A FPGA Hardware Solution for Accelerating
Tomographic Reconstruction

Jimmy Xu

A thesis
submitted in partial fulfillment of the
requirements for the degree of

Master of Science in Electrical Engineering

University of Washington

2009

Program Authorized to Offer Degree:
Department of Electrical Engineering

University of Washington
Graduate School

This is to certify that [have examined this copy of a master’s thesis by

Jimmy Xu

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final
examining committee have been made.

Committee Members:

Scott A. Hauck

Adam M. Alessio

Date:

In presenting this thesis in partial fulfillment of the requirements for a Master’s
degree at the University of Washington, I agree that the Library shall make its
copies freely available for inspection. I further agree that extensive copying of
this thesis is allowable only for scholarly purposes consistent with “fair use” as
prescribed by the U.S. Copyright Law. Any other reproduction for any purposes

or by any means shall not be allowed without my written permission.

Signature

Date

University of Washington

Abstract

A FPGA Hardware Solution for Accelerating Tomographic Reconstruction

Jimmy Xu

Chair of the Supervisory Committee:
Professor Scott A. Hauck
Electrical Engineering

Field-programmable gate array (FPGA) based hardware coprocessors offer the
potential to enable dramatic acceleration in performance for certain applications.
In this thesis, we evaluate the performance and design process for a coprocessor
application by implementing a Computed Tomography (CT) image reconstruction
algorithm on an FPGA coprocessor. Specifically, we document the design process
and performance of two separate methods to parallelize the CT reconstruction
algorithm for acceleration with the XtremeData XD1000 FPGA coprocessor. Along
the way, we make comparisons between the traditional VHDL based FPGA
programming model and a C-to-FPGA toolflow called Impulse C in terms of
performance and design effort. We show that a VHDL implementation is 1.69x
faster than an Impulse C implementation, at the cost of significantly increased
design effort with VHDL. In addition, the results of this thesis demonstrate that
the FPGA coprocessor is capable of achieving a 103x improvement over multi-

threaded software (8 threads) using parallel ray-by-ray reconstruction.

TABLE OF CONTENTS

)N 031l 0 LT (o) o U 11
00 5 7= ol €4 011 o Lo FO0u o OO O P R 13
2.1 Tomographic ReCONSLIUCHIONovuiiiiiiiiiiiiei et 13
2.1.1. Computed TOMOZIraPhYcccoeiiiiiriiiieie ettt et s 13

2.2 BaCKPTIOJECION ...ttt st s 15
2.2.1 Filtered and Iterative BacKprojection..........ccccceevveeiviericiienieesiee e eeeesvee e 17

0% TN 2 o S 17
/20 750 B 110 PRSI 19
2.3.2 MEITIOTY eeeeiuiieiiiiitteseitte e sttt e e sttt e s sttt e e sttt e e sabe e e saubeteesanbeeeesnbaeessnbeeesansneeesanseeens 19
2.3.3 DISP ettt bt bbbttt he et st sheete b 20

2.4 COPTOCESSOTS .uvteiirutreeerautteessittteesatteessateeessasteeessbaeessabaeessaseeesssbeeessssseeesssseeesssnseeessssses 20
240 XDTO00i ettt ettt et et e st e e te s te e ee b eneenteste e st etesteeneensennens 21

3. BENCIIMATKS oottt see s s s s bbb 23
3.1 XD1000 Hardware Benchmarks..........ccoocuvriiriiniiniiiiecieciceeeieeniee e s 23
3.2 Single-Threaded Software Backprojector Benchmarkccccoooeveeviiininnincnnnne, 23
3.3 Multi-threaded Software Backprojector Benchmarkccccoiiiiiiniininnninnnes 25
4. XD1000 Reference DeSIGI.....cuereeresreesesreesssesessesssessesssesssessessssssssssssssessssssessssssesssessesass 28
4.1 SOFEWATE .ttt ettt e b e e s bt e s bt e s bt e sae e sat e satesabesabesbe e beenbeenbeens 28
4.2 HATAWATE... .ottt sttt sttt e te et e s e s bt e saaesatesatesatesabesnbesnbeenbeensaenseens 31
4.2.1 HyperTransport CONLIOllEr........ccuiviivieiierieieeseesee sttt 31
4.2.2 ZBT SRAM ...ttt st sttt ettt et e 31

ST DL ¥ o U 33
5.1 ALGOTIERIMS ...ttt et b e bbb sae e s st e sae e 33
5.1.1 PiXel-DY-PIXEL ..ueiiiiieiee et e 34

ST BV S 2 o) 2 ¥ | PP 39

5.2 Hardware Considerationsccccoverieriininieniiniereesie ettt st 41
5.2.1 BIOCK RAM .ottt bbbt st st st st e e 41

5.2 2 DSP e e et nr e sr e re s 43

5.2.3 Hardware SUIMMATYccccvevieeiierieesieneeseeseeseeseessssseesseesseessesssesssesssesssessseessns 43

LTI A 1= 4 T D LT3 ¥ o VPP 45
6.2 Hardware SYStem OVEIVIBWcceeveiiiiiiiiierite sttt ettt et 47
6.3 SEALE_CONTIOL ...ttt sb e bt e sb e sbe e st st st e sabe e 49
6.4 COMMUNICATIONS ...teiiuieieiiieriiieriee ettt ettt e et e st e sbe e e bt e e sabeesbeeesbbeesabeesabaesseeenanes 50
6.4.1 HyperTransport ProtoCol.......cccceviiiiiiieiiiiiie ettt e e see e 51
6.4.1.1 HT_DATA_CHECKttt sttt st s 51
6.4.1.2 HT_DATA_GEN ...ttt sttt ettt sttt sae et nae e 52
6.4.2 SRAM_CONTIOILETconiiiiiieiii ettt ettt ettt 54

LTSI 08 o Yod <O RS SUPPRPP 55
6.6 Processing ENGINe......ccccooiiiiiiiiiiiieeee e 56

780 3] LT 58
7.1 Performance COMPATISONSccceerieriiiriiieeiieeeieeesteeeseeeseeesreeesseeessseessessnseeesssessnnes 58
7.2 Execution Time BreakdOWn.......cccooiiiiiiiiiiiiiiiiee et 60
7.3 Resource UtIZationcocuiiiiiiiiiieeeeeeeeee sttt 60
7.4 VHDL VS. IMPUISE C..venieieierieeee sttt sttt st 62
741 PeIfOrIANCE. ..cc.eeiveriieiiiie ettt sttt sttt et e b sbe et e b sbeeaeens 62
7.4.3 Development Time and Effortccccoevvvviiiiiviniceeeeeee e 63

LS) Y01 B] (0) o VO 65
8.1 Hardware Desi@n PrOCESSccceiiiiiiiiiiiieiieee ettt sttt 65
8.2 Strengths and Weaknesses of VHDL Design vs. Impulse C........cccecevinercieninennnenne. 66
8.2 Benefits of a tightly-coupled FPGA accelerator.........c..coceveneeiienineniieneneeiereneeen 67
8.3 Ray-by-ray vs. PIXel-DY-PIXel.....cccccviiiriiiiiiii it 68

E0 000 Vol 11 T3 o) o TP 70
9.1 FULUTE DITECHION ...ueeieiiieiiie ettt sttt e bt e s e s e sbee e smteesaneeenee 70

10 T 000 4 Ued L0 13 T} s WP 70

LIST OF FIGURES

Figure 1 Sinogram space (left), corresponding image space (right)cccoccevvenieinennenne 13
Figure 2 CT IMAZE [27] ccueeeeeiieeite ettt ettt st st sttt et et et e sbe e b e b nas 14
Figure 3 Paralle-beam (left), Fan-beam (right) [1]....cccccooviniiniiniiniieeeeeeeee 15
Figure 4 Backprojecting along FaysS.......cccoeerieriinienieiie ettt st st 15
Figure 5 XD1000 Development SyStem [24]ccccoeverieireineeneeneeseeneesee et 22
Figure 6 OpenMP Loop UNTollingccooeeiiiiiiiiiiiietene ettt e 26
Figure 7 SOftware FIOWcooii ittt 30
Figure 8 Backprojection Bottleneck...........cooieiiiiiiiiiiiiiiieeeeeeeeeeeeee e 35
Figure 9 Sinogram Data REUSE..........coiiiiiiiiiiiiee e 36
Figure 10 Ray-by-ray Sinogram DiviSION.........ccoeceriiiiieiiiiieereeseeeteeeeeee e 40
Figure 11 Ray-by-ray Adder Tree......c.ccoeriiiiiirieienieeeiesee ettt s 41
Figure 12 Hardware BlocK Diagram.........ccccocerierieiinieiieninieeieieseeie et 45
Figure 13 Detailed System Diagram.........ccccocererviiiinieiininieceseeere e 48
Figure 14 Backprojector SYyStem Statescoceeverereeriinineerenieseesie et 49
Figure 15 Schematic of HT_block FIFO system for ray-by-ray back projector 53
Figure 16 Hardware Block Diagram of Processing Engineccccccceveninienincniencnennens 56

Figure 17 Reconstructed Images. Pixel-by-pixel (left), ray-by-ray (middle), Software

LIST OF TABLES
Table 1 Stratix [I Memory Capacitiesccceveerieiieiieiienienee et 19
Table 2 XD1000 Initial Hardware Benchmark Results.........c.ccocceviiniiniiniiniiiieee, 23
Table 3 Software source code execution time profile........cccccoevvvverceniciiiiiiciceecer e, 24
Table 4 Backprojection Algorithm LOOPSccccevieiieiiiiiiiiiiiinieeieee e 33
Table 5 Number of SRAM Loads for 1XTcccooieiiiiieiiiiienieeetee e 37
Table 6 Number of SRAM Loads for 128X128ccccoviiiiiiiiiieieeieeeeeeeeeeeeee e 38
Table 7 Number of SRAM Loads for 128X512cociiiiiiiiiiiiieeieeeeeeee e 39
Table 8 EXECULION TIIMES ...c..eiiuiiiiiiiiiiiiiie ettt ettt st st s s 58
Table 9 Breakup of Execution Time. Ray-by-ray from 1024 projections.........c..cccceevueeneee. 60
Table 10 Resource Utilizations of 128-way parallel Systemsccocceeeeriiiiiniinienneennen. 61
Table 11 EXEeCULION TIIME......coiiiiiiiiiiiiiie ettt ettt sbe e st st saee s 62

Table 12 Breakup of Execution Time (1024 Projections)cccccecerviirieiiiniensensieeieeen, 62

ACKNOWLEDGEMENTS

[would like to thank Impulse Accelerated Technologies (Kirkland, WA) and the
Washington Technology Center (Seattle, WA) for giving me the opportunity to
perform this research by providing the funding that makes it possible. I would
also like to express my deep thanks to Professor Scott Hauck and Professor Adam
Alessio for patiently providing the guidance and assistance I needed; and Nikhil
Subramanian for being a great research partner and friend. Finally, I would like
to thank the family and friends that have supported me through the difficulties I

faced; without them, this thesis would not have been possible.

10

11

1. Introduction

With sequential computing failing to keep up with the continued scaling of
transistor density, interest in spatial processors, like Field-Programmable Gate
Arrays (FPGA), is being revitalized. FPGAs offer large numbers of simple
programmable logic that, when combined, is capable of dramatically accelerating
the execution of certain programs. This acceleration is achieved by exploiting the
parallelism inherent in certain applications and distributing the computation
across the various computation units. While this method of parallel hardware
acceleration can offer great benefits, it is often difficult to translate applications

written in sequential software code into parallel hardware.

