted-edge version of clique partitioning to group highly correlated signals together

into wires, where the correlation value between signals is used as the edge weight. The

cliques are then partitioned such that the weight of the edges connecting vertices within

the same clique is maximized. Signals that cannot occupy the same wire (signals from

the same netlist) carry an extremely large negative weight that will prevent them from

being assigned to the same clique. Therefore, although signal A may be highly correlated

with signal B, and signal B is highly correlated with signal C, they will not all be placed

into the same wire (clique) if signal A conflicts with signal C, due to the large negative

weight between those vertices. Figure 6.6 shows the clique partitioning solution to the

weighted-edge graph from the example of Figure 6.3..

100

X

Y K

L

A B
30

30 0

20

10
15

40

60

25

0

5

5

Example Graph

X

Y K

L

A B
30

30 0

20

10
15

40

60

25

0

5

5

Total weight = 180
Figure 6.6: An improved solution to the graph of Figure 6.3 found using clique partitioning. The
nodes in this graph represent the signals, and each clique (grouping) represents a wire shared by
the vertices (signals) in the cliques. The total weight is the sum of all edge weights completely
contained within a clique.

Given that weighted clique partitioning of a graph with both negative and positive

edge weights is NP-Complete, an ejection chain heuristic based on tabu search

[Dorndorf94] is used. Vertices are initially assigned to random cliques (where the

number of cliques equals the number of vertices). Some cliques are allowed to be empty,

but all vertices must be assigned to a clique. The algorithm then iteratively moves each

vertex from its current clique to a different one. This is done by each time selecting a

non-tabu vertex and a new clique for that vertex that will produce the maximum overall

(not necessarily positive) gain in total weight for the graph. Once a vertex is moved, it is

marked tabu until the next iteration.

After all the vertices have been moved in an iteration, the list of cumulative

solutions after each move is examined, and the one with the highest total weight is

chosen. This solution is then used as the base for the next iteration of moves, and all

101

vertices are marked non-tabu. This loop continues until none of the cumulative solutions

in an iteration produces a total weight greater than the base solution for that iteration.

Clique() {
 Let S = the set of all signals
 Let W = the set of wires, initially empty
 Let Weights be |S|x|S| matrix of integers

 // load weights between signals (vertices) into matrix
 For each signal si in S {
 For each signal sj in S {
 If si = sj, Weights[i][j] = 0
 Else if si and sj are from the same netlist, Weights[i][j] = -∞

 Else Weights[i][j] = edge_weight(si,sj)
 }
 }

 // perform the partitioning
 Let CliqueSol = the solution set of cliques from
 clique_partition(S,Weights)

 // translate cliques to wires
 For each clique Ci in CliqueSol {
 Create a new wire wi, and add it to W
 For each vertex signal sk in Ci {
 Assign sk to wi, adding sk’s connections to wk
 }
 }
 Return W
}

edge_weight(si,sj) {
 // Find the edge weight between signals (vertices) s1 and s2
 If method is overlap {
 Let l(sm) return length of signal sm
 Let shared(sm,sn) return shared span of signals sm and sn
 Return
 2*shared(si,sj) – (l(si)-shared(si,sj)) – (l(sj)-shared(si,sj))
 } Else if method is ports {
 Let p(sm) return the number of ports on signal sm
 Let shared(sm,sn) return number of ports in common of sm and sn
 Return
 2*shared(si,sj) – (p(si)-shared(si,sj)) – (p(sj)-shared(si,sj))
 }
}

Figure 6.7: The pseudocode of the Clique cASIC generation algorithm. The pseudocode of the
clique partitioning graph algorithm itself appears in Figure 6.8.

102

clique_partition(S,Weights) {
 // perform a clique partitioning of vertices in S
 // with edge weights in Weights[][]

 Let weight(Ci) = the sum of weights of all edges between the
 vertices contained by clique Ci
 Let weight(Sol) = the sum of weights of all cliques in solution Sol

 Let SolList = a list of clique solutions, initially empty
 Let Sol = clique solutions (i.e., a set of cliques)

 Initialize OldSol to hold |S| cliques
 Assign each vertex si in S to random clique in OldSol
 Add Sol to SolList

 Loop {
 Mark all vertices si in S as not tabu

 While there are non-tabu vertices {
 For each vertex si that is not tabu {
 Let Ci be the clique si currently belongs to
 For each clique Cj ≠ Cj {
 gainj = ∆ weight(Ci) + ∆ weight(Cj) if si were moved to Cj
 }
 Let Cmax = clique with maximum gain
 Mark vertex si as tabu, and move it to clique Cmax
 Let Sol = the updated set of cliques, and add it to SolList
 }
 }
 Find solution BestSol with the greatest total weight in SolList
 If BestSol is first solution in SolList, return BestSol
 Sol = BestSol
 Empty SolList

 }
}

Figure 6.8: Pseudocode of the clique partitioning graph algorithm [Dorndorf94] used by the
Clique cASIC generation algorithm from Figure 6.7.

6.3 Results

For the cASIC architecture generation methods, the areas are computed based on

the manual layouts used for the RaPiD area calculation from section 4.3.3. Logic area is

computed using the same method, but the routing area is a more complex computation.

Area used by multiplexers and demultiplexers are again computed according to manual

103

layouts. But unlike RaPiD, wire area can add to the total area of the architecture. A wire

cross-section of up to 24 can be routed directly over the logic units, so as with RaPiD,

this routing area is considered “free”. However, when the routing cross-section is greater

than 24, the additional cross-section adds to the height of the architecture.

Table 6.1: The areas of the routing structures created by the Bipartite cASIC generation methods
using both the ports and the overlap methods. All possible orderings of the netlists were
considered, and the minimum, average, and maximum areas are given. The percent difference
between the minimum and maximum areas is also given.

Radar OFDM Camera Speech FIR Matrix Sort Image
Netlists 3 2 3 2 6 5 4 5
Ports Min 0.075 0.731 0.958 0.476 0.520 0.093 0.183 0.573
Ports Avg 0.076 0.731 0.959 0.476 0.582 0.094 0.185 0.582
Ports Max 0.077 0.731 0.959 0.476 0.629 0.097 0.187 0.589

% Diff 2.273 0.000 0.089 0.000 20.914 4.587 2.337 2.780
Overlap Min 0.093 0.429 0.301 0.371 0.247 0.131 0.248 0.573
Overlap Avg 0.094 0.429 0.305 0.373 0.263 0.140 0.251 0.582
Overlap Max 0.094 0.429 0.307 0.374 0.273 0.145 0.255 0.589

% Diff 0.917 0.000 1.983 0.690 10.345 10.390 2.749 2.780

First, the Bipartite technique was examined to determine the effect of the order

that netlists are merged into the cumulative solution. Table 6.1 lists, for each application,

the minimum, average, and maximum areas across the solutions for each ordering of the

netlists. The percent difference between the minimum and maximum areas is also given.

When there are only two netlists, there is only one possible ordering, and the minimum

and maximum values are identical. However, these results indicate that for any cases

with more than two netlists, the ordering can affect the final area. In one case, the routing

area varies by 20%. Therefore, this technique may not be appropriate for cases with

more than two netlists.

104

cASIC Application Area (Normalized to Clique Overlap)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Radar OFDM Camera Speech FIR Matrix Sort Image

Application

N
or

m
al

iz
ed

 A
re

a

No Share
Greedy (P)
Greedy (O)
Clique (P)
Clique (O)
Bipartite (P)
Bipartite (O)

Figure 6.9: Comparative area results of the different cASIC routing generation algorithms,
normalized to the Clique Overlap result for each application. The Bipartite results given are the
average across orderings.

The No Sharing algorithm creates a separate wire for every signal—a completely

different set of wires is used depending on which netlist is in operation. This method is

included to demonstrate the importance of sharing routing resources between netlists.

Areas are listed for Greedy, the average Bipartite case, and Clique, each with two

categories: Ports, and Overlap. As stated previously, Ports indicates that the similarity

between signals is computed according to the number of sources and sinks shared by

those signals. Overlap indicates that the similarity is computed according to common

location and length of the signals.

105

An area comparison of the cASIC methods is given in Figure 6.9, which has been

normalized to the area result of Clique Overlap (which on average produces the smallest

architectures). As expected, all three heuristic techniques of both similarity types

perform better than the No Share algorithm for all applications. Generally, Clique

performs better than the other methods, with Clique Overlap on average 2% smaller than

Bipartite Overlap, 6% smaller than Bipartite Ports, and 13% smaller than Greedy Ports or

Greedy Overlap. However, there is clearly room for improvement of the weighting

calculation used by the Clique Partitioning method, as both Greedy and the average

Bipartite produce a smaller area in some situations. Additionally, Clique sometimes

performs better using Ports, and other times using Overlap. An improved similarity

(weight) calculation for the Clique method should therefore incorporate both Ports and

Overlap similarity techniques.

106

Table 6.2: The areas, in mm2, of the eight different applications from Table 4.1, as implemented
with the three cASIC algorithms. The results from Table 4.2 though Table 4.4 are included for
reference. For the Greedy and Clique Partitioning cASIC method, results for both Ports and
Overlap style similarity computations are given. A summary of these results appears in Table 6.3.

Radar OFDM Camera Speech FIR Matrix Sort Image
Std. Cell Total 4.101 9.168 7.268 26.523 2.846 1.785 1.541 6.843
FPGA Total 19.719 59.157 23.006 78.877 26.292 19.719 26.292 19.719

Logic 2.838 --- --- 45.401 3.783 1.892 2.838 ---
Routing 2.158 --- --- 34.536 2.878 1.439 2.158 ---

Total 4.996 --- --- 79.937 6.661 3.331 4.996 ---
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.090 1.259 1.441 1.413 1.917 0.829 0.970 1.331
Total 1.523 5.377 3.619 14.161 3.658 1.952 2.163 2.947
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.089 0.938 0.973 0.493 1.011 0.385 0.462 0.664
Total 1.522 5.055 3.151 13.242 2.753 1.508 1.655 2.280
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.093 0.950 0.981 0.493 1.012 0.385 0.462 0.664
Total 1.526 5.068 3.159 13.242 2.754 1.508 1.655 2.281
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.078 0.909 0.842 0.622 0.752 0.090 0.236 0.716
Total 1.511 5.027 3.020 13.370 2.493 1.214 1.428 2.333
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.086 0.456 0.297 0.261 0.262 0.140 0.294 0.216
Total 1.520 4.574 2.475 13.010 2.004 1.264 1.487 1.833
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.075 0.731 0.958 0.476 0.520 0.093 0.183 0.573
Total 1.509 4.849 3.136 13.224 2.262 1.217 1.376 2.190
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.076 0.731 0.959 0.476 0.582 0.094 0.185 0.582
Total 1.509 4.849 3.136 13.224 2.324 1.218 1.378 2.199
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.077 0.731 0.959 0.476 0.629 0.097 0.187 0.589
Total 1.510 4.849 3.137 13.224 2.370 1.221 1.380 2.206
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.093 0.429 0.301 0.371 0.247 0.131 0.248 0.573
Total 1.526 4.547 2.479 13.120 1.989 1.255 1.441 2.190
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.094 0.429 0.305 0.373 0.263 0.140 0.251 0.582
Total 1.527 4.547 2.483 13.121 2.005 1.264 1.444 2.199
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.094 0.429 0.307 0.374 0.273 0.145 0.255 0.589
Total 1.527 4.547 2.485 13.122 2.015 1.269 1.448 2.206

Bipartite Max
Overlap

Clique
Ports

Clique
Overlap

Bipartite Min
Ports

Bipartite Avg
Ports

Bipartite Max
Ports

Bipartite Min
Overlap

Bipartite Avg
Overlap

RaPiD

No Share

Greedy
Ports

Greedy
Overlap

107

Table 6.3: Area improvements calculated over the reference architectures, then averaged across all
applications. The Bipartite results are the average across netlist orderings.

Method Area Method Area Method Area
FPGA 0.20 Std Cells 2.34 Std Cells 7.20
RaPiD 0.48 FPGA 0.38 RaPiD 4.01

No Share 1.63 No Share 2.95 No Share 9.00
Greedy (P) 1.87 Greedy (P) 3.39 Greedy (P) 10.63
Greedy (O) 1.87 Greedy (O) 3.39 Greedy (O) 10.62
Clique (P) 1.94 Clique (P) 3.64 Clique (P) 11.50
Clique (O) 2.16 Clique (O) 3.75 Clique (O) 12.30

Bipartite (P) 1.98 Bipartite (P) 3.72 Bipartite (P) 11.77
Bipartite (O) 2.08 Bipartite (O) 3.76 Bipartite (O) 12.14

Improvement
Over Std. Cells

Improvement
Over RaPiD

Improvement
Over FPGA

Table 6.2 gives the areas found by the different cASIC routing generation

algorithms, with the corresponding standard cell, FPGA, and RaPiD areas listed for

comparison. These results are summarized in Table 6.3. As these tables indicate, cASIC

architectures are significantly smaller than the corresponding FPGA area for the same

netlists. The heuristics range on average from a 10.6x improvement to an 12.3x

improvement in area, while even the No Sharing algorithm results in a 9x improvement.

Given the results presented in section 4.3.4, FPGAs without custom embedded

multipliers and RAMs would be expected to require even more area than the VirtexII for

these applications.

Comparisons of cASIC techniques to RaPiD also yield favorable results, with area

improvements of 3.4x to 3.8x for the cASIC heuristics. These applications were created

for RaPiD, and RaPiD has been hand-optimized for DSP-type operations, which make it

more efficient (2.8x smaller) than a generic FPGA for these applications.

108

Finally, the cASIC heuristic methods also created architectures on average half

the size of standard cell implementations of the applications. One of the reasons the

cASIC architectures are able to achieve such small areas is because the tools use

full-custom layouts for the computation blocks. The FIR, Matrix, and Sort architectures

demonstrate the value of the full-custom units. In these applications, the standard cell

area is estimated to be the size of the largest member netlist (as explained in section

4.3.1). Even with the overhead of adding reconfigurability, these cASIC area results are

close to or slightly better than the standard cell implementation. The largest benefits,

however, occur in the cases where an application has several differently-structured

netlists, and a separate circuit must be created for each member netlist in a standard cell

implementation. By reusing components for different netlists, the cASIC architectures

achieve areas on the order of a full-custom implementation (generally assumed 2-3x

smaller than standard cells).

The cASIC method of architecture creation therefore has significant area benefits

for situations in which standard cells are generally considered instead of FPGAs for

efficiency reasons. Finally, a full-custom manual layout could be created for these

applications that might be smaller than the cASIC architectures. However, this would

require considerably more design time, which can be quite expensive, and may not

always be possible due to production deadlines.

109

6.4 Summary

This chapter described the cASIC style of architecture, and presented three

different heuristics to create these designs. The first uses a greedy approach, the second

uses recursive maximum weight bipartite matching, while the third uses a more

sophisticated graph-based algorithm called clique partitioning to merge groups of similar

signals into wires. Two different methods to measure this signal similarity were

discussed, one based on the common ports of the signals, and the other based on the

common span (overlap). The results of the chapter indicate that a better similarity

measurement would be a combination of the two, incorporating both ports and signal

overlap.

The area comparison also demonstrates the inefficiencies introduced by the

flexibility of FPGAs. While the generic structure is critical for implementing as wide a

variety of circuits as possible, it is that flexibility that causes it to require 12x more area

than a cASIC architecture. The VirtexII FPGA does, however, perform much better than

earlier designs due to the use of coarse-grained multiplier and RAM units. The RaPiD

architecture extends the use of coarse-grained units to the entire architecture, but is

customized to DSP as a whole. If the application set is only a subset of DSP, further

optimization opportunities exist, with cASIC techniques achieving up to 3.8x area

improvements over the RaPiD solution. This chapter also demonstrated another key

benefit cASIC generation has over the use of a static architecture such as RaPiD. In

110

cASIC generation, if enough area is allotted on the SoC die, an architecture can be

created for any set of netlists. On the other hand, the RaPiD resource mix is fixed. For

some applications, this structure may not have the correct logic mix for the application,

leading to copious wasted area. Alternately, a static structure may not provide a rich

enough routing fabric, as was demonstrated in this chapter. Finally, the area results

presented here indicate that cASIC architecture design is not only an excellent alternative

to FPGA structures when the target circuits are known, but also a viable alternative to

standard cell implementations, with architectures under half the size.

 111

Chapter 7

Flexible Architectures

Chapter 6 concerned the automatic creation of coarse-grained architectures with

only the minimum amount of reconfigurability required to implement a given application

set. The applications, in RaPiD netlist format, formed the architecture specification, and

the generation tool created a very ASIC-like design. This type of design is unlikely to be

flexible enough to handle any changes, such as bug-fixes, upgrades, or additional

algorithms. Instead the focus was to provide for a high degree of hardware re-use among

the applications, assuming the full application set was known in advance.

This chapter instead concentrates on the generation of flexible reconfigurable

routing architectures for the Totem Project, exploring a number of different heuristics.

The automatic generation of routing architectures is critical to reconfigurable architecture

design. An architecture could contain an overabundance of logic units, but unless these

units can be connected to implement a required circuit, the architecture is useless. On the

other hand, an architecture with the minimum number of computational units required by

the application can be used, provided enough routing resources are available.

112

The next few sections describe the structure of both the logic and the routing of

the flexible architectures, with the primary focus on the generation of the routing

structures. The algorithms used to generate the routing structures will be discussed in

depth, with accompanying pseudocode. The area results of the architecture generation

algorithms are then given, and compared to the standard cell, FPGA, and RaPiD results

from Chapter 6. Finally, a quick flexibility comparison of the architectures is presented,

with a more in-depth flexibility examination given in Chapter 9.

7.1 Flexible Architectural Style

The goal of the Totem flexible architecture generation is to automatically create

an architecture customized for a particular application set, with some extra resources if

desired for future flexibility. These flexible architectures are in the same style as RaPiD

[Ebeling96, Cronquist99a], with coarse units, 1D design, word-sized routing, bus

connectors, and multiplexers/demultiplexers. A detailed description of the RaPiD

architecture is given in section 4.1. There are some differences between RaPiD and the

generated architectures, as well as between distinct generated architectures. The first

difference is in terms of the logic composition, including quantity of units, proportions of

types of units, and arrangements along the 1D axis of the architecture. The routing

architecture also changes, with the quantity, types (local/distance), and segment lengths

of the tracks altered depending on the needs of the netlists. In RaPiD, each local track

contains some wires that span four logic units and some wires that span five, whereas

113

Totem architectures are restricted to only one wire length per track (wire length is defined

as the number of logic units spanned). Like RaPiD, Totem architectures restrict each

track to only be one type: local or distance.

While RaPiD has a fixed logic mix and set of routing tracks, the Totem

algorithms can vary these particular features to achieve a more customized architecture.

Essentially, RaPiD becomes one architectural instance that the flexible architecture

generation tool could create. However, the tool should be able to create architectures

both larger and smaller, depending on the specified domain. For example, RaPiD was

designed specifically for DSP operations. If a user only needs a small set of FIR filters,

flexible architecture generation will be able to automatically create an architecture more

optimized than RaPiD for FIR filters. Likewise, if the tool is presented with a set of

netlists which require more resources than the RaPiD architecture might provide, the

generation tool will still be able to create an architecture which can implement those

netlists.

7.2 Logic Generation

The logic generation step for flexible architecture generation is a slightly

modified version of the logic generation described in Chapter 5 and used for the cASIC

designs. Among the changes is the ability to specify additional logic resources. The tool

outputs the minimum number of each type of unit required to implement the given

netlists, and the user can specify if he or she wishes to add more. Simulated annealing

114

[Sechen88] is then used to simultaneously find a physical placement of the units and a

mapping of the netlists to those physical components.

Unlike in Chapter 5, logic components can be forced to be spaced evenly

throughout the architecture. Some of the routing generation algorithms focus on the

creation of a very regular structure (for which there should be a regular logic structure).

In this case, the physical units are first spread evenly though the architecture. The

simulated annealing phase is then used to bind the netlist instances to physical

components, much like traditional FPGA placement. The physical components are not

moved during this operation. The physical placement and netlist mapping are needed to

determine the connectivity requirements of the circuits for the routing generation stage.

7.3 Routing Generation

After this placement is performed, the routing algorithms heuristically generate

the configurable routing structure based on the signal locations and lengths within the

application netlists. At the highest level of these algorithms, each essentially iteratively

adds routing tracks until all signals from all the netlists in the problem can be routed onto

the architecture. After all the tracks have been added, the user is given the opportunity to

increase the routing tracks over the calculated minimum to provide additional flexibility.

Figure 7.1 illustrates an example flexible routing architecture that might be created from

the final placement of Figure 5.6.

115

++XXXX

Figure 7.1: Flexible routing architecture created for the example from Chapter 5. The vertical
lines represent the multiplexers and demultiplexers that are on every port of each unit. Black
wires are used by both netlists of Figure 5.2, while light wires are only used by the light netlist.
Dark grey wires and logic are only used by the dark grey netlist. Logic resources used by both
netlists show both colors.

