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Abstract – Current FPGA placement algorithms 

estimate the routability of a placement using 

architecture-specific metrics, which limit their 

adaptability. A placement algorithm that is targeted to 

a class of architecturally similar FPGAs may not be 

easily adapted to other architectures. The subject of 

this paper is the development of routability-driven 

architecture-adaptive heuristics for FPGA placement. 

The first heuristic (called Independence) is a 

simultaneous place-and-route approach that tightly 

couples a simulated annealing placement algorithm 

with an architecture adaptive FPGA router. The 

results of our experiments on three different FPGA 

architectures show that Independence produces 

placements that are within -2.5% to as much as 21% 

better than targeted placement tools. We also present 

a heuristic speed-up strategy for Independence that is 

based on the A* algorithm. The heuristic requires 

significantly less memory than previously published 

work, and is able to produce runtimes that are within -

7% to as much as 9% better than targeted speed-up 

techniques. Memory improvements range between 

30X and 140X.  
 

 

I. INTRODUCTION 

The most important architectural feature of a Field 

Programmable Gate Array (FPGA) is its interconnect 

structure. Since any FPGA has a finite number of discrete 

routing resources, a large share of architectural research 

effort is devoted to determining the composition of an 

FPGA’s interconnect structure. During architecture 

development, the effectiveness of an FPGA’s interconnect 

structure is evaluated using placement and routing tools 

(collectively termed place-and-route tool). The place-and-

route tool is responsible for producing a physical 

implementation of an application netlist on the FPGA’s 

prefabricated hardware. Specifically, the placer 

determines the actual physical location of each netlist 

logic block in the FPGA layout, and the router assigns the 

signals that connect the placed logic blocks to routing 

resources in the FPGA’s interconnect structure. Due to 

the finite nature of an FPGA’s interconnect structure, the 

success of the router is heavily reliant on the quality of 

the solutions produced by the placer. Not surprisingly, the 

primary objective of the placer is to produce a placement 

that can indeed be routed by the router. 

 

The effectiveness of a placement tool as means to 

evaluate an FPGA architecture relies on the ability of the 

placement algorithm to capture the FPGA’s interconnect 

structure. Currently, the modus operandi used in the 

development of placement algorithms is to use 

architecture-specific metrics to heuristically estimate the 

routability of a placement. For example, the routability of 

a placement on island-style FPGAs is estimated using the 

ever-popular Manhattan Distance wirelength metric, 

while the routability of a placement on tree-based 

architectures is estimated using cutsize metrics. 

 

Architecture-specific routability estimates limit the 

adaptability of a placement algorithm. To the best of our 

knowledge, there is currently no single approach to 

routing estimation that can adapt effectively to the 

interconnect structure of every FPGA in the architecture 

spectrum. This often proves to be an impediment in the 

early stages of FPGA architecture development, when the 

targeted placement algorithm is not well defined due to a 

lack of architectural information. We feel that research in 

FPGA architectures would stand to benefit from a 

universal placement algorithm that can quickly be 

retargeted to relatively diverse FPGA architectures. 
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The subject of this paper is the development of 

Independence, an architecture adaptive FPGA placement 

algorithm. Since the object of an FPGA placement 

algorithm is to produce a routable placement, we tightly 

couple the placement algorithm with an FPGA router. 

Specifically, we use an architecture adaptive router in the 

inner loop of a simulated annealing placement algorithm 

to actually route signals. Thus, instead of using 

architecture-specific routability estimates, we use the 

routing produced by an architecture adaptive router to 

guide the placement algorithm to a high-quality solution. 

 

II. FPGA PLACEMENT AND ROUTING 

In this section, we discuss the FPGA placement and 

routing problems. Further, we also describe the most 

popular algorithm that is used to solve each problem. The 

algorithms described in this section form the basis of our 

work on architecture adaptive FPGA placement. 

 

A. FPGA Routing 

The FPGA routing problem is to assign nets to routing 

resources such that no routing resource is used by more 

than one net. Pathfinder [15] is the current, state-of-the-art 

FPGA routing algorithm. Pathfinder operates on a 

directed graph abstraction (G(V,E)) of the routing 

resources in an FPGA. The set of vertices V in the graph 

represents the IO terminals of logic units and the routing 

wires in the interconnect structure. An edge between two 

vertices represents a potential connection (called a routing 

switch) between the two vertices. The collection of wires 

and switches in an FPGA are collectively termed the 

routing resources in an FPGA. Given this graph 

abstraction, the routing problem for a given net is to find a 

directed tree embedded in G that connects the source 

terminal of the net to each of its sink terminals. Since the 

number of routing resources in an FPGA is limited, the 

goal of finding unique, non-intersecting trees (hereafter 

called “routes”) for all the nets in a netlist is a difficult 

problem.  

 

Pathfinder uses an iterative, negotiation-based approach 

to successfully route all the nets in a netlist. During the 

first routing iteration, nets are freely routed without 

regard to wire sharing. Individual nets are routed using 

Dijkstra’s shortest path algorithm [8]. At the end of the 

first iteration, many routing wires are used by multiple 

nets, which is the result of congestion. During subsequent 

iterations, the cost of using a wire is increased based on 

the number of nets that share the wire, and the history of 

congestion on that wire. Thus, nets are made to negotiate 

for routing wires. If a wire is highly congested, nets will 

use less congested alternatives if possible. On the other 

hand, if the alternatives are more congested than the wire, 

then a net may still use that wire. The cost of using a 

routing wire ‘n’ during a routing iteration is given by 

Equation 1. 

 

Equation 1   
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bn is the base cost of using the wire n, hn represents the 

congestion history during previous iterations, and pn is 

proportional to the number of nets sharing the wire in the 

current iteration. The hn term is based on the intuition that 

a historically congested wire should appear expensive, 

even if it is currently lightly shared. 

 

An important measure of the quality of the routing 

produced by an FPGA routing algorithm is critical path 

delay. The critical path delay of a routed netlist is the 

maximum delay of any combinational path in the netlist. 

The maximum frequency at which a netlist can be clocked 

is inversely proportional to the critical path delay. Thus, 

larger critical path delays slow down the operation of 
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netlist. Delay information is incorporated into Pathfinder 

by redefining the cost of using a wire n (Equation 2). 

 

Equation 2   
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The cn term is from Equation 1, dn is the delay incurred in 

using the wire, and Aij is the criticality given by Equation 

3. 

 

Equation 3   
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Dij is the maximum delay of any combinational path that 

goes through the source and sink terminals of the net 

being routed, and Dmax is the critical path delay of the 

netlist. Equation 2 is formulated as a sum of two cost 

terms. The first term captures the delay cost of using wire 

n, while the second term captures the congestion cost. 

When a net is routed, the value of Aij determines whether 

the delay or the congestion cost of a wire dominates. If a 

net is near critical (i.e. its Aij is close to 1), then 

congestion is largely ignored and the cost of using a wire 

is primarily determined by the delay term. If the criticality 

of a net is low, the congestion term in Equation 2 

dominates, and the route found for the net avoids 

congestion while potentially incurring delay. 

 

Pathfinder has proved to be one of the most powerful 

FPGA routing algorithms to date. Pathfinder’s 

negotiation-based framework that trades off delay for 

congestion is an extremely effective technique for routing 

signals on FPGAs. More importantly, Pathfinder is a truly 

architecture-adaptive routing algorithm. The algorithm 

operates on a directed graph abstraction of an FPGA’s 

routing structure, and can thus be used to route netlists on 

any FPGA that can be represented as a directed routing 

graph. 

 

B. FPGA Placement 

The FPGA placement problem is to determine the 

physical assignment of the logic blocks in a netlist to 

locations in the FPGA layout. The primary goal of any 

FPGA placement approach is to produce a placement that 

can be successfully routed using the limited routing 

resources provided by the FPGA. Versatile Place and 

Route [3,4] (VPR) is the current, public-domain state-of-

the-art FPGA placement tool. VPR consistently produces 

high-quality placements, and at the time of this writing, 

the best reported placements for the Toronto20 [5] 

benchmark netlists are those produced by VPR. 

 

VPR uses a simulated annealing algorithm [12,18] that 

attempts to minimize an objective cost function. The 

algorithm operates by taking a random initial placement 

of the logic blocks in a netlist, and repeatedly moving the 

location of a randomly selected logic block. The move is 

accepted if it improves the overall cost of the placement. 

In order to avoid getting trapped in local minima, non-

improving moves are also sometimes accepted. The 

temperature of the annealing algorithm governs the 

probability of accepting a “bad” move at that point. The 

temperature is initially high, causing a large number of 

bad moves to be accepted, and is gradually decreased 

until no bad moves are accepted. A large number of 

moves are attempted at each temperature. VPR provides a 

cooling schedule that is used to determine the number of 

moves attempted at each temperature, the maximum 

separation between logic blocks that can be moved at a 

given temperature, and the rate of temperature decay.   

 

VPR’s objective cost function is a function of the total 

wirelength of the current placement. The wirelength is an 

estimate of the routing resources needed to completely 

route all nets in the netlist. Reductions in wirelength mean 
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fewer routing wires and switches are required to route 

nets. This is an important consideration because the 

number of routing resources in an FPGA is limited. Fewer 

routing wires and switches typically also translate to 

reductions in the delay incurred in routing nets between 

logic blocks. The total wirelength of a placement is 

estimated using a semi-perimeter metric, given by 

Equation 4. N is the total number of nets in the netlist, 

bbx(i) is the horizontal span of net i, bby(i) is its vertical 

span, and q(i) is a correction factor. Figure 1 illustrates 

the calculation of the horizontal and vertical spans of a 

hypothetical net that has ten terminals. 

 

Equation 4   
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Figure 1: The horizontal and vertical spans of a hypothetical 

10-terminal net [4]. The semi-perimeter of the net is bbx + 

bby. 