While traditional methods of designing FPGA applications have relied on
schematics or HDL, the FPGA community has shown much interest in C-to-FPGA
tool flows that allow users to design FPGA hardware in C. C-to-FPGA tool flows
allow for wider adoption of FPGAs by reducing the hardware expertise required
on the part of the designer, at the cost of abstracting away some degree of fine
control. It is our goal to compare the results of a hand-coded VHDL application
against an Impulse C version [1] in terms of execution speed, ease of

implementation, and resource usage.

A great candidate for this purpose is Computed Tomography (CT). Computed
Tomography is a medical imaging technique which uses computer processing to
create cross-sectional images from two-dimensional X-ray images taken around a
single axis of rotation. This reconstruction technique generates a tremendous
amount of data that needs to be processed, which is extremely taxing on
traditional sequential processors. In addition, the CT algorithm is well suited for a
parallel implementation, as it is mainly composed of independent computations

that can be executed in parallel. These traits make CT backprojection a perfect

12

candidate for a study of the design and implementation of a parallel hardware

accelerator.

Previous works on using hardware accelerators [3,4,8] to accelerate the
backprojection process have demonstrated that parallel execution on
appropriate hardware can achieve performances that are orders of magnitude
higher than comparable sequential micro-processor based systems, although
analysis on the design process of such algorithm is rarely made. The process of
tailoring the computation to maximize the usage of available resources is
complex, yet vital, knowledge for a good hardware designer. To that end we aim
to design and implement a CT back projector on a FPGA, using hand-coded VHDL,
in order to explore the hardware design process for an extremely compute

intensive application.

This thesis offers an exploration of different algorithms and approaches for
designing a FPGA-based CT Back-projection accelerator. In addition, comparisons
versus a multi-threaded C program and an Impulse C FPGA implementation will

be made. The following sections of this thesis are organized as follows:

e Chapter 2: Background provides background information on FPGAs, CT
scanners, backprojection, and coprocessors.

e Chapter 3: Benchmarks presents the results of various initial
benchmarks prior to starting our backprojector design.

e Chapter 4: XD1000 Reference Design details the reference design
supplied by XtremeData, which serves as a basis for our hardware design.

e Chapter 5: Design provides insight on the parallel algorithm design.

e Chapter 6: System Design provides detailed information on the actual
hand-coded hardware design.

e Chapter 7: Results presents the results of our designs.

13

2. Background

2.1 Tomographic Reconstruction

Tomographic reconstruction obtains cross-sectional images of an object from a
set of measurements taken at various angles. The measurement data records
integrals of information along rays traced through the object of interest and is
commonly organized as a sinogram, which is the Radon transform [28] of the
object. In traditional tomographic systems, the primary computational demand is
the backprojection of the sinogram to reconstruct the scanned object. In this case,
backprojection can be viewed as the mapping of data from the sinogram space to

the image space.

Figure 1 Sinogram space (left), corresponding image space (right)

Tomographic reconstruction is used in many fields and applications, ranging
from medical to military. In the field of medical imaging, Computed Tomography,

which uses the principles of tomographic reconstruction, is of particular interest.

2.1.1. Computed Tomography

Computed Tomography (CT) is a medical imaging technique which uses
tomography created by x-rays, and processed on a computer, to take cross-
sectional images of patients. The patients normally lie on a platform within the

gantry of the CT and are positioned in the path of the x-rays. Since different parts

14

of the human body have different attenuation coefficients for the incident x-rays,
the viewer is able to differentiate between bones and different soft tissues in the
reconstructed image. An example of an image produced by a CT scanner is shown

in Figure 2.

Figure 2 CT Image [27]

First generation CT scanners were introduced with a single x-ray source and
detector pair. As detector and source technology advanced, improved
generations of CT scanners were developed with difference configurations of
sources and detector arrays. Fourth generation CT scanners are equipped with a
fixed detector array that completely surrounds the patient. At present, all
commercial CT scanners are third generation systems with a single source and
detector array mounted on opposing sides of a rotating gantry. With the
introduction of newer technology with finer detector sampling, the algorithm
associated with reconstructing the cross-section increases in complexity.
However, a simplification can made which eliminates much of the trigonometric
calculations associated with a single point source and multiple detectors.
Basically, the fan-beam projections can be interpolated into parellel-beam
projections. This parallel-beam backprojection calculation is less
computationally intensive than the single source fan-beam, but still serves as an

adequate model for the backprojection process.

15

Source

Figure 3 Paralle-beam (left), Fan-beam (right) [1]

2.2 Backprojection

For parallel-beam back projection, the sinogram represents line integrals of the
attenuation coefficients along rays perpendicular to the sensor bar at many
angles. During the reconstruction process, the collected ray values are re-
distributed across the image at the angle which they were collected. As seen in
Figure 4, the value at sensor S of the sensor bar is distributed along the ray
perpendicular to the sensor at angle 8. When this is performed for all entries in
the sinogram, enough data is distributed across the image pixels to recreate the

image.

Figure 4 Backprojecting along rays

16

As shown in Figure 4, the pixel at which the two rays intersect takes on a value
that is the sum of the two sensor values. As the backprojection algorithm iterates
through all sinogram angles, the summation of sensor values along the

perpendicular rays is what reconstructs the image.

[terating through the sinogram to distribute its data across the image is a method
of backprojection known as ray-by-ray backprojection. Another approach is to
iterate through the image one pixel at a time and examining all S and 6 values of
the sinogram that contribute to it; this is pixel-by-pixel backprojection. These two

methods produce identical results, and only differ in their execution order.

The process of mapping a pixel data point to a sinogram data point can be

described by the equation:
XC0S@ +ysingd =S

The result of this calculation describes the specific sensor S along the sensor
array on which the traced ray at angle 8 will land. This also indicates the pixels
(x,y) that the particular sensor S, at the particular angle 6, will affect. The value S
produced by this equation does not always map directly to one sensor, as it is not
limited to only integers. In cases where a fractional component of S is present,
the fractional component is used to perform interpolation between the two
closest sensors. Finally, the sinogram values at the appropriate sensor S for all

angle 0 are summed to create the final reconstructed image pixel value.

Thus, computations that must be performed for backprojection include:
trigonometry to find the sensor index, interpolation, and accumulation with the
pixel data from other sinogram projections. These three computations steps
alone may not seem overly complex, but it is the sheer number that must be
performed to reconstruct an image that contributes to the computational

intensity of CT backprojection.

17

2.2.1 Filtered and Iterative Backprojection

Simple backprojection of the sinogram space into the image space will generate
images with a blurring effect around the edges of objects. While additional
projection angles and denser sensor arrays will provide more data points for
reconstruction, which will give a closer approximation to the original object, the

blurring effect will persist unless specifically addressed.

To eliminate the low frequency noise and reduce the blurring effect, one
technique often used is the application of a high-pass filter to the sinogram data
prior to backprojection. This technique is known as Filtered Backprojection
(FBP).. The reconstruction process is essentially solving the inverse Radon
transform of the sinogram data [32]; the true solution for this inverse requires
the filtering step with a Ramp filter. This Ramp filter, in Fourier transform
domain, accentuates high frequency components. In practice, some variant of the
Ramp filter is applied, such as a Ramp apodized with a Hanning or Butterworth
window, in order to offer a compromise between the true solution and noise

reduction.

Another promising approach for eliminating noise in a reconstructed image is
iterative reconstruction. This technique involves repeated forward and
backprojections between the sinogram space and the image space, with each
iteration producing an image that is closer to the scanned object. This method can
produce images with improved signal to noise results compared to Filtered
Backprojection, but can be orders of magnitude more computationally

demanding than FBP.

2.3 FPGA

Field programmable gate arrays (FPGAs) offer a flexible approach to applications
traditionally dominated by application-specific integrated circuits (ASICs) and

18

computer software executed on sequential processors. ASICs provide highly
optimized resources specifically tuned for a particular application, but it is
permanently configured to only one task and includes an extremely high non-
recurring engineering cost, which can run into the millions of dollars [30]. FPGAs
on the other hand offer programmable logic blocks and interconnects that
eliminate the NRE cost associated with ASICs, at a cost of 5 to 25 times the area,
delay and performance [30]. While software provides the flexibility to execute a
large number of tasks, typically its performance when run on a sequential
processor is orders of magnitude slower than ASICs and FPGAs. These two
factors combined make FPGAs an attractive middle ground for applications that
require performance that can’t be achieved by software running on sequential
processors, but yet require a degree of flexibility not possible with an ASIC

implementation.

Traditionally, FPGAs have been used for applications that process large streams
of data, where processes can be executed in parallel and independent of each
other. In fact, FPGAs can achieve several orders of magnitude faster processing
speeds compared to microprocessors by exploiting the parallelism in
applications. Since many signal processing, networking, and other scientific
computations have inherent parallelism profiles that are easily exploitable,
implementing them using FPGAs is a relatively easy way to accelerate their

computation.

FPGAs function similarly to building a breadboard circuit from standard parts. It
consists of programmable logic blocks and interconnects that can be configured
to resemble a variety of complex logic circuits. Combinational logic is
implemented using look up tables (LUTs), and sequential logic is implemented
using registers. Additional special elements, such as large memories and

multipliers, are embedded within the FPGA fabric to boost capacity and speed.

19

For the purposes of this research, Altera’s Stratix-Il EP2S180 FPGA is used. This
device is the largest member of the Stratix-II FPGA family and is included in the

XD1000 coprocessor module.

2.3.1 LUT

The look up table (LUT) is the computational heart of the FPGA. It is formed with
a combination of a N:1 multiplexer and an N-bit memory [30], and implements a
truth table that is capable of expressing Boolean equations. As Boolean equations
are capable of representing any computation, the LUT in the FPGA have become

the basic building block for most commercial FPGAs [30].

2.3.2 Memory

The Stratix-1I FPGA includes three different types of embedded memories, known
as Block RAMs. The largest is the MRAM, which has a capacity of 576 Kbits.
Correspondingly, MRAMs are the slowest of the available Block RAMs, and the
Stratix-II only has 9 of these available. M4K RAM blocks are the next largest in
terms of capacity. They can each hold 4 Kbits, and there are 768 blocks available
on the Stratix-II. Finally, the smallest, but most widely distributed, Block RAM is
the M512 RAM. Each M512 RAM can hold 512 bits of data, and there are 930
available in the Stratix Il FPGA.

Table 1 Stratix Il Memory Capacities

Memory Capacity AVS:lliz:i)le Functionality
Single Port
MRAM 576 Kbits 9 Simple Dual Port
True Dual Port
Single Port
M4K 4 Kbits 768 Simple Dual Port
True Dual Port
. Single Port
M512 512 bits 930 Simple Dual Port

20

With the exception of the M512 Block RAM, memories on the FPGA can be
configured to be Single Port, Simple Dual Port, or True Dual Port. Single Port
memories allow either one write or one read per cycle, but not both. Simple Dual
Port memories allow both a read and a write operation to be performed in the
same cycle, and True Dual Port memories allow two writes or two reads per

cycle.