7.3.1 Shared Concepts
Each of the routing generation algorithms shares a few key concepts. The first is

the difference between local and distance routing tracks. Local tracks, which are the

upper routing tracks in RaPiD (Figure 4.1), and also appear in Figure 7.2a, are used for

short connections. The length of a wire can be determined by finding the indices of the

furthest units a wire can reach, and subtracting the left index from the right index. A wire

that spans from the outputs of unit 11 to the inputs of unit 13 would therefore be

considered a length 2 wire. A special track, the topmost shown in Figure 4.1 and Figure

7.2, is a track containing length 0 wires. These wires are also called "feedback" wires, as

they only route from a unit's outputs to that unit's inputs.

Distance routing tracks are the bottom ones in RaPiD, and also appear in Figure

7.2b. These tracks include the added flexibility that longer wires can be created from

shorter ones through the bus connectors. Each bus connector can be independently

programmed to provide either a connection or a disconnect, and also provides an optional

116

pipeline delay. This allows for a great deal of routing flexibility, but can add delay as a

signal passes through the bus connector, and adds a not-insignificant area penalty.

9 10 11 12 13 14 15 16

1

2

4

0

... ...

9 10 11 12 13 14 15 16

4

8

......

(a) (b)

Figure 7.2: Examples of the different types of routing tracks, (a) local tracks, and (b) distance
tracks with bus connectors (represented by the squares on the tracks). The “wire length” of each
track is given to the right of the track.

Some arbitrary restrictions have been placed on the wire lengths allowable for the

two different types of tracks, based on experience with the RaPiD architecture. The local

tracks are allowed to have wire lengths of up to 8. The motivation here is that the local

track wires are intended for short, fast connections, and at 8 or more units apart, the

connections are no longer all that "local". For distance wires, there are two separate

restrictions. First, distance wires have a minimum length of 8, because any shorter wire

length in a distance track would add significant area overhead with the resulting bus

connectors (which would potentially also slow down longer connections significantly).

Finally, the distance routing tracks have also been restricted to have a wire length no

117

greater than 16. The architecture generation algorithms did not create very many length-

16 tracks at all, and therefore, longer wire lengths are not permitted.

Another important concept, along with track type and wire length, is the "offset"

of the track. This offset determines the left-right shifting (or “placement”, as discussed in

Chapter 8) of the track once its wire length has been determined. Figure 7.3

demonstrates a type of routing architecture where all tracks have the same offset value.

This type of routing architecture is referred to as a "non-distributed" architecture. Note

how the breaks between local wires and the connectors separating distance wires are

clustered at identical horizontal positions. With this type of architecture, the placement

of a circuit would greatly affect its routability. The routing choices available to a signal

can be very dissimilar (and potentially undesirable) depending on the location of the

signal's source and sink components.

On the other hand, by carefully choosing offset values for the tracks, an

architecture closer in design to the one shown in Figure 7.4 can be achieved, which is

referred to as a "distributed" routing architecture. Note how the shifting of the tracks

allows the breaks and bus connectors to be evenly distributed horizontally through the

architecture. This type of routing architecture should provide more flexibility in routing,

as it provides a variety of routing choices for signals connecting to each component. A

more in-depth study of track placement issues, along with a description of the algorithm

used here, is presented in Chapter 8.

118

Figure 7.3: An extreme example of a non-distributed routing architecture. Bus connectors and
breaks between local wires are clustered at specific horizontal locations. This leads to a limited
variety of routing possibilities for each position.

Figure 7.4: A distributed routing architecture. The breaks and bus connectors are distributed
through different horizontal locations of the architecture, providing a variety of routing options at
each position.

Evaluating Progress During Routing Construction

Each of the algorithms that will be presented is constructive—tracks are added

until all signals in the application netlists can be routed onto physical wires. These

algorithms operate in a greedy fashion, adding the track type and track length that

provides the most benefit for the lowest cost. Cost is assumed to be area and delay,

where bus connectors consume area and increase delay, and shorter wires are faster than

long wires. However, the relative “benefit” of adding different track types or lengths

must also be measured.

119

At the start of the execution of a routing generation algorithm, no tracks have yet

been constructed, and therefore all signals are “unroutable”. As tracks are added, the

number of unroutable signals decreases. Therefore, the cross-section of signals that

cannot yet be routed onto the routing architecture is used to monitor the progress of the

algorithms. This is calculated by finding the maximum signal cross-section at any

component location for each individual netlist, then finding the maximum of these values

across all netlists.

XX ++XX
OUT

OUT
0

IN1

IN2

IN1

IN2
/3 /4 /3 /4 /4 /4 /3 /1 /12 2 2 2 2 3 3 2 1
3 4 3 4 4 4 3 2 1 4

Figure 7.5: Calculating the unroutable cross-section for the placement of Figure 5.6. The signal
cross-section is given for each netlist (light grey netlist / dark grey netlist) at each point in the
placement. The maximum cross-section across the netlists appears below, and the overall
cross-section at right.

This value is also used as a lower bound on the number of tracks that need to be

added to implement the source netlists. When the lower bound is determined before any

tracks are created, it represents the minimum total number of tracks required to make the

architecture routable for the given netlists. This lower bound would, however, be an

improbable solution due to the very high number of bus connectors that would likely be

required in order to use that few tracks. Each of the algorithms also uses this lower

120

bound calculation throughout architecture generation as one of the indicators of whether

or not a particular track is providing any "benefit" to the architecture. The algorithms

attempt to add tracks that will decrease the unroutable signal cross-section value.

Fast Integrated Router

In order to calculate the cross-section of unroutable signals, the generator must

determine which signals are and are not routable. Because this is a frequent operation

performed within loops, a very fast router (faster than the higher-quality router used for

"final" routing presented in section 4.2.3) that provides reasonable results is needed.

Initially, a left-edge algorithm [Hashimoto71] was considered. However, because not all

signals will be routable most of the time, and routing decisions affect the construction of

tracks, this algorithm would not be appropriate.

s1 s2

w
Figure 7.6: An example situation where an unmodified left-edge routing algorithm leads a routing
generation algorithm to construct a more expensive solution. A left-edge algorithm will route s1
onto wire w, which causes the creation of another long track to implement signal s2.

Figure 7.6 illustrates why this is the case. Signal s1 with a length of 2 appears

before the length-7 signal s2 in the list of signals sorted by left edge. Therefore, s1 would

be routed onto wire w, even though signal s2 might "fit" the wire better. Signal s2 would

be considered "unroutable" in this example, and later a routing track would have to be

121

created to implement this signal. However, if s2 were routed onto wire w, the routing

generator could instead create a cheaper track to implement s1, leading to an overall more

efficient solution.

Therefore, the left-edge algorithm was modified to use a greedy heuristic. Signals

are still considered by increasing left edge. However, rather than routing each signal to

the leftmost unassigned wire that can implement it, the algorithm also considers how

closely the span of the signal matches the span of the wire. Each time a wire/signal pair

is considered, other signals are considered which could also be routed onto the wire. The

signal with the closest “fit” is routed onto the wire. If the original signal from the

wire/signal pair was not chosen, that signal is reconsidered on the next iteration. For the

routing operation, each netlist is considered a separate problem—signals from different

netlists can be assigned to the same wire. The pseudocode for this routing operation is

given in Figure 7.7.

The next few sections describe three different routing architecture generation

algorithms. The first, Greedy Histogram, obtains solutions where the wire length and

spacing within each track is uniform, but the breaks between local track wires and the bus

connectors between distance track wires are not restricted to be distributed throughout the

architecture. The remaining two algorithms, Add Max Once and Add Min Loop, focus

on generating regular architectures, where the logic and routing (breaks and spaces) are

very evenly distributed. The goal is to provide some uniformity in the number and type

of routing resources available to a given signal regardless of where its source instance is

122

actually placed in the architecture. The details of each algorithm are presented below,

followed by a comparison of the results obtained by each.

route_signals(T,S) {
 // route signals in S onto tracks in T

 Let S’ = array of signals in S, sorted by increasing left edge
 Let W = array of wires in tracks in T, sorted by increasing left edge

 While S’ not empty {
 Let s0 = first signal in S’
 For each wi in W {
 If wi already implements signal from s0’s netlist, go to next wi
 If wi is from a local track and s0 fits in wi {
 // see if there’s a better signal choice for wi
 Let sj be the signal in S’ that is from a netlist not
 already using wi, fits in wi and shares the most span
 with wi
 Assign sj to wi and remove it from S’
 Break the For Loop
 } Else if wi is from a distance track and the left edge of s0
 lies within segment wi {
 Let sj be the signal in S’ that is from a netlist not
 already using wi that has a left edge falling within wi
 and shares the most span with wi and any other needed
 distance segments
 Assign sj to wi and any other segments from that distance
 Track that it requires
 Break the For loop
 }
 }

 If the For loop completed without finding a wire that could
 implement s0 (regardless of whether or not s0 was the chosen
 sj), mark s0 as unroutable and remove it from S’
 }
}

Figure 7.7: Pseudocode summary of the fast greedy router used within the flexible routing
generation algorithms presented in this chapter.

7.3.2 Greedy Histogram
This algorithm attempts to keep the overall number of tracks low, while

encouraging the use of local tracks over distance tracks in order to avoid introducing a

large number of bus connectors. Each track has a specific type and wire length used for

123

all wire segments within that track. However, no restrictions are made on the offsets that

can be used. This creates a potentially non-distributed routing architecture which may

not have uniform connectivity, and thus may not be as flexible as a more regular

interconnect architecture. However, the goal of the algorithm is to customize the routing

architecture significantly for the applications given (within the limitations of the

previously described architectural style), and may also handle modified versions of these

target applications. The pseudocode for this algorithm is given in Figure 7.8, with its

sub-functions in Figure 7.9.

Greedy_Histogram() {
 Let S = the set of all signals
 Let U = the set of unroutable signals (initially all signals)
 Let T be the set of tracks (initially empty)
 While U not empty {
 Let H = histogram of U (unroutable signals) by signal length
 Let length = highest index of H that contains the max value in H

 If (length == 0)

T = T + get_feedback_track(U)
 Else if (length < MIN_DISTANCE_LENGTH)
 T = T + get_local_track(U, length)
 Else if (length > MAX_LOCAL_LENGTH) {
 T = T + get_distance_track(U, length)
 } Else {
 Let tlocal = get_local_track(U, length)
 Let tdist = get_distance_track(U, length)
 Let localsol = routing solution after routing U onto tlocal
 Let distsol = routing solution after routing U onto tdist
 If distsol’s unroutable cross-section < localsol’s
 T = T + tdist
 Else T = T + tlocal
 }
 route_signals(T,S), and update U
 }
}

Figure 7.8: Pseudocode for the main body of the Greedy Histogram generation algorithm. Sub-
functions appear in Figure 7.9.

124

In this algorithm, tracks are added one at a time within an infinite loop. The loop

is broken when all of the netlists can be fully routed onto the architecture using the

routing procedure discussed in section 7.3.1. The algorithm chooses the wire length for a

"new" track by looking at the histogram of the lengths of the unroutable signals. The

actual track creation method depends in part upon the wire length chosen, as indicated by

the pseudocode in Figure 7.8 and its use of the sub-functions of Figure 7.9.

125

get_offset_guess(U, length) {
 Let H’ = a histogram with indices 0…length-1
 For all i, 0…length-1 {
 Let H’[i] = the number of signals of U that would be routable onto
 a track of the given length at offset i.
 }

 Return index offsetGuess of the largest value in the array H’
}

get_feedback_track(U) {
 // feedback signals are efficiently implemented either by special
 // feedback tracks or regular length-2 local tracks
 offsetGuess = get_offset_guess(U, 2);
 Let t1 = length-2 local track with offset offsetGuess
 Let t2 = feedback track
 Let sol1 = routing solution after routing U onto t1
 Let sol2 = routing solution after routing U onto t2
 If sol1 has lower cross-section than sol2, or cross-sections are same
 but sol1 routed more signals from U, return t1
 Else return t2
}

get_local_track(U, length) {
 offsetGuess = get_offset_guess(U, length);
 Let besttrack = local track of given length using offsetGuess
 Let bestsol = routing solution after routing U onto besttrack
 For all toffset, 0…length-1 {
 Let t = local track of given length with offset toffset
 Let tsol = routing solution after routing U onto t

If tsol has lower cross-section than bestsol, or cross-sections
are same but tsol routed more signals

 Let besttrack = t
 Let bestsol = tsol
 }
 }
 Return besttrack
}

get_distance_track(U, length) {
 offsetGuess = get_offset_guess(U, length);
 Let besttrack = distance track of given length using offsetGuess
 Let bestsol = routing solution after routing U onto besttrack
 For all tlength, MIN_DISTANCE_LENGTH…length {
 For all toffset, 0…tlength-1
 t = distance track of length tlength using toffset

tsol = routing solution after routing U onto t
If tsol has lower cross-section than bestsol, or cross-sections
are same but tsol routed more signals

 Let besttrack = t
 Let bestsol = tsol
 }
 }
 }
 Return besttrack
}

Figure 7.9: Sub-functions for the Greedy Histogram Algorithm from Figure 7.8.

126

If the length from the histogram is 0, this indicates a feedback signal, which can

be implemented either on a wire with length 0 or a wire of length 2. Wires of length 1

will not fit this type of signal, because they only connect one unit's outputs to the inputs

of the unit directly to the right. Both possibilities are tested to see which gives the best

results in terms of reducing the cross-section of unroutable signals.

For lengths smaller than the minimum wire length of a distance routing track, all

possible offsets (from 0 to length-1) are checked to find the best one for that length. An

offset "guess" is also calculated by profiling the signals of the chosen length to determine

the most common required track offset to route those signals. If none of the other offsets

that are checked provide better results than the offset guess, that guess is used as the

chosen offset.

For lengths greater than the maximum allowable length for local routing tracks,

all wire lengths allowable for the distance routing tracks are compared, along with all

possible offsets for each length, to find the track that reduces the histogram the most at

the chosen length. The last remaining case is the one where the chosen length could be

implemented by either a local track or a distance track. Here the best of each type of

routing track is found using the methods just described. These two tracks are then

compared to find the one that results in the smallest cross-section of unroutable signals,

choosing the local track in the case of a tie in order to avoid unnecessarily adding bus

connectors.

127

7.3.3 Regular Architectures
The next two algorithms generate a distributed routing architecture, where not

only are the breaks or connectors evenly distributed within each track, but also across

tracks. In other words, track offsets are chosen to provide a somewhat consistent level of

connectivity regardless of location in the architecture. Figure 7.4 shows an example of

this type of routing architecture.

In addition to specifying that the logic and routing be distributed, these algorithms

also require that wire lengths must be a power of two. This restriction is common in

FPGA architectures, and is intended to further generalize the architectures. Thus, the

track possibilities are local tracks of length 0, 2, and 4, and distance tracks of length 8 and

16.

Add Max Once

The Add Max Once algorithm is more simple in organization than the Greedy

Histogram algorithm. The algorithm begins at the shortest track length and progresses to

the longest track length, seeing how many tracks of each type can be added while still

improving the cross-section of unroutable signals. Tracks of the given type are added

until no further reductions are possible with more tracks of that type. One issue with the

Add Max Once algorithm is that only one type of distance routing track can be added.

Given enough distance routing tracks of any length, all signals can eventually be routed

by using the bus connectors to form longer wires when necessary. Therefore, the

128

algorithm would add enough tracks of the first distance length considered to route all

remaining signals—no other distance track length would be reached. Length 8 distance

routing tracks were chosen because a length of 16 would cause too many tracks to be

created, and because this is closer to the length chosen by the RaPiD designers. The

pseudocode for the algorithm appears below.

Add_Max_Once() {
 Let T be the set of tracks (initially empty)
 Let S = the set of all signals

// add any feedback tracks that help unroutable cross-section
nTracks = get_maxtracksbenefit(T, S, 0, LOCAL)
Add nTracks feedback tracks to T

 route_signals(T,S)

// add any length-2 local tracks that help unroutable cross-section
nTracks = get_maxtracksbenefit(T, S, 2, LOCAL)

 Add nTracks local length-2 tracks to T
 route_signals(T,S)

// add any length-4 local tracks that help unroutable cross-section
nTracks = get_maxtracksbenefit(T, S, 4, LOCAL)

 Add nTracks local length-4 tracks to T
 route_signals(T,S)

// add length-8 distance tracks to route remaining signals
Let U be the set of unroutable signals
While U not empty {
 Add one distance length-8 track to T
 route_signals(T,S) and update U
}

}

Figure 7.10: Pseudocode for the main body of the Add Max Once flexible routing generation
algorithm. The pseudocode for the route_signals() function appears in Figure 7.7, and the
pseudocode for the get_maxtracksbenefit() function appears in Figure 7.11.

129

get_maxtracksbenefit(T, S, length, type) {
 // find the point at which adding more tracks of the given type
 // (distance or local) and given length does not improve
 // cross-section of unroutable signals

 Let U = the set of all unroutable signals
 Let maxTracks = |U|
 Let minCrossSection = cross-section of unroutable signals if
 maxTracks tracks of given length were to be added to T

 For all nTracks, maxTracks-1…0 {
 Let crossSection = cross-section of unroutable signals if nTracks
 tracks of given length were to be added to T
 If crossSection > minCrossSection {
 Return nTracks+1
 }
 }
 // cannot improve unroutable cross-section with this length
 Return 0
}

Figure 7.11: The pseudocode for a subfunction used by both the Add Max Once algorithm in
Figure 7.10 and the Add Min Loop algorithm in Figure 7.13.

Add Min Loop

The previous algorithm tends to weight towards the use of distance routing tracks

because it only considers each wire length and type combination once. However, it is

possible that once a distance track is added, using additional local tracks will once again

reduce the unroutable signal cross-section. Figure 7.12 gives an example where this is

the case. In this example, AMO would not add a length-2 track for signal s2 because that

would not reduce the cross-section of unroutable signals—the cross-section would remain

1. Instead, AMO would implement all of the signals using two length-8 distance tracks,

as shown in Figure 7.12b. However, the same problem could be solved using one length-

8 distance track and one length-2 local track. Therefore, the Add Min Loop algorithm

has been created in an effort to more accurately generate tracks with local wires. After

130

each track is added, this algorithm will return to the cheaper tracks to determine if any

would be useful. Its pseudocode is presented in Figure 7.13.

s1 s2 s3

(a)

s3s1

s2
(b)

s2

s3s1

(c)

Figure 7.12: An example of AMO creating a more costly solution than necessary. (a) The routing
generation problem, (b) the AMO solution, and (c) a less costly solution to the same problem.

This algorithm iteratively adds a small number of tracks to the overall routing

architecture, until full routability can be achieved. Only one type of track is added per

iteration. Within the loop, the algorithm repeatedly attempt to add tracks in the following

order: length 2 local tracks, length 4 local tracks, length 16 distance tracks, and length 8

distance tracks. This order is based on an estimated relative cost of the various track

types. Bus connectors consume area (priority is given to local tracks, followed by

131

distance tracks with fewer connectors), and short wires are faster than long ones (priority

within local tracks is given to shorter lengths).

In the case of the local routing tracks, the algorithm attempts to add as many

tracks as the length of the wires in the track (providing potentially the full range of offsets

for that particular track type) per iteration. For distance routing tracks, which are

considered to be much more expensive, only a single track can be added per iteration.

Tracks are only kept if they result in a reduction in the unroutable cross-section. If any

tracks are kept, all of the more “expensive” tracks are moved. So if a local track of

length 4 is created, any tracks of length 8 or length 16 would be deleted. Once the

“cheaper” track is added, the architecture may not need as many “expensive” tracks as

was earlier computed. After the track counts are modified accordingly, execution begins

again from the top of the loop, and the four track types are again considered in the same

order as before.

At times, none of the track addition attempts will result in a reduction of the

unroutable signal cross-section. In order to break this stalemate, the algorithm first looks

at which of the attempts made would have reduced the count of unroutable signals the

most. A single track of this type and wire length is created, and a new iteration begins.

Note that there is a degree of favoritism in case of ties, where cheaper tracks are preferred

over more expensive ones.

132

Add_Min_Loop() {
 Let T be the set of tracks (initially empty)
 Let S = the set of all signals

Let nTracks = minimum number of feedback tracks required to get the
maximum possible reduction in cross-section of unroutable signals

 Add nTracks feedback tracks to T

 Loop {
 route_signals()
 If all signals routed, break out of loop

 // try adding up to 2 length-2 local tracks

 nTracks = get_maxtracksbenefit(T, S, 2, LOCAL)
 If (nTracks > 2) nTracks = 2
 Add nTracks number of length-2 local tracks to T
 If (nTracks != 0) {
 Delete all local tracks from T where track length > 2
 Delete all distance tracks
 Jump to start of loop
 }

 // try adding up to 4 length-4 local tracks

 nTracks = get_maxtracksbenefit(T, S, 4, LOCAL)
 If (nTracks > 4) nTracks = 4
 Add nTracks number of length-4 local tracks to T
 If (nTracks != 0) {
 Delete all distance tracks
 Jump to start of loop
 }

If adding one length-16 distance track reduces the cross-section
of unroutable signals {
 Add one length-16 distance track to T
 Delete all distance tracks from T where track length < 16
 Jump to start of loop
}

If adding one length-8 distance track reduces the cross-section of
unroutable signals {
 Add one length-8 distance track to T
 Jump to start of loop
}

// if algorithm gets here, none of the ones tried reduced the
// cross-section of unroutable signals
Let length, type = length and type of track from above tests that
produced a solution with the fewest unroutable signals. If a tie,
choose based on the order they were considered
Add one track of that length and type to T

 }
}

Figure 7.13: The pseudocode for the Add Min Loop algorithm. The pseudocode for the
route_signals() function appears in Figure 7.7, and the pseudocode for the
get_maxtracksbenefit() function appears in Figure 7.11.