 

The cost function in Equation 4 does not explicitly 

consider timing information. Wirelength is a weak 

estimate of the delay of a net, especially when the net is 

routed on FPGAs that have a mix of segmented routing 

wires. In [13], VPR’s placement algorithm is enhanced to 

include both wirelength and timing information. The 

enhanced algorithm (called TVPlace) starts out with a 

preprocessing step that creates a delay lookup table for 

the FPGA. This lookup table holds the delay of a 

minimum-delay route for every source-sink terminal pair 

in the FPGA’s interconnect structure. During the 

placement process, the lookup table is used to quickly 

estimate the delay of a net given a placement of its 

terminals. The timing cost of a placement is calculated 

using the cost functions in Equation 5 and Equation 6. 

 

Equation 5  
yExponentCriticalitj)y(i,Criticalit*j)Delay(i,j),mingCost(iTi =

 

 

Equation 6  
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In Equation 5, TimingCost(i,j) represents the timing cost 

of a net that connects a source-sink pair (i,j), Delay(i,j) is 

the delay of the net, and Criticality(i,j) is the criticality of 

the net. During the placement process, the delay of a net 

is obtained from the lookup table, while the criticality of a 

net is calculated using a static timing analysis. The 

CriticalityExponent is a parameter that can be tuned to 

control the relative importance of the criticality of a net. 

The formulation of the timing cost in Equation 5 

encourages the placement algorithm to seek solutions that 

reduce Delay(i,j) for critical nets. 

 

TVPlace’s cost function is determined by both wirelength 

and timing cost, and is given by Equation 7. 

 

Equation 7  

ΔC  = λ* (ΔTimingCost / prevTimingCost) +  

 (1 –λ) * (ΔWireCost / prevWireCost) 

 

Equation 7 calculates the change in cost of a placement 

using an auto-normalizing cost function that depends on 

changes in WireCost and TimingCost. The parameter λ is 

used to vary the relative importance of changes in 
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TimingCost and WireCost during the placement process. 

The two normalization variables prevWireCost and 

prevTimingCost are updated at the beginning of a 

temperature iteration as per Equation 4 and Equation 6. 

The main benefit of using normalization variables is to 

make changes in the cost of the placement independent of 

the actual magnitude of TimingCost and WireCost. This 

makes the cost function adaptive, since the size of a 

netlist or the target architecture does not skew cost 

calculations. Further, since prevTimingCost and 

prevWireCost are recalculated every temperature 

iteration, inaccuracies due to mismatched rates of change 

of the two cost components are minimized. 

 

III. MOTIVATION 

Due to a strong prevalence of routing rich island-style 

FPGA architectures, VPR’s placement algorithm is 

primarily targeted to island-style FPGAs (Figure 2). The 

semi-perimeter based cost function relies on certain 

defining features of island-style FPGAs: 

Two-dimensional Geometric Layout – An island-

style FPGA is laid out as a regular two-dimensional grid 

of logic units surrounded by a sea of routing wires and 

switches. As a result, VPR’s cost function is based on the 

assumption that the routability of a net is proportional to 

the Manhattan distance (measured by semi-perimeter) 

between its terminals. A net with terminals that are far 

apart needs more routing resources than a net with 

terminals close to each other. 

Uniform Connectivity – Island-style architectures 

provide uniform connectivity. The number and type of 

routing resources available for a net with a given semi-

perimeter are independent of the actual placement of the 

terminals of the net. Thus, VPR determines the cost of a 

net based purely on its semi-perimeter, and not the actual 

location of the terminals of the net. 

 

 

Figure 2: An illustration of an island-style FPGA. The white 

boxes represent logic blocks. The horizontal and vertical 

intersecting lines represent routing wires. The logic blocks 

connect to surrounding wires using programmable 

connection-points (shown as crosses), and individual wires 

connect to each other by means of programmable routing 

switches (shown as gray lines). 

 

VPR’s dependence on island style FPGA architectures 

limits its adaptability to architectures that do not provide 

features of island-style FPGAs. For instance, the 

interconnect structure of an FPGA architecture may not 

conform to the Manhattan distance estimate of routability. 

One example is the hierarchical interconnect structure 

found in tree-based FPGA architectures (Figure 3 (a)). In 

tree-based FPGAs, there is no way of estimating the 

number of routing resources between two logic units 

based on layout positions. In fact, for an architecture like 

HSRA [10], the number of routing resources required to 
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Figure 3: Non island-style FPGA architectures. (a) HSRA [10], (b) Triptych [6], (c) directional architecture from [11], and (d) a U-

shaped FPGA core [26]. 

 

connect a logic unit in one half of the interconnect tree to 

a logic unit in the other half does not depend on the actual 

locations of the logic units. A strictly semi-perimeter 

based cost function does not accurately capture the 

routability characteristics of tree-based FPGAs. 

 

Another class of non-island style FPGA architectures 

provide heterogeneous interconnect structures. Triptych 

[6] (Figure 3 (b)) is an example of an FPGA architecture 

that provides only segmented vertical tracks. There are no 

segmented horizontal tracks; horizontal routes are built 

using directional, nearest-neighbor connections. A second 

example of an FPGA architecture that has non-uniform 

routing resources can be found in [11] (Figure 3 (c)). The 

horizontal channels in this architecture gradually increase 

in width from left to right. For a given semi-perimeter, the 

amount of routing available to a net at the far right edge 

of this architecture exceeds the amount available at the far 

left edge. For both Triptych and the architecture presented 

in [11], the types and number of routing resources 

available to route a net clearly depends on the placement 

of the net’s terminals. VPR’s semi-perimeter based cost 

function is oblivious of the heterogeneity of such 

architectures. 

 

Finally, efforts to incorporate FPGA-like logic in System-

on-Chip designs have motivated non-rectangular FPGA 

fabrics. In [26], the authors investigate a directional 

FPGA fabric that resembles the shape of a trapezoid. The 

FPGA fabrics proposed in [26] are built by abutting 
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smaller, rectangular fabrics of different aspect ratios 

(Figure 3 (d)). In both cases, the semi-perimeter metric is 

an inaccurate estimate of the resources available to route 

signals. 

 

The primary feature that distinguishes the non-island style 

FPGAs discussed so far is the nature of the interconnect 

structure. The composition, flexibility, and heterogeneity 

of the routing resources directly influence the placement 

process. For every FPGA that has a unique interconnect 

structure, a placement cost function is formulated in terms 

of architecture specific parameters that accurately capture 

the cost of a placement. The architectural examples cited 

in this section clearly show that a semi-perimeter 

placement cost function does not adapt well to non-island 

style FPGAs. A cost function’s adaptability lies in its 

ability to guide a placement algorithm to a high-quality 

solution across a range of architecturally diverse FPGAs. 

 

The subject of this paper is the development of an 

architecture-adaptive routability-driven FPGA placement 

algorithm called Independence. The algorithm’s 

adaptability is a direct result of using the Pathfinder [15] 

algorithm to calculate the cost of a placement. 

Specifically, we use Pathfinder in the inner loop of a 

simulated annealing placement algorithm to maintain a 

fully routed solution at all times. Thus, instead of using 

architecture-specific routability estimates, we use the 

routing produced by an architecture adaptive router to 

guide the algorithm to a routable placement. 

 

IV. PREVIOUS WORK 

Since Independence is rooted in a simultaneous
1
 place-

and-route approach, we briefly survey existing research in 

integrated FPGA placement and routing in this section. 

                                         
1
 We use the words ‘integrated’ and ‘simultaneous’ 

interchangeably from this point on. 

Research in integrated place and route for FPGAs can be 

broadly categorized into three categories.  

 

A. Partitioning-based techniques 

Partitioning-based FPGA placement is used to obtain a 

global routing of the netlist as a direct result of the 

partitioning process. Iterative k-way partitioning 

techniques are particularly well suited to tree-based 

FPGA architectures, and have been used to place and 

globally route netlists on HSRA [10] and k-HFPGA [25]. 

Partitioning-based techniques have also been considered 

for simultaneously placing and routing netlists on island-

style FPGA architectures [1,24]. 

 

Partitioning-based placement techniques can be used to 

simultaneously place and globally route netlists on FPGA 

architectures. However, since FPGAs have a finite 

number of discrete routing resources, heuristic estimates 

of the global routing requirements of a netlist during the 

placement process might not be the most accurate 

measure of the actual routing requirements of the netlist. 

A tighter coupling between partitioning-based placement 

and the interconnect structure of the FPGA might be 

obtained by finding detailed routes for signals during 

partitioning. However, the actual placement of a netlist is 

only known at the end of the partitioning-phase, and 

hence a complete detailed routing is not possible during 

the partitioning process.  

 

B. Cluster-growth placement 

Cluster-growth placement is a technique that has been 

used to simultaneously place and route netlists on 

different FPGA architectures. In cluster-growth 

placement, signals are considered one at a time in a 

sequential manner. The terminals of the signal under 

consideration are placed based on a cost function derived 

from heuristic force-directed estimates [2], or global 
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routing estimates [7]. Once a signal’s terminals have been 

placed, it is not possible to change their placement to 

accommodate the demands of later signals. 

 

The quality of the placements produced by a cluster-

growth approach is sensitive to the order in which signals 

are considered. Since determining an optimal ordering of 

the signals is a difficult task, cluster-growth placement is 

usually an iterative process and may be prone to 

convergence problems. 

 

C. Simulated Annealing Placement 

Simulated Annealing based simultaneous place-and-route 

techniques are presented in [16]. Fast global and detailed 

routing heuristics are used in the simulated annealing 

inner loop to estimate the routability and critical path 

delay of a placement. Separate techniques for row-based 

and island-style FPGAs are presented. A brief description 

of the techniques follows: 

Row-based FPGAs (PRACT) [16]: The PRACT 

algorithm is targeted to row based FPGAs. The cost of a 

placement is a weighted, linear function of the number of 

globally unrouted nets, the number of nets that lack a 

complete detailed routing, and the critical path delay of 

the placement. For every move that is attempted during 

the annealing process, the nets that connect the moved 

logic blocks are ripped up and added to a queue of 

unrouted nets. After a move is made, fast heuristics 

attempt to find global and detailed routes for the ripped up 

nets. PRACT yielded up to a 29% improvement in delay 

and 33% improvement in channel widths when compared 

to a place-and-route flow used at Texas Instruments (circa 

1995). 