2.3.3 DSP

Dedicated arithmetic blocks are also included in most modern FPGAs. These
custom logic are designed to more efficiently execute DSP arithmetic compared
to LUT logic. The Stratix-II FPGA has a total of 768 DSP blocks, each of which can
be configured to be one 36x36 multiplier, four 18x18 multipliers, or eight 9x9

multipliers.

2.4 Coprocessors

In sequential processing systems, frequently occurring or complex computations
can overwhelm the primary processor. A solution to this problem is utilizing
coprocessors to shoulder some of the burden, allowing the CPU to offload these
computations. A common example of this system is the Graphics Processing Unit
(GPU). GPUs are coprocessors designed to handle the complex calculations used
in 3-D graphics rendering. They are especially adept at manipulating computer
graphics and accelerating the memory-intensive work of texture mapping and

polygon rendering [31].

Another promising type of hardware coprocessor uses FPGAs as the primary
processing units for computations. These coprocessors offer increased flexibility
compared to GPU processors, as they are not limited to the rigid vector
processing structure of GPUs. However, limited market penetration as compared
to GPUs has limited the development of FPGA coprocessors, and this technology

has been relegated to be a very niche market [1].

21

Several key issues prevent wider adoption of FPGA coprocessors. Traditionally, a
primary concern in accelerating applications using FPGA coprocessors is the cost
of transferring data between the CPU and the FPGA board. Since traditional FPGA
coprocessors often utilized the PCI or other lower bandwidth busses to
communicate with the CPU, the cost of transferring data to the accelerator may

overcome the benefit of offloading the computation.

Alternatively, FPGA co-processors such as the XtremeData XD1000 and the
Accelium platform [26] from DRC Computer offer tightly-coupled communication
interface between the CPU and co-processor. Compared to coprocessor solutions
from companies like Pico Computing, which utilizes the Express Card interface
with a bandwidth of 250 MB/s [25], it is apparent that the approach taken by
these tightly-coupled FPGA coprocessors may greatly reduce the data transfer

cost of communicating between the CPU and FPGA.

2.4.1 XD1000

Unlike many other FPGA coprocessor boards, the XtremeData XD1000 uses a
very tightly-coupled FPGA to CPU interface, with the FPGA coprocessor module
situated in one of the CPU sockets in a dual processor AMD Opteron
motherboard. This approach allows the FPGA module to communicate with the
CPU via the HyperTransport bus, which has a bandwidth of up to 1.6 GB/s.
Comparing this bandwidth to a FPGA board such as the Pico E-16 from Pico
Computing, which uses an Express Card interface with a bandwidth of 250 MB/s
[25], it is apparent that the approach taken by the XD1000 may make the CPU-

FPGA communication link much less of a bottleneck than traditionally feared.

22

Figure 5 XD1000 Development System [24]

The particular XD1000 system used in this study includes 4 MB of SRAM onboard
the XD1000 module, and 4 GB of DDR RAM available each to the Opteron CPU and
the Stratix II FPGA. Details of available resources and maximum transfer rates as

provided by XtremeData can be found in Figure 5.

23

3. Benchmarks

3.1 XD1000 Hardware Benchmarks

Prior to starting development on the backprojector application, we modified and
ran the included XD1000 reference design in order to benchmark the available
inter-chip bandwidth. The data is collected by running and timing each of the
individual resource tests within the reference design. Details of the resource tests
can be found in [23]. The result of this benchmark test is broken down by

resource and shown in Table 2.

Table 2 XD1000 Initial Hardware Benchmark Results

CPU -> FPGA 31 MB/s 534 MB/s
FPGA -> DRAM 50 MB/s 4956 MB/s
CPU -> SRAM 19 MB/s 19 MB/s
SRAM -> CPU 3.6 MB/s 3.6 MB/s
FPGA -> SRAM 800 MB/s 800 MB/s

The results are separated by minimum transfer speed and maximum transfer
speed. This distinction is the result of the HyperTransport bus, and the associated
data transfer overheads, favoring block transfers with large amounts of data. The
minimum speed is achieved by transferring the minimum allowable data size,
while the maximum speed is achieved by transferring the maximum data size

allowed.

3.2 Single-Threaded Software Backprojector Benchmark

The backprojection software source code [21], provided by the Radiology
Department of the University of Washington, is a parallel beam CT backprojector
that supports a variety of common projection filters. It is single-threaded and

uses 32-bit floating-point operations to perform most of the operations involved

24

in the backprojection process. While the original code is not designed with
performance in mind, the software can still be used to provide a baseline for

performance comparisons.

We began our analysis of this backprojection algorithm by profiling the single-
threaded software benchmark in order to determine which portion of the code
would benefit the most from hardware acceleration. As seen in Table 3, the
backprojection stage takes significantly more time to execute compared to the
filter and file IO stages. This suggests that the backprojection loop is the best
candidate for FPGA hardware acceleration, which relegates the CPU of the
XD1000 to the file I/0 and filtering stages.

Table 3 Software source code execution time profile

Filter 0.89s 3.56s
Backprojection 3.85s 10.03 s
File 10 0.03s 0.03s
Total 4.77 s 13.62's

Another reason for selecting the backprojection stage for hardware acceleration
is the benefits it would provide to iterative backprojection. As outlined in Chapter
2, iterative backprojection relies on repeated forward-projection and
backprojection iterations that do not involve either the filtering or the file 1/0
stage. Since the forward-projection process is very similar to backprojection, by
including the backprojection, and forward-projection, loop in the FPGA, we can
keep the iterative backprojection computation entirely within the FPGA and

bypass the communication overhead to the CPU.

25

3.3 Multi-threaded Software Backprojector Benchmark

As multicore processors overtake their singlecore counterparts, there is an
opportunity to achieve better performance through parallel processing. For the
backprojector application, we were interested in the performance of the single-
threaded benchmark when run with multiple parallel threads on a multicore
processor. This would provide yet another point of comparison for our hardware
implementation and would be much more indicative of real world performance

of the software backprojector application.

To implement the multi-threaded version of the software benchmark, we decided
to use the OpenMP API. OpenMP supports shared memory multiprocessing
programming in C and C++ on both UNIX and Windows platforms, which fit our
development requirements. OpenMP provides an easy way for developers to
achieve multithreading and parallel execution. It does so by automating the
process of forking the master/serial thread into a specified number of
slave/parallel threads, effectively dividing the task among several processing

units.

OpenMP requires the section of code that is meant to run in parallel to be marked
accordingly in the code. This is done with a preprocessor pragma that readies the
slave threads before the marked code is run. With the OpenMP library included in
the compilation, the pragma simply declares the data within the marked code
that will be shared between threads, and the data that will be unique for each
thread. This is done to prevent data read and write hazards from causing

erroneous results.

For the backprojector benchmark the code that would benefit the most from
parallel processing is the backprojection loop. Analysis on the algorithm of this
loop reveals that since the outer loop iterates through the image space by pixel,

each thread would be responsible for completing the reconstruction of one pixel.

26

Therefore, no write-after-write data hazard would be present. However, many
variables present in this backprojection loop are incremented through iterations
of the outer and inner loops. While this may be computationally more efficient
than re-calculating the values of these variables, it does not lend itself well to
parallel execution. Since parallel execution of a loop in OpenMP effectively
unrolls each iteration into individual threads the order of execution of the loop

iterations is no longer guaranteed.

For example, the outer loop in Figure 6 iterates through the X coordinates of an
image, but when unrolled into three threads by OpenMP, it is not guaranteed that
i=0 will be the first thread to be executed. Therefore, if x was iterated in the outer

loop instead of assigned a value, the value passed down to process() would be

incorrect.
Multithread
x=0;
for(j=0;j<512;j++){
process(x,y);
y++;
}
Thread 0
Single-thread
#pragma omp for..
for(i=0;i<512;i++){
X++;
for(j=0;j<512;j++X =l
process(x,y); for(j=0;j<512;j++){
Y+t process(x,y);
} ' y++;
} }
Thread 1
X=2;
for(j=0;j<512;j++ %
process(x.y);
y++,
}
Thread 2

Figure 6 OpenMP Loop Unrolling

27

While OpenMP has many additional features for multithreading programs, the
simple structure of the loop we are parallelizing only required the basic parallel
FOR loop structure. After making the necessary changes to avoid data hazards,
we ran this multithreaded benchmark on a system with two quad-core Intel Xeon
L5320 processors, which allowed us to allocate 8 threads to OpenMP. The results

of this benchmark can be found in the Results chapter.

28

4.XD1000 Reference Design

To aid hardware designers developing for the XD1000, XtremeData includes a
VHDL reference design with example code to access and test all of the available
resources. This reference design connects all components in the system via
Altera’s Avalon Communication Fabric, and provides documentation to assist the

designer with integrating his own code into the pre-existing hardware wrappers.

4.1 Software

The software environment supplied as part of the XD1000 reference design
includes necessary drivers and C++ test code for developing FPGA co-processor
applications. The included device driver is implemented as a Linux kernel
module, and is loaded by the system at boot if the FPGA is found and configured.
The included C++ test application is designed to test the FPGA configuration in

the reference design package.

The test application, when run, presents the user with a menu-driven set of tests,
each verifying the functionality of one of the FPGA modules. For example, the “HT
test (FPGA <-- CPU)” initiates a data transfer test which sends randomly
generated data from the CPU to the FPGA over HyperTransport, with the FPGA
then verifying and acknowledging back to the CPU that the data is received
correctly. For the purposes of the backprojector applications, we determined the
most logical development step for creating the software controller was to build

upon this test application.

The code in place for the “CPU <--> SRAM” and the “FPGA <--> CPU” tests were
both suitable for the backprojector software controller. Both of these tests
offered a way to send large amounts of data from the CPU to the FPGA (sinogram)
and back (reconstructed image). Since the SRAM is not a shared resource
between the FPGA and the CPU, and the datapath from the CPU to the SRAM
passes through the FPGA, both of these tests utilize the same HT controller on the

29

FPGA. This meant the choice between the two starting points relied only on how
the sinogram should be stored. For a streaming model, where pieces of the
sinogram is transferred to the FPGA (from the CPU) as the processing engines
require input data, the “FPGA <--> CPU” code base is sufficient, as the SRAM is not
needed for buffering. But as initial hardware benchmarks show, the HT bus has a
much higher bandwidth for block transfers; therefore, the SRAM buffer was
determined to be necessary, and the “CPU <--> SRAM” was selected for initial

implementation.

Many changes were necessary to adopt the “CPU <--> SRAM” test code into the
software controller for the backprojector application. First, initial hardware
benchmarks indicated that the CPU to SRAM datapath is extremely inefficient,
especially compared to the CPU to FPGA data path which achieved a max transfer
rate of over 500 MB/s. This was a puzzling result, as the bottleneck of this
transfer (the HyperTransport) is shared between both tests. Additional analysis
revealed that the “CPU <--> SRAM” test in the reference design sent single word
data packets to the FPGA and the SRAM, and required a message signaled
interrupt (MSI) acknowledgement with each transfer. Compared to the block
transfer style of the “FPGA <--> CPU” test, this was extremely inefficient. A change

was needed to introduce bulk transfers directly to the SRAM.