133

7.4 Results

The next few sections present comparative results of flexible routing architecture

generation algorithms. First, the area results of the algorithms are compared to each

other. Next, the resulting areas are also compared to those of the corresponding standard

cell, FPGA, and RaPiD reference architectures. Finally, an initial flexibility comparison

is made between the algorithms, with a more in-depth examination presented in Chapter

9.

7.4.1 Area
The same applications that were used for the cASIC comparisons of section 6.3

are used here to compare the flexible architectures. These applications are listed in Table

4.1. The standard cell (Table 4.2), FPGA (Table 4.3) and RaPiD (Table 4.4) reference

architecture results from section 6.3 are also presented here for context. The areas of the

flexible architectures are computed using the same methods as the cASIC area

computations. Logic area is the sum of the areas of the manually-designed unit layouts;

routing area is the sum of the areas of the layouts of the multiplexers, demultiplexers, and

bus connectors. Again, wire cross-sections of greater than 24 can increase the height of

the architecture beyond the height required by the logic units, and therefore increase the

total area of the architecture.

134

Table 7.1: A table of the number of routing tracks created for each application by each routing
generation algorithm. A lower bound is also given, and the factor of the bound is given for every
case.

Radar OFDM Camera Speech FIR Matrix Sort Image Average
Factor

Actual 17 34 24 25 18 24 21 21
Bound 11 18 13 13 11 10 11 12
Factor 1.55 1.89 1.85 1.92 1.64 2.40 1.91 1.75
Actual 18 28 25 24 17 21 21 17
Bound 13 21 16 17 11 10 13 12
Factor 1.38 1.33 1.56 1.41 1.55 2.10 1.62 1.42
Actual 18 32 26 27 18 18 21 20
Bound 13 21 16 17 11 10 13 12
Factor 1.38 1.52 1.63 1.59 1.64 1.80 1.62 1.67

AML

AMO

GH 1.86

1.55

1.61

Table 7.1 lists the number of routing tracks created by each flexible routing

generation algorithm, while Figure 7.14 charts the area results. A lower bound on the

number of tracks is also given for each application set for each algorithm. This lower

bound is based upon the signal cross-section of the placement. Since the Greedy

Histogram (GH) method permits the physical units to move during placement, it results in

a “better” placement that generally has a smaller signal cross section. On the other hand,

the Add Max Once (AMO) and Add Min Loop (AML) algorithms have the same lower

bound, as they use the same placement techniques. Each of the algorithms result in a

number of tracks within a factor of 1.5 to 2 of the lower bound. However, in order to

actually achieve a track count reaching the lower bound, a large number of bus

connectors would likely be required in order to provide such a high degree of wire

sharing between signals from different netlists. It is unlikely, especially as the number of

dissimilar netlists in the application increases, that an efficient routing structure would

result.

135

Figure 7.14 graphs the area of the generated flexible architectures for eight

different domains. This figure indicates that while the areas of the architectures created

by the three different algorithms are somewhat close, there are some notable differences.

First, the Greedy Histogram algorithm has shown to have some unexpected results. This

algorithm was intended to create architectures less flexible, but more optimized, than the

two regular routing algorithms. In most cases, this is in fact true. However, there are

also a number of applications for which the Greedy Histogram method produces

architectures that are actually larger than those created by the other algorithms. One

likely explanation for this behavior is that the Greedy Histogram algorithm does not

consider the “big picture” when making decisions. For example, if the histogram

indicates that the most common signal length is 11, and the second-most common signal

length is 12, the algorithm will create a track of length 11, without considering that a

length-12 track is also able to implement length-11 signals. This could lead to the

creation of more tracks than necessary.

Generally, AMO results in an architecture with fewer tracks, but more bus

connectors than AML (which emphasizes the use of local tracks when possible).

However, in an effort to use fewer bus connectors, the AML algorithm may actually

create more tracks than the AMO algorithm. These issues are reflected in the area

results. For the Radar and Sort applications, both AMO and AML create architectures

with the same number of tracks. However, the area of the AMO architectures is slightly

higher due to a greater number of bus connectors. This is even more noticeable for the

136

Speech and Camera applications where the AML algorithm actually creates more tracks

than the AMO algorithm, but still results in smaller architectures. In other cases, where

the area of the AML algorithm is higher than that of the AMO algorithm, the AML

algorithm created a significantly greater number of tracks, increasing the width of

multiplexers and demultiplexers, and in the case of OFDM, also increasing the height of

the architecture. A future generation algorithm that considers the area tradeoff between

bus connectors and number of tracks could result in smaller architectures than AMO and

AML in most if not all cases.

Flexible Architecture Area (Normalized to Greedy Histogram)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Radar OFDM Camera Speech FIR Matrix Sort Image

Application

N
or

m
al

iz
ed

 A
re

a

GH
AMO
AML

Figure 7.14: Comparative area results of the different flexible routing generation algorithms,
Greedy Histogram (GH), Add Max Once (AMO), and Add Min Loop (AML). The areas have
been normalized to the Greedy Histogram result.

137

Table 7.2: The areas, in mm2, of the eight different applications from Table 4.1, as implemented
with the three flexible routing architecture generation algorithms. The results from Table 4.2
though Table 4.4 are included for reference. A summary of these results appears in Table 7.3.

Radar OFDM Camera Speech FIR Matrix Sort Image
Std. Cell Total 4.101 9.168 7.268 26.523 2.846 1.785 1.541 6.843
FPGA Total 19.719 59.157 23.006 78.877 26.292 19.719 26.292 19.719

Logic 2.838 --- --- 45.401 3.783 1.892 2.838 ---
Routing 2.158 --- --- 34.536 2.878 1.439 2.158 ---

Total 4.996 --- --- 79.937 6.661 3.331 4.996 ---
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.086 0.456 0.297 0.261 0.262 0.140 0.294 0.216
Total 1.520 4.574 2.475 13.010 2.004 1.264 1.487 1.833
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 1.271 15.896 5.651 22.202 1.737 2.138 2.110 2.302
Total 2.705 20.014 7.829 34.950 3.478 3.261 3.303 3.919
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 1.443 16.682 6.591 24.886 1.888 1.224 2.283 2.065
Total 2.877 20.800 8.768 37.635 3.630 2.347 3.476 3.681
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 1.431 17.470 6.168 23.430 1.870 0.930 2.262 2.208
Total 2.865 21.588 8.346 36.179 3.612 2.053 3.455 3.825

GH

AMO

AML

RaPiD

Clique
Overlap

Table 7.3: A summary of area comparisons between the different implementation techniques.
Area improvements are calculated over the heading implementation, then averaged across all
applications.

Method Area Method Area Method Area Method Area
FPGA 0.20 Std Cells 2.34 Std Cells 7.20 Std Cells 1.37
RaPiD 0.48 FPGA 0.38 RaPiD 4.01 FPGA 0.24

Clique (O) 2.16 Clique (O) 3.75 Clique (O) 12.30 RaPiD 0.60
GH 0.90 GH 1.72 GH 5.25 Clique (O) 2.61

AMO 0.91 AMO 1.71 AMO 5.37 GH 1.01
AML 0.92 AML 1.77 AML 5.53 AML 1.02

Improvement Over
Std Cells

Improvement Over
RaPiD

Improvement Over
FPGA

Improvement Over
AMO

Table 7.2 lists the areas of the architectures created using the different flexible

routing generation heuristics, with the corresponding standard cell, FPGA, and RaPiD

areas listed for comparison. These results are summarized in Table 7.3. As expected, the

customized flexible architectures are smaller than the corresponding FPGA

138

implementations—from a 5.3x to a 5.5x area improvement. These results highlight the

area benefits of optimized reconfigurable computation and routing structures.

For the applications where a RaPiD implementation was possible, the flexible

architectures ranged from 56%-58% of the required RaPiD area. When RaPiD was not

able to implement an application, the flexible generation algorithms were still able to

create an architecture. Again, this is a key feature of the Totem automatic architecture

generation algorithms—both the logic and routing resource mix can be customized to the

needs of the specification, and are not limited by a static design.

Surprisingly, the flexible architectures were also on average close in area to the

corresponding standard cell layouts. One of the key benefits of reconfigurable

architectures is that expensive hardware resources can be reused across netlists. While

the added flexibility of segmented routing tracks does significantly increase the flexible

architecture areas over those of cASIC designs, the results indicate this area increase does

not overwhelm the area savings of hardware reuse.

7.4.2 Flexibility
In addition to area, the algorithms have also been compared on the basis of the

flexibility of the architectures that they generate. The tests in this section involve

examining architectures that were designed for one application, and attempting to

implement a non-member netlist onto that architecture. The results for these tests are

shown in Table 7.4. For each architecture created, all 26 of our netlists are placed and

139

routed onto the generated architectures. If a netlist failed placement and/or routing, it

was attempted on a larger architecture, where the quantity of logic resources was

increased by 10 or 20 percent, as indicated in the table. An architecture with a greater

number of logic resources can sometimes allow for an improved placement, which in turn

can result in an easier routing operation.

Naturally, the larger benchmarks tended to generate architectures more capable of

implementing the other benchmarks. For example, the Camera and Image applications

were able to implement far more netlists than the Matrix or Sort applications. The Sort

application has the added difficulty that absolutely no multiplier units were required by

the benchmarks used to create the architectures. Therefore, increasing the logic on a

percentage scale does not introduce any multipliers. All benchmarks that fail to place

and route onto this architecture require at least one multiplier.

Table 7.4: Initial flexibility study of the generated architectures. All 26 available netlists were
tested on all generated architectures. When necessary, the logic in the architecture is increased on
a % basis to attempt to fit the benchmark. The rows of this table indicate how many benchmarks
are source netlists for the architectures (SRC), how many will P&R based on a percent increase in
logic (0%, 10%, or 20% increase), and how many will fail altogether.

G
H

AM
O

A
M

L

G
H

AM
O

A
M

L

G
H

AM
O

A
M

L

G
H

AM
O

A
M

L

G
H

AM
O

A
M

L

G
H

AM
O

A
M

L

G
H

AM
O

A
M

L

G
H

AM
O

A
M

L

SRC 3 3 3 3 3 3 2 2 2 5 5 5 3 3 3 6 6 6 5 5 5 4 4 4
0 8 8 8 18 18 18 16 16 16 11 11 11 9 9 9 5 5 5 3 4 4 1 1 1

10 0 0 0 2 2 2 1 1 1 4 4 4 0 0 0 7 7 7 1 0 0 0 0 0
20 0 0 0 1 1 1 0 0 0 0 0 0 3 3 3 0 0 0 0 0 0 0 0 0

Fail 15 15 15 2 2 2 7 7 7 6 6 6 11 11 11 8 8 8 17 17 17 21 21 21

DCT/FFT FIR Matrix All SortRadar Camera OFDM Image

In most cases, when sufficient physical logic is present to implement a netlist, a

successful routing can also be found. However, one of the FIR filter netlists will fail to

140

route on the Matrix Multiplier architecture generated by the Greedy Histogram method,

even though that architecture has sufficient resources to implement the logic of the

netlist. Increasing the logic by 10% allows the netlist instances to be placed onto the

architectural components in a more routable fashion. Both Add Max Once and Add Min

Loop create distributed routing structures, which may contribute to their ability to

implement that particular FIR filter on their respective Matrix Multiplier architectures

without an increase in logic.

7.5 Summary

This chapter described three different algorithms used to generate flexible Totem

architectures. One, Greedy Histogram, was intended to be highly optimized to the

specification set. However, this algorithm could be further refined. The two other

algorithms, Add Max Once, and Add Min Loop, generate architectures with a high

degree of regularity, which can lead to a greater ability to implement netlists different in

structure than those in the architecture specification. While this flexibility was hinted at

in the results of section 7.4.2, it will be more strongly demonstrated in Chapter 9. The

AMO algorithm focuses on employing segmented distance tracks to reduce total track

count, while AML instead aims to reduce the number of bus connectors at the expense of

additional tracks. The area results reflect these goals, as AMO nearly always resulted in

a lower track count, but AML on average resulted in a lower area. A future algorithm

may incorporate both goals to achieve the lowest area of the flexible algorithms.

141

Much like the previous chapter, the area comparisons presented here demonstrate

the area benefits of customization. The flexible Totem architectures were on average 5.3-

5.5x smaller than the equivalent FPGA implementations. While FPGAs are important for

situations in which one cannot reliably predict how the hardware will be used, they are

comparatively inefficient for circumstances when some or all characteristics of the target

applications are known. While the RaPiD project addresses this issue to some degree by

employing coarse-grained computational units, it allows only a limited degree of

application- or domain-customization by varying the number of cells.

An architecture generation tool such as presented here can be used to capture

further optimizations, creating architectures nearly half the area required by RaPiD.

Furthermore, the generation algorithms are not limited to one particular design, and are

therefore able to create architectures large enough to implement applications which will

not fit in the current RaPiD design. Finally, customized reconfigurable architectures, as

demonstrated in this chapter, can sometimes even support applications in an area

comparable to that required by standard cell implementations, due to the efficient layout

of the coarse-grained logic structures, as well as the ability to reuse resources across the

netlists.

 142

Chapter 8

Track Placement

The design of an FPGA interconnect structure has usually been a hand-tuning

process. A human designer, with the aid of benchmark suites and trial-and-error,

develops an interconnect structure that attempts to balance flexibility with silicon

efficiency. Often, such as in the previous chapter, the concentration is on picking the

number and length of tracks – long tracks give global communication but with high

silicon and delay costs, while short wires can be very efficient if signals travel a relatively

short distance.

A topic that can sometimes be ignored is the placement of the breaks between

wires in the routing tracks. If there is a symmetric interconnect, with N length-N wires, a

break is simply placed at each position. However, for more irregular interconnects, it can

be difficult to determine the best positioning of these breaks. Although the break

positioning can have a significant impact on the routability of an interconnect structure,

there has been little insight into how to quantify this effect, and optimize the break

positioning.

143

While a manual solution may be feasible in many cases when examining only a

single architecture, it is not always practical. This particular work is motivated by the

automatic generation of FPGA architectures for systems-on-a-chip. Here a track

placement may be performed a very large number of times within the inner loop of an

architecture generator, such as presented in Chapter 7, and a fast but effective algorithm

for automatic track placement becomes a necessity.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

2
4
4
8
8
8
8

0
0
0
0
0
0
0

8 0 2 0 4 0 2 0 8 0 2 0 4 0 2 0 8

0 1

2 0

2
4
4
8
8
8
8

0
1
3
0
2
4
6

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 1

2 1

(a) (b)

Figure 8.1: Two different track placements for the same type of tracks, (a) a very poor one and (b)
a very good one. In each, the numbers on top indicate position in the architecture, and the
numbers on the bottom indicate the number of breaks at the given position. Each track has its
associated wire length at left, and offset at right.

Achieving the best track placement requires a careful positioning of the breaks on

multiple, different-length, routing tracks. For example, in Figure 8.1b, the breaks

between wires in the routing tracks are staggered. This helps to provide similar routing

144

options regardless of location in the array. If instead all breaks were lined up under a

single unit, as in Figure 8.1a, a signal might become very difficult to route if its source

was on one side of the breaks and at least one sink on the other. For large numbers of

tracks of different wire lengths, it is challenging to find a solution where the breaks are

evenly distributed through the array.

Determining the left-right shifting, or offset, of a track within an architecture is

referred to as track placement. The goal, given a predetermined set of tracks with fixed

length wires, is to pick an offset for each track in order to maximize the routability of the

architecture. For simplicity, each track is restricted to contain wires of only one length,

which is referred to as the track’s S value, or track length. The actual determination of

the quantity and S values of tracks is performed during the architecture generation from

Chapter 7. Additional information specific to 2D FPGA routing architecture design can

be found elsewhere [Betz00, Lemieux02, Lemieux03].

This chapter discusses the issue of track placement for reconfigurable

architectures with segmented channel routing (Figure 8.2), such as RaPiD

[Cronquist99a], Chimaera [Hauck97], Garp [Hauser97], and Triptych [Borriello95].

First, the track placement problem and a cost metric are defined. Next, several track

placement algorithms, including one proven optimal for a subset of these problems, are

introduced. Finally, the track placement algorithms are related to the flexible

reconfigurable architecture generation of Chapter 7. Further details on the track

placement problem can be found elsewhere [Compton02b].

145

(a)

G
PR

R
A

M

R
A

M

G
PR

M
U

LT

G
PR

A
LU

A
LU

G
PR

G
PR

R
A

M

A
LU

G
PR

G
PR

R
A

M

R
A

M

G
PR

M
U

LT

G
PR

A
LU

A
LU

G
PR

G
PR

R
A

M

A
LU

G
PR

(b)

Figure 8.2: Two examples of reconfigurable architectures with segmented channels. At top, (a)
Garp [Hauser97]. At bottom, (b) RaPiD [Cronquist99a].

8.1 Problem Description

Finding a good track placement is a complex task. Intuitively, tracks with the

same S value should be spaced evenly, such as by placing the length-8 tracks from the

problem featured in Figure 8.1 at offsets 0, 2, 4, and 6. However, a placement of tracks

of one S value can affect the best placement for tracks of another S value. For example,

Figure 8.1b shows that the length-4 tracks are placed at offsets 1 and 3 in order to avoid

the break locations of the length 8 tracks. This effect is called “correlation” between the

146

affected tracks. Correlations occur between tracks when their S values contain at least

one common prime factor. It is these correlations that make track placement difficult.

0
1
1
3
3
5
5

2
4
4
8
8
8
8

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
0 1

2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2

02

Figure 8.3: An alternate placement for the architectures in Figure 8.2 that maintains perfect
smoothness of breaks, but is intuitively less routable than the placement in Figure 8.2b.

From the previous example, one might conclude that the “evenness” or

“smoothness” of the break distribution could be a possible metric for measuring the

quality of a track placement would be to compute. However, the smoothness metric fails

to capture the idea of maintaining similar routing options for every location in the array.

The placement in Figure 8.3 has the same smoothness of breaks as the solution in Figure

8.1b, but is not an equally good solution. In Figure 8.3, although there are two length-4

tracks, each logic unit position is at the same location along the length-4 wires in both

tracks. On the other hand, the architecture in Figure 8.1b provides for two different

locations along the length-4 wires at every logic unit position. In Figure 8.1b, a logic unit

at position 8 can reach as far left as position 6 or as far right as position 11, depending on

which length-4 track is used. The logic unit at position 8 in Figure 8.3 can only route as

far left as position 6 and as far right as position 9 regardless of which length-4 track is

147

chosen. For this reason, the placement in Figure 8.1b is considered to be superior despite

the two architectures having the same break smoothness.

Instead, the goal of a good track placement is to ensure that signals of all lengths

encounter the fewest routing bottlenecks possible. To quantitatively measure this

routability, each possible signal length is examined to determine the region of the

interconnect that gives the fewest possible routes for this length signal. Figure 8.4

demonstrates a technique to find the bottlenecks by calculating the diversity score. The

diversity score calculation is given for two different placements of the same track

problem.

0 1 2 3 4 5 6 7 8 9 0 1 2
0 1

L = 1 1 3 3 3 1
L = 2 0 2 2 0 0
L = 3 0 2 0 0 0
L = 4 0 0 0 0 0
diversity_score = 1

4
4

2
2

1
1

0
1

2
4
4

0
1
3

0 1 2 3 4 5 6 7 8 9 0 1 2
0 1

2 1

L = 1 2 3 2 3 2
L = 2 1 1 1 1 1
L = 3 0 1 0 1 0
L = 4 0 0 0 0 0
diversity_score = 3

(a) (b)
Figure 8.4: Diversity score for two different track placements for the same track placement
problem: (a) a poor placement, and (b) a good placement. Break indexes are given by the top row
of numbers. The dotted lines demark repeating windows of the placement. For each track,
segment length S is at left, and offset O is at right. The number of routing possibilities is given at
each position for each potential signal length L. The calculated diversity score is shown at
bottom.

Only a four position window is examined, but this is sufficient as the window

encapsulates the full repeating pattern of breaks of the placement. The length of the

window that needs to be considered can be found by taking the LCM of all S values in

148

the problem. Examining a larger window would simply yield the same results. Within

this window, the number of tracks at each position that can be used to route a signal of

the given length towards the right is counted. The different possible signal lengths (L)

are listed, and at each position, the number of tracks useable to route that signal length is

given.