Island style FPGAs (PROXI) [16]: The PROXI 

algorithm uses a cost function that is a linear, weighted 

function of the number of unrouted nets, and the critical 

path delay of the placement. No global routing is 

attempted. The interconnect structure of the FPGA is 

represented as a routing graph similar to the directed 

graph used by Pathfinder. For each placement move, the 

nets connecting the moved logic blocks are ripped up and 

added to a global queue of unrouted nets. Nets are 

rerouted using a maze routing algorithm augmented with 

a cost-to-target predictor. The placements produced by 

PROXI exhibited 8 – 15% delay improvement compared 

to Xilinx’s XACT5.0 place-and-route flow. 

 

The quality of the placement solutions produced by 

PRACT and PROXI was noticeably superior to 

commercial, state-of-the-art CAD flows at that time (circa 

1995). The results were a strong validation of a simulated 

annealing based FPGA placement algorithm that is tightly 

coupled with routing heuristics. However, both algorithms 

have potential shortcomings from adaptability as well as 

CAD perspectives: 

� The cost functions developed for the algorithms do 

not explicitly consider total wirelength or 

congestion. 

� The routing heuristics used by PRACT are tied to 

row-based FPGAs, and may be difficult to adapt to 

FPGA architectures that have different interconnect 

structures. At the same time, PROXI uses bounding 

box estimates to dynamically weight nodes of the 

routing graph when routing nets. This dynamic 

weighting approach is targeted at island-style 

architectures that have segmented routing wires. 

� PROXI’s routing algorithm does not allow sharing 

of routing nodes by multiple signals. Disallowing 

sharing prevents PROXI from leveraging the 

negotiation-based congestion resolution heuristics 

from the Pathfinder algorithm. 

 

The approaches and techniques surveyed in this section 

are either targeted to certain architectural styles, or use 
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relatively weak estimates of routability during the 

placement process. No clear cost formulation or technique 

emerges that can be used to produce high quality 

placements across a range of architecturally unique 

FPGAs. Research in FPGA architectures would stand to 

benefit from a placement algorithm that can quickly be 

retargeted to relatively diverse FPGA architectures, while 

producing high quality results at the same time. 

 

V. ARCHITECTURE-ADAPTIVE FPGA PLACEMENT 

In Section III, we discussed why VPR’s cost formulation 

does not adapt to non island-style FPGAs. We then 

postulated that an integrated place-and-route approach 

that tightly couples placement with an architecture-

adaptive router (Pathfinder) is probably a more 

appropriate architecture-adaptive placement approach. In 

this chapter we describe Independence, an architecture-

adaptive routability-driven
2
 FPGA placement algorithm. 

Pseudo code for the algorithm appears in Figure 4. The 

remainder of this section is an explanation of the pseudo 

code shown in Figure 4. 

 

A. Placement heuristic and cost formulation 

Since simulated annealing has clearly produced some of 

the best placement results reported for FPGAs [3,4], we 

chose to use simulated annealing as Independence’s 

placement heuristic. Independence’s cooling schedule is 

largely an adoption of VPR’s cooling schedule. This is 

because VPR’s cooling schedule is adaptive, and 

incorporates some of the most powerful features from 

earlier research in cooling schedules. For similar reasons, 

we chose an auto-normalizing formulation for 

Independence’s cost function.  Independence’s cost 

function is described in Equation 8. 

 

                                         
2
 Currently, Independence’s cost function is routability-driven. 

A timing-driven cost function is currently under development.  

 

Independence(Netlist, G(V,E)){ 

// Create an initial random placement. 
createRandomPlacement(Netlist, G(V,E)); 

 

N = set of all nets in Netlist; 

 

// Freely route all nets in N; similar to Pathfinder’s first routing iteration. R contains the complete, current 

// routing of the nets in N at any time during the placement. 
R = routeNets(N, G(V,E)); 

 

// Calculate the cost of the placement. 
C = calculateCost(R, G(V,E)); 

 

// Calculate the starting temperature of the anneal. 
T = StartTemperature(Netlist, G(V,E), R); 

 

while(terminatingCondition() == false){ 

 while(innerLoopCondition() == false){ 

// Randomly generate the two locations involved in the move. 
(x0,x1) = selectMove(G(V,E)); 

 

// Get the nets connected to the logic blocks mapped to x0 and/or x1. 
Nx = getNets(x0, x1); 

 

// Cache the routes of the nets connected to the logic blocks mapped to x0 and/or x1. 
CacheR = getRoutes(Nx); 

 

// Rip up the nets connected to the logic blocks mapped to x0 and/or x1. 
R = R – cacheR; 

 

// Swap the logic blocks mapped to x0 and/or x1. Update the source/sink terminals of the nets in 

// Nx to reflect the new placement. 
swapBlocks(x0, x1); 

 

// Reroute the nets connected to the logic blocks that are now mapped to x0 and/or x1. 
R = R + routeNets(Nx, G(V,E)); 

 

// Calculate the change in cost due to the move. 
newC = calculateCost(R, G(V,E)); 

∆∆∆∆C = newC – C; 
 

if(acceptMove(∆∆∆∆C, T) == true){ 

 // Accept the move. 
 C = newC; 

} 

else{ 

 // Restore the original placement and routing 
 swapBlocks(x0, x1); 

 R = R – getRoutes(Nx) + cacheR; 

} 

 } 

  

 // Update temperature T. 
T = updateTemp(); 

 

// Update history costs. 
updateHistoryCosts(R, G(V,E)); 

 

// Refresh routing. 

R=ΦΦΦΦ; 
R=routeNets(N, G(V,R)); 

} 

} 

  

Figure 4: Pseudo code for the Independence algorithm. Brief 

comments accompany the code. 

 

Equation 8 

∆ C  = ∆ WireCost / prevWireCost + 

λ * ∆ CongestionCost / CongestionNorm 

 

WireCost – The wire cost of a placement (Equation 9) is 

calculated by summing the number of routing wires used 

by each signal in the placed netlist. Routing wire usage is 

measured by simply traversing the route-tree of each 

signal and increasing WireCost. In Equation 9, N is the 

number of signals in the netlist, and NumRoutingWiresi is 

the number of routing wires in the route tree of signal i. 

The normalization variable prevWireCost in Equation 8 is 

equated to the WireCost of a placement before a 

placement move is attempted. 
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Equation 9 
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CongestionCost – The congestion cost (Equation 10) 

represents the extent to which the routing wires are 

congested in a given placement, and is calculated by 

counting the number of times a routing wire is used by a 

signal when that wire has already been allocated to 

another signal. The congestion cost of a placement is 

calculated by visiting all the wires in the routing graph 

and increasing CongestionCost by the number of signals 

using a shared wire in excess of its capacity. In Equation 

10, Occupancyi is the number of signals that are currently 

using routing wire i, Capacityi is the capacity of routing 

wire i, and R is the total number of wires in the routing 

graph of the target architecture. It could be argued that 

CongestionCost renders WireCost redundant, since the 

objective of an FPGA placement algorithm is to produce a 

routable netlist. However, a cost function that is unaware 

of changes in wire cost will not recognize moves that 

might improve future congestion due to reductions in 

routing wire usage.  

 

Equation 10 

∑
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CongestionNorm: This is the auto-normalization term for 

the CongestionCost of a placement. Note that the 

congestion cost of the placement cannot be used as a 

normalizing factor, since CongestionCost might be zero 

towards the end of the annealing process. In our current 

implementation of Independence, we equate 

CongestionNorm to prevWireCost. 

 

λ – This weighting parameter (Equation 8) controls the 

relative importance of changes in wire and congestion 

costs. Since CongestionNorm is continuously recalculated 

as the placement algorithm progresses, the collective λ / 

CongestionNorm term also changes dynamically. As a 

result, the relative importance of changes in congestion 

cost varies with time. This behavior is similar to that of 

the cost function presented in [22], in which the weighting 

parameter of an individual cost term (overlap penalty) 

was dynamically varied during the annealing process. 

This dynamic parameter tuning approach proved very 

effective in eliminating overlap penalty while minimizing 

increases in wirelength. 

 

B. Integrating Pathfinder 

FPGA routing is a computationally intensive process and 

this makes it infeasible to reroute all the signals in a 

netlist after each placement move. Our solution is to start 

with an initially complete routing, and then incrementally 

reroute signals during placement. Specifically, only the 

signals that connect to the logic blocks involved in a 

move are ripped up and rerouted. This is based on the 

intuition that for any given move, major changes in 

congestion and delay will be primarily due to the 

rerouting of signals that connect moved logic blocks. 

 

A

D

B

C

E

A

D

B

C

E E

A

D

B

C

E  

Figure 5: Logic block E is moved to the location immediately 

to the right of D. Its input branch (shown in gray) is ripped 

up, and a new route is found from the partial route-tree that 

connects logic blocks A, B, C and D. 

 

Signals that terminate at a moved logic block are handled 

differently from signals that originate at the moved logic 

blocks. When a logic block is moved during the 

placement process, only the branch of the net that 

connects to the sink of the moved logic block is ripped up 

and rerouted. This approach is similar to Pathfinder’s 

signal router, which uses the entire partially routed net as 
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a starting point for the search for a new sink terminal. 

Ripping up and rerouting only branches is based on the 

assumption that the relocation of a single terminal of a 

multi-terminal net will not drastically alter the net’s route. 

The runtime benefits of only routing branches are 

compelling, especially because FPGA logic units 

generally have a relatively large number of inputs. Figure 

5 illustrates the process of ripping up and rerouting the 

input branches of moved logic blocks. 

 

While nets terminating at moved logic blocks are partially 

ripped up and rerouted, the nets that originate at moved 

logic blocks are completely rerouted. Merely routing the 

output of a moved logic block to the nearest point in the 

partial route-tree could produce a poor route. Figure 6 

illustrates the benefits of completely rerouting the output 

net of a moved logic block. 

 

 

A

B

C

B

A

C

B

A

C  

Figure 6: Logic block A is moved to the location between B 

and C. If we reroute from A to the partial route-tree, the 

resultant route requires far more routing than is necessary. 

Ripping up and rerouting the entire net produces a better 

routing. 