On the software side, bulk transfer across the HT required the software
controller to use the xd_mem_lock function on the entire sinogram data prior to
transfer. This prepares the Linux drivers to expect the correct amount of data to
be transferred. An MSI which initiates the transfer is then generated from the
CPU to the FPGA, telling the FPGA to begin receiving data. The software then
begins iterating through the memory addresses locked by xd_mem_lock, and
sends the data across the HT in word sizes of 64 bits. When finished, another MSI

is sent which initiates the backprojection process.

30

Bulk transfer from the SRAM/FPGA back to the CPU uses a slightly different
process. An MSI is sent from the FPGA to the CPU to initiate transfers, and the
Linux drivers will begin storing the incoming data into the DDR RAM accessible
by the CPU. When transfer is complete, a pointer to the head of the block of

memory containing the received data is returned.

Backprojector Software (C) XD1000 Test Software (C++)
Perse Command Line Arguments — Resd rﬂfﬁ:ﬁfyﬂgﬂ:ﬂ: from
! 1!
Lead Sil'll'lgl'ﬁll"l Trom filke Send Datla to SEAM
| |
Apply Filler Receive Image Dala From FPGA
| |
"‘M"TF::;T;;.' iy fo Writa Image Data ta Fils
—

Figure 7 Software Flow

The second major change to the XD1000 software test application was to
integrate it into the existing backprojector software. This framework includes the
initial sinogram processing and filtering stages of the backprojector. Since the
XD1000 test software is written in C++ and calls on specific XD1000 drivers, it is
not easily converted into C. Likewise, the backprojector software framework is
written in C, and has library calls which made it difficult to port to C++. The
backprojector software controller requires elements from each, so a temporary

solution was to run each separately, and pass the filtered sinogram from the

31

backprojector software to the test software through a temporary file buffer. This

method is far from ideal, but serves as an adequate proof-of-concept.

4.2 Hardware

The hardware side of the XD1000 reference design contains modules, written in
VHDL, that access and test various hardware components connected to the
XD1000. These modules create an entry point for the application designer by
providing example code for the hardware controllers. The modules are memory-
mapped and connected together by the Altera Avalon bus. For the backprojector
application the main hardware modules of interest are the HyperTransport
send/receive controller and the ZBT SRAM controller. An outline of
functionalities of each module, as supplied in the reference design, is given in the
following sections. For details on changes made to each in the backprojector

design, please see the System Design chapter.

4.2.1 HyperTransport Controller

The HyperTransport Controller consists of HT_DATA_CHECK and HT_DATA_GEN
controllers. Both are memory-mapped on the Avalon bus as slaves, with
HT_DATA_CHECK responsible for processing data received over HT and
HT_DATA_GEN responsible for processing data to be sent over HT.

In the original reference design both HT_DATA_CHECK and HT_DATA_GEN
contain random number generators that are complements to the software on the
other side of the HT bus. This allows the HT DATA_CHECK to check whether the
data received is correct, and the HT_DATA_GEN to generate data that can be

verified by the receiving software.

4.2.2 ZBT SRAM

ZBT (Zero Bus Turnaround) is a feature where there is a 0 cycle delay to change

access to the SRAM from READ to WRITE. Like the HT controllers, the ZBT SRAM

32

controller supplied by XtremeData is memory-mapped on the Avalon bus as a
slave. The controller includes the necessary Avalon controllers, as well as the
control signals for physical layer access to the SRAM. Memory-mapped registers
for write/read data, as well as control signals, effectively serve as a bridge for

communication between the Avalon bus master and the SRAM.

33

5. Design

5.1 Algorithms

Since both pixel-by-pixel and ray-by-ray backprojection methods require the
compute loop to touch every angle of the sinogram for every point on the image
(an O(n3) operation), the main difference between these two methods is the outer
loop of the processing algorithm. As seen in Table 4, the pixel-by-pixel approach
places the x-y loops outside of the angle loop, with the opposite being true for the
ray-by-ray method. Both of these methods can be made parallel by introducing
processing blocks into the image and sinogram respectively. For the pixel-by-
pixel method, each column of the image can be assigned to a separate processing
engine. An example is a system which divides the image into four 128x512
blocks, which will require 128 processing engines. The ray-by-ray method can be
made parallel by partitioning the sinogram into blocks of 128x1024 (6xS), with

each angle of the sinogram block assigned to a separate processing engine.

Table 4 Backprojection Algorithm Loops

Pixel -by-pixel Ray-by-ray
Serial for(x=0to 511 by 1) for(6=0to 1023 by 1)
for(6=0to 1023 by 1) for(x=0to 511 by 1)
for(y=0to 511 by 1) for(y=0to 511 by 1)
compute(x,y,0) compute(x,y,0)
128 way for(bx=0to 511 by 128) for(b6=0to1023 by 128)
Parallel for(6=0 t01023 by 1) for(x = 0to 511 by 1)
for(dy=0to 511 by 1) for(y=0to 511 by 1)
compute(bx..bx+127,y,0) compute(x,y,b6..b0+127)

The total run-time for the backprojector is composed of the number of cycles to
write the sinogram to the SRAM, the cost of loading the sinogram from the SRAM,

the number of compute cycles, and the number of cycles to read the image back

34

out to the host application. This can then be divided by the operating frequency
of the FPGA to find the total run-time required for the particular algorithm.

Since the image we're reconstructing will be 512 by 512 pixels, the time it takes
to read the image back to the host application will be constant, at 262144 cycles
or 2.6 ms with a 100 MHz FPGA. For the pixel-by-pixel method of image
reconstruction this can be masked within the compute time, as the loop structure
fully reconstructs a block of the image before moving on to the next block. This
allows the FPGA to send off the processed image block back to the CPU while the

next block is still being computed.

The number of cycles to write the sinogram to the SRAM from the CPU is also the
same between ray-by-ray and pixel-by-pixel, and only dependent on the size of
the sinogram we’re using to reconstruct the image. This is a straightforward data

transfer that can’t be optimized beyond hardware limitations.

The inner loop of both pixel-by-pixel and ray-by-ray contain the same set of
computations, and do not differ significantly in their performance. Instead, the
different outer loops have significant effects on the sinogram load and
computation stages of the reconstruction process. This is where we can optimize
the algorithms for parallel execution, and where we spent significant design
effort. Detailed analysis of each of the algorithms is presented in the following

sections.

5.1.1 Pixel-by-pixel

In the pixel-by-pixel method of image backprojection each processing engine is
tasked with reconstructing one pixel of the image from all relevant sinogram
data. These processing engines are independent of each other, but may share the
same sinogram data for their computations, depending on the given angle. Since
the bandwidth of the path to load the sinogram data (SRAM to FPGA) is fixed and

limited by the physical constraints present, we should maximize the reuse of

35

sinogram data between the processing engines, which will minimize the number

of accesses to the SRAM during the computation.

S[0-10]

S[5-15]

W WFPGA W W
PE PE PE PE

S[497-507]

S[501-511]

SRAM

Figure 8 Backprojection Bottleneck

Reuse in the pixel-by-pixel method comes from multiple pixels requiring the

same sinogram data for a given angle. As seen in Figure 9, multiple pixels along

the axis perpendicular to the sensor bar share the same sinogram data, which

suggests that only one load is required per row/column. This relationship is of

course based on the angle of the sinogram and is observed in different extent

across all angles.

36

Image Block Image Block Image Block

. Initial Load
D Reuse

Figure 9 Sinogram Data Reuse

The following sections present the various methods of dividing up the image for
parallel processing, along with their best and worst projected run-times. These
numbers reflect the amount of sinogram data reuse each method is capable of
achieving. The calculations below are performed using a 1024 by 1024 sinogram
as the input for the backprojector. Note that there are two separate values for
each method of grouping the pixels, presented as lowest and highest. These two
numbers reflect the shape of the pixel block, with the lowest column representing
the SRAM load calculation based on just the width of the block, and the highest
column representing the amount of loads based on the diagonal of the block.
Since the sinogram data represents a rotating bar of sensors that circle around
the block, the actual number of loads for each angle will fall somewhere between
the lowest and highest calculations. These calculations are presented simply as a

pre-implementation evaluation of the different pixel blocking methods.
5.1.1.1 Per pixel (1x1)

The first set of calculations presented in Table 5 represents the serial

computation of processing one pixel at a time, thereby exploiting no parallelism.

37

Since the width and diagonal of this method of blocking the image is the same
(1x1), the highest and lowest numbers of SRAM loads are also the same. The
equation used to calculate the lowest and highest loads uses the dimension of the
image x * y, and multiplies that by the ratio of the number of sensors to the
number of pixels to find the number of sinogram data points that are needed for a
given angle of the sinogram. Multiplying this value with the number of angles will
then produce the number of sinogram data points needed to completely

reconstruct the image.

xx Yy x (sensors/ pixels) x & = number of SRAM loads

Table 5 Number of SRAM Loads for 1x1

Lowest Highest

512x512x2x1024 =5.3x10° | 512x512 x 2x1024 = 5.3x10°

5.1.1.2 Per block (128x128)

Blocking the image into a series of squares is perhaps the most natural division
for parallel processing. Since the block of pixels is a square, the difference
between the highest and lowest columns of Table 6 is simply the relationship
between the diagonal and the side of the square. The equation used to calculate
the number of loads is composed of the size of the block, in pixels, multiplied by
the ratio of sensors to pixels, multiplied by the number of blocks and the number
of angles. Notice the overlap from grouping pixels together in a square represents
a significant savings as compared to performing the backprojection calculation

for one pixel at a time.

blockx x (sensors/ pixels) x 8 x numberofblocks = number of SRAM loads

38

Table 6 Number of SRAM Loads for 128x128

Lowest Highest

128x 2x1024 x16 = 4x10° V2 x128x 2x1024 %16 = 5.9x10°

5.1.1.3 Per block strip (128 x 512)

We made the observation that reuse in the pixel-by-pixel method is derived from
pixels that are aligned on an axis perpendicular to the sensor bar at a given angle
using the same sinogram data. This would suggest that the size of the image pixel
block will directly affect the amount of reuse we can achieve. However, we are
limited by hardware constraints in the number of processing engines we can
realistically implement. With the pixel-by-pixel algorithm, the number of
processing engines essentially dictates the width of the block; this means that the
height of the block is limited by the size of the sinoRAM local to each processing
engine in order to accommodate for the angle which requires the most sinogram
data points. This angle is usually dictated by the length of the diagonal of the
block, as is the case of the 128x128 blocking approach presented. This means
that if we are DSP-constrained, and have limited processing engines, a
rectangular blocking scheme is essentially free in terms of hardware usage, but

can provide additional sinogram reuse and reduce SRAM loads.

The highest number of SRAM loads is derived from the case where all sensor
values from a given angle is loaded to the local sinoRAM, which corresponds to
the angle at which the sensor bar is parallel to the length of the block (512). The
lowest number of SRAM loads corresponds to the angle at which the sensor is

parallel to the width of the block (128).

39

Table 7 Number of SRAM Loads for 128x512

Lowest Highest

128x 2x1024 x 4 =1x10° 512 x 2x1024 x 4 = 4x10°

5.1.2 Ray-by-ray

The ray-by-ray method of image backprojection can be visualized as stepping
through each point in the sinogram and calculating all points on the image this
sinogram point will contribute to. This is the opposite of the pixel-by-pixel
method, and focuses on the sinogram as the outer loop of the reconstruction
algorithm. Because of this, ray-by-ray has a constant number of SRAM accesses,
as each data point in the sinogram is only iterated through once. With a sinogram
size of 1024x1024, this value is naturally 1048576, which is the same as the best

lower bound in pixel-by-pixel.