In Figure 8.4a, two different tracks can be used to route length-2 signals to the

right at position 6, but at position 5 no tracks are useable. At right, exactly one track can

be used to route length-2 signals from any position in our window. The minimum value

at each length is found (representing a routing bottleneck for that signal length), and these

minimums are summed across all L values to determine the diversity score of a track

placement. The fewer and smaller the routing bottlenecks, the more routing choices are

available throughout the architecture, and the higher the diversity score. An equation for

the diversity score is given as Equation 8.1. In this equation, T represents the set of

tracks to be placed, and O represents the set of offsets assigned to those tracks.

Equation 8.1: The diversity score for a particular track placement routing problem T and solution
set of offsets O for the tracks in T can be calculated using the equation:

∑ ∑ 















=

∈Lall TTi
ii

ositionsp all
positionLOTuncutOTscorediversity),,,(),(_ min

where Ti is an individual track and Oi is the offset for that track. As the equation indicates, the
minimum is found for all positions, and the sum is calculated of all the minimums at each L value.

The uncut() function returns a binary result that is 0 if there is a break within the range [position,
position + L) on track Ti that has been placed at offset Oi, and 1 otherwise.

149

A bound has been determined on the diversity score, as described in Theorem 8.1

(proven elsewhere [Compton02b]). Note that comparing diversity scores is only valid

across different solutions to the same track placement problem. The method of

determining the actual quantity and types of tracks was given in Chapter 7. The

placement algorithms that will be presented are intended to be used within an inner loop

of the flexible architecture generation algorithms.

Theorem 8.1: For all possible offset assignments O to track set T,

∑ ∑ 







−≤

∈L TTi
iSLTfloorOTscorediversity)/,1min(||),(_

The focus is on the worst-case (the regions with the fewest possible routes)

instead of the average case, since the average number of possible routes for a signal is

independent of track placement. Changing the offset of a track in a given placement only

shifts which positions can use that track for the different signal lengths. If the length-2

track at offset 0 in Figure 8.2 were shifted to offset 1, the two length-1 signals that that

track may implement within the window would originate at positions 6 and 8 instead of 5

and 7. The length-1 count of uncut signals becomes “0 4 2 4” at positions 5 though 8,

respectively. Regardless of the amount of the shift, the same number of breaks remains

within the window, and therefore the same number of signals of each length can be

routed—only at different starting positions. Shifting the track does not affect the sum

(and therefore the average) for each signal length. While the average cannot differentiate

150

between the placements in Figure 8.2 and Figure 8.3, the worst-case shows that the

placement in Figure 8.2b is superior.

8.2 Track Placement Algorithms

A number of algorithms, of varying complexity, have been developed to solve the

track placement problem based on the diversity score cost function. These track

placement algorithms, both optimal and heuristic, are discussed in depth in the next few

sections. The first algorithm, Brute Force, simply tests all possible track placements, and

returns a solution with the highest diversity score. This algorithm, however, runs

extremely slowly and is impractical for large problems, large architectural explorations,

or automatic architecture generation. The next algorithm, Simple Spread, treats sets of

tracks at each S value as separate problems, spacing tracks evenly within the sets. While

this can provide a fast solution, it does not consider the potential correlations between

tracks of different segment lengths. Power2 is another very simple algorithm which does

consider inter-set effects, but is restricted to handle tracks with segment lengths that are

powers of two.

The final two algorithms are more complex in operation than the other algorithms,

yet require significantly less computation time than the Brute Force algorithm.

Pseudocode for is given for these two algorithms. The Optimal Factor algorithm

provably finds an optimal solution based on diversity score, provided the problem meets

a number of key restrictions. The Relaxed Factor algorithm is an extension of the

151

Optimal Factor algorithm that can operate without restrictions. While the Relaxed

algorithm is not guaranteed to provide an optimal solution in every case, it provides very

high quality results in most cases.

8.2.1 Brute Force Algorithm
Using a brute-force approach, a solution with the highest possible diversity score

is guaranteed to be found. However, as with many complex problems, examining the

entire solution space is a very slow process. While useful for finding the best possible

solution for a final design, this method is inappropriate for situations where a large

number of different routing architectures (each with different types and or quantities of

tracks) are being examined. The number of cases that the brute force approach must

examine for a given problem is given in Equation 8.2.

Equation 8.2: The number of distinct cases that must be examined by the Brute Force algorithm in
order to have complete coverage of the solution space. This is the product over all distinct track
lengths in the problem of a multi-choose of track length and quantity:

()
()∏ 








−
+−

S QiSi
QiSi

!!1
!1

where S is the set of all distinct track lengths in the problem, Si is a particular track length, and Qi
is the number of tracks with that track length.

For example, a modest architecture with 8 length-12 tracks, 4 length-6 tracks and

2 length-4 tracks will require the examination of over 95 million distinct cases using the

brute force approach. Given that a track placement algorithm may operate within an

inner loop of architecture generation, this approach is far too slow. Instead, it is used to

152

provide a bound on the diversity score. This bound is then used to experimentally verify

the results of an optimal algorithm, and provide a frame of reference for the solution

quality of the other algorithms.

8.2.2 Simple Spread Algorithm
As stated previously, the Simple Spread algorithm is a very straightforward

heuristic for performing track placement. In this particular algorithm, tracks are grouped

by segment length. Each track group is considered as a separate problem. Each group

first has any “full sets” (where the number of tracks is equal to the segment length)

placed with one track at each possible offset for that particular S value. Once the number

of tracks in a set is less than the S value for the set, these remaining tracks are spaced

evenly throughout the possible offsets 0 through S-1 using the equation Oi=floor(S*i/|G|),

where G is the set of remaining tracks of segment length S, i is the index 0…|G|-1 of a

particular track in the set, and Oi is the calculated offset of said track.

This algorithm, while simple in its operation and fast in execution, disregards the

fact that a placement decision at one S value can affect the quality of a placement

decision at another due to correlations. Figure 8.5 shows a small case in which the

Simple Spread returns a track placement significantly worse than the Brute Force optimal

placement. The diversity score for the Simple Spread solution is only 6, whereas the

Brute Force optimal solution has a diversity score of 9. Looking at the number of breaks

occurring at each offset (the bottom row of numbers on each of the diagrams), the

153

solution found by the Brute Force method is significantly smoother than the one found by

Simple Spread, which leads directly to the difference in diversity scores. This equation is

provably optimal for a single track length in isolation, so less-than-optimal results are a

direct result of interactions between the different S values in a track routing problem,

which demonstrates the importance of correlations.

0 1 2 3 4 5 6 7 8 9 0 1 2
10

2

3
4
4
6
6

0
0
2
0
2
0

3

3

Diversity = 6

4 0 3 2 2 1 4 0 3 2 2 1 4

Simple Spread
Si Oi

breaks / offset

0 1 2 3 4 5 6 7 8 9 0 1 2
10

2

3
4
4
6
6

3
0
0
1
1
3
2
5

2 2 2 2 2 2 2 2 2 2 2 2 2

Brute Force

breaks / offset

Si Oi
Diversity = 9

(a) (b)

Figure 8.5: A track placement problem solved using (a) Simple Spread solution and a (b) Brute
Force solution. For each diagram, the top row of numbers indicates the position, and the bottom
row indicates the number of breaks occurring at the corresponding position. Each track is labeled
on its left with its S value and on its right with its assigned offset. The diversity score of each
solution is also given in the upper right-hand corner.

8.2.3 Power2 Algorithm
The Power2 algorithm, unlike Simple Spread, places more importance on

compensating for the correlation between the S values of tracks than on the even

spreading of tracks within a particular S value. This algorithm, however, is restricted to

situations where all tracks have S values which are a power of 2. In this case, the offset

for a particular track is calculated based on the offsets and S values of all previously

placed tracks. While initially this may seem a complex task, it has been simplified such

154

that only the placement of the track immediately previous to the current track must be

considered.

First, the tracks in a placement problem are grouped by S value, and these groups

are sorted in increasing order. Offsets are then assigned in a particular constant pattern

dependent upon the S value. The example of Figure 8.6 gives the patterns for S=2, S=4,

and S=8, while Equation 8.3 explains how these patterns are determined. The tracks in

the group with the smallest S are assigned using the pattern for that S value. Afterwards,

the next S group, with its particular pattern, is placed, starting with the offset value that

would have been next in the previous pattern. In Figure 8.6 after the length-4 track has

been placed at offset 1, the length-8 tracks resume placement offset 3, the next offset in

the length-4 sequence. The remainder of the length-8 tracks follow the length 8 pattern

after that point. This algorithm attempts to maintain a somewhat even density of breaks

throughout the array. This does mean that the breaks of a particular S group may not be

evenly distributed, such as when the quantity of tracks in a group is not a power of 2, but

the goal of the algorithm is to use the correlations between different S groups to

compensate. This is the algorithm used by the regular track placement algorithms in

Chapter 7.

Equation 8.3: The recursive calculation of the pattern of offsets for the Power2 track placement
algorithm. The pattern for a given length is dependent on the pattern for the previous length prev
(both restricted to be powers of 2, so if length is 16, prev is 8).

[] [] 







+=

2/
2*2mod

length
xxPatternxPattern prevlength , for x = 0…length-1.

155

Scurr = 2
Pattern = {0,1}

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
10

0
2

2 0
Si Oi

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
breaks / offset

Scurr = 4
Ostart = 1
Pattern = {0,2,1,3}

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
10

0
2

2 0

Si Oi

1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1
breaks / offset

4 1

Scurr = 8
Ostart = 3
Pattern = {0,4,2,6,1,5,3,7}

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
10

0
2

2 0
Si Oi

2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1
breaks / offset

4 1
38

8
8

7
0

Figure 8.6: An example of the operation of Power2 at each of three S values for a case with one
length-2 track, one length-4 track, and three length-8 tracks. The offset pattern at each S value is
given, along with the offset Ostart to use for the first track in that S group based on the placement of
the previous tracks. For each diagram, the top row of numbers indicates the position, and the
bottom row indicates the number of breaks occurring at the corresponding position. Each track is
labeled on its left with its S value and on its right with its assigned offset.

8.2.4 Optimal Factor Algorithm
A fast algorithm has been developed that, with some restrictions, provably finds

the optimal solution. The Optimal Factor algorithm is the culmination of many theorems

and proofs. While many of the theorems will be presented here, their proofs can be found

elsewhere [Compton02b]. This section presents various track placement situations,

theorems regarding their solutions, and finally the pseudocode for the Optimal Factor

Algorithm itself.

As stated previously, correlations across S values can occur when those S values

share a common factor. Any optimal algorithm must therefore consider the correlations

156

between breaks not only within a particular S group, but also across S groups. The

example of Figure 8.5 illustrates the importance of correlations, and the fact that it is

transitive. Because the S=2 group and the S=6 group are correlated (sharing a common

factor of 2), there is also a correlation between the S=2 group and the S=3 group, and

consequently, between the S=3 group and the S=4 group. But if an additional track group

of S=5 were to be introduced into the problem, it would not share a factor with any other

track group, and would not introduce further correlations. Regardless of offset choice,

the length-5 track would overlap with breaks from each of the other tracks at various

positions in the architecture. Therefore, it can be placed independently of the other

tracks. This feature is embodied in Theorem 8.2, which is used to divide a track

placement problem into smaller independent (uncorrelated) problems when possible.

Theorem 8.2 If T can be split into two sets G1⊂T and G2 = T-G1, where the S values of
all tracks in G1 are relatively prime with the S values of all tracks in G2, then
diversity_score(T,O) = diversity_score(G1,O1) + diversity_score(G2,O2), where O is the
combination of sets O1 and O2. Thus, G1 and G2 may be solved independently.

 The fact that correlation is based on common factors can be used to further

simplify the track placement problem. Theorem 8.3 states that whenever one track’s S

value has a prime factor that is not shared with any other track in the problem (or a track

has a higher quantity of a prime factor than any other track in the problem), the prime

factor can be effectively removed. After all “extra” prime factors have been removed, the

remaining prime factors are all shared by at least two tracks. This can make interactions

between tracks more obvious. For example, if there are 2 length-6 tracks and one length-

157

18 track, a 3 can be removed from 18, and then in effect there are 3 length-6 tracks,

which can be placed evenly using a later theorem (Theorem 8.6). Note that the S value of

the length-18 track is not permanently changed, just the S value used during the course of

track placement. After the offsets of tracks are determined, the original S values are

restored if necessary.

Theorem 8.3: If the Si of unplaced track Ti contains more of any prime factor than the Sj of each
and every other track Tj (i≠j), then for all solutions O, diversity_score(T, O) = diversity_score(T’,
O), where T’ is identical to T, except T’i has S’i = Si with the unshared prime factor removed. This
rule can be applied recursively to eliminate all unshared prime factors.

For the rest of the optimal algorithm, the tracks are grouped according to S value

(where the S value may have been factored using Theorem 8.3). These groups are then

sorted in decreasing order, such that the largest S value is considered first. Any full sets

are removed using Theorem 8.4, where a full set is defined as a set of N tracks all with Si

= N. In other words, when there are enough tracks to fill all potential offset positions

0…N-1. If the remainder of the track placement problem can be solved to meet the

bound of Theorem 8.1, then an overall placement that also meets the bound places one

track from the full set at each potential offset position for the S value of that set.

Theorem 8.4: Given a set G⊂T of tracks, each with S=|G|. If there exists a solution O’ for tracks
T’=T-G that meets the bound of Equation 8.1 , then there is also solution O for tracks T that meets
the bound (and thus is optimal), where each track in G is placed at a different offset 0…|G|-1.

Note that throughout this algorithm, as well as all of the others, only offsets in the

range 0 through |Si|-1 are considered for a track with S=Si. While it is perfectly valid to

place a track at an offset greater than Si-1, the fact that all wires within the track are of

158

length Si causes a break to be located every Si locations. Therefore, there will always be a

break on track Ti within the range 0 to Si-1, which can be found as dictated in Theorem

8.5.

Theorem 8.5: If a track Ti has a break at position P, it will also have a break at position P % Si.
Therefore, all possible offset locations for track Ti can be represented within the range 0 through
Si-1 (inclusive).

The optimal algorithm uses Theorem 8.4 and Theorem 8.6 to space the tracks of

the largest S value (Smax) evenly. Then the tracks with the next largest S value (Snext)

must be placed evenly. In order to find the best offsets for the second (and successive)

groups of tracks, the interaction between the breaks of the previously placed tracks and

those of the new tracks must be considered. Therefore, the optimal algorithm examines

the breaks of the previous tracks in terms of the next S value (Snext) in order to determine

which offsets should be assigned to the next group of tracks to avoid bottlenecks. The

previously placed tracks are converted to a set of temporary “placeholder” tracks with

S=Snext, and with each real break modeled by a break in the same position from a

placeholder track, as demonstrated by the example of Figure 8.7. This enables the

algorithm to accurately determine the best offsets for the real tracks for the current S

value. This process is repeated within a loop, where Snext now becomes Smax (since the

tracks of the old Smax have already been placed), and a new Snext is found below the new

Smax.

159

6
6

2
4

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
0 1

6 0

4 2
4 0

Smax

Snext

Real tracks

Placeholders

Figure 8.7: The breaks from tracks of length Smax are emulated by the breaks of placeholder tracks
of length Snext for the next iteration.

There are a number of restrictions, however, in order to ensure that at each loop

iteration, (1) the tracks with S=Smax can always be evenly spaced, and (2) the breaks from

the set of tracks with S=Smax can be exactly represented by some integer number of tracks

with S=Snext. These restrictions are outlined in the next two theorems.

Theorem 8.6: Let Smax be the maximum S value currently in the track placement problem, M be
the set of all tracks with S = Smax, N = |M|, and Snext be the largest S ≠ Smax. If N>1, Smax is a
proper multiple of N, and Snext ≤ Smax*(N-1)/N, then any solution to T that meets the bound must
evenly space out the N tracks with S = Smax. That is, for each track Mi, with a position Oi, there
must be another track Mj with a break at Oi + Smax/N.

Theorem 8.7: Given a set of tracks G, all of segment length X, where X is evenly divisible by |G|,
and a solution O with these tracks evenly distributed. There is another set of tracks G’, all of
length Y = |G’| * X / |G|, with a solution O’ where the number of breaks at each position is
identical for solution O of G and solution O’ of G’. If solution in which G has been replaced with
G’ meets its bound, the solution with the original G also meets its bound.

160

Optimal_Factor(T) {
 // Theorem 8.2: Run algorithm independently on relatively prime sets
 // of tracks

If T can be split into two sets G1⊂T and G2 = T-G1, where the segment
length of all elements of G1 are relatively prime with the segment
length of all elements of G2 {

 Optimal_Factor(G1)
 Optimal_Factor(G2)
 Quit
 }

 // Theorem 8.3: Factor out unshared prime factors from each track’s S
 // value

Initialize Si for each track Ti to the segment length of that track.
While the Si of any track Ti has more of any prime factor P than the
Sis of all other tracks, individually, in T {

 Set Si = Si/P
 }

 While tracks exist without an assigned Oi {
 // Theorem 8.4: Place any full sets
 While there exists a set of G tracks, where Si = |G| {

For each track in G, assign positions to those without a
 preassigned Oi, such that there is a track in G at all
 positions 0≤pos<|G|.

 Eliminate all tracks in G from further consideration.
 }
 If all tracks have their Oi assigned, end.

 // Theorem 8.6: Smax must be evenly divisible by |M|, and require
 // that Snext ≤ Smax*(|M|-1)/|M|
 Let Smax = the largest Si amongst unplaced tracks

Let Snext = the 2nd largest Si amongst unplaced tracks
 Let M be the set of all tracks with Si = Smax
 If no track has an assigned position, assign M1’s position O1 to 0.

Assign all unassigned tracks in M to a position Oi, such that all
 tracks in M are at a position k*Smax/|M|, for all k 0≤k<|M|.

 If all tracks have their Oi assigned, end.

 // Theorem 8.7: Require Snext = c*Smax/|M| for some integer c≥1
 // Use placeholder tracks of S=Snext to model existing breaks
 // Snext must be evenly divisible by c to make Th. 6 work
 Add c placeholder tracks, where for j=0..c-1, Sj = Snext, and
 Oj = j*Smax/|M|
 Remove all tracks in M from further consideration
 }
}

Figure 8.8: The pseudocode for the Optimal Factor algorithm. This algorithm is optimal
[Compton02b] provided all restrictions listed in the pseudocode are met. The comments list the
theorems governing the operations.

161

Using the theorems presented, an optimal algorithm [Compton02b] can be

constructed provided the restrictions in Theorem 8.6 and Theorem 8.7 are met. There is

one additional restriction that is implied through the combination of the two theorems

above. Because the tracks at a given S value must be evenly spread, the offsets assigned

to the placeholder tracks added using Theorem 8.7 in the previous iteration must fall at

offsets calculated using Theorem 8.6. This is accomplished by requiring that Snext also be

evenly divisible by the number of placeholder tracks of that length added during the track

conversion phase. Figure 8.8 gives the pseudocode for the Optimal Factor Algorithm.

This pseudocode is commented to show the relevant theorems for each operation.

8.2.5 Relaxed Factor Algorithm
While the Optimal Factor Algorithm does generate track placements that are

optimal in diversity score, there are significant restrictions controlling its use. Because

not all architectures may meet the segment length and track quantity restrictions of the

optimal algorithm, a relaxed version of the algorithm has also been developed. This

relaxed algorithm operates without restrictions on track segment lengths or the quantity

of tracks of each length, but may not be optimal.

The general framework of the algorithm remains basically the same as the optimal

version, although the placement and track conversion phases differ in operation.

Previously, restrictions were used on track length and quantity to ensure optimality. In

the Relaxed Algorithm, a number of heuristics are instead used to intelligently spread the

162

tracks’ breaks across the architecture. Figure 8.9 shows the changes made to the Optimal

Algorithm’s main while loop for the Relaxed Algorithm. Figure 8.11 and Figure 8.14

contain the replacement heuristic functions for the placement and track conversion. Note

that there is an additional sub-function that will sometimes be needed for placement,

shown in Figure 8.12.

// Place any full sets
While there exists a set G of tracks where Si of every track Gi equals
|G| {
 For each track in G, set their Oi = i (their index in G)
 Remove all tracks in G from further consideration.
}

// perform some initializations of structures needed in placement and
// track conversion
Initialize tracks[] array to size Smax = largest Si amongst all tracks in
 T, and fill with 0’s
Initialize breaks[] array to size K = LCM of Si’s of all tracks in T, and
 fill with 0’s.
// Iteratively assign offsets of unplaced tracks w/longest segment length
While tracks exist in T without an assigned Oi {
 Let Smax = the largest Si amongst unplaced tracks
 Let Snext = the largest Si amongst unplaced tracks such that Snext < Smax
 Let M be the set of all unplaced tracks with Si = Smax
 Relaxed_Placement(M, tracks[], breaks[])
 If all tracks have their Oi assigned, end
 Remove all tracks in M from further consideration
 Convert_To_Snext(Snext, tracks[], breaks[])
}

Figure 8.9: The Relaxed Algorithm code that replaces the main while loop in the Optimal
Algorithm. Sub-functions for this pseudocode can be found in Figure 8.11 and Figure 8.14.