 

Since we only attempt an incremental rip-up and reroute 

after every move, the routes found for signals during the 

early parts of an annealing iteration may not accurately 

reflect the congestion profile of the placement at the end 

of an iteration. Hence, we periodically refresh the routing 

by ripping up and rerouting all signals. Currently, the 

netlist is ripped up and rerouted at the end of every 

temperature iteration. 

 

In light of the fact that the placement of a netlist is 

constantly changing during simulated annealing, it is 

necessary to examine whether Pathfinder’s cost function 

is directly applicable to finding routes during incremental 

rip-up and reroute. When routing a signal, Pathfinder uses 

the number of signals currently sharing a routing node 

(presentSharing), and the history of congestion on the 

node (historyCost) to calculate the cost of the routing 

node. Since the netlist is completely routed at any given 

point in the placement process, the current sharing of 

routing nodes can easily be calculated, and thus we 

directly adopt Pathfinder’s presentSharing cost term. 

 

Pathfinder’s history cost term is motivated by the intuition 

that routing nodes that have been historically congested 

during the routing process probably represent a congested 

area of the placed netlist. Thus, if a routing node is shared 

at the end of a routing iteration, its history cost is 

increased by a fixed amount to make the node more 

expensive during subsequent iterations. Note that the 

process of updating history costs during a Pathfinder run 

makes history cost an increasing function. An increasing 

history cost formulation is inappropriate for 

Independence. An increasing history cost would reflect 

the congestion on a routing node during the entire 

placement process. However, since placements are in 

constant flux during the placement process, the 

congestion on a routing node during the early stages of 

the annealing process (when placements are very 

different) might not be relevant to the routing process 

towards the end. 

 

Independence uses a decaying function to calculate 

history costs during incremental rip-up and reroute. 

Specifically, we use a mathematical formulation that 

decreases the relevance of history information from 

earlier parts of the placement process. Currently, we 

update history costs once every temperature iteration 

based on the assumption that the number of signals ripped 

up and rerouted during a temperature iteration is roughly 

equivalent to the number of signals routed during a single 
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or small number of Pathfinder iterations. The history cost 

of a routing node during a temperature iteration ‘i+1’ is 

presented in Equation 11. 

 

Equation 11 

if (shared) 

historyCosti+1 = α * historyCosti + β 

else 

historyCosti+1 = α * historyCosti 

 

In Equation 11, i is a positive integer, and α and β are 

empirical parameters. Currently, α = 0.9 and β  = 0.5. 

Thus, the history cost of a shared routing node during a 

new iteration is determined by 90% of the history cost 

during earlier iterations plus a small constant. As an 

example, the history cost of a node that is shared during 

the first five iterations progressively goes from 0 to 0.5, to 

0.95, to 1.36, and to 1.72. In cases where a routing node is 

not shared during a temperature iteration, its history cost 

is allowed to decay as per Equation 11. 

 

As a final note, we would like to point out that congestion 

plays two roles in the Independence algorithm. First, the 

total congestion cost of a placement plays a direct role in 

contributing to the overall cost of a placement (Equation 

8). We make the task of eliminating congestion an explicit 

goal of the placement process. At the same time, we also 

use Pathfinder’s congestion resolution mechanism during 

incremental rip-up and reroute, and at the end of every 

temperature iteration, to eliminate sharing. 

 

VI. VALIDATING INDEPENDENCE 

The goal of our validation strategy is to demonstrate 

Independence’s adaptability to different interconnect 

styles. Our experiments target three interconnect 

structures; island-style, tree-based (HSRA), and a one-

dimensional architecture that has limited inter-track 

switching capabilities (RaPiD [9]). The main reasons for 

selecting these as target architectures are: 

� Each of the three architectures have clearly different 

interconnect structures. This will provide a means to 

measure the adaptability of our proposed placement 

algorithm. 

� The existence of place-and-route tools for all three 

architectures. This allows us to directly compare the 

quality of the placements produced by 

Independence with those produced by architecture 

specific placement techniques. 

 

A. Island-style FPGA architectures 

Our first experiment (Experiment 1) compares the 

placements produced by Independence with VPR when 

targeted to a clustered, island-style architecture. Each 

logic block cluster in this architecture has eighteen inputs, 

eight outputs, and eight 4-LUT/FF pairs per cluster. The 

interconnect structure consists of staggered length four 

track segments and disjoint switchboxes. The input pin 

connectivity of a logic block cluster is 0.4*W (where W is 

the channel width) and output pin connectivity is 

0.125*W. The island-style architecture described here is 

similar to the optimal architecture reported in [14]. 

 

Table 1: Experiment 1 - A comparison of the placements 

produced by VPR and Independence. 

 

 Netlist Nblocks Nets Size VPR Ind

s1423 51 165 6x6 17 18

term1 77 144 6x6 17 17

vda 122 337 9x9 33 33

dalu 154 312 8x8 25 26

x1 181 352 10x10 22 23

apex4 193 869 13x13 60 61

i9 195 214 7x7 19 19

misex3 207 834 14x14 45 48

ex5p 210 767 12x12 60 60

alu4 215 792 14x14 39 41

x3 290 334 8x8 26 25

rot 299 407 8x8 27 29

tseng 307 780 12x12 34 36

pair 380 512 9x9 36 36

dsip 598 762 14x14 31 31

SUM 491 503  
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Table 1 lists minimum track counts obtained on routing 

placements produced by VPR and Independence. Column 

1 lists the netlists used in this experiment, column 2 lists 

the total number of logic blocks plus IO blocks in the 

netlist, column 3 lists the total number of nets in the 

netlist, column 4 lists the size of the minimum square 

array required to just fit the netlist, column 5 lists the 

minimum track counts required to route the placements 

produced by VPR, and column 6 reports the minimum 

track counts needed to route
3
 placements produced by 

Independence. The final row in Table 1 lists the sum of 

the minimum track counts (which is our quality metric for 

all experiments presented in this chapter) required by 

VPR and Independence across the benchmark set. 

 

The track-counts listed in Table 1 show that, on average, 

the quality of the placements produced by Independence 

is within 2.5% of those produced by VPR. We consider 

this a satisfactory result, since it demonstrates that 

Independence can target island-style FPGAs and produce 

placements that are close in quality to an extensively 

tuned, state-of-the-art placement tool. 

 

Our second experiment (Experiment 2) studies 

Independence’s adaptability to routing-poor island-style 

architectures. The philosophy behind routing-poor 

architectures [6,10] is that overall silicon utilization can 

be increased by reducing the amount of interconnect, 

which can account for more than 90% of the total area in 

current FPGAs. Even though logic utilization percentage 

may be reduced, because much more logic is available, 

overall amount of logic used is increased. This approach 

is in direct contrast to VPR’s exploratory approach, which 

fixes logic utilization and then increases the amount of 

interconnect until a netlist’s placement is successfully 

                                         
3
 The placements produced by VPR and Independence are both 

routed using VPR’s implementation of the Pathfinder algorithm. 

routed. Figure 7 (top left) shows a placement produced by 

VPR for the netlist alu2 on a target architecture
4
 that has 

four times as many logic blocks as a minimum size square 

array required to fit the netlist. VPR’s router needs five 

tracks to route this placement. Our first observation is the 

tightly packed nature of the placement in Figure 7 (top 

left), and our second observation is that the placement 

produced by VPR does not change with the actual number 

of tracks in the target architecture. As a result, VPR is 

unable to produce routable placements for alu2 on target 

architectures that have less than five tracks. VPR’s 

limited adaptability to routing-poor architectures is a 

direct consequence of VPR’s semi-perimeter based cost 

formulation that has no knowledge of the actual number 

of routing resources in the target device. 

 

Unlike VPR, Independence’s integrated approach, which 

tightly couples placement with an architecture adaptive 

router is in fact able to produce routable placements on 

routing-poor island-style architectures. Figure 7 shows 

successfully routed placements produced by 

Independence on 34x34 arrays that have five (Figure 7 

top right), four (Figure 7 bottom left) and three tracks 

(Figure 7 bottom right) respectively. 

 

                                         
4
 Each logic block has a single LUT/FF pair, and the 

interconnect structure contains only length-one wire segments. 

This is the VPR “challenge” architecture [3]. 
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Table 2: Experiment 2 - Quantifying the extent to which Independence adapts to routing-poor island-style architectures. 

 

Netlist Nblocks WVPR 1.0*WVPR 0.9*WVPR 0.8*WVPR 0.7*WVPR 0.6*WVPR 0.5*WVPR

s1423 51 17 17 16 14 12 11 9

vda 122 33 33 30 27 24 20 17

rot 299 30 30 27 24 21 18 15

alu4 215 37 37 34 30 26 23 19

misex3 207 43 43 39 35 31 26 22

ex5p 210 52 52 47 42 37 32 26

tseng 307 33 33 30 27 24 20 17

apex4 193 52 52 47 42 37 32 26

diffeq 292 31 31 28 25 22 19 16

dsip 598 34 34 31 28 24 21 17

 

 

 

 

 

Figure 7: A placement produced by VPR for alu2 on a 34x34 array (top left). VPR needed 5 tracks to route this placement. 

Placements produced by Independence for alu2 on a 34x34 array that has 5 (top right), 4 (bottom left) and 3 (bottom right) tracks 

respectively. 
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Table 2 shows the extent to which Independence is able to 

adapt to routing-poor island-style FPGAs. The parameters 

of the target array are identical to those used in Experiment 

1. The only exception is the logic capacity, which is four 

times (the width and height of the target array are each 2X 

the minimum required to fit the netlist) that of a minimum 

size square array. Column 1 lists the netlists used in the 

experiment, column 2 lists the number of logic blocks plus 

IO blocks in the netlist, and column 3 lists the minimum 

track counts needed by VPR to route each netlist. Let the 

minimum track count needed by VPR to route a netlist be 

WVPR. Columns 4 through 9 list the number of tracks in a 

target device that has 1.0*WVPR, 0.9*WVPR, 0.8*WVPR, 

0.7*WVPR, 0.6*WVPR, and 0.5*WVPR tracks respectively. In 

Columns 4 – 9, a lightly shaded table entry (black text) 

means that Independence produces a routable placement on 

that device, while a dark shaded entry (white text) means 

that Independence is unable to produce a routable 

placement. So, for example, the lightly shaded table entry 

37 for the netlist ex5p means Independence produces a 

routable placement for ex5p on a 37-track (0.7*52) 

architecture. Similarly, the dark shaded entry 32 for ex5p 

means that Independence fails to produce a routable 

placement for ex5p on a 32-track (0.6*52) architecture. The 

results in  

Table 2 show that Independence produces up to 40% better 

placements than VPR on routing-poor island-style 

interconnect structures. Note that VPR does not possess the 

ability to adjust to routing-poor architectures, and thus 

cannot use the extra space to reduce track count. 