Leeser et al. [4] performed detailed analysis on the best method to implement a
ray-by-ray parallel algorithm, and concluded that assigning each processing
engine to a sinogram angle and processing in blocks of angles is the most efficient
way to exploit parallelism in the reconstruction. This effectively divides the outer
loop (angle) into blocks, and carves the sinogram into rectangles each spanning

the entire S dimension and covering a portion of the 6 dimension.

40

Sinogram

Angle (©)

Sensor (S)

Figure 10 Ray-by-ray Sinogram Division

While loading the sinogram is not a focus of our optimization efforts, a potential
bottleneck for ray-by-ray still exists in accumulation of the image data. Assigning
one angle to a processing engine will create 512 or 1024 partially reconstructed
images that will need to be summed before the image is fully reconstructed. In
order to avoid multi-cycle accumulations when many processing engines are
working parallel, an adder tree must be used to sum the results of all processing
engines. This unifies the individual processing engines to form a processing
block, and the partial image output from this is the result of all the angles covered

by the processing block.

41

Processing
Engines

PEO N

PE1 /J N
N Partial Pixel

oes /3 :> .

A
N
-

PE127 %

PE2

Figure 11 Ray-by-ray Adder Tree

5.2 Hardware Considerations

Since we have limited hardware resources onboard the Stratix-1I FPGA, the level
of parallelism is constrained by the least available resource. In the case of this
backprojector application, each of the processing engines require a certain
number of Block RAM for sinogram and image storage, and a certain number of
DSP units for multiplication in the interpolation step. While logic could also be a
limiting resource, the relatively simple datapath of the backprojector places

much more emphasis on the Block RAMs and DSPs.

5.2.1 Block RAM

Both of the reconstruction methods discussed require the same amount of
distributed memories to store the sinogram. For the pixel-by-pixel method, all
processing engines compute on the same angle at any given time, but since they
target different pixels of the image, the sinogram data needed for each processing

engine will be different. This requires a unique instantiation of the Block RAM

42

storing the sinogram (sinoRAM) for each processing engine to provide the two
sensor values required for interpolation. For the ray-by-ray method, separate
sinoRAMs are required as well, since each processing engine is working on its

own angle in the sinogram.

Another important point of consideration for both ray-by-ray and pixel-by-pixel
is the bandwidth needed for sinoRAM. Since the interpolation process requires
two sinogram points to interpolate between, each processing engine’s sinoRAM
would need to provide two sinogram values per cycle of processing. This calls for
either using two sinoRAMs per processing engine, which would be resource
inefficient, or configuring the sinoRAMs to true dual-port, with the ability to

output two values per clock cycle.

For the parallel ray-by-ray method of reconstruction, the image memory
(imgRAM) does not have to be distributed because only one image pixel is
computed every clock cycle, so the central image memory is written to only once
a cycle from all processing engines. Since we would like to store as much of the
image as possible, so that we do not have to pause the computation to send parts
of the reconstructed image off chip, this memory will have to be high capacity.
This low bandwidth and high capacity requirement naturally points to the large

MRAM blocks on the Stratix-II.

For the parallel pixel-by-pixel method, the amount of memory required to store
the image pixels depends on the amount of parallelism used. Since this method
computes a block of image pixels in parallel, each processing engine is
responsible for one column of the image. Thus a system that is 128 way parallel
will require 128 individual processing engines, each needing enough memory for
one column of the image. We implemented this with unique memories local to
each processing engine, although a global imgRAM implemented using MRAM is

possible with clever concatenation of data.

43

Finally, the last pieces of the system which require Block RAM are the sine and
cosine trigonometry memories. In order to avoid complex trig functions, sine and
cosine values needed in the computation can be pre-computed and stored in easy
to access Block RAM as read-only-memory. For ray-by-ray, unique sine and
cosine values will be required for each processing engine, since each is working
on a different 6. For pixel-by-pixel, some savings can be had as only the cosine
memory is required to be unique for each processing engine, as both 6 and y are

the same across all processing engines.

5.2.2 DSP

The 96 DSP blocks in the Stratix-II EP2S180 FPGA can be configured as one 36-
bit, four 18-bit, or eight 9-bit multipliers. For pixel-by-pixel, the multiplication
step used to calculate the sensor value S (x*cos 6 + y*sin 68 = S) requires two
separate 16 bit multipliers per processing engine. These are implemented with
18-bit DSP blocks. For ray-by-ray, a system was developed by Leeser et al. [4]
where addition with offsets can be used to replace the multiplication required to

find S.

In our algorithm, we use bilinear interpolation since sinogram rays intersect the
image lines in between individual pixel locations. This indicates that we also

require two separate 16-bit DSP multipliers for the interpolation step.

Should the number of DSP blocks be insufficient for the amount of multipliers
needed, multipliers constructed using logic elements can be used as a substitute.
Multipliers constructed using logic elements are slower than dedicated DSP
multipliers. As a point of comparison, a 16-bit multiplier will consume 2 DSP 9-

bit multipliers versus 294 LUTs in the Stratix-II.

5.2.3 Hardware Summary

Prior to hand-optimizations, each processing engine in the backproject datapath

requires two 16-bit multipliers, which together will consume 4 DSP 9-bit

44

multipliers. For a 512x512 ray-by-ray backprojector, the same processing engine
will consume 2 M4K Block RAMs to implement sinoRAM, and 2 M4K Block RAMs
to implement the local imgRAM. With 128 processing engines, this amounts to
512 consumed M4K RAMs and 512 DSP 9-bit multipliers (64 DSP blocks). Hand-
optimizations allow us to factor our two of the DSP 9-bit mulipliers outside of the
processing engines, reducing the DSP usage; however, the Block RAM usage
cannot be further reduced. This coupled with the fact that we can substitute in
LUT multipliers in place of the DSP multipliers should the need arise, shows that
the resource constraint for our designs lie in the Block RAMs instead of the DSP

multipliers.

45

6. System Design

Since we began our project focusing on the pixel-by-pixel reconstruction method,
the following sections will be focusing on this particular method of parallel
reconstruction. However, areas where the two methods differ significantly will be

noted.

The system level view of the hardware backprojector system can be divided up
into two distinct regions, with one spanning the CPU and the other covered by the
FPGA. The numbers in Figure 12 indicate the order of operations, starting with

the software application benchmark passing control over to the XD1000 test

software.

4 MB SRAM
iyl IR Tl S -~
: AMD OPTERON l : @ -
i Processor Start flag (Ms1) ! I J SRAM :
1 | : > HT "|controller| |
[I i
I @ ; . 1 Receive . :
I Write Sino | I .
I XD1000 : I i
: Software @ I ! O I
I Af‘ Read Image ! i HT 4 :
! 2 ! : Send I
1 = L . | 1 i
: o naneﬂqg{msn: |

'..}: w» 1
: : : | sinoRA | I
I
1 ! 1

P i I
: FBP Software : N ® Posnl [
- Application I oy |ngA|hl e :

I ! I ccumulato
! Lo O |
1 ! I ,
L e e e ! Lo o o e e e s

Figure 12 Hardware Block Diagram

The sequence of operations for the pixel-by-pixel system is outlined below:

46

1) The FBP software application filters the sinogram data, and passes the data to
the XD1000 control software.

2) The XD1000 control software writes the data to the FPGA through
HyperTransport, and signals the FPGA using a message signaled interrupt when it

is finished.

3) The HT Receive controller passes the data to the SRAM controller, which then
writes it to the SRAM.

4) After all the data is transferred to the SRAM, the processing engine starts

requesting data.

5) The processing engines interpolate the sinogram data accordingly.

6) For the pixel-by-pixel method, the image data is accumulated in local imgRAM.
7) Repeat 4-6 for the entire sinogram and image.

8) After the image is complete, the FPGA sends the data back to the XD1000

control application, which passes it to the FBP software application.

The sequence of operations for the ray-by-ray system follows steps 1-3 of the
pixel-by-pixel system. The ray-by-ray system differs in the subsequent processing

steps:

4) After all the data is transferred to the SRAM, the processing engine starts
requesting data. For the ray-by-ray method, 128 angles of the sinogram are read

into their respective processing engine’s sinoRAMs.
5) The processing engines interpolate the sinogram data accordingly.

6) For the ray-by-ray method, the image data is accumulated in global imgRAM.

47

6.2 Hardware System Overview

Figure 13 shows the flow of tasks in the backprojector system. Software tasks are
performed by the CPU; while Processing Engine and support tasks are performed
by the FPGA. The hardware portion replaces the computation loop that existed in
the software backprojector benchmark. The following sections will focus on the
hardware portion of the system, which covers the main backprojection

computation loop.

The hardware portion is split into two types of tasks: support and processing.
Support tasks are distributed across various hardware controllers and state
machines. Processing tasks beging with the Load Angle task handled by the
SRAM_controller and sino_load_control modules. This task is responsible for
loading the stored sinogram into the sinoRAM in each of the processing engines,
effectively providing input to the computations. The iterate angle, iterate x-y, and
iterate sensor tasks are all performed by the state_control module, which
provides the x, y, and 0 inputs to each of the processing engines. Send Image Data
to CPU is performed by the HyperTransport controller, the details of which are

covered in subsequent sections.

The three Processing Engine tasks are implemented in the computation path of
each processing engine. These processing engines are then instantiated multiple

times to exploit the parallelism of the backprojection algorithm.

FPGA

Read Sinogram File

Gpply 1-D Ramp FilteD

[Normalize Filtered Sinogram Data]

\

[Send Data to FPGA SRAM]

(Load Angle Into Block RAM

Iterate Angle

lterate X-Y

>

Iterate Sensor

(Send Image

Data to CPU]

[Write Image

Data to File)

Figure 13 Detailed System Diagram

48

Software

Support

49

6.3 State_control

The hardware backprojector’s processing flow, for both ray-by-ray and pixel-by-
pixel, is broken up into 5 states. For all system states, the control signals for every

part of the backprojector is generate in the state_control module.

R

1: Load Sinogram into SinoRAM

)
R
)

<

Compute Loop 3: Write Data Out

>

[4: Finished Processing Finished
J

Figure 14 Backprojector System States

The system starts in the idle state and waits for the MSI from the CPU to indicate
that the sinogram has been completely transferred to the SRAM. In this state a
hardware counter cycles through all imgRAM locations and writes 0’s. This

mirrors software zeroing the image array prior to accumulation.

When the MSI is received, the system begins the computation loop and loads the
first set of sinogram values into the sinoRAM of each processing engine. For pixel-
by-pixel, this is all S values in the first angle of the sinogram; for ray-by-ray, this

is all S values in 128 angles of the sinogram. State 1 is complete when the

50

sino_load_control module signals the state_control module by raising the

load_ready flag.

The compute stage consists of the actual inner loops of the computation.
Hardware counters are in place to cycle through 6 and y in pixel-by-pixel, versus
x and y in ray-by-ray. These counters are nested, in the same manner as their
software loop counterparts. They are incremented every cycle, and their outputs
are fanned out to each processing engine to feed the computations. This structure
of iterating variables through counters produces a throughput of 1 per

processing engine.