In the Relaxed Algorithm, full sets are removed in the same way they were in the

Optimal Algorithm, except the operation is performed once instead of within the while

loop. This is because while the Optimal Algorithm adds new placeholder tracks in the

loop, potentially creating new full sets, the Relaxed Algorithm does not—the only full

sets that can exist in the Relaxed Algorithm are present before the loop starts.

163

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
10

0
2Si Oi1 2 3

0
1
2
0
1
2
0

2
2
3
6
6
6
8

3 2 3 1 1 2 2 2 4 1 1 2 2 2 3 1 2 2 2 2 3
breaks / offset

1 1 2

1
2
3
4

mountainmountain mountain mountain

plain plain plainpl
ai

n

1.92
plain at goal_density = 1.92

Figure 8.10: A track arrangement (top), corresponding topography (middle), and the ideal
topography for these tracks (bottom). Note that this is an exaggerated example for illustrative
purposes. A plain is a series of consecutive values at the lowest elevation, a mountain is a series
of consecutive values that are higher than the minimum for the array. The topographies are
circular, meaning that in the middle diagram, the value at index 23 is part of the same mountain as
indices 0 through 2.

The bulk of the changes are in the general placement and placeholder track

substitution phases. Again, heuristics are now used in place of restrictions on the

problems that the algorithm can handle. The routing architecture can be considered in

terms of a topography, where elevation at a given location is equivalent to the number of

breaks at that position. Because “mountains” represent areas with many breaks, and

therefore fewer potential routing paths, the algorithm attempts to avoid their creation.

Instead, it focuses on placing tracks to evenly fill the “plains” in the topography, where

the breaks from the additional tracks will have a low effect on the overall routability of

164

the resulting architecture. The top portion of Figure 8.10 shows the plains and mountains

of a sample topography.

The pseudocode for the placement portion of the Relaxed Factor algorithm is

shown in Figure 8.11, with a sub-function in Figure 8.12. This function uses the tracks[]

array, which was first initialized in the main body of the algorithm to all 0’s. This array

is updated to always be the same size as the segment length of the track group currently

under consideration (only one segment length is examined at a time). Each position in

the array represents a different potential offset that can be chosen for that particular

segment length, and essentially indicates the number of breaks that will be overlapped

using the given potential offset.

Relaxed_Placement(M, tracks[], breaks[]) {
 Let unplaced be the number of tracks in M that are unplaced.
 While the number of i’s where tracks[i] = min(tracks[]) is ≤ unplaced
{
 Place one track at each location with tracks[i] = min(tracks[])
 Update unplaced, tracks[], breaks[]
 }
 If all tracks[i] are the same, space all unplaced tracks in M evenly
 Else if unplaced tracks remain in M {
 Let U be the set of unplaced tracks in M
 Density_Based_Placement(U, unplaced, tracks[])
 }
}

Figure 8.11: The relaxed placement function. The function Density_Based_Placement()
that is used here appears in Figure 8.12.

Using this information, the algorithm attempts to place tracks at the offsets that

have the fewest breaks from the already-placed tracks. The tracks array is updated later

in the track transformation function, which will be discussed shortly. For cases where all

165

the values in the tracks[] array are identical, the unplaced tracks of the current segment

length are spaced evenly.

Density_Based_Placement(U, unplaced, tracks[], breaks[]) {
 Find the widest plain in tracks[]
 If tie, choose the one of these with the widest adjacent mountain
 If tie, choose randomly from the tied plains

Let root_point be the location at the end of this plain run adjacent
 to the wider mountain

 Initialize blockage to the mountain adjacent to root_point
Initialize next_plain to the plain adjacent to blockage (the plain
 that does not include root_point, unless blockage is the only
 mountain in the architecture)

 Initialize region to next_plain plus blockage

 While (1) {
 num_to_add = Calculate_Num_Tracks(region, Smax, unplaced, tracks[])

Assign num_to_add unplaced tracks from U to next_plain, spaced
 evenly with respect to each other as well as the boundaries of
 next_plain

 Update tracks[], breaks[], and unplaced
 If at root_point or all are placed, end

Set blockage to the mountain on the other side of next_plain from
 the current blockage
Set next_plain to the plain on the other side of the new blockage
 from the current next_plain

 Update region to include new blockage and new next_plain
 }
}

Calculate_Num_Tracks(region, Smax, unplaced, tracks[]) {

 Let ideal = ∑∑
∈

−

=

−







+

regioni

S

j
itracksjtracksunplaced

S
regionsize

][][
)(1max

0max

Return either floor(ideal) or ceil(ideal) as num_to_add, whichever yields
 a smaller abs(potential_density(region, num_to_add) - goal_density)

}

Figure 8.12: The density based placement function and the function to calculate the number of
tracks to add to a given region in the newest plain. A plain is defined as consecutive positions in
tracks[] equal to min(tracks[]). A mountain is defined as consecutive positions in tracks[] not
equal to min(tracks[]).

When there are fewer tracks than positions with the minimum number of breaks,

the plains in the tracks[] array cannot be filled evenly. In this case, the sub-function in

Figure 8.12 is used to perform density-based placement. Again, the goal is to distribute

166

the breaks as uniformly as possible throughout the architecture. The tracks[] array

(which holds the number of breaks on placed tracks at each position) is treated as

circular, with the last position next to position 0. The density-based placement looks at

an ever-increasing region of this array and places unplaced tracks to bring the density of

breaks in that region close to the goal_density. This goal_density represents a theoretical

solution with a completely flat topography. Figure 8.10 illustrates a sample topography,

with plains and mountains labeled, and the corresponding topography if the goal_density

could be achieved.

The region of consideration will initially be a plain and an adjacent mountain.

The number of breaks that should be added to the areas of lowest elevation (a plain) in

this region is calculated. Any given new track can only add at most one break at one

position in the tracks[] array, as the tracks[] array is always the same size as the current

tracks’ segment length. The calculated number of tracks is placed such that the breaks

are spread evenly through the plain. The region is updated to include the next plain and

mountain in the circular path around the tracks[] array. Again, the number of tracks to

add to the bottom of the new plain is calculated in order to bring the density of the entire

region closer to the ideal density. This pattern continues until the algorithm has traveled

all the way around the tracks[] array back to the beginning position, and the entire

tracks[] array has become the region.

The actual calculation of num_to_add, the number of tracks to add to the plain, is

somewhat complex. Ideally, Equation 8.4 should be minimized, where

167

potential_density(region, num_to_add) is the density of the current region if num_to_add

tracks are added with breaks in that region, and goal_density is the density if all tracks in

the problem could be added such that the topography could remain perfectly flat

throughout, as in the bottommost part of Figure 8.10. Equation 8.5 is the result of solving

for the ideal number of tracks to be added [Compton02b], where unplaced is the number

of tracks that have not yet been placed, and size(region) is the number of discrete

locations in the current region.

Equation 8.4: abs(potential_density(region, num_to_add) - goal_density)

Equation 8.5: ideal = ∑∑
∈

−







+

regioni

itrackstracksunplaced
S
regionsize][)(

max

The actual num_to_add is then either the floor() or ceiling() (whichever yields a

lower result in the original equation to be minimized) of the possibly-fractional ideal,

since fractional quantities of tracks cannot be placed. This fraction to integer conversion

does introduce some error, which can accumulate as the algorithm progresses. Thus, the

starting point is chosen such that the widest plain will be considered last, as it can tolerate

the most error by amortizing it over its wider area.

Once all tracks with S=Smax have been placed, the algorithm must prepare for the

next iteration when the tracks with S=Snext are placed. The effects of all previously

placed tracks should be considered when placing tracks of length Snext. The contents of

168

the tracks[] array are therefore in truth more complex than described previously. The

tracks[] array simulates the conversion of all previous track lengths to length Snext.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
10

0
2

2 31

1
2
3

1
2
3

br
ea

ks
[]

tra
ck

s[
]

Figure 8.13: An example of a breaks[] array for K = 24, and the corresponding tracks[] array for
Snext = 6. The lines between the two arrays indicate the locations in the breaks[] array used to
compute the value of tracks[2].

The tracks[] array provides a “global view” of the breaks[] array within the

potential offset values 0 to Snext-1, as illustrated by Figure 8.13. It basically records the

peaks in the breaks array coinciding with each potential offset value that could be

assigned to the Snext-length tracks. This translates all of the longer tracks into

approximate numbers of Snext-length tracks at each offset from 0 to Snext-1 so that the

effects of these tracks can be considered when placing tracks of length Snext. The

pseudocode for converting all previously placed tracks to tracks of length Snext using the

tracks[] array is given in Figure 8.14.

Convert_to_Snext(Snext, tracks[], breaks[]) {
 Replace current tracks[] array with tracks[] array of size Snext
 For i = 0 to i = Snext-1

tracks[i] = max(breaks[i+Snext*y]) for all y such that i+Snext*y
falls within the bounds of the breaks[] array

}

Figure 8.14: This function does not create actual placeholder tracks to represent tracks with S >
Snext, but it does fill the tracks[] array in such a way as to simulate all previously placed tracks
being converted to segment length Snext.

169

8.3 Algorithm Comparison

A number of terms are used to describe the problem sets used in the algorithm

testing. The value numT refers to the total number of tracks in a particular track

placement problem, numS refers to the number of discrete S values in the problem, maxS

is the largest S value in the problem, and maxTS is the maximum number of tracks at any

one S value in the problem. The very large search space has also been reduced by only

considering problems where the number of tracks at each S value is less than the S value

itself, since Theorem 8.4 strongly implies that cases with S or more tracks of a particular

S value will yield similar results by placing tracks from any full sets one per potential

offset. Cases with only one track, or all track lengths less than 3, are trivial and thus

ignored. The three terms, numT, numS, and maxS, along with the restrictions above,

define the track placement problems tested.

The first test was to verify that the Optimal Factor yields a best possible diversity

score in practice as well as theory. The results of this algorithm were compared to those

of the Brute Force for all cases with 2≤numT≤8, 1≤numS≤4, and 3≤maxS≤9, which

represents 5236 different routing problems. Note that even with these restrictions on the

problem set, the runtime of Brute Force is over a week of computation on multiple

machines. In all cases where a solution could be found using Optimal Factor, the

resulting diversity score was identical to the Brute Force result. Furthermore, Relaxed

Factor was compared to Optimal Factor for this same range, and it was found that within

170

that range, Relaxed Factor produces optimal results for all cases that meet the Optimal

Factor restrictions.

Next, the performances of Relaxed Factor and Simple Spread were compared to

the results of the Brute Force method for the same search space as above to determine the

quality of the heuristics. The results, normalized to Brute Force, are shown categorized

by numT, numS, and maxTS in Figure 8.15. In these graphs, Min is the worst

performance of the algorithm at that data point, Max is the best, and Avg is the average

performance. In this figure, the Brute Force result is a constant value of 1. Figure 8.15

left indicates that both heuristics achieve optimal results in some cases, with Relaxed

Factor achieving results on average nearly optimal across the entire range. Simple

Spread improves with the increasing number of tracks, and both algorithms degrade with

an increase in the number of different S values, though Relaxed Factor to a lesser degree

than Simple Spread.

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

 Rel Min
 Rel Avg
 Rel Max
 SS Min
 SS Avg
 SS Max

N
or

m
al

iz
ed

 D
iv

er
si

ty
 S

co
re

N
or

m
al

iz
ed

 D
iv

er
si

ty
 S

co
re

N
or

m
al

iz
ed

 D
iv

er
si

ty
 S

co
re

numSnumT maxTS

Quality By numT Quality By numS Quality By maxTS

Figure 8.15: A comparison of Relaxed and Simple Spread to the Brute Force method, with respect
to numT (left), numS (center), and maxTS (right). The diversity scores for each case were first
normalized to the Brute Force result, which is represented by a horizontal line at the value 1.

171

The upswing of both algorithms’ minimums towards higher values of numT may

be an artifact of the restrictions used to limit the problem set – since at most 4 unique S

values are allowed, when there are more than 4 tracks there are at least two tracks with

the same S value. Figure 8.15 right shows that as the number of tracks per S value

increases, the quality of all algorithms improves. The only exception is for the relaxed

algorithm when maxTS=1; when there is only one track per S value Relaxed Factor is

always optimal. All throughout these tests Relaxed Factor is superior to Simple Spread.

This indicates the critical importance of correlation between S values in track placement.

Figure 8.15 center also demonstrates that as numS increases, so does the difficulty of

finding a good solution, as was expected. Note that the results for both heuristics are

optimal for the case when there is only one S value, as there are no correlations to

contend with, and only an even spreading is required.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5

Rel
 P2 Min
 P2 Avg
 P2 Max
 SS Min
 SS Avg
 SS Max

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 10 18 26 34 42 50

Quality By numT Quality By numS

N
or

m
al

iz
ed

 D
iv

er
si

ty
 S

co
re

N
or

m
al

iz
ed

 D
iv

er
si

ty
 S

co
re

numT numS
Figure 8.16: Relaxed Factor, Power2, and Simple Spread comparison for cases with only power-
of-two S values. The results for Power2 and Simple Spread were normalized to the Relaxed
Factor value.

172

The results of the Power2 algorithm were then compared to those of the other

heuristics. For these tests, a different set of track placement problems were used, where

all S values were a power of two, up to a maxS of 32. The number of tracks in the tests

were not restricted beyond the requirement that for each S value, the number of tracks

must be less than that S value. These restrictions result in 32,762 different track

placement problems. Figure 8.16 left graphs the minimum, average, and maximum

diversity scores (normalized to the Relaxed Factor result) at each number of tracks

(numT). The results of the algorithms become more similar as the number of tracks

increases. The performance of the Power2 algorithm is similar to the Relaxed Factor

algorithm, with Power2 performing better than Relaxed Factor in some cases, and worse

in others. Simple Spread performs worse for these tests than the previous because by

restricted all S values to powers of two, all tracks are correlated.

Figure 8.16 right graphs the same data as Figure 8.16 left, but instead graphed by

numS. In general, performance is relatively consistent regardless of the number of S

values, with the performance of Power2 again close to that of Relaxed Factor. The

exception is when there is only one S value, where correlations do not matter. Unlike

Relaxed Factor and Simple Spread, however, Power2 is not always optimal in this case

because its focus is on properly handling correlations more than even spreading within

one S value.

173

OFDM Camera Radar
Image

Processing Sort
Matrix

Multiply FIR Filters
Simple Spread 27 23 20 23 23 11 20
Relaxed 24 19 13 15 13 10 11

Figure 8.17: The number of tracks in our target architecture required to successfully place and
route all netlists in an application using the given track placement algorithm.

Next, the place and route tool [Compton02d] was used to test the correspondence

between diversity score and routability of the architectures. These architectures are based

on a tileable coarse-grained architecture similar in structure to RaPiD [Ebeling96,

Cronquist99a]. This architecture has two length-2 local tracks, four length-4 local tracks,

eight length-4 distance tracks, and eight length-8 distance tracks. Note that local tracks

do not allow connections between wire segments to form longer wires. A test case was

created for each of seven different multi-netlist applications using each track placement

algorithm. By keeping the proportion of track types constant but varying the total

quantity of tracks, the minimum number of tracks required to successfully place and route

every netlist in the application onto this target architecture was determined for each track

placement algorithm. Figure 8.17 lists the results of this experiment. Performing track

placement using Relaxed Factor allowed netlists to be routed with on average 27% (and

up to 45%) fewer tracks than Simple Spread.

8.4 Summary

As demonstrated in this chapter, the track placement problem involves fairly

subtle choices, including balancing requirements between tracks of the same length, and

174

between tracks of different, but not relatively prime, lengths. The diversity score quality

metric was introduced to measure the impact of track placement, and multiple algorithms

were presented to solve the track placement problem. One of these algorithms is

provably optimal for some situations, though it is complex and works for only a relatively

restricted set of cases. A relaxed version of the optimal algorithm was also developed,

which appears to be optimal in all cases meeting the restrictions of the optimal algorithm,

and whose average appears near optimal (within 1.13%) overall. While the other simple

heuristics presented here do have problems in some cases, they provide simple methods

to obtain good quality results in many cases (particularly the Power2 algorithm, used by

two algorithms from Chapter 7).

Track placement algorithms are critical in at least two notable situations. First,

automatic track placement is used for automatic reconfigurable architecture generation.

Second, even in hand designed architectures, the track placements achieved by the

designers can be improved by carefully considering correlations between track lengths.

Automatic track placement techniques can be applied by the FPGA designer to their work

to potentially improve overall quality of the resulting architecture.

 175

Chapter 9

Flexibility Testing

The design of a reconfigurable architecture differs from the design of a

conventional ASIC in a key aspect: flexibility. The quality of an ASIC is generally

measured in terms of power, performance, and area. However, with reconfigurable

hardware, flexibility is equally important, given that the goal of these structures is to

implement various circuits using a single set of hardware resources. In particular,

measuring the flexibility of reconfigurable hardware is very important for automatically

generated architectures intended for use in systems-on-a-chip. A designer may create

many of these architectures, and wish to choose the one best for the purpose at hand on

the basis of all the comparison metrics, including flexibility.

The flexibility metric has, however, been largely ignored by the FPGA and

reconfigurable computing community. FPGA designs are frequently measured by “gate

count” or logic block count. However, many feel that the first metric is primarily

marketing propaganda and not an effective measure of the size or variety of the circuits

the design can implement. The second metric, logic block count, is also undesirable, as it

is difficult to compare values across architectures with different logic block structures.

176

One possible solution to measure flexibility might be to test the number of

possible paths in an architecture, combined with the number of logic units. The more

placement and routing options available, the more flexible the design. While this method

might be effective for the general case when the structure of the implemented circuits is

completely unknown, it is not ideal for testing domain-specific architectures. Domain-

specific architectures attempt to omit logic resources and routing options that will not be

needed by any of the netlists (circuits) within the domain. In these cases, additional logic

and routing may not actually contribute to the flexibility (within the domain) of the

architecture, but only the execution and configuration overhead. It is critical to consider

the flexibility within the domain, rather than a more generic measurement.

Therefore, the flexibility testing methods presented here are based on the ability

of architectures to implement circuits from the domain, beyond the specification used to

create the architecture. A synthetic circuit generator is used to provide a large number of

circuits for use in the flexibility comparisons. This chapter begins with a discussion of

the techniques used to create the synthetic circuits. The relative flexibilities of the

architecture generation methods from Chapter 7 are then compared. Finally, other

important uses for the synthetic circuit generator are discussed.

9.1 Circuit Generator

Previous work in synthetic circuit generation generally operates at the gate level,

or in the case of FPGAs, in terms of LUTs [Darnauer96, Hutton98, Wilton01, Hutton02].

177

However, the circuits used for the Totem architecture generation discussed in this

dissertation are much more coarse-grained in nature, using word-width ALUs,

multipliers, and other large units as the logical components. In many cases, the

techniques from another circuit generator are used here [Hutton98, Hutton02], but are

modified both to compensate for heterogeneity as well as for coarse granularity and the

structure of RaPiD netlists. The operation of the circuit generator involves first

measuring a few key characteristics of a “parent” netlist or netlists. Then the synthetic

circuit is generated using these characteristics as guidelines. The next few sections

describe the process of profiling netlists, followed by the techniques used to generate the

synthetic circuits.

9.1.1 Circuit Profiling
Circuits are profiled in order to measure key defining characteristics. These

characteristics are then used to generate new circuits with structures similar to the

original parent circuit. RaPiD netlists currently form the source circuit material, and

these netlists have a distinct high-level structure. RaPiD netlists are split into systolic

stages, where each stage operates in parallel, and communicates only with adjacent

stages. Inter-stage communication is limited, as is the number of inputs and outputs of

the circuit. For the synthetic circuits to mimic RaPiD netlists, the stage and

communication structures must be accounted for. Each netlist is converted to a directed

graph, and measured for several characteristics, including:

178

• I/O requirements of the netlist
• Number of netlist stages
• Minimum/maximum connections between stages
• Minimum/maximum number of delay levels (logic levels) within the

stages
• Number of logic nodes
• % of nodes of each type (ALU, multiplier, etc)
• Proportion of signals to nodes
• Proportion of signals that are back edges (sink is a lower delay level than

the source)

Figure 9.1 illustrates a sample RaPiD netlist with 28 logic nodes, represented as a

directed graph. Note that all multi-terminal signals are split into a set of 2-terminal

signals for this profiling.

M

D

D

R
A

R

A
A

M
M

R

A M

D

A

D

AA

D

R D

R

A
D

A

M

D
DM

D

D

R
A

R

A
A

M
M

R

A M

D

A

D

AA

D

R D

R

A
D

A

M

D
D

Figure 9.1: A directed graph of a sample RaPiD netlist to be profiled. This netlist has three stages
(separated by the dashed line). The left stage has four delay levels, while the others each have
three delay levels. Logic units are represented as squares and labeled as different logic types
(RAM, ALU, multiplier, data register), and signals are represented as arrows. Back edges are
signals with the sink at an earlier delay level than the source. I/Os of the circuit and between
stages are represented by the dark circles.