 

Finally, since the height and width of a target array in 

Experiment 2 is approximately twice the minimum 

required, the bandwidth
5
 of any target array in Experiment 

1 is approximately equal to the bandwidth of the 

                                         
5
 The bandwidth is measured by the number of routing tracks that 

cut a horizontal or vertical partition of the target array. 

corresponding target array in Experiment 2 at 0.5*WVPR. 

Coincidentally, 0.5*WVPR is also the point at which 

Independence is not able to produce any further reductions 

in track count. Thus, although the target arrays are of 

different sizes, both VPR and Independence produce 

placements that require comparable bandwidths. 

 

B. Hierarchical FPGAs 

Our third experiment (Experiment 3) targets an architecture 

(HSRA) that has a hierarchical, tree-based interconnect 

structure (Figure 8). The richness of HSRA’s interconnect 

structure is defined by its base channel width and 

interconnect growth rate. The base channel width ‘c’ is the 

number of tracks at the leaves of the interconnect tree (in 

Figure 8, c=3). The growth rate ‘p’ is the rate at which the 

interconnect grows towards the root (in Figure 8, p=0.5). 

The growth rate is realized using the following types of 

switch-blocks: 

� Non-compressing (2:1) switch blocks - The number 

of root-going tracks is equal to the sum of the number 

of root-going tracks of the two child switch blocks. 

� Compressing (1:1) switch blocks – The number of 

root-going tracks is equal to the number of root-going 

tracks of either child switch block. 
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Figure 8: [10] An illustration of HSRA’s interconnect 

structure. The leaves of the interconnect tree represent logic 

blocks, the crosses represent connection points, the hexagon-

shaped boxes represent non-compressing switches, and the 

diamond-shaped boxes represent compressing switches. The 

base channel width of this architecture is three (c=3), and the 

interconnect growth rate is 0.5 (p=0.5). 

 

A repeating combination of non-compressing and 

compressing switch blocks can be used to realize any value 

of p less than one. A repeating pattern of 2:1 � 1:1 switch 

blocks realizes p=0.5, while the pattern 2:1 � 2:1 � 1:1 

realizes p=0.67. In HSRA, each logic block has a single 

LUT/FF pair. The input-pin connectivity is based on a c-

choose-k strategy [10], and the output pins are fully 

connected. The base channel width of the target architecture 

is eight, and the interconnect growth-rate is 0.5. The base 

channel width and interconnect growth rate are both 

selected so that the placements produced by HSRA’s CAD 

tool are noticeably depopulated. 

 

 

Table 3: Experiment 3 - Independence compared to HSRA's 

placement tool. 

 

 Netlist NLUTs HSRA Ind

mm9b 120 10 9

cse 134 11 8

s1423 162 10 8

9sym 177 11 8

ttt2 198 10 8

keyb 209 12 9

clip 243 11 9

term1 246 11 10

apex6 258 10 10

vg2 277 11 9

frg1 282 12 10

sbc 332 11 8

styr 341 12 9

i9 347 11 9

C3540 382 11 8

sand 406 12 9

x3 441 11 10

planet 410 12 9

rd84 405 12 8

dalu 502 12 8

SUM 223 176
 

 

Table 3 compares the minimum base channel widths 

required to route placements produced by HSRA’s 

placement tool and Independence. Column 1 lists the 

netlists used in this experiment, column 2 lists the number 

of LUTs in each netlist, column 3 lists the minimum base 

channel widths required to route placements produced by 

HSRA’s placement tool, and column 4 lists the minimum 

base channel widths required to route placements produced 

by Independence. To ensure a fair comparison, 

Independence is targeted to architectures with the same 

horizontal span (lsize as defined in [10]) and interconnect 

levels as required by HSRA’s placement tool. Overall, 

Independence is able to produce placements that require 

21% fewer tracks compared to HSRA’s placement tool. 
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C. RaPiD 

Our fourth experiment (Experiment 4) targets the RaPiD 

architecture [9]. RaPiD’s interconnect structure consists of 

segmented 16-bit buses. There are two types of buses; short 

buses provide local communication between logic blocks, 

while long buses can be used to establish longer 

connections using bidirectional switches called bus-

connectors (shown as the small square boxes in Figure 9). 

RaPiD’s interconnect structure is relatively constrained 

because there is no inter-bus switching capability in the 

interconnect structure. A bus-connector can only be used to 

connect the two bus-segments incident to it. Thus, RaPiD’s 

interconnect structure is an interesting candidate for a 

routability-driven placement algorithm. 
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Figure 9: RaPiD’s interconnected structure consists of 

segmented 16-bit buses. The small square boxes represent 

bidirectional switches called bus connectors. 

 

Table 4 presents the results of Experiment 4. Column 1 lists 

the netlist, column 2 lists the number of RaPiD cells in the 

target array, column 3 lists the minimum track-count 

required by placements produced by the placer described in 

[19], and column 4 lists the minimum track-count required 

to route placements produced by Independence. Overall, the 

min track-counts required by RaPiD’s placer and 

Independence were within 0.7%. 

 

Table 4: Experiment 4 - A comparison of the track-counts 

required by a placement tool targeted to RaPiD and 

Independence. 

 

 Netlist Ncells RaPiD Ind

matmult4 16 12 11

firtm 16 9 11

sort_rb 8 11 11

sort_g 8 11 11

firsymeven 16 8 9

cascade 16 10 10

sobel 18 15 13

fft16 12 11 12

imagerapid 14 12 11

fft64 24 29 28

log8 48 12 14

SUM 140 141
 

 

D. Summary of results 

The results of our experiments demonstrate Independence’s 

adaptability to three different interconnect styles. The 

quality of the placements produced by Independence are 

within 2.5% of VPR, 0.7% of RaPiD’s placement tool, and 

21% better than HSRA’s placement tool. Further, our 

experiment with routing-poor island-style structures shows 

that Independence is appropriately sensitive to the richness 

of interconnect structures. Thus, even on island-style 

architectures, Independence is able to provide placements in 

situations VPR cannot handle. When considered together, 

the results presented in Sections VI.A, VI.B and VI.C are a 

clear validation of using an architecture-adaptive router to 

guide FPGA placement. 

 

VII. RUNTIME ACCELERATION USING A* SEARCH 

The Independence algorithm integrates an adaptive, search-

based router with a simulated annealing placement 

algorithm. Using a router in the simulated annealing inner 

loop is clearly a computationally expensive approach. In 

this section we discuss the A* algorithm [17], a technique 
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that has been used to speed up Pathfinder with a negligible 

degradation in quality [21].  

 

The A* algorithm speeds up routing by pruning the search 

space of Dijkstra’s algorithm. The search space is pruned 

by preferentially expanding the search wavefront in the 

direction of the target node. Thus, when the search is 

expanded from a given node, the routing algorithm expands 

the search through the neighbor node that is nearest the 

target node. This form of directed search is accomplished 

by augmenting the cost of the current partial path with a 

heuristically calculated estimate of the cost of the remaining 

path to the target node. 

 

Equation 12 gives the equation for fn , the estimated cost of 

a shortest path from the source to the target through the 

node n. gn is the cost of a shortest path from the source to 

node n, and hn is a heuristically calculated estimate of the 

cost of a shortest path from n to the target node. Hereafter, 

we refer to this estimate as a ‘cost-to-target’ estimate. The 

A* algorithm uses fn to determine the cost of expanding the 

search through node n while Dijkstra’s algorithm uses gn 

only. 

 

Equation 12 

nnn hgf +=  

 

To guarantee optimality, the cost-to-target estimate hn for a 

wire n must be less than or equal to the actual cost of the 

shortest path to the target. Overestimating the cost to the 

target node may provide even greater speedups, but then the 

search is not guaranteed to find an optimal path to the 

target. Currently, there is no architecture-adaptive, memory 

efficient technique for performing A* search on FPGAs. In 

the next section, we briefly describe previous research in 

A*-based FPGA routing. We then discuss techniques that 

can be used to speed up Pathfinder without relying on 

architecture-specific cost-to-target estimates. Recall that the 

strength of our placement algorithm lies in its adaptability, 

and it is imperative that any runtime enhancements preserve 

the algorithm’s adaptability. 

 

VIII. PREVIOUS WORK IN A* FPGA ROUTING 

The work described in [21,23] discusses directed search 

techniques that can speed up the Pathfinder algorithm. 

These techniques use the A* algorithm, but use geometric 

information to estimate the cost-to-target. These 

calculations often require potentially complex operations 

which can slow down the router may need to be re-

implemented whenever the interconnect architecture is 

changed, and cannot be applied to non-Manhattan 

interconnect structures. Two examples of such interconnect 

structures are shown in Figure 3(a) and Figure 3(b). The 

architecture in Figure 3(a) has a strictly hierarchical 

interconnect structure, and the architecture in Figure 3(b) 

provides different types of routing wires in the horizontal 

and vertical directions. 

 

These A* techniques are not truly adaptive since they hard-

code interconnect assumptions into the cost-to-target 

estimators.  Thus they are not suitable for our use in 

Independence. In the next section, we present architecture-

adaptive runtime enhancements to the Pathfinder algorithm. 