After the nested counters in the compute stage finishes counting, an intermediary
step of writing the image data is performed. For both ray-by-ray and pixel-by-
pixel, this step involves iterating to the next sinogram/image processing block.
For pixel-by-pixel, this step also involves sending the completed portion of the
image back to the CPU. If the all sinogram/image blocks have been processed, a
finished_processing flag is raised and the system is sent into the final state;

otherwise the state is set back to the sinogram load state.

The final state for pixel-by-pixel simply sends the finished processing MSI to the
CPU to announce completion. For ray-by-ray, this step involves sending the entire
processed image back, followed by the finished processing MSI. After this is
complete the system is set back into the idle state, and the imgRAM zeroed and

ready for the next backprojection task.

6.4 Communications

Outside of designing the system to support the backprojection computation,
significant effort was spent on modifying the XD1000 reference design

infrastructure to support the type of data transfer we required. The majority of

51

the focus was directed at the HyperTransport module and the SRAM controller.
Details of the modifications and additions made to these modules can be found in

the following sections.
6.4.1 HyperTransport protocol

6.4.1.1 HT_DATA_CHECK

The modified data receive controller on the HyperTransport bus is designed with
the goal of minimizing the transfer time between the CPU and the SRAM. As
noted, the original design supplied by XtremeData did not take advantage of bulk
data transfers, and passed ACK signals back to the CPU in-between every word of
data received. This represented an unnecessary overhead and needed to be

removed to improve transfer speeds.

To introduce bulk data transfers to the HT_DATA_CHECK module, we explored
two different options of bridging data on the HT bus to the SRAM. The first option
was to embed the SRAM address as part of the packet transferred over the HT
bus. The data buffer that collects data from the HT bus has a word size of 64 bits,
while the SRAM has a data width of only 32 bits. This allowed us to use the top 32
bits of each word sent over the HT bus to store the SRAM address, and the bottom
32 bits to store the data to be transferred to the SRAM. While this approach
offered flexibility and provided us control over where we would like to store a
piece of data in the SRAM, we quickly realized that the pattern of transfer for
storing the sinogram into the SRAM does not require random access, so the actual
SRAM address can be generated locally in the HT_DATA_CHECK module with a
simple up-counter. This led us to decide on implementing the second proposed

method of bridging the HT and the SRAM for sinogram data transfer.

The second method of transferring the sinogram to the SRAM uses the entire 64
bits of the HT packet for storing sinogram data. Since each data point in the

sinogram uses 16 bits, this approach allows us to store 4 data points per packet.

52

This would equate to transferring half as many packets over HT as compared to

embedding the SRAM address within the HT packet.

The process of receiving data on the HT bus and subsequently sending it to the

SRAM is then outlined as follows:

1) The host software initiates the data transfer by sending appropriate HT header
packet.

2) The HT controller on the FPGA receives the transfer request and generates a

transfer request signal over the Avalon bus.

3) The HT_DATA_CHECK module receives the transfer request and initializes the
SRAM address counter to 0.

4) Sinogram data is transferred to the HT_DATA_CHECK module in packets each

containing 4 data points.

5) For each data_in_valid signal received by the HT_DATA_CHECK module, the
64-bit data packet is split into two separate 32-bit data packets and stored into
the SRAM, with the top 32 bits stored in sram_address+1.

6) sram_address is incremented by two for every successful piece of sinogram

data received over HT.

7) After the transfer is complete, a MSI is sent from the CPU to the FPGA which

initiates the backprojection process.

6.4.1.2 HT_DATA_GEN

The modified HT_DATA_GEN module is composed of two separate modules. The
first module, HT_block, is composed of a FIFO that stores and concatenates the

reconstructed image values into 64 bits and readies them for transfer over the HT

53

bus. In addition, the HT_block module also contains a series of registers designed
to delay the signal which initiates the image transfer (write_sram). This delay is
designed to accommodate for the pipeline on the output of the reconstruction
processing engines, as the write_sram signal is generated from the control

module instead.

img_to_cpu[15..0] HT_DATA_GEN[63..0]

1in[15..0] out[63..0]._D
read_request

[o g FFO
write_sram
I:F'DSHQ_DWQ_DSUQ_DSHQ_DSUQ wrreq

clk |—
\

read_empty

I—'clk rdempty._‘ >

16 bits x 16384 words

ol
]
ol
]
ol
— |
ol
g— |
ol

Figure 15 Schematic of HT_block FIFO system for ray-by-ray back projector

The read_request signal in Figure 15 are generated from the HT_DATA_GEN
module, and serves as an ACK signal for when the read_empty signal of the FIFO
drops low, signaling that there is data available to be read. The FIFO is
implemented using the M4K Block RAMs on the Stratix II FPGA. Since the FIFO is
16-bits wide at its input and can store up to 16384 words, it occupies 64 separate
M4K RAMs on the FPGA. The depth for the FIFO is chosen to allow sufficient
buffering capacity should the HT or Avalon bus be congested with excessive

traffic.

The HT_block module is implemented differently for the pixel-by-pixel method of
image reconstruction. Since image pixels in a processing block are completely
processed after the block has finished executing, the partial image data can be
transferred back to the CPU while the next image block is being processed. This
calls for a FIFO that is large enough to possibly store the entire 128x512 image
pixel block. Since the pixel-by-pixel system does not require any MRAMSs in its
implementation, the MRAMs on the Stratix Il can be used for this FIFO.

54

The HT_DATA_GEN module is a slave on the Avalon bus that is capable of
requesting data transfers from the bus master. This module generates the
read_request signal to the image FIFO when the read_empty signal is low, with
data then read out in 64 bit wide words on each clock cycle that the read_empty

signal remains low.

6.4.2 SRAM_controller

The SRAM_controller design is based off of a ZBT_SRAM controller included in the
XD1000 reference design. The controller is positioned on the Avalon bus as a
memory-mapped slave and communicates with the SRAM attached to the FPGA.
The primary function of the SRAM_controller is to act as a bridge between the HT
receive controller to write the sinogram data to the SRAM, and to load the

sinogram data into the local sinoRAM Block RAM in the FPGA.

The ZBT_SRAM controller supplied in the XtremeData reference design does not
effectively support bulk read/writes to the SRAM. Instead, the original ZBT_SRAM
controller is designed for single word read/writes to test SRAM functionality.
Since the backprojector application design calls for the sinogram to be stored in
the SRAM significant modifications were required to eliminate the latency of

single word writes and reads.

The biggest change we made to the ZBT_SRAM controller is the path which data is
supplied. Although Avalon is designed to support burst transfers, the bus master
module supplied by XtremeData did not implement this feature. Since the SRAM
is the only resource of interest, we decided to bypass the Avalon bus, and
establish a direct connection between the SRAM controller and the HT
controllers. This gave us flexibility in both the width of this paths and the pace at
which data is transferred between the two. Also, since our processing engines are
not memory-mapped to the Avalon bus either, we routed a separate bus

connecting each processing engine with the SRAM_controller.

55

The SRAM provided with the XD1000 module has a width of 32-bits, which
allows us to store two sinogram values, each 16 bits wide, into one location in the
SRAM. Since the SRAM controller operates at a frequency of 200 MHz, this allows
us to read/write four sinogram values per cycle of the user clock, which operates
at 100 MHz. During read operations these four sinogram values are then buffered
in a 1024 word FIFO, the output of which is fanned out to the sinoRAM block

memories in each processing engine.

The sino_load_control module also exists as part of the modified ZBT_SRAM
controller. This module is responsible for generating the correct addresses for
the sinoRAM modules when loading sinogram values from the SRAM. In addition,
this module acts as a local control to the FIFOs in the SRAM_controller, and
communicates with the State Control module of the backprojector to initiate
system state transitions. The write addresses to the sinoRAM in each processing
engine is also generated in this module. During sinogram loads this module
effectively controls the pace at which sinogram data is written to the sinoRAM of

each processing engine.

6.5 Clocks

The XD1000 reference design came supplied with a PLL module that generated a
100 MHz clock for the user logic blocks of the FPGA. This clock is used by the
Avalon bus and the controllers for the SRAM and HyperTransport. In addition,
the ZBT_SRAM controller takes in another clock signal (zbt_clk) that has a
frequency of 200 MHz. This zbt_clk is used for controlling the physical layer of the
connection to the SRAM.

Initially, we realized that the processing engine design may not be able to meet
the timing requirements of a 100 MHz user clock. This is due to the high number
of computations that must be performed in the processing engine data path in a

single cycle. We can remedy this problem by pipelining the computation in the

56

processing engine, effectively breaking up the datapath into many shorter paths
separated by registers. However, for an initial design we aimed for a 25 MHz user
logic clock to accommodate for the long data path. Once the design has been
realized with a 25 MHz user clock, the plan was to then add enough registers to
the data path to achieve a 50 MHz user clock, and finally move to the targeted
100 MHz user clock as the final step of the design.

6.6 Processing Engine

The heart of the hardware backprojector lies in the processing engines. This
module represents the innermost loop of the algorithm, and is responsible for
performing the bulk of the required computations. Along with control signals
generated from sino_load_control and state_control modules, the processing
engine modules accept the x, y, and 6 values from state_control as computation
inputs, and SinoAddress_a and SinoAddress_b signals from sino_load_control as

addresses for the sinoRAM during the sinogram load stage.

— X
— <<

fraction|[
interpolate
Xy
(C]

sinMEM .
multiply —|_
Calculate
S

~ sinoRAM add |— imgRAM

r

cosMEM -l_ multiply

Figure 16 Hardware Block Diagram of Processing Engine

Every cycle, the current set of x, y, and 6 values are used in the computation. The
0 input value is accepted by the sinMEM and cosMEM ROMs as addresses, and the
resulting outputs from these memories constitute the sin 8 and cos 6 operations.
These sin(0) and cos(0) values are then multiplied with the y and x inputs

respectively to find the complete value of S. This S value is then split into the

57

integer and fractional portions, with the integer portion going into the sinoRAM
as an address input, and the decimal portion going into the interpolate module to

be used for interpolation.

Since the sinoRAM is a true dual-port memory, capable of reading out data from
two locations at once, the sinogram data at location S and S+1 are both retrieved.
At the same time, the interpolate module calculates the interpolation factors by
subtracting the decimal portion of S from the integer 1. The difference, along with
the original decimal value, is then multiplied with the outputs of the sinoRAM to
calculate the interpolated contributions from each of the two S sensors. The

results are the summed.

For pixel-by-pixel, an accumulator exists here that sums the result from this
cycle’s computation with what’s already in the local imgRAM. For ray-by-ray, the
results of all processing engines are first summed together, and then accumulated

with the pixel data from the global imgRAM.

The datapath within the processing engine is implemented with a 32-bit
precision, with the last 16 bits being dropped after image pixel data accumulation
is complete. Since this hardware design is not constrained by this datapath, the
32-bit precision is used to preserve as much accuracy as possible throughout the
reconstruction process. A detailed analysis on precision of this datapath and its

effects on the reconstructed image can be found in [1].

58

7. Results

Figure 17 presents the reconstructed images produced from our system. Visually,

there is no significant difference between the three different methods of

000

Figure 17 Reconstructed Images. Pixel-by-pixel (left), ray-by-ray (middle), Software (right)

backprojection.