9.1.2 Domain Profiling
Using a set of circuit profiles as generated in the previous section, a description of

an application domain can be created. The minimum, maximum, mean, and standard

deviation across the set of profiles are computed for each of the circuit characteristics.

New profile information is generated by choosing values within the given range

179

according to a Gaussian distribution for each characteristic (using the mean and standard

deviation to describe the function). The generated profile is then used to create a netlist

circuit as described in the next section.

9.1.3 Circuit Creation
After the circuit characteristics are obtained, either through manual input or

profiling of one or more circuits, the graph of the synthetic circuit can be created. The

goal of this generator is to create a circuit that, when profiled, will have characteristics

that approximate the circuit characteristics of the specification. First the general

structure, or “skeleton” of the circuit graph is created. Next the logic nodes are created,

and then the edges are created to connect the logic nodes together to form a directed

graph. Figure 9.2 demonstrates these steps for an example synthetic circuit created from

the profile of Figure 9.1. Finally, the completed graph describing the circuit is converted

into an actual netlist.

Graph Skeleton

The circuit generator first creates a skeleton for the circuit before creating the

circuit graph. The generated circuits need to have the general structure of RaPiD netlists,

which is enforced by the skeleton. First the stages of the circuit are instantiated, where

the number of stages is part of the input specification. The amount of connectivity

between stages is also determined at this time. A random number of inter-stage

connections is chosen between the minimum and the maximum stage I/O of the

180

specification (inclusive). The number of stage outputs of one stage is forced to match the

number of inputs of the next stage. Next, the number of delay levels for each stage is

randomly chosen between the minimum and maximum number of delay levels in the

specification (inclusive). A sample skeleton created from the profile from Figure 9.1 is

given in Figure 9.2a. At this point, the remainder of the circuit can be created.

(a)

D

A

D

M

D

R

D

A
A

R

D

A

M

A
D

A

R

M

D

D

D

M

R

A

R

A
D

A

(b)

D

A

D

M

D

R

D

A
A

R

D

A

M

A
D

A

R

M

D

D

D

M

R

A

R

A
D

A

(c)

Figure 9.2: Steps in the creation of an example synthetic circuit graph. (a) The skeleton,
including the number of stages (white bubbles) and delay levels within the stages (shaded
bubbles). The connectivity between stages is also indicated by the arrows. (b) Logic nodes are
then added to the skeleton. (c) Finally, the edges are added to connect the logic nodes.

181

Graph Nodes

The structure of the skeleton determines the minimum number of nodes that must

be created in order to create a circuit based on that skeleton. None of the stages are

permitted to be empty, and each delay level within each stage must have at least one

node. If the number of nodes in the specification is lower than the minimum number

allowed by the skeleton, the number of nodes is increased to meet the skeletal minimum.

The logic nodes are then created, approximately in the same proportions by type (i.e.,

ALU, multiplier, etc) as presented in the specification. Each stage is then assigned

enough random nodes to meet its minimum number of nodes. The remaining nodes (if

any) are assigned to random stages. Each node can only be assigned to a single stage.

Once the nodes are assigned to stages, they must also be assigned to delay levels

within the stages, where each node may only be assigned to a single delay level within its

assigned stage. Only one of the delay levels within each stage requires special

consideration. The number of nodes at the last delay level is determined by the

specification’s average proportion of the last level nodes to the number of stage outputs,

bounded at the upper end by the number of outputs. This helps to control the amount of

inter-stage communication. This proportion is used with the number of outputs for each

stage to compute the number of nodes belonging to the last delay level. Each remaining

delay level in a stage is assigned a random (unassigned) node from that stage in order to

ensure each delay level has at least one node. The remaining nodes are assigned to a

182

random delay level in the stage, not including the last level. Figure 9.2b shows the

example skeleton after the logic nodes have been added.

Graph Edges

At this point, the logical structure of the circuit is complete, and the edges of the

graph must be added. The edges are created in two phases: first the connections within

each stage, then the connections between stages. There are several steps involved in the

creation of the edges within the stages. First, the delay level assignments must be

enforced. For each node, a signal is created that sinks at that node. The signal’s source

node is randomly chosen from the immediately previous delay level. Next, the number of

inputs to the nodes is enforced. The number of required inputs depends on the type of

node—a data register only requires a single input, but an ALU requires two. Signals are

created to meet this requirement. These signals sink at the given node, and source from a

random node in the stage. Output constraints are then fulfilled, where each node is

required to have at least one output. For any nodes without an output, a signal is created

that sources from that node, and sinks at a random node in the stage. Finally, the rest of

the signals (quantity determined by the parameter of the ratio of signals to nodes) are

created with random sources and destinations.

For the above steps, apart from the enforcement of delay levels, the likelihood of

a signal being a back edge is determined by the parameter of percent of signals that are

back edges. If a signal is determined to be a forward edge, its source or sink must be

183

chosen such that the source is from a lower delay level than the sink. If the signal is

determined to be a back edge, the source or sink must be chosen such that the source is

from an equal or higher delay level than the sink, the sink is an ancestor of the source,

and at least one register must separate them.

 The second phase of edge generation is connecting the stages. When creating the

routing within the stage, temporary stage I/Os are created for each stage (the quantity of

which is determined during skeleton creation), and the nodes within the stage are

permitted to connect to these I/Os. The stages are then connected by creating

connections between the I/Os of adjoining stages. The outputs of each stage are paired

randomly with inputs from the next stage, and a single signal is created to connect the

pair of I/Os. Figure 9.2c shows the example circuit graph after the edges have been

added.

Final Circuit

At this point, a directed graph has been created to describe the synthetic circuit.

This graph then must be converted into the actual circuit format. The input signals at

each node are assigned random input ports on that node, after ensuring at least one signal

per port. The output signals are assigned random output ports on the node, but in this

case, not every port is required to have an assigned signal. Finally, the explicit stage

structure becomes implicit, as the connections between nodes and the stage I/Os are

propagated to the inputs of the next stage, as determined by the inter-stage connections.

184

9.2 Synthetic Circuit Validation

The synthetic circuits are intended to mimic the structure of actual circuits,

without duplicating those circuits exactly. To test that this is the case, ten synthetic

circuits were created for each actual RaPiD netlist available, and the synthetic circuits

were profiled with the same techniques used to profile the RaPiD netlists. The profiled

values were normalized to the characteristics of the original real circuits, and averaged

across the ten synthetic circuits. A chart comparing the normalized characteristics of the

generated circuits is given in Table 9.1. The data in this chart indicates that in general,

the synthetic circuits have very similar characteristics to the original circuits.

Additionally, most standard deviations listed are above zero, which indicates that there is

some variety in the characteristic values, as desired.

A few characteristics are less accurately mirrored in the synthetic circuits than

others. Among these are the number of instances per delay level, the inter-stage

communication (stage I/O), percent back edges, and fanin/fanout of individual nodes.

Future revisions of the synthetic circuit generator should aim to improve the accuracy of

generation to better follow the specification of these characteristics. On the whole,

however, the synthetic circuit generator meets the goals of generating architectures close,

but not identical to, a given set of characteristics (in this case, profiled directly from real

netlists).

185

Table 9.1: A comparison of characteristics of generated synthetic circuits to those of the original
circuits. All characteristics were normalized to the original netlists. The average values and
standard deviations across ten synthetic circuits are given for each parent circuit. Blank entries for
% back edges indicate that no back edges were created in those synthetic circuits.

Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev
Inputs 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
Outputs 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
Instances 1.01 0.03 1.54 0.10 1.00 0.00 1.02 0.01 1.02 0.02 1.01 0.00 1.00 0.00 1.00 0.00 1.00 0.00
Signals 0.97 0.05 1.70 0.10 1.20 0.00 0.95 0.03 0.94 0.03 1.02 0.02 1.06 0.02 1.06 0.02 1.06 0.03
Sig:Inst Ratio 0.96 0.03 1.10 0.03 1.20 0.00 0.93 0.03 0.91 0.02 1.01 0.02 1.06 0.02 1.06 0.02 1.06 0.03
Stages 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
% Backedges 0.31 0.50 0.50 0.29 0.55 0.36 0.67 0.17
Stage I/O 0.50 0.00 1.36 0.15 1.00 0.00 1.03 0.03 1.04 0.03 1.02 0.03 0.39 0.04 0.39 0.04 0.39 0.03
Delay Levels 1.09 0.12 2.07 0.10 1.00 0.00 0.89 0.09 0.82 0.09 1.09 0.11 0.87 0.03 0.87 0.03 0.94 0.02
Inst / Stage 1.01 0.03 1.54 0.10 1.00 0.00 1.02 0.01 1.02 0.02 1.01 0.00 1.00 0.00 1.00 0.00 1.00 0.00
Inst / Delay Level 0.79 0.09 0.76 0.06 1.00 0.00 1.44 0.15 1.58 0.17 1.07 0.11 0.73 0.04 0.73 0.04 0.68 0.02
Avg Node Fanin 1.14 0.08 1.01 0.02 0.62 0.04 1.00 0.02 1.05 0.04 0.69 0.02 0.88 0.02 0.88 0.02 0.86 0.02
Avg Node Fanout 1.39 0.09 1.06 0.02 0.70 0.04 1.00 0.02 1.05 0.04 0.70 0.02 0.99 0.02 0.99 0.02 0.98 0.02
% registers 1.02 0.05 1.00 0.01 1.00 0.00 1.03 0.02 1.04 0.03 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
% multipliers 0.99 0.03 1.00 0.01 1.00 0.00 0.98 0.01 0.98 0.02 0.99 0.00 1.00 0.00 1.00 0.00 1.00 0.00
% RAMs 1.00 0.00 1.02 0.03 1.00 0.00 0.98 0.01 0.98 0.02 0.99 0.00 1.00 0.00 1.00 0.00 1.00 0.00
% ALUs 0.99 0.03 1.00 0.00 1.00 0.00 0.98 0.01 0.98 0.02 0.99 0.00 1.00 0.00 1.00 0.00 1.00 0.00

firsm3Characteristic fft32 fft64 firsm firsm21d_dct40 color_interp fft16_2nddecnsr

Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev
Inputs 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
Outputs 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
Instances 1.00 0.00 1.03 0.02 1.05 0.04 1.00 0.00 1.04 0.03 1.01 0.04 1.00 0.00 1.07 0.04 1.05 0.02
Signals 1.04 0.01 0.69 0.04 0.79 0.04 0.99 0.02 0.83 0.06 1.04 0.06 1.01 0.01 0.76 0.05 0.74 0.04
Sig:Inst Ratio 1.04 0.01 0.67 0.03 0.76 0.04 0.99 0.02 0.80 0.04 1.03 0.04 1.01 0.01 0.71 0.04 0.70 0.03
Stages 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
% Backedges 0.58 0.43 0.49 0.24 0.35 0.23 0.34 0.24 0.70 0.39 0.64 0.26
Stage I/O 0.36 0.02 0.81 0.05 0.57 0.12 0.85 0.10 1.15 0.09 0.74 0.11 0.32 0.02 0.54 0.10 0.55 0.09
Delay Levels 1.01 0.04 0.96 0.06 0.95 0.07 1.17 0.05 0.96 0.03 1.01 0.04 0.96 0.01 0.88 0.06 0.93 0.05
Inst / Stage 1.00 0.00 1.03 0.02 1.05 0.04 1.00 0.00 1.04 0.03 1.01 0.04 1.00 0.00 1.07 0.04 1.05 0.02
Inst / Delay Level 0.62 0.03 1.00 0.05 0.90 0.11 0.91 0.06 1.14 0.05 0.91 0.07 1.16 0.01 0.98 0.10 0.91 0.05
Avg Node Fanin 0.89 0.01 0.70 0.02 0.73 0.02 1.01 0.03 0.73 0.01 0.63 0.02 1.26 0.01 0.74 0.02 0.71 0.02
Avg Node Fanout 0.96 0.01 0.74 0.02 0.77 0.02 1.05 0.03 0.86 0.02 0.70 0.02 1.51 0.01 0.78 0.03 0.74 0.02
% registers 1.00 0.00 1.04 0.04 1.07 0.05 1.00 0.00 1.06 0.05 1.00 0.01 1.00 0.00 1.29 0.17 1.11 0.04
% multipliers 1.00 0.00 0.97 0.02 0.95 0.04 1.00 0.00 0.97 0.03 0.99 0.04 1.00 0.00 0.94 0.04 0.95 0.02
% RAMs 1.00 0.00 0.97 0.02 0.95 0.04 1.00 0.00 0.97 0.03 1.00 0.00 1.00 0.00 0.94 0.04 0.95 0.02
% ALUs 1.00 0.00 0.97 0.02 0.95 0.04 1.00 0.00 0.97 0.03 0.99 0.04 1.00 0.00 0.94 0.04 0.95 0.02

matmult matmult4Characteristic firsymeven firtm_1st firtm_2nd img_filt limited limited2 log32

Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev
Inputs 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
Outputs 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
Instances 1.07 0.04 1.00 0.00 1.08 0.03 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
Signals 0.76 0.05 1.78 0.02 1.79 0.05 1.01 0.02 1.14 0.02 1.01 0.03 1.11 0.02 1.05 0.01
Sig:Inst Ratio 0.71 0.04 1.78 0.02 1.66 0.04 1.01 0.02 1.14 0.02 1.01 0.03 1.11 0.02 1.05 0.01
Stages 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
% Backedges 0.70 0.39 0.98 0.45
Stage I/O 0.54 0.10 0.90 0.11 1.00 0.00 0.77 0.08 0.71 0.09 0.71 0.08 0.70 0.10 0.35 0.01
Delay Levels 0.88 0.06 1.44 0.04 1.11 0.13 1.06 0.00 1.05 0.00 1.06 0.00 1.07 0.00 1.04 0.01
Inst / Stage 1.07 0.04 1.00 0.00 1.08 0.03 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
Inst / Delay Level 0.98 0.10 0.66 0.04 1.04 0.12 0.83 0.04 0.81 0.04 0.79 0.04 0.78 0.05 0.64 0.01
Avg Node Fanin 0.74 0.02 0.77 0.01 0.99 0.03 0.76 0.02 0.76 0.01 0.73 0.02 0.72 0.02 0.91 0.01
Avg Node Fanout 0.78 0.03 0.77 0.01 1.41 0.04 0.76 0.02 0.76 0.01 0.73 0.02 0.72 0.02 0.99 0.01
% registers 1.29 0.17 1.00 0.00 1.34 0.12 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
% multipliers 0.94 0.04 1.00 0.00 0.93 0.02 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
% RAMs 0.94 0.04 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
% ALUs 0.94 0.04 1.00 0.00 0.93 0.02 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

syncCharacteristic matmult_bit med_filt psd sort_g sort_rb sort_2d_g sort_2d_rb

186

9.3 Testing Flexibility

A few different techniques have been examined to measure the flexibility of the

routing architecture generation algorithms from Chapter 7. First, flexibility measurement

using circuits generated from single profiles will be discussed, and the generation

algorithms will be compared using architectures generated from these circuits. Next, a

few issues involved in flexibility testing with domain-based synthetic circuits will be

examined. A recommended method to test flexibility using these domain circuits is

presented, followed by an analysis of the routing generation algorithms using this

technique.

9.3.1 Single Circuit Flexibility
First the flexibility of the different architecture generation methods was tested for

single circuit generation. Ten circuits were created for each RaPiD netlist, and

architectures were created using the three techniques of Chapter 7 given a single

generated circuit as input. The generated circuits were forced to have the exact same

logic resources as the parent circuit so that only the flexibility of the routing structures is

tested. An attempt was then made to place and route (using the tool described in section

4.2.3) the parent circuit onto each of the corresponding architectures generated from the

synthetic circuits. This is repeated for each parent circuit, for a total of 780 test cases—

three methods used for each of ten circuits generated for each of twenty-six parent

netlists.

187

Table 9.2: A table listing the % likelihood that the original parent netlist can be placed and routed
onto an architecture created from a synthetic circuit based on the parent characteristics. Results
are given for each architecture generation method. The Orig column indicates if the netlist can be
placed and routed onto an architecture created directly from that netlist.

Orig % Orig % Orig %
1d_dct40 Y 40 Y 80 N 60
color_interp Y 30 Y 100 Y 100
decnsr N 10 Y 90 N 30
fft16_2nd Y 10 Y 100 Y 100
fft32 Y 10 Y 100 Y 100
fft64 Y 10 Y 100 Y 100
firsm Y 10 Y 100 Y 100
firsm2 Y 10 Y 100 Y 100
firsm3 Y 0 Y 100 Y 100
firsymeven Y 0 Y 100 Y 100
firtm_1st Y 0 Y 100 Y 90
firtm_2nd Y 0 Y 80 Y 90
img_filt Y 20 Y 100 Y 100
limited Y 0 Y 100 Y 100
limited2 Y 30 Y 60 Y 60
log32 Y 90 Y 100 Y 100
matmult Y 0 Y 90 Y 100
matmult4 N 0 Y 100 Y 100
matmult_bit Y 0 Y 100 Y 100
med_filt Y 40 Y 100 Y 90
psd Y 100 Y 100 Y 100
sort_g Y 10 Y 100 Y 100
sort_rb Y 40 Y 100 Y 100
sort_2d_g Y 10 Y 100 Y 90
sort_2d_rb Y 10 Y 100 Y 100
sync Y 0 Y 40 Y 10
AVERAGE

GH AMO AML

18.5 93.8 89.2

The results, presented in Table 9.2, highlight the flexibility differences of the

architecture generation methods: Greedy Histogram (GH), Add Max Once (AMO), and

Add Min Loop (AML). Over 80% of the time, GH with synthetic circuits does not result

in an architecture that is sufficiently flexible to implement the original circuit. In fact, in

two cases, the original netlist cannot be placed and routed onto architectures created

using GH directly from that netlist, as indicated by the Orig column in of Table 9.2.

188

AML similarly fails in two cases. However, in all cases, the original netlist can be

successfully placed and routed onto an architecture created from that netlist using AMO.

On the other hand, both the Add Max Once and Add Min Loop generation

methods allow a significant percentage of the parent circuits to be implemented on

architectures created from synthetic netlists. Using the Add Max Once method, there is a

94% success rate, while the Add Min Loop method results in an 89% success rate,

indicating the Add Max Once technique results in architectures which are inherently

more flexible than either of the two other methods. This is not unexpected, as Add Max

Once tends to introduce more distance routing tracks than Add Max Loop, and the

segmentation points in the distance tracks provide more routing options to the place and

route tool.

9.3.2 Domain Flexibility
In order to test the flexibility of the different routing generation algorithms for a

given domain, first that domain must be profiled, as described in section 9.1.2. The

applications used for testing throughout this work are each composed of two to six

netlists. Therefore, the domain architectures were created from five synthetic netlists, as

this number falls within but at the upper end of this range. The number of netlists used

was chosen to be within the range to represent a realistic number of netlists. However, a

value near the upper end of the range was chosen under the assumption that the more

synthetic netlists are used to create an architecture, the wider the variety of circuit

189

structures the architecture will be able to handle, and the more likely it will be able to

implement the original netlists.

Generating an architecture from a range of profiles creates architectures less like

any particular original netlist than if the architecture was created from a single profile.

The different original netlists whose profiles define the domain may vary considerably in

their structure or resource requirements. Plus, the synthetic circuits are generated

randomly (with a Gaussian distribution) from the ranges of characteristic values.

Therefore, it is difficult to guarantee that the exact logic mix required by the original

netlists will be represented by a set of synthetic netlists using domain circuit generation.

For example, a domain may be specified by two netlists, netlist A and netlist B. Netlist A

has 100 units, where 90% are ALUs and 10% are multipliers. Netlist B has 100 units,

where 90% are multipliers and 10% are ALUs. A circuit is generated from the range

specified by the profiles of the two netlists. This circuit contains 100 units, 50% of which

are ALUs and 50% of which are multipliers. If a domain architecture is created from this

one netlist alone, neither of the two original netlists could be implemented due to logic

constraints.

To examine the issue of logic requirements, the eight application domains were

profiled to give a range of characteristics. Next, five synthetic netlists were created from

each of these range profiles, with the number of logic nodes increased by 0, 10, 20, and

30 percent beyond the number chosen by the domain circuit generation. For each domain

(and each level of logic increase), the synthetic netlists were examined to determine if

190

they would create an architecture with sufficient logic resources to implement the original

netlists of the domain. This process was repeated ten times for each domain.

Table 9.3 lists the success rate as a percentage across all ten trials for each

domain, for each of the four logic sizes. The results demonstrate that even by adding

30% more units to each synthetic netlist, it is by no means guaranteed that there will be

sufficient logic of the correct type to implement the original netlists. Choosing to add no

additional units results in less than a 60% success rate. Therefore, an improved method is

required to reliably specify logic requirements for a domain.

However, this particular test does lead to an interesting result. In the synthetic

circuit generation, the routing complexity is given as a proportion to the number of logic

units. Therefore, increasing the number of logic units for a synthetic circuit by a

percentage also increases the number of signals within the circuit, and thus the number of

wires in the final architecture. In fact, testing the routability of the parent netlists onto the

GH architectures with 10% extra logic indicated that this increase was quite significant.