 

IX. ARCHITECTURE-ADAPTIVE A* TECHNIQUES 

The developers of the Pathfinder algorithm briefly 

discussed the idea of using the A* algorithm to speed up 

routing [15]. They proposed the use of a pre-computed 

lookup table that would hold the cost of a shortest path from 

every routing wire to every sink terminal in the interconnect 

structure. Specifically, there would be a separate entry for 

every routing wire in this lookup table, and each entry 

would hold cost-to-target estimates for all sink terminals in 

the interconnect structure. During routing, the cost-to-target 
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estimate at a routing wire could then be obtained using a 

simple table lookup. 

 

Pre-computing and tabulating cost-to-target estimates in 

this fashion is indeed an adaptive scheme. Shortest paths 

can be calculated using Dijkstra’s algorithm, and no 

architecture-specific information is required. The approach 

also guarantees an exact estimate of the shortest path in the 

absence of routing congestion. However, while the 

computational complexity of this approach is manageable, 

the space requirements for routing-rich structures makes it 

infeasible for large FPGAs. Assuming an island-style, 10-

track, 100x100 FPGA that has only single-length segments, 

the memory required to store the cost-to-target lookup table 

would be measured in GigaBytes. 

 

Sharing a table entry among multiple routing wires that 

have similar cost-to-target estimates can reduce the memory 

requirement of the lookup table. For example, if one 

hundred wires share each table entry, the size of the table 

may be reduced by one hundred times. The cost-to-target 

estimate for a given sink terminal is the same for all wires 

that share the table entry, and can be calculated using a 

Dijkstra search that begins at the wire closest to the target. 

Specifically, the entire set of wires that share a table entry 

constitutes a “super” source node for the Dijkstra search. In 

this manner, we ensure that the cost-to-target estimate for a 

given sink terminal is the cost of a shortest path from the 

wire that is closest to the sink terminal. From this point on, 

we will refer to this method for calculating cost-to-target 

estimates as the superDijkstra method. 

 

The important question now is how to identify wires that 

should share a table entry. Clearly, we would like to 

identify clusters of wires that have similar cost-to-target 

estimates, so that we can collect them together in a set that 

points to a single entry in the cost-to-target lookup table. 

Our first technique for clustering wires together is inspired 

by two observations: 

� The number of logic units in an FPGA is generally 

much less than the number of interconnect wires. 

� Logic units and interconnect wires are often 

interspersed in the FPGA fabric in a regular fashion. 

 

Based on these observations, our first technique uses a 

proximity metric, described in the Section X, to associate 

each wire with a logic unit. After each interconnect wire has 

been associated with a logic unit, all wires associated with 

the same logic unit are assigned to the same cluster. The 

cost-to-target estimates for each cluster are calculated using 

the superDijkstra method and stored in a lookup table. 

Since the number of table entries is equal to the number of 

logic units, the memory requirements of this technique are 

significantly less than a lookup table that has a separate 

entry for each wire in the interconnect structure. 

 

The associate-with-closest-logic-unit technique is probably 

well suited to island-style FPGAs. Since the logic and 

interconnect structures of an island-style FPGA are closely 

coupled, this approach may produce clusters of wires that 

have reasonably similar cost-to-target estimates. On 

hierarchical structures, the accuracy of an associate-with-

closest-logic-unit approach may not be quite as good. For 

example, consider the tree-like interconnect structure in 

Figure 10. The routing wire that is topmost in the 

interconnect hierarchy is equally close to all logic units, 

while the wires in the next level are equally close to half the 

logic units, and so on. Associating wires with individual 

logic units in a strictly hierarchical interconnect structure 

may result in large cost-to-target underestimates. 
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Figure 10: An example of a tree-based, hierarchical 

interconnect structure. Assume that the wires shown in black 

belong to the same cluster. 

 

In Figure 10, assume that the wires shown in black are 

associated with the black logic unit, and that the cost-to-

target estimates for the cluster have been calculated using 

the superDijkstra method. The wire that directly connects to 

the black logic unit will have a cost-to-target estimate of 

five for the logic units in the northeast, southeast and 

southwest quadrants of the architecture. Note that the actual 

cost is nine wires for the northeast quadrant, and ten for the 

southeast and southwest quadrants. Estimates that are a 

factor of two below exact might slow down the router 

considerably. However, every wire in the cluster shown in 

Figure 10 does not suffer from the same problem. The 

cluster wire that is topmost in the interconnect hierarchy 

(black vertical line down the middle of Figure 10) will have 

exact cost-to-target estimates for all logic units in the 

northeast, southeast and southwest quadrants, and 

underestimates for logic units in the northwest quadrant. 

 

To summarize, while the associate-with-closest-logic-unit 

approach works well for island-style structures, due to the 

potential limitations on hierarchical structures, a more 

sophisticated technique is necessary to provide good cost-

to-target estimates across different interconnect 

architectures. 

 

X. K-MEANS CLUSTERING 

Our second technique for solving the architecture adaptive 

clustering problem is to use the K-means algorithm. K-

means clustering is an iterative heuristic that is used to 

divide a dataset into K non-overlapping clusters based on a 

proximity metric. Pseudocode for the K-Means algorithm 

appears in Figure 11. 

 
 

 

//  D is the set of data-points in n-dimensional space that has to be divided into K clusters. 

//  The co-ordinates of a data-point di ∈ D are contained in the vector di.vec. 

//  di.vec is an n-dimensional vector. 

 
K-Means { 

for i in 1…K { 

randomly select a data-point di from the set D. 

initialize the centroid of cluster clusi to di.vec. 

} 

 

while (terminating condition not met) { 

for each di ∈ D { 
remove di’s cluster assignment. 

} 

 

for each di ∈ D { 
for j in 1…K { 

diffij = vectorDifference (di.vec,clusj.centroid) 

} 

assign di to the cluster clusy such that diffiy is 

minimum. 

} 

 

for j in 1…K { 

recalculate clusj.centroid using the data-points 

currently assigned to clusj. 

} 

} 

 

} 

 

  

Figure 11: Pseudocode for the K-Means clustering algorithm. 

 

We use the following parameters to characterize the K-

Means algorithm. 

Dataset (D): The dataset D simply consists of all 

the routing wires in the interconnect structure of the target 

device. 

Number of Clusters (K): We experimentally 

determined that a value of K greater than or equal to the 

number of logic units in the target device is a reasonable 

choice. Section X.B describes the effect of K on the quality 

of clustering solutions. 
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Initial Seed Selection: The initial seeds consist of 

K/2 randomly selected logic-block output wires and K/2 

randomly selected routing wires. 

Terminating Condition: The K-Means algorithm is 

terminated when less than 1% of the dataset changed 

clusters during the previous clustering iteration. 

Calculating Cost-to-Target Estimates: On 

completion of the clustering algorithm, the actual A* 

estimates for a cluster are calculated using the 

superDijkstra method. 

Co-ordinate Space and Proximity Metric: The 

most important consideration in applying the K-Means 

algorithm to solve the interconnect clustering problem is the 

proximity metric. Specifically, we need to determine a co-

ordinate space that is representative of the A* cost-to-target 

estimate at each wire in the dataset. In our implementation, 

the co-ordinates of a routing wire represent the cost of the 

shortest path to a randomly chosen subset S of the sink 

terminals in the interconnect structure. The co-ordinates of 

each routing wire are pre-calculated using Dijkstra’s 

algorithm and stored in a table. 

 

If the number of sink terminals in S is n, then the co-

ordinates of a routing wire di ∈ D are represented by an n-

dimensional vector di.vec. Each entry cij (j ∈ 1…n) in the 

vector di.vec is the cost of a shortest path from the routing 

wire di to the sink terminal j. The co-ordinates for all di ∈ D 

are calculated by launching individual Dijkstra searches 

from each sink terminal in the set S. Note that the edges in 

the underlying routing graph are reversed to enable Dijkstra 

searches that originate at sink terminals. At the end of a 

Dijkstra search that is launched at sink terminal j, the cost 

of a shortest path from every di to the terminal j is written 

into the corresponding cij entry of di.vec. The vector di.vec 

is used by the K-Means algorithm to calculate the 

“distance” between the wire di and the centroid of each 

cluster. The distance between di and a cluster centroid is 

defined as the magnitude of the vector difference between 

di.vec and the cluster centroid. 

 

Note that the size of S directly influences the memory 

requirements of our clustering implementation. In the 

extreme case where S contains every sink terminal in the 

target device, the memory requirements would match the 

prohibitively large requirements of the full table that stores 

the cost of a shortest path from each routing wire to every 

sink terminal. This would undermine the purpose of using a 

clustering algorithm to reduce the memory requirements of 

an A* estimate table. It is thus useful to sub-sample the 

number of sinks in the target device when setting up S. 

 

Table 5: Comparison of memory requirements. Table sizes are 

in GB. 
Pathfinder

Size ChanWidth |S| = NT |S| = 0.06*NT Estimates

10x10 10 0.0012 0.0001 0.0001

20x20 10 0.0151 0.0009 0.0007

30x30 10 0.0707 0.0043 0.0035

40x40 10 0.2152 0.0130 0.0106

50x50 10 0.5132 0.0310 0.0253

60x60 10 1.0474 0.0631 0.0518

70x70 10 1.9185 0.1155 0.0949

80x80 10 3.2449 0.1951 0.1607

90x90 10 5.1629 0.3103 0.2559

100x100 10 7.8268 0.4703 0.3882

110x110 10 11.4087 0.6854 0.5662

120x120 10 16.0986 0.9669 0.7994

130x130 10 22.1044 1.3275 1.0980

140x140 10 29.6517 1.7805 1.4735

150x150 10 38.9842 2.3406 1.9380

160x160 10 50.3636 3.0236 2.5045

170x170 10 64.0690 3.8462 3.1869

180x180 10 80.3979 4.8262 4.0001

190x190 10 99.6654 5.9825 4.9599

200x200 10 122.2044 7.3351 6.0828

Clustering

 

 

Table 5 compares the memory requirements of a clustering-

based implementation that sub-samples the sink terminals 

with a table that stores the cost of a shortest path from each 

routing wire to every sink terminal in the target device. The 

target architecture is assumed to be a square island-style 

array that has only single-length wire segments. In our 
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calculations, we assume that the sizes of a floating-point 

number, integer number, and a pointer are all four bytes. 