7.1 Performance Comparisons

Table 8 below shows the results of our VHDL implementation and the Impulse C
implementation presented in [1], compared to the software benchmark described
in section 3.2. The software benchmark scores were obtained using two quad-
core Intel Xeon L5320 processors with operating frequencies of 1.86 GHz. The
base results represent a serial execution, and the multi-threaded result is
obtained using OpenMP and 8 threads distributed across the eight available CPU
cores.

Table 8 Execution Times

Design

512 Projections (Speedup vs.
Multi-threaded Software)

1024 Projections (Speedup
vs. Multi-threaded Software)

Base Software 517s (.2x) 20.93s (-19x)
Multi-threaded 1.06s (1x) 395s (1x)
Software

Impulse C 31.83 ms (33x) 64.52 ms (61x)

VHDL (Pixel-by-pixel)

22.60 ms (47x)

95.29 ms (41x)

VHDL (Ray-by-ray)

21.68 ms (49x)

38.02 ms (103x)

59

The major reason for the FPGA implementations being significantly faster than
the software benchmark is the ability to exploit additional parallelism. Compared
to the multi-threaded software implementation, which was limited to 8-way
parallelism from the 8 processor cores, loop-unrolling allowed us to process 128
elements in parallel, resulting in much faster performance than the 8 way parallel
of the software implementation. In addition, manual pipelining techniques
allowed us to increase our throughput of each processing engine, which provided

additional processing speed benefits.

The tight coupling of the FPGA and the CPU in the XD1000 also played a pivotal
role in the results we achieved. Due to the high bandwidth and low latency
between the CPU and the FPGA, transferring data to the FPGA did not prove to be
a bottleneck for this application, and we were able to focus the resources and

effort to optimize the datapath of the system.

Comparing the pixel-by-pixel system and the ray-by-ray system, it is evident that
while the 512 backprojectors have very similar performance, the 1024 pixel-by-
pixel backprojector is significantly slower. This is due to the pixel-by-pixel
backprojector’s inability to scale to a 128-way 1024 backprojector, so only 64
processing engines were instantiated; the sinoRAM and local imgRAM for pixel-
by-pixel proved to be resource constraints, and directly limited the number of
processing engines. The ray-by-ray system avoids this bottleneck by largely
freeing up the imgRAM requirement with its global imgRAM implemented in 8
MRAM blocks.

Since the Impulse C backprojector was implemented using the ray-by-ray system,
the VHDL ray-by-ray backprojector provides an appropriate point of comparison.
An analysis of why Impulse C was slower than hand coded VHDL can be found in

7.4 VHDL vs. Impulse C.

60

7.2 Execution Time Breakdown

The breakdown of the execution time shown in

Table 9 reflects the ray-by-ray 1024 backprojector system. It is provided to
demonstrate the benefit of a tightly-coupled FPGA accelerator. It includes
improvements we implemented to the HyperTransport and SRAM hardware

modules, as well as the control software.

Table 9 Breakup of Execution Time. Ray-by-ray from 1024 projections

Execution Stage Time Percentage
Transfer Sinogram from CPU -> SRAM 6.05 ms 16%
Read Sinogram SRAM -> FPGA 5.40 ms 14%
FPGA Computation 20.97 ms 55%
Transfer Image from FPGA -> CPU 2.60 ms 7%
Post Processing 3.00 ms 8%
Total 38.02 ms 100%

Analysis of this breakdown reveals that the data transfer between the FPGA and
CPU consisted of only 23% of the total execution time, compared to 55% of time
spent in computation. This goes to show the effectiveness of a tightly-coupled
system. On a platform with less bandwidth between the CPU and FPGA, the time
it takes to transfer the data to and from the FPGA could easily dominate the

execution time.

7.3 Resource Utilization

This section is designed to provide a point of comparison, in terms of resource
usage, between the pixel-by-pixel and ray-by-ray backprojectors with the same

number of processing engines (128).

61

Table 10 shows the percentage of each resource consumed for each parallel

backprojector.

62

Table 10 Resource Utilizations of 128-way parallel Systems

Pixel-by-pixel Ray-by-ray
Resources Available (512x512) (1024x1024)
Logic
Combinational ALUTSs 143,520 22% 20%
Dedicated Logic Registers | 143,520 20% 45%
RAM
M512 (576 bits) 930 33% 74%
M4K (4.5 Kbits) 768 100% 80%
MRAM (576 Kbits) 9 56% 100%
DSP
9-bit DSP elements 768 | 100% | 67%

In terms of logic, both implementations have fairly consistent resource usages.
The increase in register usage for ray-by-ray is caused by the additional registers
needed to accommodate for the global imgRAM. Since the global imgRAM is
composed of 8 MRAM blocks spread out across the chip, an extensive series of
registers were needed to pipeline their inputs and outputs in order for the place
& route tool to meet the 100 MHz clock requirement. The local imgRAMs in pixel-

by-pixel did not require such extensive buffering.

In terms of distributed Block RAM, pixel-by-pixel consumed more M4K blocks to
instantiate its local imgRAMSs. Since the ray-by-ray system is backprojecting from
a 1024x1024 sinogram, it requires a bigger sinoRAM (implemented using M512
RAM) to accommodate for the larger inputs. This increase in sinoRAM usage is
the only significant cost of extending the ray-by-ray to accommodate a
1024x1024 sinogram input; for a 512x512 ray-by-ray, the size of sinoRAM
required would be halved, which means the amount of M512 RAM used can be

halved as well.

63

7.4 VHDL vs. Impulse C

The last section of this results chapter is dedicated to the comparison versus the
Impulse C backprojector implemented by Subramanian et al. [1]. This section is
broken up into two specific points of comparison: performance and development

time/effort.

7.4.1 Performance

Since the ray-by-ray backprojector used the same algorithm as the Impulse C
backprojector, we decided to use it as the basis for performance and resource

usage comparisons against the Impulse C design.

Table 11 Execution Time

Design 1024 Projections Speedup
VHDL 38.02 ms 1x
Impulse C 64.52 ms .59x

As shown in Table 11, the VHDL 1024x1024 backprojector is ~1.7x faster than
the Impulse C version. This can be attributed to a few different factors, most of

which become evident after the results in Table 12 are presented.

Table 12 Breakup of Execution Time (1024 Projections)

Execution Stage VHDL Impulse C
Transfer sinogram from CPU -> SRAM 6.05 ms 4.20 ms
Read sinogram SRAM -> FPGA 5.40 ms 11.12 ms
FPGA computation 20.97 ms 42.40 ms
Transfer image from FPGA -> SRAM 2.50 ms
Transfer image from SRAM -> CPU 2.60 ms 1.30 ms
Post processing 3.00 ms 3.00 ms
Total 38.02 ms 64.52 ms

64

Examining Table 12 reveals that there is one main area where the VHDL version
performs significantly better than Impulse C version: FPGA computation. The
VHDL design’s increased performance in the FPGA computation stage can be
attributed to the ability of its processing engines to produce a result every single
cycle. The Impulse C design was not able to implement the sinoRAM Block RAMs
as true dual-port because of limitations in the Impulse C tool, which limited its

compute engines to produce a result only once every two cycles.

A second area where the VHDL version performs faster than the Impulse C
version is the transfer of the sinogram from the SRAM to the FPGA. The SRAM
controller that is supplied as part of the Impulse C XD1000 Platform Support
Package can only achieve the maximum throughput for SRAM to FPGA
communications for a data width of 64 bits. Since the both the image and
sinogram data are stored in a 16-bit format, several data points must be packed
together to achieve the maximum transfer speed. However, the additional logic
required to pack and unpack the data caused the Impulse C design to fall short of
the 100 MHz timing requirement. This led to the ~2x SRAM to FPGA transfer
speed penalty seen by the Impulse C design.

7.4.3 Development Time and Effort

The Impulse C and VHDL backprojectors were created in parallel, by two
separate designers. In terms of design time, the initial design for the hardware
backprojector took approximately 12 weeks to complete. This includes
understanding the algorithm, determining opportunities to exploit parallelism,
benchmarking the hardware, learning the Linux drivers and the XD1000
reference design hardware modules, and finally writing the VHDL. In comparison,
the initial Impulse C design took approximately 9 weeks, and includes the time it
took for the designer to get acquainted with the Impulse C tools, understand the
tool flow and design methodology, and finally optimizing the C benchmark for

hardware.

65

The real differentiation comes from the incremental time to extend the design
from 512x512 to 1024x1024. This evolutionary design step took the hardware
VHDL approach one week to complete, since it required changing much of the
VHDL code and hardware structure to accommodate for the increased data size.
However, since the Impulse C designer had acquired the knowledge to effectively
utilize Impulse C through implementing the first design, this second pass

required only 1 day of development and testing time.

It is important to point out that both the Impulse C designer and the VHDL
designer had similar FPGA development experience, so these development times

are representative of what developers in industry will experience.

A similar story is seen in the comparison of design complexity between Impulse C
and VHDL. The VHDL backprojector was designed and coded in approximately
10,000 lines of code, compared to just 3,000 in the Impulse C backprojector. In
addition, Impulse C’s platform support package abstracted nearly all hardware
management away from the developer, which resulted in a much smoother

development process.

66

8. Discussion

8.1 Hardware Design Process

Prior to writing code for the backprojector, we first examined the trade-offs of
the pixel-by-pixel and ray-by-ray methods of reconstruction. It was apparent that
the pixel-by-pixel structure lends itself better to hardware design and
implementation, as it has a hierarchical structure that is very compatible with the

design abilities of HDL.

After the 512x512 projector was complete, several observations regarding the
performance of the pixel-by-pixel and ray-by-ray methods of reconstruction were
made. First, the pixel-by-pixel method would not scale as effectively to
1024x1024 due to resource limitations. Since the ray-by-ray can use the MRAM
to store the image data, much more of the M4K and M512 RAMs were available
for the sinogram data. We realized that if we use the pixel-by-pixel method to
construct a 1024x1024 projector, we would need to decrease the number of

processing engines to 64 due to the shortage of M4K and M512 RAMs.

Second, we realized that the transfer time saved by overlapping communication
with computation would not be significant compared to the runtime of the
compute loop. This is especially evident as the size of the projector scales to
1024x1024. The processing time scales with the sinogram size, but the
reconstructed image stays at a constant 512x512, which means that the data that
must be transferred back to the CPU does not change in size. The pixel-by-pixel
backprojector is able to mask this transfer time since the outer loop will only
traverse through each pixel once. So after a pixel has been reconstruced, it can be
sent back to the CPU while another pixel is being reconstructed. This is not
possible with ray-by-ray, since reconstruction is not complete for any single pixel

until all the pixels have been fully reconstructed.

67

We decided the benefits of pixel-by-pixel reconstruction did not outweigh the
cost for the 1024x1024 implementation, so we adopted the ray-by-ray
reconstruction method for the 1024x1024 version. This approach allowed us to
explore both reconstruction algorithms and compare and contrast their

individual results.

8.2 Strengths and Weaknesses of VHDL Design vs. Impulse C.

While the traditional view on C-to-FPGA style programming models indicates that
hand-coded hardware design should always be able to produce faster results in
terms of performance, this work and that of Nikhil Subramanian [1], indicates
this may be wrong. Our hardware implementation is 550x faster than un-
optimized single-threaded software (on a 1.86 GHz Intel Xeon L5320 processor),
and 103x faster than multi-threaded software with 8 threads, but the Impulse C
implementation was still able to come within .59x the performance [1], while
keeping almost identical hardware usage. In terms of productivity, we estimate
that a designer well versed in Impulse C can produce working designs 2-5 times
faster than HDL, particularly for hardware that must interface with C code on the

host processor.