Only one netlist-architecture combination out of 310 cases fails to route when enough

logic exists to implement the netlist. A further test indicated that all of the scenarios with

sufficient logic for placement route successfully when either the AMO or AML

architecture generation methods are used. These results demonstrate that a percentage-

based increase of the logic resources of synthetic circuits is not a good technique to use

when attempting to differentiate between the flexibilities of the generated architectures.

191

Table 9.3: A table indicating the percentage of architectures having enough logic to implement
the given original netlists. Results are given for the cases when no additional logic is added to the
synthetic circuit, as well as when 10, 20, and 30 percent additional logic units are added.

Application Netlists 0 10 20 30
decnsr 100 100 100 100
fft16_2nd 0 0 10 10
psd 100 100 100 100
sync 20 40 40 40
fft64 60 60 60 80
color_interp 100 100 100 100
img_filt 80 90 90 90
med_filt 100 100 100 100
log32 0 0 10 10
fft32 100 100 100 100
1d_dct40 100 100 100 100
firsm 70 70 90 90
firsm2 70 70 90 90
firsm3 70 70 90 90
firsymeven 0 0 0 0
firtm_1st 100 100 100 100
firtm_2nd 100 100 100 100
matmult 10 20 60 60
matmult4 30 30 70 80
matmult_bit 10 20 60 60
limited 10 30 50 60
limited2 100 100 100 100
sort_g 20 50 90 100
sort_rb 0 80 90 100
sort_2d_g 90 100 100 100
sort_2d_rb 100 100 100 100
med_filt 0 0 0 0
matmult 80 80 80 90
firtm_2nd 80 90 100 100
fft16_2nd 30 50 60 80
1d_dct40 100 100 100 100

59.0 66.1 75.5 78.4

Radar

FIR

Speech

Camera

OFDM

AVERAGE

Image

Sort

Matrix

192

Table 9.4: Success rates, in percentages, of routing original netlists onto architectures created by
each of the three flexible routing generation algorithms from a set of synthetic benchmarks created
from a domain profile. The minimum logic requirements of the domain were imposed on the
architectures to assure a successful placement.

Application Netlists GH AMO AML
decnsr 100.0 100.0 100.0
fft16_2nd 10.0 100.0 100.0
psd 100.0 100.0 100.0
sync 100.0 100.0 100.0
fft64 60.0 100.0 90.0
color_interp 100.0 100.0 100.0
img_filt 100.0 100.0 100.0
med_filt 100.0 100.0 100.0
log32 80.0 100.0 100.0
fft32 100.0 100.0 100.0
1d_dct40 100.0 100.0 100.0
firsm 100.0 100.0 100.0
firsm2 100.0 100.0 100.0
firsm3 100.0 100.0 100.0
firsymeven 50.0 100.0 100.0
firtm_1st 100.0 100.0 100.0
firtm_2nd 100.0 100.0 100.0
matmult 90.0 100.0 100.0
matmult4 90.0 100.0 100.0
matmult_bit 90.0 100.0 100.0
limited 100.0 100.0 100.0
limited2 100.0 100.0 100.0
sort_g 100.0 100.0 100.0
sort_rb 100.0 100.0 100.0
sort_2d_g 100.0 100.0 100.0
sort_2d_rb 100.0 100.0 100.0
med_filt 70.0 90.0 90.0
matmult 100.0 100.0 100.0
firtm_2nd 100.0 100.0 100.0
fft16_2nd 100.0 100.0 100.0
1d_dct40 100.0 100.0 100.0

91.6 99.7 99.4

Radar

OFDM

Camera

Speech

FIR

Matrix

Sort

Image

AVERAGE

The next domain tests allow for the specification of a minimum logic set. In this

flow, the domains are profiled as before, but this time the minimum logic requirements

are also profiled. Again five synthetic circuits are generated for each domain (with no

additional logic). Architectures are created using the synthetic circuits for each of the

domain. If the synthetic circuits do not provide sufficient logic resources of the

193

necessary types (based on the domain minimums), the needed logic units are added

directly to the architecture without affecting the netlists. The architectures are therefore

guaranteed to have sufficient logic for the original netlists of their domain. The original

netlists of the domain are then placed and routed onto the architectures. This process was

repeated ten times for each domain, and the results are given in Table 9.4.

This set of domain tests differentiate between the flexibility of the three different

architecture generation methods. GH has the lowest flexibility, successfully routing

91.6% of netlists onto the architecture created for their domain. AML had a mid-level

flexibility, with a success rate of 99.4%. AMO has the highest flexibility, with 99.7% of

the netlists successfully routed. These results mirror the predicted flexibility of the three

algorithms. GH is inherently less flexible, as it attempts to customize the track-based

routing architecture as much as possible to the specification netlists, which in this case

were synthetic. AMO has the highest flexibility, as it emphasizes the use of distance

(segmented) routing tracks, which inherently permit a wider variety of choices to the

routing algorithm. AML creates a regular routing architecture, more generic than the

routing created by GH. Its flexibility is quite similar to that of AMO, the other algorithm

that creates regular routing architectures. On the other hand, AML attempts to use less

area than AMO by using local (non-segmented) routing whenever possible, and so its

flexibility is slightly lower.

194

9.4 Other Uses

Synthetic circuit generators might also be used to compare the flexibility of

existing architectures for domain-specific applications. The current flexibility testing

involves generating architectures from synthetic circuits, and testing using the real

circuits. This would not be possible in this case, as the architecture is already fixed. One

possible method would be to select a set of netlists representative of the domain, and

generate a large number of synthetic circuits based upon the profiled domain information.

Next, the designer would attempt to place and route these synthetic circuits onto the

architectures. The relative flexibility of each architecture within the application domain

could then be measured by the percentage of the netlists which can successfully be

implemented.

There are also other situations in which synthetic netlists and domain generation

can be useful for automatic reconfigurable architecture generation. In many cases, the

target domain may not be completely specified—either the final netlists are not all

complete, or the devices will be expected to implement future netlists beyond the

specification. If some characteristics of these netlists are known in advance, or at least a

few of the domain’s netlists are available, synthetic circuits can be created to approximate

the unknown circuits for the architecture generation.

195

9.5 Summary

The flexible routing generation techniques of Chapter 7 provide solutions at

various points in the area/flexibility solution space. While the methods can easily be

compared on the basis of area, there was not an established method to evaluate the

flexibility of the generated architectures. This chapter therefore discussed a method to

perform this flexibility comparison through the use of synthetic circuits. Both the single-

circuit flexibility testing and the enforced minimum domain testing were able to clearly

differentiate between the architectures generated using the three routing generation

methods. The results given for this comparison match predictions from Chapter 7 based

on the goals of each of the algorithms. Greedy Histogram algorithm produces the least

flexible (most specialized) architectures, and Add Max Once technique produces the most

flexible architectures. Add Min Loop produces architectures with flexibility close to, but

lower than, Add Max Once, trading some flexibility for area savings.

There are other potential uses for the synthetic circuit generation techniques

described here. A synthetic circuit can be used to approximate a circuit whose design has

not yet been completed, allowing for a greater degree of parallelism in the design of the

reconfigurable hardware and the designs which will use it. Furthermore, using the

domain circuit generation, a more full description of a domain can be created to help

ensure an architecture is sufficiently flexible for future netlists created after the SoC

fabrication. Most importantly, though, the flexibility measurement techniques presented

196

in this chapter will allow SoC designers to more thoroughly and intelligently evaluate

different custom architecture generation techniques to find the best solution for the task at

hand.

 197

Chapter 10

Conclusions

Because of its flexibility and ability to run applications in hardware instead of

software, reconfigurable hardware is well-suited for use on Systems-on-a-Chip (SoCs).

Structures such as pre-existing FPGA tiles could be used for this purpose. However,

commercial FPGAs are very generic, and miss many optimization opportunities for

coarse-grained computations such as DSP. Coarse-grained reconfigurable architectures

have been designed to improve efficiency, but they still target a broad spectrum of

computations. As demonstrated by the area comparisons to RaPiD, further customization

can yield significant area improvements.

However, custom fabricated SoCs allow for the possibility of customized

reconfigurable logic. By creating specialized reconfigurable architectures for the targeted

application domain, an architecture can be created that possesses the ASIC benefits of

custom computational and routing resources, while still leveraging the assets of

reconfigurable computing. These custom reconfigurable architectures can then be

embedded into SoCs, yielding highly efficient computing solutions.

198

Unfortunately, the cost in design time and effort involved in the manual creation

of a new reconfigurable architecture for each type of SoC would be prohibitive. The

Totem Project seeks to solve this problem by automating the process of custom

reconfigurable architecture creation to quickly and easily provide flexible and powerful

acceleration circuits for SoCs.

10.1 Contributions

This work focused on one aspect of the Totem Project: high-level architecture

generation. The architecture generator reads a set of application netlists as input, and

outputs an architecture designed specifically for those netlists. A number of algorithms

were presented which created architectures with varying trade-offs in terms of area and

flexibility.

Algorithms were presented in Chapter 6 to generate reconfigurable architectures

close in style to an ASIC, harnessing the specialization benefits of ASICs, yet providing

the hardware re-use of a reconfigurable architecture. These techniques yielded

architectures on average up to 12.3x smaller than the equivalent FPGA solution, and 2.2x

smaller than standard cells for a given application. In Chapter 7, algorithms were

examined that create architectures with a greater degree of flexibility, capable of

implementing netlists beyond the specification set. Area improvements of up to 5.5x

over an FPGA implementation were achieved.

199

 The design of flexible routing architectures highlighted several additional key

issues that must be considered for custom reconfigurable architecture design. The first is

track placement, which is the arrangement of the routing resources with a channel.

Chapter 8 defined the track placement problem and a metric to measure track placement

quality. It also discussed several algorithms that perform automatic track placement, and

compared the relative track placement qualities achieved by these algorithms. While a

provably optimal algorithm was given, this algorithm is highly restricted. A relaxed

version of the algorithm was also presented that achieved track placement qualities within

1.13% of the optimal brute-force solution.

Finally, a method to compare the relative flexibilities of the generated

architectures was proposed. Currently, the only metric available to compare the ability of

FPGA structures to implement circuits is “effective gates”. However, this metric refers

to logic capacity, not necessarily the flexibility of the routing network. Also, this metric

has been widely criticized, and is even less appropriate for coarse-grained of domain-

specific architectures. Chapter 9 discussed the use of a synthetic circuit generator to test

flexibility. The relative flexibilities of the three flexible architecture generation

algorithms from Chapter 7 were then measured. As expected from the goals of the

individual generation algorithms, these results indicate that Greedy Histogram is the least

flexible of the three, Add Max Once is the most flexible, and Add Min Loop has a

flexibility comparable, but slightly lower than, Add Max Once.

200

This work provides a robust framework to create and evaluate automatically

generated customized reconfigurable architectures on the basis of both area and

flexibility. Because these architectures are generated automatically, several different

architectures designs can be created in a small fraction of the time required for a single

manual design. SoC designers then have the ability to explore and compare architecture

designs at various points of the solution space in order to find the best Totem architecture

for each SoC.

10.2 Future Work

Currently, the pipelining of the netlists is removed prior to architecture generation

to simplify the problem. However, the types of coarse-grained computational domains

that Totem targets is likely to include highly pipelined netlists. It is possible sufficient

pipelining resources, such as an optional pipeline register at each segmentation point, are

available to route the full netlists onto the generated architectures. However, the effects

of pipelining on the architecture generation should be studied.

While the techniques presented here for automatic reconfigurable architecture

generation provide significant improvements over other solutions, several improvements

can be made to the algorithms involved. An improved clique partitioning weight function

for the cASIC generation of Chapter 6 which uses a combination of common ports and a

common span to merge similar signals into physical wires could be examined.

Furthermore, segmentation points could be employed to potentially reduce the wire cross-

201

section within the architecture and provide a higher degree of routing resource sharing

between netlists.

The algorithms used for the flexible architecture generation in Chapter 7 can also

be refined, with the Greedy Histogram method altered to consider situations where

signals can be implemented using wires of varying lengths. Another regular routing

algorithm could be researched which attempts to harness the benefits of both the Add

Max Once and the Add Min Loop algorithms, emphasizing the cost of both the number of

segmentation points and the number of routing tracks.

Finally, the circuit generator used by the flexibility tester discussed in Chapter 9,

that creates synthetic circuits of appropriate similarity to the original source netlists, is a

first effort at coarse-grained circuit generation. A few characteristics of the synthetic

circuits deviate significantly from the source signal characteristics, and future versions of

the synthetic circuit generator should attempt to rectify this issue.

 202

References
[Abnous96] A. Abnous, J. Rabaey, “Ultra-Low-Power Domain-Specific Multimedia Processors”,

Proceedings of the IEEE VLSI Signal Processing Workshop, October 1996.

[Abnous98] A. Abnous, K. Seno, Y. Ichikawa, M. Wan, J. Rabaey, “Evaluation of a Low-Power
Reconfigurable DSP Architecture”, Proceedings of the Reconfigurable Architectures
Workshop, 1998.

[Actel01] Actel Corporation, VariCoreTM Embedded Programmable Gate Array Core
(EPGATM) 0.18µm Family. Actel Corporation, Sunnyvale, CA, 2001.

[Actel02] Actel Corporation, ProASICTM 500K Family. Actel Corporation, Sunnyvale, CA,
2002.

[Atmel02] Atmel Corporation, AT94K Series FPSLIC. Atmel Corporation, San Jose, CA, 2002.

[Aggarwal94] A. Aggarwal, D. Lewis, “Routing Architectures for Hierarchical Field Programmable
Gate Arrays”, Proceedings of the IEEE International Conference on Computer
Design, pp. 475-478, 1994.

[Altera98] Altera Corporation, Data Book. Altera Corporation, San Jose, CA, 1998.

[Altera01] Altera Corporation, Excalibur: Embedded Processor Programmable Solutions.
Altera Corporation, San Jose, CA, 2002.

[Altera03a] Altera Corporation, Stratix Device Handbook, Volume 1. Altera Corporation, San
Jose, CA, 2003.

[Altera03b] Altera Corporation, Cyclone: The Lowest-Cost FPGA Ever. Altera Corporation, San
Jose, CA, 2003.

[Annapolis98] Annapolis Microsystems, Inc., Wildfire Reference Manual. Annapolis Microsystems,
Inc, Annapolis, MD, 1998.

[Arnold92] J. M. Arnold, D. A. Buell, E. G. Davis, “Splash 2”, Proceedings of the ACM
Symposium on Parallel Algorithms and Architectures, pp. 316-324, 1992.

[Betz97] V. Betz, J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA
Research”, International Workshop on Field Programmable Logic and Applications,
pp. 213-222, 1997.

[Betz99] V. Betz, J. Rose, “FPGA Routing Architecture: Segmentation and Buffering to
Optimize Speed and Density”, ACM/SIGDA International Symposium on FPGAs,
pp. 59-68, 1999.

203

[Betz00] V. Betz, J. Rose, “Automatic Generation of FPGA Routing Architectures from High-
Level Descriptions”, ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, pp. 175 – 184, 2000.

[Borriello95] G. Borriello, C. Ebeling, S. Hauck, S. Burns, “The Triptych FPGA Architecture”,
IEEE Transactions on VLSI Systems, Vol. 3, No. 4, pp. 491-501, December 1995.

[Brown92a] S. D. Brown, R. J. Francis, J. Rose, Z. G. Vranesic, Field-Programmable Gate
Arrays. Kluwer Academic Publishers, Boston, MA, 1992.

[Brown92b] S. Brown, J. Rose, Z. G. Vranesic, “A Detailed Router for Field-Programmable Gate
Arrays”, IEEE Transactions on Computer-Aided Design, Vol. 11, No. 5, pp. 620-
628, 1992.

[Budiu99] M. Budiu, S. C. Goldstein, “Fast Compilation for Pipelined Reconfigurable Fabrics”,
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, 1999.

[Buell96] D. Buell, J. M. Arnold, W. J. Kleinfelder, SPLASH 2: FPGAs in a Custom
Computing Machine. IEEE Computer Society Press, Los Alamitos, CA, 1996.

[Cadambi98] S. Cadambi, J. Weener, S. C. Goldstein, H. Schmit, D. E. Thomas, “Managing
Pipeline-Reconfigurable FPGAs”, ACM/SIGDA International Symposium on
FPGAs, pp. 55-64, 1998.

[Callahan98] T. J. Callahan, P. Chong, A. DeHon, J. Wawrzynek, “Fast Module Mapping and
Placement for Datapaths in FPGAs”, ACM/SIGDA International Symposium on
FPGAs, pp. 123-132, 1998.

[Chameleon00] Chameleon Systems, Inc., CS2000 Advance Product Specification. Chameleon
Systems, Inc., San Jose, CA, 2000.

[Chan97] P. K. Chan, M. D. F. Schlag, “Acceleration of an FPGA Router”, IEEE Symposium
on Field-Programmable Custom Computing Machines, pp. 175-181, 1997.

[Chang99] M. L. Chang, S. Hauck, “Adaptive Computing in NASA Multi-Spectral Image
Processing”, Military and Aerospace Applications of Programmable Devices and
Technologies International Conference, 1999.

[Chipworks02] Chipworks, Inc., “Xilinx XC2V1000 Die Size And Photograph”, Chipworks, Inc.,
Ottawa, Canada, 2002.

[Chow99] P. Chow, S. O. Seo, J. Rose, K. Chung, G. Páez-Monzon, I. Rahardja, “The Design
of an SRAM-Based Field-Programmable Gate Array—Part I: Architecture”, IEEE
Transactions on Very Large Scale Integration Systems, Vol. 7, No. 2, pp. 191-197,
1999.

[Compton00] K. Compton, J. Cooley, S. Knol, S. Hauck, “Configuration Relocation and
Defragmentation for FPGAs”, Northwestern University Technical Report, Available
online at http://www.ece.nwu.edu/~kati/publications.html, 2000.

204

[Compton01] K. Compton, S. Hauck, “Totem: Custom Reconfigurable Array Generation”, IEEE
Symposium on FPGAs for Custom Computing Machines, 2001.

[Compton02a] K. Compton, S. Hauck, “Reconfigurable Computing: A Survey of Systems and
Software”, ACM Computing Surveys, Vol. 34, No. 2. pp. 171-210, June 2002.

[Compton02b] K. Compton, S. Hauck, “Track Placement: Orchestrating Routing Structures to
Maximize Routability”, University of Washington Technical Report UWEETR-2002-
0013, 2002.

[Compton02c] K. Compton, Z. Li, J. Cooley, S. Knol, “Configuration Relocation and
Defragmentation for Run-Time Reconfigurable Computing”, IEEE Transactions on
VLSI, Vol. 10, No. 3., pp. 209-220, June 2002.

[Compton02d] K. Compton, A. Sharma, S. Phillips, S. Hauck, “Flexible Routing Architecture
Generation for Domain-Specific Reconfigurable Subsystems”, International
Conference on Field-Programmable Logic and Applications, pp. 59-68, 2002.

[Compton03] K. Compton, S. Hauck, "Track Placement: Orchestrating Routing Structures to
Maximize Routability”, International Conference on Field-Programmable Logic and
Applications, 2003.

[Cong98] J. Cong, S. Xu, “Technology Mapping for FPGAs with Embedded Memory Blocks”,
ACM/SIGDA International Symposium on FPGAs, pp. 179-188, 1998.

[Cronquist98] D. C. Cronquist, P. Franklin, S.G. Berg, C. Ebeling, “Specifying and Compiling
Applications for RaPiD”, IEEE Symposium on FPGAs for Custom Computing
Machines, 1998.

[Cronquist99a] D. C. Cronquist, P. Franklin, C. Fisher, M. Figueroa, C. Ebeling, “Architecture
Design of Reconfigurable Pipelined Datapaths”, Twentieth Anniversary Conference
on Advanced Re-search in VLSI, 1999.

[Cronquist99b] D. C. Cronquist, P. Franklin, C. Fisher, M. Figueroa, C. Ebeling, "Architecture
Design of Reconfigurable Pipelined Datapaths", Presentation at Twentieth
Anniversary Conference on Advanced Research in VLSI, 1999.

[Cypress03] Cypress MicroSystems, PSoCTM: Configurable Mixed-Signal Array with On-board
Controller. Cypress MicroSystems, Lynnwood, WA, 2003.

[Dandalis01] A. Dandalis, V. K. Prasanna, “Configuration Compression for FPGA-based
Embedded Systems”, ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 173-182, 2001.

[Darnauer96] J. Darnauer, W.W.-M. Dai, “A Method for Generating Random Circuits and its
Application to Routability Measurement”, ACM Symposium on Field Programmable
Gate Arrays, 1996.

205

[DeHon99] A. DeHon, “Balancing Interconnect and Computation in a Reconfigurable
Computing Array (or, why you don’t really want 100% LUT utilization)”,
ACM/SIGDA International Symposium on FPGAs, pp. 69-78, 1999.

[Deshpande99] D. Deshpande, A. K. Somani, A. Tyagi, “Configuration Caching Vs Data Caching
for Striped FPGAs”, ACM/SIGDA International Symposium on FPGAs, pp. 206-214,
1999.