Column 1 lists the size of the target array, and column 2 

lists the channel width of the target array. Let the total 

number of sink terminals in the target array be NT. Column 

3 lists the memory requirements of a table that stores the 

cost of a shortest path from each wire to every sink terminal 

in the target device (i.e. |S| = NT). This corresponds to the 

exhaustive lookup table approach described by the authors 

of the Pathfinder algorithm in [15]. Column 4 lists the size 

of a table that stores costs to only 6% of the sink terminals 

(|S| = 0.06*NT), and column 5 lists the size of a table that 

holds cost-to-target estimates for the clusters produced by a 

K-Means implementation where K = number of logic units 

in the target device. All memory requirements are reported 

in Gigabytes. It is clear from Table 5 that our K-Means 

clustering approach greatly reduces the memory 

requirements for storing pre-calculated distance estimates. 

 

Finally, note that the clustering process is a one-time 

preprocessing step that needs to be performed only on a 

per-architecture basis. The table of cost-to-target estimates 

produced by the clustering algorithm can be reused every 

time a new netlist is routed, and there is no additional 

runtime or memory cost incurred by our techniques on a 

per-netlist basis. 

 

X. RESULTS 

We conduct three experiments to test the validity of using 

the K-Means algorithm to cluster the interconnect structure 

of an FPGA. The first experiment studies the effect of sub-

sampling the sink terminals in the target device on the 

quality of clustering solutions. The second experiment 

studies the effect of the number of clusters (K) on quality, 

and the third experiment compares the quality of clustering-

based A* estimates with heuristically calculated estimates. 

To evaluate the adaptability of our techniques, we conduct 

the experiments on an island-style interconnect architecture 

and HSRA [10]. Details of the architectural parameters used 

in our experiments can be found in Sections VI.A and VI.B. 

 

Since the truest measure of the quality of an A* estimate is 

routing runtime, our quality metric is defined to be the CPU 

runtime per routing iteration when routing a placement on 

the target device. The placements for our experiments on 

island-style structures are obtained using VPR [3], and the 

placements for our experiments on HSRA are produced 

using Independence. Finally, note that our clustering 

techniques are guaranteed to produce conservative cost-to-

target estimates, and hence these techniques have no effect 

on the quality of routes produced by these techniques. 

 

A. Experiment 5 – Sub-sampling sink terminals 

Experiment 5 studies the effect of sub-sampling the number 

of sink terminals in the target device. The set of benchmark 

netlists used in this experiment is a subset of the netlists 

shown in Table 6 (island-style) and Table 7 (HSRA). 

 

Figure 12 shows the variation in quality of clustering 

solutions. The x-axis represents the fraction of sink 

terminals that are used to represent the co-ordinates of each 

wire during clustering. The subset of sink terminals used in 

the experiment is randomly generated. The y-axis 

represents routing runtime measured in seconds per routing 

iteration. The curves show the variation in routing runtimes 

when using A* estimates produced by the K-Means 

clustering technique. The flat line shows the routing 

runtime when using architecture-specific heuristic A* 

estimates. The value of K in this experiment is equal to the 

number of logic units in the target device. 
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Figure 12: The effect of sub-sampling the number of sink 

terminals on routing runtime. 

 

Figure 12 shows that using as little as 5% of the sink 

terminals during clustering may be sufficient to produce 

estimates that are comparable to heuristic estimates. This is 

not a surprising result. Due to the regularity of an FPGA’s 

interconnect structure, a small subset of sink terminals may 

be sufficient in resolving the interconnect wires into 

reasonably formed clusters. Note that 5% of the sink 

terminals represents a variable number of sink terminals 

across the set of benchmark netlists. Depending on the size 

of the netlist, 5% of the sink terminals could be anywhere 

between two and fifty sink terminals. 

 

In Figure 13, we present the results of a second study that 

evaluates the quality of clustering solutions when using a 

small, fixed number of sink terminals. Figure 13 shows that 

using a small number (say 16) of randomly selected sink 

nodes may be enough to produce clustering solutions that 

are within approximately 15% of heuristic estimates. 
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Figure 13: Using a small number of sink nodes may produce 

clustering solutions of acceptable quality. 

 

B. Experiment 6 – Number of clusters (K) 

Experiment 6 studies the effect of the number of clusters 

(K) on the quality of clustering solutions. The set of 

benchmark netlists used in this experiment is identical to 

the set used in Experiment 5. We use a sub-sample of 6% 

for island-style architectures, and 14% for HSRA. 

 

Figure 14 shows the effect of K on routing runtime. The x-

axis shows the value of K as a fraction of the number of 

logic units in the target device, and the y-axis shows routing 

runtime in seconds per routing iteration. The charts in 

Figure 14 show that a value of K equal to or greater than the 

number of logic units in the target device produces 
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clustering solutions of qualities similar (within 10%) to 

heuristic estimates. 
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Figure 14: The effect of K on routing runtime. 

 

C. Quantitative comparison 

Experiment 7 is a quantitative comparison of the quality of 

the A* estimates produced by our clustering techniques vs. 

heuristically calculated estimates. We use the following 

settings in this experiment: 

� Associate-with-closest-logic-unit technique. This 

technique is implemented by running only the first 

iteration of K-Means clustering. K is chosen to be 

equal to the number of logic units in the target device 

(K = NL), and initial seeds chosen to be logic unit 

outputs. The value of sink sub-sample is 6% (|S| = 

0.06*NT). These settings represent a relatively low-

effort clustering step. This step might be undertaken 

when clustering runtime and memory requirements 

need to be very low. 

� K-Means clustering, with a sink sub-sample value of 

6% (|S| = 0.06*NT) and K equal to the number of 

logic units in the target device (K = NL). NT is the 

total number of sink terminals in the target device, 

and NL is the total number of logic units in the target 

device. These settings represent an empirically 

determined sweet-spot for our K-Means clustering 

technique. 

� K-Means clustering, with a sink sub-sample value of 

20% (|S| = 0.2*NT) and K equal to twice the number 

of logic units in the target device (K = 2*NL). These 

are aggressive settings that represent potentially high 

quality clustering solutions. Such settings may be 

used when absolutely the best quality clustering 

solutions are required, and clustering runtime and 

memory are of less concern. 

 

Table 6 shows the results we obtained on the island-style 

architecture. Column 1 lists the netlist, column 2 lists the 

size of the smallest square array needed to just fit the 

netlist, and column 3 lists routing runtimes obtained when 

using heuristic estimates. Columns 4, 5, and 6 list routing 

runtimes and compression ratios (shown in brackets) 

produced by the low-effort associate-with-logic-unit 

technique, K-Means clustering at empirically determined 

settings (|S| = 0.06*NT, K = NL), and K-Means clustering at 

high-quality settings (|S| = 0.20*NT, K = 2*NL) 

respectively. Routing runtimes are normalized to runtimes 

produced by heuristic geometrically-based estimates. The 

compression ratio is defined as the ratio between the size of 

an exhaustive lookup table and a lookup table that holds 

cost-to-target estimates for the clusters produced by each of 

the three techniques. The compression ratio is a measure of 

the memory gap between a version of Pathfinder that uses 

an exhaustive lookup table and a version that uses cost-to-
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target estimates produced by our clustering techniques. 

Column 7 shows routing runtimes produced by an 

undirected (no A*) search technique. 

 

Table 6: A comparison of routing runtimes on an island-style 

architecture. 

 
|S| = 0.06*NT |S| = 0.20*NT 

  

Netlist Size Heur Associate 
K-Means 
(K = NL) 

K-Means 
(K = 2*NL) no A* 

term1 6x6 1.00 0.89 (17:1) 1.44 (17:1) 1.22 (10:1) 4.22 

s1423 6x6 1.00 1.57 (20:1) 1.57 (18:1) 1.14 (10:1) 3.86 

i9 7x7 1.00 1.30 (17:1) 1.30 (17:1) 1.10 (10:1) 3.40 

dalu 8x8 1.00 0.93 (24:1) 0.93 (22:1) 1.15 (13:1) 4.04 

vda 9x9 1.00 1.20 (29:1) 1.08 (32:1) 1.08 (16:1) 4.78 

x1 10x10 1.00 1.13 (20:1) 0.94 (19:1) 1.17 (11:1) 4.66 

rot 8x8 1.00 0.95 (26:1) 1.11 (25:1) 0.89 (14:1) 3.32 

pair 9x9 1.00 0.89 (30:1) 0.94 (36:1) 0.94 (18:1) 4.83 

apex1 11x11 1.00 0.97 (40:1) 0.96 (37:1) 1.00 (23:1) 6.03 

dsip 14x14 1.00 1.13 (22:1) 1.06 (23:1) 1.07 (13:1) 8.21 

ex5p 12x12 1.00 1.03 (48:1) 1.12 (48:1) 1.05 (29:1) 7.30 

s298 16x16 1.00 1.58 (25:1) 1.37 (23:1) 1.36 (14:1) 10.38 

tseng 12x12 1.00 1.05 (27:1) 1.07 (29:1) 1.04 (17:1) 6.30 

alu4 14x14 1.00 1.09 (30:1) 1.14 (30:1) 1.14 (19:1) 7.48 

misex3 14x14 1.00 1.16 (40:1) 1.08 (41:1) 1.05 (23:1) 9.80 

apex4 13x13 1.00 1.10 (46:1) 1.02 (45:1) 1.07 (27:1) 5.04 

diffeq 14x14 1.00 1.19 (26:1) 1.13 (26:1) 1.08 (15:1) 5.29 

bigkey 15x15 1.00 1.38 (26:1) 1.18 (26:1) 1.08 (16:1) 8.95 

seq 15x15 1.00 1.19 (37:1) 1.10 (39:1) 1.05 (23:1) 7.22 

des 15x15 1.00 1.20 (29:1) 1.17 (29:1) 1.05 (18:1) 4.35 

apex2 16x16 1.00 1.08 (43:1) 1.09 (42:1) 1.04 (26:1) 8.19 

frisc 22x22 1.00 1.08 (41:1) 1.02 (41:1) 1.06 (25:1) 8.56 

elliptic 22x22 1.00 1.23 (41:1) 1.00 (40:1) 1.05 (24:1) 10.73 

ex1010 25x25 1.00 0.92 (48:1) 1.15 (47:1) 1.07 (29:1) 9.66 

s38584.1 29x29 1.00 1.07 (31:1) 1.20 (31:1) 1.07 (18:1) 17.07 

clma 33x33 1.00 1.03 (48:1) 1.02 (48:1) 1.00 (29:1) 15.25 

GEOMEAN  1.00 1.12 (30:1) 1.11 (30:1) 1.07 (18:1) 6.59 
  

 

Across the set of benchmarks, the runtimes produced by our 

K-Means clustering techniques are approximately 7% 

(high-quality settings) and 11% (empirical settings) slower 

than the runtimes achieved by geometrically estimating A* 

costs. Both heuristic and clustering-based estimates are 

approximately 6X faster than an undirected search-based 

router. Finally, the routing runtimes produced by the 

associate-with-closest-logic-unit technique is within 5% of 

the runtimes produced by either of the K-Means clustering 

techniques. The near identical runtimes show that the 

associate-with-closest-logic-unit approach presented in 

Section IX works as well as a more sophisticated clustering 

approach on an island-style architecture. The geometric 

mean of the compression ratios is 30:1 for the associate-

with-closest-logic-unit approach and K-Means clustering at 

empirical settings. The ratio goes down to 18:1 for the 

higher-quality settings. This is to be expected, since we use 

double the number of starting clusters (K = 2*NL) at the 

higher-quality settings. 