As stated in [1], Impulse C’s ability to create applications entirely in C but have
them partitioned across the CPU and FPGA presents a very attractive option for
the designer. Functional verification of prototype designs is greatly enhanced,
and the design effort benefits that Impulse C has over HDL simply cannot be
ignored. From initial development time to design verification effort, Impulse C
presents a seamless way to integrate software and hardware that allows rapid

prototyping of applications targeting hardware coprocessors.

Another difficult aspect of hardware design was the timing issues associated with

large designs. As the initial design consumed many of the available resources, the

68

routing algorithms in the Altera Place & Route tools could not create FPGA
configurations that can meet the desired 100 MHz clock frequency. As a result,
much hand tweaking was needed to effectively pipeline the dataflow between the
various memories, multipliers, and adders. Impulse C eliminates much of this

effort by automatically pipelining intensive computations with the included tools.

A definite strength hardware design has over Impulse C still lies in the efficient
implementation tricks and flexibility that can be exploited in the hands of a
skilled designer. Situations which require simple modifications like adding
registers to the input and output of a computation is not possible with Impulse C
unless the designer dives into the generated HDL code. This lack of flexibility also
makes implementing control logic in the generated pipeline extremely difficult.
Further, system parameters such as the operating clock frequency cannot be
controlled by the Impulse C designer. This means that the common hardware
design technique of incremental designs using slower clock frequencies can not

be performed with Impulse C.

8.2 Benefits of a tightly-coupled FPGA accelerator

We found the tightly-coupled FPGA coprocessor offered by the XD1000 is a
significant advantage. Our results showed that, contrary to commonly held
beliefs, the time spent transferring data to and from the FPGA was not the
bottleneck of our application. Instead, data transfer occupied a small fraction of
the total execution time. This suggests that as technology moves towards higher
bandwidth and lower latency in FPGA coprocessor implementations, designers
will no longer be forced to design applications around the time it takes to transfer
data to the FPGA, and can instead focus on utilizing available hardware resources
to produce the most efficient computation structure. There will always be

applications where the communication to computation ratio rules out FPGA

69

coprocessor implementations, but tightly coupled FPGA-CPU systems allows
many more applications to benefit from these systems. This can also be seen in
[5,6], where the efficient use of on-chip memory bandwidth was the critical

concern.

8.3 Ray-by-ray vs. Pixel-by-pixel

The ray-by-ray and pixel-by-pixel methods of parallelizing the backprojection
algorithm each has its advantages and disadvantages. Ray-by-ray is more scalable
and faster for larger sinograms. With the resource limitations of the Stratix-II
FPGA, we were able to create a 128-way parallel ray-by-ray backprojector, but
we were limited to only 64-way parallel pixel-by-pixel backprojector. Ray-by-ray
also has fewer SRAM accesses, since the sinogram is loaded only once. This is
very beneficial for large sinogram sizes, where repeated access to the SRAM can

prove prohibitive.

The biggest disadvantage of ray-by-ray is that it presents additional difficulties
when trying to achieve timing closure. The global imgRAM has an extremely large
fan-in from all processing engines. Combined with distributing this to 8 separate
MRAM blocks instantiated as one single memory, a lot of design effort and
registers are needed to have a system that can match pixel-by-pixel in terms of

operating frequency.

Pixel-by-pixel PE

| imgRAM
SinoRAM |:> Pixel (0,0)

Pixel-by-pixel PE

| imgRAM
sinoRAM |:> Pixel (0,1)

Pixel-by-pixel PE

| imgRAM
sinoRAM |:> Pixel (0,2)

Figure 18. Pixel-by-pixel vs. Ray-by-ray imgRAM configuration

Ray-by-ray P

E

70

sinoRAM

I

Ray-by-ray P

m

sinoRAM

Ray-by-ray P

m

sinoRAM

imgRAM
Pixel (0,0)

A key advantage of pixel-by-pixel is that it is easier to implement in hardware. It

presents a natural processing engine hierarchy, as each processing engine is

assigned to one pixel of the image and each contain one sinoRAM and one

imgRAM. This structure allows the processing engines to operate independent of

how the processing is distributed, thus allowing hierarchies of processing

engines to be easily created. Pixel-by-pixel also has a less complex datapath,

which makes timing closure easier to achieve. Finally, pixel-by-pixel can overlap

computation with transferring the image back to the CPU, which is very beneficial

for loosely-coupled systems with less bandwidth between the CPU and FPGA, and

it effectively eliminates the cost of the image transfer.

71

9. Conclusion

9.1 Future Direction

With the base design that we have established, it will be interesting to extend our
design to CT forward-projection. We have performed some initial analysis on a
forward-projector design, and the XD1000 infrastructure we have in place for the
backprojector should easily port over. This includes the HyperTransport
controllers and the SRAM controller, as well as the sinoRAM and imgRAM
memory structure. In addition, the hierarchical design and trigonometric

computation system we implemented can also be utilized for a forward-projector.

Another future research interest is implementing the fan beam or cone beam
backprojectors in an FPGA coprocessor. These backprojection algorithms more
closely model what the real world CT scanners are actually processing, and they
would provide a better representation of a FPGA coprocessor’s performance if

used in a real world system.

Finally, this work can be extended to implement an iterative backprojection
algorithm. Due to the amount of computation required iterative backprojection,
processing on sequential processors is not feasible due to the time required to
reconstruct the image. As we’'ve demonstrated with the parallel beam
backprojector, this roadblock can be resolved with an FPGA coprocessor
implementation, as the spatial parallelism available in FPGAs can provide

tremendous benefits in terms of processing speed.

9.2 Conclusion

We created a FPGA implementation of a CT backprojection algorithm using VHDL.
In the process, we explored two different parallel reconstruction techniques:
pixel-by-pixel and ray-by-ray. We concluded that the ray-by-ray method of

parallel backprojection was more effective for this application with sinogram size

72

of 1024x1024 due to its ability to scale more effectively compared to pixel-
bypixel. We also compared our results with an Impulse C implementation of the
same algorithm [1], as well as a multi-threaded software implementation, and
determined that our hand-coded hardware implementation is 1.69x faster than
Impulse C and 61x faster than multi-threaded software with 8 threads. Finally,
we conclude that FPGA coprocessors, like the XtremeData XD1000, are a viable

and effective way to accelerate CT backprojection.

73

References

[1]N. Subramanian, A C-to_FPGA Solution for Acclerating Tomographic Reconstruction, M.S. thesis,
University of Washington, Washington, USA, June, 2009.

[2]P. E. Kinahan, M. Defrise, and R. Clackdoyle, “Analytic image reconstruction methods,” in
Emission Tomography: The Fundamentals of PET and SPECT, pp. 421-442, Elsevier Academic
Press, San Diego, Calif, USA, 2004.

[3] N. GAC, S. Mancini, M. Desvignes, and D. Houzet, “High Speed 3D Tomography on CPU, GPU,
and FPGA,” EURASIP Journal on Embedded Systems, vol. 2008, Article ID 930250, 12 pages, 2008.

[4] M. Leeser, S. Coric, E. Miller, H. Yu, and M. Trepanier, “Parallel-beam backprojection: An FPGA
implementation optimized for medicalimaging,” Proc. of the Tenth Int. Symposium on FPGA,
Monterey, CA,pp. 217-226, Feb. 2002.

[5]N. Johnson-Williams, Design of a Real Time FPGA-based Three Dimensional Positioning
Alogorithm for Positron Emission Tomography, M.S. thesis, University of Washington, Washington,
USA, December 2009.

[6]D. Dewitt, An FPGA Implementation of Statistical Based Positioning for Positron Emission
Tomography, M. Eng. thesis, University of Washington, Washington, USA, Jan 2008.

[7]1 L. Agi, P.J. Hurst, and K.W. Current, “A VLSI architecture for high-speed image reconstruction:
considerations for a fixed-point architecture,” Proceedings of SPIE, Parallel Architectures for
Image Processing, vol. 1246, 1990, pp. 11-24.

[8] Kachelrieb, M.; Knaup, M.; Bockenbach, O., "Hyperfast Parallel Beam Backprojection,” Nuclear
Science Symposium Conference Record, 2006. IEEE, vol.5, no., pp.3111-3114, Oct. 29 2006-Nov. 1
2006.

[9] Ambric Am2045 CT Backprojection Acceleration White Paper

[10] X. Xue, A. Cheryauka, and D. Tubbs, “Acceleration of fluoro-CT reconstruction for a mobile C-
arm on GPU and FPGA hardware: A simulation study,” SPIE Medical Imaging Proc., vol. 6142, pp.
1494-1501, Feb. 2006.

[11] F. Xu and K. Mueller, "Accelerating popular tomographic reconstruction algorithms on
commodity pc graphics hardware,"” IEEE Transaction of Nuclear Science, 2005.

[12] F. Xu and K. Mueller. "Towards a Unified Framework for Rapid Computed Tomography on
Commodity GPUs" IEEE Medical Imaging Conference (MIC) 2003

[13] K. Mueller and F. Xu. "Practical considerations for GPU-accelerated CT" IEEE 2006
International Symposium on Biomedical Imaging (ISBI '06) Arlington, VA, April 2006 pp. 1184-
1187, 2006.

[14] A. K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, 1989.

74

[15] XD1000 Product flyer.
http://www.xtremedatainc.com/index.php?option=com_docman&task=doc_details&gid=17&Ite
mid=129

[16] Wikimedia Commons article: Computed Tomography - CT Scans.
http://commons.wikimedia.org/wiki/File:CTScan.jpg

[17] A. Alessio and P. Kinahan, “PET Image Reconstruction,” In: Nuclear Medicine (2nd ed.).
Henkin et al,, Eds., Philadelphia, Elsevier; 2006

[18] Hutton, Brian F. An Introduction to Iterative Reconstruction. Alasbimn Journal 5(18):
October 2002. Article N° AJ18-6.

[19] Images generated using the University of Washington Emission Reconstruction Demo
(UWERD), © Adam Alessio 2/05.

[20] http://www.slideshare.net/lobelize/ct-2-history-process-scanners-dip Slide 31

[21] FBP Software benchmark designed by Dr. Adam Alessio, Research Asst. Professor, Imaging
Research Laboratory, Department of Radiology, University of Washington.

[22] Espasa, R. and Valero, M. 1997. Exploiting Instruction- and Data-Level Parallelism. [EEE
Micro 17, 5 (Sep. 1997), 20-27. DOI= http://dx.doi.org/10.1109/40.621210

[23] http://www.impulseaccelerated.com/

[24] “XD1000 Development System Brief”, XtremeData, IL, USA.

[25] “Pico E-16 datasheet,” Pico Computing, WA, USA.

[26] http://www.drccomputer.com/pdfs/DRC_Accelium_Coprocessors.pdf

[27] http://en.wikipedia.org/wiki/File:Tomographic_figl.png

[28] http://en.wikipedia.org/wiki/Tomographic_reconstruction

[29] http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

[30] S. Hauck and A. Dehon. Reconfigurable Computing. Morgan Kaufmann. 2008.
[31] http://en.wikipedia.org/wiki/Graphics_processing_unit

[32] A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging. New York: IEEE
Press, 1988.