[Diessel97] O. Diessel, H. ElGindy, “Run-Time Compaction of FPGA Designs”, Lecture Notes
in Computer Science 1304—Field-Programmable Logic and Applications. W. Luk,
P.Y.K. Cheung, M. Glesner, Eds. Springer-Verlag, Berlin, Germany, pp. 131-140,
1997.

[Dollas98] A. Dollas, E. Sotiriades, A. Emmanouelides, “Architecture and Design of GE1, a
FCCM for Golomb Ruler Derivation”, IEEE Symposium on Field-Programmable
Custom Computing Machines, pp. 48-56, 1998.

[Dorndorf94] U. Dorndorf, E. Pesch, "Fast Clustering Algorithms", ORSA Journal on Computing,
Vol. 6, No. 2, pp. 141-152, 1994.

[eASIC03] eASIC Corporation, “eASICore® Product Features”, Available Online at:
http://www.easic.com/technolgy/product_feature.html, 2003.

[Ebeling96] C. Ebeling, D. C. Cronquist, P. Franklin, “RaPiD – Reconfigurable Pipelined
Datapath.”, Lecture Notes in Computer Science 1142—Field-Programmable Logic:
Smart Applications, New Paradigms and Compilers, R.W. Hartenstein, M. Glesner,
Eds. Springer-Verlag, Berlin, Germany, pp. 126-135, 1996.

[Elbirt00] A. J. Elbirt, C. Paar, “An FPGA Implementation and Performance Evaluation of the
Serpent Block Cipher”, ACM/SIGDA International Symposium on FPGAs, pp. 33-
40, 2000.

[Elixent02] Elixent, DFA1000 RISC Accelerator. Elixent, Bristol, England, 2002.

[Emmert99] J. M. Emmert, D. Bhatia, “A Methodology for Fast FPGA Floorplanning”,
ACM/SIGDA International Symposium on FPGAs, pp. 47-56, 1999.

[Estrin63] G. Estrin, B. Bussel, R. Turn, J. Bibb, “Parallel Processing in a Restructurable
Computer System”, IEEE Transactions on Electronic Computers, pp. 747-755, 1963.

[Fry02] T. W. Fry, S. Hauck, "Hyperspectral Image Compression on Reconfigurable
Platforms", Earth Science Technology Conference, 2002.

[Gehring96] S. Gehring, S. Ludwig, “The Trianus System and Its Application to Custom
Computing”, Lecture Notes in Computer Science 1142—Field-Programmable Logic:
Smart Applications, New Paradigms and Compilers. R.W. Hartenstein, M. Glesner,
Eds. Springer-Verlag, Berlin, Germany, pp. 176-184, 1996.

206

[Goldstein00] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, R. Taylor, “PipeRench:
A Reconfigurable Architecture and Compiler”, IEEE Computer, Vol. 33, No. 4, pp.
70-77, 2000.

[Graham96] P. Graham, B. Nelson, “Genetic Algorithms In Software and In Hardware--A
Performance Analysis of Workstations and Custom Computing Machine
Implementations”, IEEE Symposium on FPGAs for Custom Computing Machines,
pp. 216-225, 1996.

[Hashimoto71] A. Hashimoto, J. Stevens, “Wire Routing by Optimizing Channel Assignment within
Large Apertures”, Proceedings of the 8th ACM Design Automation Workshop, pp.
115-169, 1971.

[Hauck96] S. Hauck, A. Agarwal, “Software Technologies for Reconfigurable Systems”,
Northwestern University, Dept. of ECE Technical Report. Available online at:
http://www.ee.washington.edu/faculty/hauck/publications.html, 1996.

[Hauck97] S. Hauck, T. W. Fry, M. M. Hosler, J. P. Kao, “The Chimaera Reconfigurable
Functional Unit”, IEEE Symposium on FPGAs for Custom Computing Machines, pp.
87-96, 1997.

[Hauck98a] S. Hauck, “The Roles of FPGAs in Reprogrammable Systems”, Proceedings of the
IEEE, Vol. 86, No. 4, pp. 615-638, 1998.

[Hauck98b] S. Hauck, “Configuration Prefetch for Single Context Reconfigurable Coprocessors”,
ACM/SIGDA International Symposium on FPGAs, pp. 65-74, 1998.

[Hauck98c] S. Hauck, Z. Li, E. Schwabe, “Configuration Compression for the Xilinx XC6200
FPGA”, IEEE Symposium on Field-Programmable Custom Computing Machines,
pp. 138-146, 1998.

[Hauck99] S. Hauck, W. D. Wilson, “Runlength Compression Techniques for FPGA
Configurations”, Northwestern University, Dept. of ECE Technical Report,
Available online at: http://www.ee.washington.edu/faculty/hauck/publications.html,
1999.

[Hauser97] J. R. Hauser, J. Wawrzynek, “Garp: A MIPS Processor with a Reconfigurable
Coprocessor”, IEEE Symposium on Field-Programmable Custom Computing
Machines, pp. 12-21, 1997.

[Hauser00] J. R. Hauser, Augmenting a Processor with Reconfigurable Hardware. PhD
Dissertation. University of California at Berkeley, 2000.

[Haynes98] S. D. Haynes, P. Y. K. Cheung, “A Reconfigurable Multiplier Array For Video
Image Processing Tasks, Suitable for Embedding in an FPGA Structure”, IEEE
Symposium on Field-Programmable Custom Computing Machines, pp. 226-234,
1998.

207

[Heile99] F. Heile, A. Leaver, “Hybrid Product Term and LUT Based Architectures Using
Embedded Memory Blocks”, ACM/SIGDA International Symposium on FPGAs, pp.
13-16, 1999.

[Huang00] W. J. Huang, N. Saxena, E. J. McCluskey, “A Reliable LZ Data Compressor on
Reconfigurable Coprocessors”, IEEE Symposium on Field-Programmable Custom
Computing Machines, pp. 249-258, 2000.

[Huang01] Z. Huang, S. Malik, “Managing Dynamic Reconfiguration Overhead in Systems-on-
a-Chip Design Using Reconfigurable Datapaths and Optimized Interconnection
Networks”, Conference of Design Automation and Test in Europe (DATE), 2001.

[Huelsbergen00] L. Huelsbergen, “A Representation for Dynamic Graphs in Reconfigurable Hardware
and its Application to Fundamental Graph Algorithms”, ACM/SIGDA International
Symposium on FPGAs, pp. 105-115, 2000.

[Hutton98] M. Hutton, J. Rose, J. Grossman, and D. Corneil, “Characterization and
Parameterized Generation of Synthetic Combinational Benchmark Circuits”, IEEE
Transactions on CAD, Vol. 17, No. 10, pp. 985-996, October 1998.

[Hutton02] M. Hutton, J. Rose and D. Corneil, “Automatic Generation of Synthetic Sequential
Benchmark Circuits”, IEEE Transactions on CAD, Vol. 21, No. 8, pp. 928-940,
August 2002.

[Kastrup99] B. Kastrup, A. Bink, J. Hoogerbrugger, “ConCISe: A Compiler-Driven CPLD-Based
Instruction Set Accelerator”, IEEE Symposium on Field-Programmable Custom
Computing Machines, pp. 92-101, 1999.

[Kim00a] H. J. Kim, W. H. Mangione-Smith, “Factoring Large Numbers with Programmable
Hardware”, ACM/SIGDA International Symposium on FPGAs, pp. 41-48, 2000.

[Kim00b] H. S. Kim, A. K. Somani, A. Tyagi, “A Reconfigurable Multi-function Computing
Cache Architecture”, ACM/SIGDA International Symposium on FPGAs, pp. 85-94,
2000.

[Krupnova97] H. Krupnova, C. Rabedaoro, G. Saucier, “Synthesis and Floorplanning For Large
Hierarchical FPGAs”, ACM/SIGDA International Symposium on FPGAs, pp. 105-
111, 1997.

[Lai97] Y. T. Lai, P. T. Wang, “Hierarchical Interconnection Structures for Field
Programmable Gate Arrays”, IEEE Transactions on VLSI Systems, Vol. 5, No. 2, pp.
186-196, 1997.

[Lattice03] Lattice Semiconductor Corporation, ORCA® Series 4 FPGAs: Data Sheet. Lattice
Semiconductor Corporation, Hillsboro, OR, 2003.

[Laufer99] R. Laufer, R. R. Taylor, H. Schmit, “PCI-PipeRench and the SwordAPI: A System
for Stream-based Reconfigurable Computing”, IEEE Symposium on Field-
Programmable Custom Computing Machines, pp. 200-208, 1999.

208

[Lemieux02] G. Lemieux, D. Lewis, “Analytical Framework for Switch Block Design”,
International Conference on Field-Programmable Logic and Applications, pp. 122 -
131, 2002.

[Lemieux03] G. Lemieux, D. Lewis, Design of Interconnection Networks for Programmable
Logic. Kluwer Academic Publishers, Boston, MA, 2003.

[LeopardLogic03] LeopardLogic, Inc., http://www.leopardlogic.com, 2003.

[Leung00] K. H. Leung, K. W. Ma, W. K. Wong, P. H. W. Leong, “FPGA Implementation of a
Microcoded Elliptic Curve Cryptographic Processor”, IEEE Symposium on Field-
Programmable Custom Computing Machines, pp. 68-76, 2000.

[Li99] Z. Li, S. Hauck “Don’t Care Discovery for FPGA Configuration Compression”,
ACM/SIGDA International Symposium on FPGAs, pp. 91-98, 1999.

[Li00] Z. Li, K. Compton, S. Hauck, “Configuration Caching for FPGAs”, IEEE
Symposium on Field-Programmable Custom Computing Machines, pp. 22-36, 2000.

[Li02] Z. Li, Configuration Management Techniques for Reconfigurable Computing, Ph.D.
Thesis, Northwestern University, Dept. of ECE, 2002.

[Lucent98] Lucent Technologies, Inc., FPGA Data Book. Lucent Technologies, Inc., Allentown,
PA, 1998.

[Luk97] W. Luk, N. Shirazi, P. Y. K. Cheung, “Compilation Tools for Run-Time
Reconfigurable Designs”, IEEE Symposium on Field-Programmable Custom
Computing Machines, pp. 56-65, 1997.

[M2000-02] M2000, Press Release – May 15, 2002. M2000, Bièvres, France, 2002.

[Mangione-Smith97] W. H. Mangione-Smith, B. Hutchings, D. Andrews, A. DeHon, C. Ebeling, R.
Hartenstein, O, Mencer, J. Morris, K. Palem, V. K. Prasanna, H. A. E. Spaanenburg,
“Seeking Solutions in Configurable Computing”, IEEE Computer, Vol. 30, No. 12,
pp. 38-43, 1997.

[Mangione-Smith99] W. H. Mangione-Smith, “ATR from UCLA”, Personal Communications, 1999.

[Marshall99] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, B. Hutchings, “A
Reconfigurable Arithmetic Array for Multimedia Applications”, ACM/SIGDA
International Symposium on FPGAs, pp. 135-143, 1999.

[McMurchie95] L. McMurchie, C. Ebeling, “PathFinder: A Negotiation-Based Performance-Driven
Router for FPGAs”, ACM Third International Symposium on Field-Programmable
Gate Arrays, pp. 111-117, 1995.

[Miyamori98] T. Miyamori, K. Olukoton, “A Quantitative Analysis of Reconfigurable
Coprocessors for Multimedia Applications”, IEEE Symposium on Field-
Programmable Custom Computing Machines, pp. 2-11, 1998.

209

[Moritz98] C. A. Moritz, D. Yeung, A. Agarwal, “Exploring Optimal Cost Performance Designs
for Raw Microprocessors”, IEEE Symposium on Field-Programmable Custom
Computing Machines, pp. 12-27, 1998.

[Phillips02] S. Phillips, S. Hauck, “Automatic Layout of Domain-Specific Reconfigurable
Subsystems for System-on-a-Chip”, ACM/SIGDA Symposium on Field-
Programmable Gate Arrays, 2002.

[QuickLogic02] QuickLogic Corporation, QuickMIPSTM QL90xM: Multi-application System-on-a-
Chip. QuickLogic Corporation, Sunnyvale, CA, 2002.

[QuickSilver03] QuickSilver Technology, Inc. http://www.quicksilvertech.com, 2003.

[Quickturn99a] Quickturn, A Cadence Company, System Realizer™, Available online at
http://www.quickturn.com/products/systemrealizer.htm. Quickturn, A Cadence
Company, San Jose, CA, 1999.

[Quickturn99b] Quickturn, A Cadence Company, Mercury™ Design Verification System
 Technology Backgrounder. Available online at
http://www.quickturn.com/products/mercury_backgrounder.htm. Quickturn, A
Cadence Company, San Jose, CA, 1999.

[Razdan94] R. Razdan, M. D. Smith, “A High-Performance Microarchitecture with Hardware-
Programmable Functional Units”, International Symposium on Microarchitecture,
pp. 172-180, 1994.

[Rencher97] M. Rencher, B. L. Hutchings, “Automated Target Recognition on SPLASH2”, IEEE
Symposium on Field-Programmable Custom Computing Machines, pp. 192-200,
1997.

[Rose93] J. Rose, A. El Gamal, A. Sangiovanni-Vincentelli, “Architecture of Field-
Programmable Gate Arrays”, Proceedings of the IEEE, Vol. 81, No. 7, 1013-1029,
1993.

[Sheir99] D. R. Shier, “Matchings”, Handbook of Discrete and Combinatorial Mathmatics,
Kenneth H. Rosen, Editor-in-Chief. CRC Press LLC, Boca Raton, FL. 1999. pp.
641-652.

[Rupp98] C. R. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt, J. M. Arnold, M.
Gokhale, “The NAPA Adaptive Processing Architecture”, IEEE Symposium on
Field-Programmable Custom Computing Machines, pp. 28-37, 1998.

[Sankar99] Y. Sankar, J. Rose, “Trading Quality for Compile Time: Ultra-Fast Placement for
FPGAs”, ACM/SIGDA International Symposium on FPGAs, pp. 157-166, 1999.

[Scalera98] S. M. Scalera, J. R. Vazquez, “The Design and Implementation of a Context
Switching FPGA”, IEEE Symposium on Field-Programmable Custom Computing
Machines, pp. 78-85, 1998.

210

[Scott01] M. Scott, “The RaPiD Cell Structure”, Personal Communications, 2001.

[Sechen88] C. Sechen, VLSI Placement and Global Routing Using Simulated Annealing. Kluwer
Academic Publishers, Boston, MA, 1988.

[Senouci98] S. A. Senouci, A. Amoura, H. Krupnova, G. Saucier, “Timing Driven Floorplanning
on Programmable Hierarchical Targets”, ACM/SIGDA International Symposium on
FPGAs, pp. 85-92, 1998.

[Shahookar91] K. Shahookar, P. Mazumder, “VLSI Cell Placement Techniques”, ACM Computing
Surveys, Vol. 23, No. 2, pp. 145-220, 1991.

[Sharma02] A. Sharma, Development of a Place and Route Tool for the RaPiD Architecture.
Master's Project, University of Washington, December 2002.

[Sharma03] A. Sharma, C. Ebeling, S. Hauck, “PipeRoute: A Pipelining-Aware Router for
FPGAs”, ACM/SIGDA Symposium on Field-Programmable Gate Arrays, pp. 68-77,
2003.

[Shi97] J. Shi, D. Bhatia, “Performance Driven Floorplanning for FPGA Based Designs”,
ACM/SIGDA International Symposium on FPGAs, pp. 112-118, 1997.

[Shirazi98] N. Shirazi, W. Luk, P. Y. K. Cheung, “Automating Production of Run-Time
Reconfigurable Designs”, IEEE Symposium on Field-Programmable Custom
Computing Machines, pp. 147-156, 1998.

[SiliconHive03] Silicon Hive, Silicon Hive Technology Primer. Phillips Electronics NV, The
Netherlands, 2003.

[Sotiriades00] E. Sotiriades, A. Dollas, P. Athanas, “Hardware-Software Codesign and Parallel
Implementation of a Golomb Ruler Derivation Engine”, IEEE Symposium on Field-
Programmable Custom Computing Machines, pp. 227-235, 2000.

[Stone96] G. O. Stone, A Comparison of ASIC Implementation Alternatives, M.S. Thesis,
Northwestern University, Dept. of ECE, October, 1996.

[Swartz98] J. S. Swartz, V. Betz, J. Rose, “A Fast Routability-Driven Router for FPGAs”,
ACM/SIGDA International Symposium on FPGAs, pp. 140-149, 1998.

[Takahara98] A. Takahara, T. Miyazaki, T. Murooka, M. Katayama, K. Hayashi, A. Tsutsui, T.
Ichimori, K. Fukami, “More Wires and Fewer LUTs: A Design Methodology for
FPGAs”, ACM/SIGDA International Symposium on FPGAs, pp. 12-19, 1998.

[Trimberger97] S. Trimberger, K. Duong, B. Conn, “Architecture Issues and Solutions for a High-
Capacity FPGA”, ACM/SIGDA International Symposium on FPGAs, pp. 3-9, 1997.

[Triscend02] Triscend Corporation, Triscend A7S Configurable System-on-Chip Platform:
Product Description. Triscend Corporation, Mountain View, CA, 2002.

211

[Triscend03] Triscend Corporation, Triscend E5 Customizable Microcontroller Platform: Product
Description. Triscend Corporation, Mountain View, CA, 2002.

[Tsu99] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung, O. Rowhani, V. George,
J. Wawrzynek, A. DeHon, “HSRA: High-Speed, Hierarchical Synchronous
Reconfigurable Array”, ACM/SIGDA International Symposium on FPGAs, pp. 125-
134, 1999.

[Vuillemin96] J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, P. Boucard, “Programmable
Active Memories: Reconfigurable Systems Come of Age”, IEEE Transactions on
VLSI Systems, Vol. 4, No. 1, pp. 56-69, 1996.

[Weinhardt99] M. Weinhardt, W. Luk, “Pipeline Vectorization for Reconfigurable Systems”, IEEE
Symposium on Field-Programmable Custom Computing Machines, pp. 52-62, 1999.

[Wilton98] S. J. E. Wilton, “SMAP: Heterogeneous Technology Mapping for Area Reduction in
FPGAs with Embedded Memory Arrays”, ACM/SIGDA International Symposium on
FPGAs, pp. 171-178, 1998.

[Wilton01] S. Wilton, J. Rose, Z. Vranesic, “Structural Analysis and Generation of Synthetic
Digital Circuits with Memory”, IEEE Transactions on VLSI, Vol. 9, No. 1, pp. 223-
226, February 2001.

[Wirthlin95] M. J. Wirthlin, B. L. Hutchings, “A Dynamic Instruction Set Computer”, IEEE
Symposium on FPGAs for Custom Computing Machines, pp. 99-107, 1995.

[Wirthlin96] M. J. Wirthlin, B. L. Hutchings, “Sequencing Run-Time Reconfigured Hardware
with Software”, ACM/SIGDA International Symposium on FPGAs, pp. 122-128,
1996.

[Wittig96] R. D. Wittig, P. Chow, “OneChip: An FPGA Processor With Reconfigurable Logic”,
IEEE Symposium on FPGAs for Custom Computing Machines, pp. 126-135, 1996.

[Wood97] R. G. Wood, R. A. Rutenbar, “FPGA Routing and Routability Estimation Via
Boolean Satisfiability”, ACM/SIGDA International Symposium on FPGAs, pp. 119-
125, 1997.

[Wu97] Y. L. Wu, M. Marek-Sadowska, “Routing for Array-Type FPGA’s”, IEEE
Transactions on CAD of Integrated Circuits and Systems, Vol. 16, No. 5, pp. 506-
518, 1997.

[Xilinx94] Xilinx, Inc., The Programmable Logic Data Book. Xilinx, Inc., San Jose, CA, 1994

[Xilinx96] Xilinx, Inc., XC6200: Advance Product Specification. Xilinx, Inc., San Jose, CA,
1996.

[Xilinx01] Xilinx, Inc., Virtex™ 2.5 V Field Programmable Gate Arrays: Product
Specification. Xilinx, Inc., San Jose, CA, 1999.

212

[Xilinx02] Xilinx, Inc., Virtex™-II Platform FPGAs: Detailed Description. Xilinx, Inc., San
Jose, CA, 2002.

[Xilinx03a] Xilinx, Inc., Virtex-II Pro™ Platform FPGAs: Advance Product Specification.
Xilinx, Inc., San Jose, CA, 2003.

[Xilinx03b] Xilinx, Inc., PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE
Devices. Xilinx, Inc., San Jose, CA, 2003.

[Xilinx03c] Xilinx, Inc., PicoBlaze 8-Bit Microcontroller for Virtex-II Series Devices. Xilinx,
Inc., San Jose, CA, 2003.

[Xilinx03d] Xilinx, Inc., MicroBlaze Processor Reference Guide. Xilinx, Inc., San Jose, CA,
2003.

[Zhong98] P. Zhong, M. Martinosi, P. Ashar, S. Malik, “Accelerating Boolean Satisfiability
with Configurable Hardware”, IEEE Symposium on Field-Programmable Custom
Computing Machines, pp. 186-195, 1998.