 

Table 7: A comparison of routing runtimes on HSRA. 

 |S| = 0.06*NT |S| = 0.20*NT 
 

Netlist Size Heur Associate 
K-Means 
(K = NL) 

K-Means 
(K = 2*NL) no A* 

mm9b 256 1.00 1.48 (149:1) 1.16 (85:1) 1.29 (35:1) 3.87 

Cse 256 1.00 1.22 (149:1) 1.03 (85:1) 1.06 (35:1) 4.39 
s1423 256 1.00 1.00 (149:1) 0.92 (85:1) 0.85 (35:1) 5.23 

9sym 512 1.00 1.20 (135:1) 0.81 (83:1) 0.69 (36:1) 15.42 

ttt2 256 1.00 1.25 (149:1) 1.06 (85:1) 1.14 (35:1) 13.58 

keyb 256 1.00 1.16 (149:1) 1.16 (85:1) 1.01 (35:1) 4.25 
clip 512 1.00 1.14 (135:1) 1.02 (83:1) 1.01 (36:1) 21.38 

term1 512 1.00 1.11 (150:1) 0.83 (95:1) 0.74 (39:1) 19.56 

apex6 1024 1.00 1.26 (128:1) 1.24 (80:1) 1.34 (35:1) 6.53 
vg2 512 1.00 1.16 (135:1) 0.96 (83:1) 0.95 (36:1) 16.81 

frg1 1024 1.00 0.85 (142:1) 0.81 (88:1) 0.63 (39:1) 26.73 
sbc 1024 1.00 1.13 (142:1) 0.87 (88:1) 0.87 (39:1) 12.41 

styr 1024 1.00 1.06 (128:1) 0.83 (80:1) 0.74 (35:1) 13.60 

i9 512 1.00 1.32 (150:1) 1.01 (95:1) 0.96 (39:1) 12.12 
C3540 1024 1.00 0.79 (128:1) 0.79 (80:1) 0.72 (35:1) 5.89 

sand 1024 1.00 0.88 (142:1) 0.80 (88:1) 0.81 (39:1) 10.67 

x3 1024 1.00 0.88 (142:1) 0.80 (88:1) 0.85 (39:1) 3.60 

planet 2048 1.00 1.14 (135:1) 0.81 (81:1) 0.89 (39:1) 13.67 
rd84 2048 1.00 1.08 (135:1) 1.09 (81:1) 1.13 (39:1) 21.04 

dalu 2048 1.00 0.84 (135:1) 0.82 (81:1) 0.89 (39:1) 16.62 

GEOMEAN  1.00 1.08 (140:1) 0.93 (85:1) 0.91 (37:1) 10.39 
  

 

Table 7 shows the results that we obtained on HSRA. With 

the exception of column 2, the settings and columns are 

identical to Table 6. In this case, column 2 lists the number 

of logic units in the target device. Across the set of 

benchmarks, the runtimes produced by our clustering-based 

techniques are approximately 9% (higher-quality) and 7% 

(empirical settings) faster than the runtimes achieved by 

heuristically estimating A* costs. Both heuristic and 

clustering-based techniques are approximately ten times 

faster than an undirected search-based router. The runtimes 

produced by the associate-with-closest-logic-unit technique 

are approximately 16% slower than K-Means clustering at 

empirical settings, and 20% slower than higher-quality K-

Means clustering. This is consistent with our intuition that 

associating interconnect wires with logic units in a 

hierarchical structure (Figure 10) will probably produce 

cost-to-target underestimates. 
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D. Summary of results 

The results of our experiments show that K-Means 

clustering produces A* estimates that are comparable to 

architecture-specific heuristic estimates. A sink sub-sample 

value of 6%, coupled with a value of K that is equal to the 

number of logic units in the target device, produces 

estimates that are up to 9% better than heuristically 

calculated estimates for HSRA, and within 7% of heuristic 

estimates for island-style interconnect structures. 

Experiment 5 also shows that a small number of sink 

terminals might be sufficient to produce estimates that are 

comparable to heuristic estimates. Finally, the quality of the 

clustering solutions produced by a low-effort clustering step 

is surprisingly good when compared to a more sophisticated 

K-Means clustering approach. 

 

XI. CONCLUSIONS 

The primary motivation for Independence was the lack of 

an FPGA placement algorithm that truly adapts to the target 

FPGA’s interconnect structure. We thought that FPGA 

architecture development efforts would benefit from an 

adaptive placement algorithm that could be used both as an 

early evaluation mechanism, as well as a quality goal 

during CAD tool development. Since the primary goal of an 

FPGA placement algorithm is to produce a routable 

placement, our solution to architecture adaptive FPGA 

placement was centered on using an architecture-adaptive 

router (Pathfinder) to guide a conventional simulated 

annealing placement algorithm. Specifically, we used 

Pathfinder in the simulated annealing inner loop to maintain 

a fully routed solution at all times. As a result, our cost 

calculations were based on actual routing information 

instead of architecture-specific heuristic estimates of 

routability. 

The results presented in Section VI clearly demonstrated 

Independence’s adaptability to island-style FPGAs, a 

hierarchical FPGA architecture (HSRA), and a domain-

specific reconfigurable architecture (RaPiD). The quality of 

the placements produced by Independence was within 2.5% 

of the quality of VPR’s placements, 21% better than the 

placements produced by HSRA’s place-and-route tool, and 

within 1% of RaPiD's placement tool. Further, our results 

also showed that Independence successfully adapts to 

routing-poor island-style FPGA architectures. When 

considered together, these results were a convincing 

validation of using an architecture adaptive router to guide 

FPGA placement. 

 

In our opinion, Independence’s main weakness is its 

runtime. The algorithm pays a stiff runtime penalty for 

using a graph-based router in the simulated annealing inner 

loop. In Sections IX and X, we presented ideas on speeding 

up Independence (and FPGA routing in general) using the 

A* algorithm. Again, to preserve adaptability, we 

concentrated on developing an approach that would work 

across different FPGA architectures. Memory 

considerations quickly eliminated a straightforward 

approach that would pre-compute and store A* estimates 

for every sink terminal at each interconnect wire. The 

central idea behind our approach was to cluster interconnect 

wires that have similar A* estimates, so that all wires that 

belong to the same cluster could share an entry in the A* 

estimate table. Thus, the memory requirements of the A* 

estimate table produced by our clustering technique were 

comfortably manageable when compared to the 

straightforward approach. 

 

We evaluated the efficacy of our clustering-based technique 

on an island–style architecture and a hierarchical 

architecture (HSRA). The quality of the A* estimates 

produced by our technique was within 7% of heuristic 

estimates on the island-style architecture, and up to 9% 

better than heuristically calculated estimates for HSRA. The 

overall speedups produced by our techniques when 
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compared to a non-A* approach were approximately 6X for 

island-style devices and 10X for HSRA. Lastly, we also 

observed that a low-effort clustering technique might 

produce estimates that are comparable in quality to both 

heuristic and clustering-based estimates. 

 

In Table 8, we present runtime comparisons between VPR 

and Independence. The version of Independence used to 

obtain the numbers in Table 8 includes runtime 

enhancements based on the A* algorithm. Column 1 lists 

benchmark netlists, column 2 lists the number of logic plus 

IO blocks in the netlist, column 3 lists the number of nets, 

column 4 lists the size of the target array, column 5 lists 

VPR’s runtime, column 6 lists Independence’s runtime, and 

column 7 lists the ratio between Independence’s and VPR’s 

runtime. All runtimes are in seconds. Across the benchmark 

set, Independence requires between approximately three 

minutes (s1423) and seven hours (dsip). Based on these 

runtimes, there is a compelling need to explore techniques 

that might reduce Independence’s runtime even further. 

 

Table 8: A comparison of placement runtimes on an island-

style interconnect architecture. 
 Netlist Nblocks Nets Size VPR Ind Norm

s1423 51 165 6x6 0.3 192 640

term1 77 144 6x6 0.34 193 568

i9 195 214 7x7 0.71 555 782

dalu 154 312 8x8 0.95 1124 1183

vda 122 337 9x9 1 1187 1187

x3 290 334 8x8 1.25 1354 1083

rot 299 407 8x8 1.39 1925 1385

x1 181 352 10x10 1.29 2257 1750

pair 380 512 9x9 1.85 3365 1819

ex5p 210 767 12x12 2.6 5924 2278

apex4 193 869 13x13 2.82 7670 2720

tseng 307 780 12x12 2.75 8725 3173

misex3 207 834 14x14 3.08 10054 3264

alu4 215 792 14x14 3.1 10913 3520

dsip 598 762 14x14 4.95 24719 4994
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