
 1

Architecture-Adaptive Routability-Driven

Placement for FPGAs

Akshay Sharma, Carl Ebeling, Member, IEEE and Scott Hauck, Senior Member, IEEE

Abstract – Current FPGA placement algorithms

estimate the routability of a placement using

architecture-specific metrics, which limit their

adaptability. A placement algorithm that is targeted to

a class of architecturally similar FPGAs may not be

easily adapted to other architectures. The subject of

this paper is the development of routability-driven

architecture-adaptive heuristics for FPGA placement.

The first heuristic (called Independence) is a

simultaneous place-and-route approach that tightly

couples a simulated annealing placement algorithm

with an architecture adaptive FPGA router. The

results of our experiments on three different FPGA

architectures show that Independence produces

placements that are within -2.5% to as much as 21%

better than targeted placement tools. We also present

a heuristic speed-up strategy for Independence that is

based on the A* algorithm. The heuristic requires

significantly less memory than previously published

work, and is able to produce runtimes that are within -

7% to as much as 9% better than targeted speed-up

techniques. Memory improvements range between

30X and 140X.

I. INTRODUCTION

The most important architectural feature of a Field

Programmable Gate Array (FPGA) is its interconnect

structure. Since any FPGA has a finite number of discrete

routing resources, a large share of architectural research

effort is devoted to determining the composition of an

FPGA’s interconnect structure. During architecture

development, the effectiveness of an FPGA’s interconnect

structure is evaluated using placement and routing tools

(collectively termed place-and-route tool). The place-and-

route tool is responsible for producing a physical

implementation of an application netlist on the FPGA’s

prefabricated hardware. Specifically, the placer

determines the actual physical location of each netlist

logic block in the FPGA layout, and the router assigns the

signals that connect the placed logic blocks to routing

resources in the FPGA’s interconnect structure. Due to

the finite nature of an FPGA’s interconnect structure, the

success of the router is heavily reliant on the quality of

the solutions produced by the placer. Not surprisingly, the

primary objective of the placer is to produce a placement

that can indeed be routed by the router.

The effectiveness of a placement tool as means to

evaluate an FPGA architecture relies on the ability of the

placement algorithm to capture the FPGA’s interconnect

structure. Currently, the modus operandi used in the

development of placement algorithms is to use

architecture-specific metrics to heuristically estimate the

routability of a placement. For example, the routability of

a placement on island-style FPGAs is estimated using the

ever-popular Manhattan Distance wirelength metric,

while the routability of a placement on tree-based

architectures is estimated using cutsize metrics.

Architecture-specific routability estimates limit the

adaptability of a placement algorithm. To the best of our

knowledge, there is currently no single approach to

routing estimation that can adapt effectively to the

interconnect structure of every FPGA in the architecture

spectrum. This often proves to be an impediment in the

early stages of FPGA architecture development, when the

targeted placement algorithm is not well defined due to a

lack of architectural information. We feel that research in

FPGA architectures would stand to benefit from a

universal placement algorithm that can quickly be

retargeted to relatively diverse FPGA architectures.

 2

The subject of this paper is the development of

Independence, an architecture adaptive FPGA placement

algorithm. Since the object of an FPGA placement

algorithm is to produce a routable placement, we tightly

couple the placement algorithm with an FPGA router.

Specifically, we use an architecture adaptive router in the

inner loop of a simulated annealing placement algorithm

to actually route signals. Thus, instead of using

architecture-specific routability estimates, we use the

routing produced by an architecture adaptive router to

guide the placement algorithm to a high-quality solution.

II. FPGA PLACEMENT AND ROUTING

In this section, we discuss the FPGA placement and

routing problems. Further, we also describe the most

popular algorithm that is used to solve each problem. The

algorithms described in this section form the basis of our

work on architecture adaptive FPGA placement.

A. FPGA Routing

The FPGA routing problem is to assign nets to routing

resources such that no routing resource is used by more

than one net. Pathfinder [15] is the current, state-of-the-art

FPGA routing algorithm. Pathfinder operates on a

directed graph abstraction (G(V,E)) of the routing

resources in an FPGA. The set of vertices V in the graph

represents the IO terminals of logic units and the routing

wires in the interconnect structure. An edge between two

vertices represents a potential connection (called a routing

switch) between the two vertices. The collection of wires

and switches in an FPGA are collectively termed the

routing resources in an FPGA. Given this graph

abstraction, the routing problem for a given net is to find a

directed tree embedded in G that connects the source

terminal of the net to each of its sink terminals. Since the

number of routing resources in an FPGA is limited, the

goal of finding unique, non-intersecting trees (hereafter

called “routes”) for all the nets in a netlist is a difficult

problem.

Pathfinder uses an iterative, negotiation-based approach

to successfully route all the nets in a netlist. During the

first routing iteration, nets are freely routed without

regard to wire sharing. Individual nets are routed using

Dijkstra’s shortest path algorithm [8]. At the end of the

first iteration, many routing wires are used by multiple

nets, which is the result of congestion. During subsequent

iterations, the cost of using a wire is increased based on

the number of nets that share the wire, and the history of

congestion on that wire. Thus, nets are made to negotiate

for routing wires. If a wire is highly congested, nets will

use less congested alternatives if possible. On the other

hand, if the alternatives are more congested than the wire,

then a net may still use that wire. The cost of using a

routing wire ‘n’ during a routing iteration is given by

Equation 1.

Equation 1

nnnn phbc *)(+=

bn is the base cost of using the wire n, hn represents the

congestion history during previous iterations, and pn is

proportional to the number of nets sharing the wire in the

current iteration. The hn term is based on the intuition that

a historically congested wire should appear expensive,

even if it is currently lightly shared.

An important measure of the quality of the routing

produced by an FPGA routing algorithm is critical path

delay. The critical path delay of a routed netlist is the

maximum delay of any combinational path in the netlist.

The maximum frequency at which a netlist can be clocked

is inversely proportional to the critical path delay. Thus,

larger critical path delays slow down the operation of

 3

netlist. Delay information is incorporated into Pathfinder

by redefining the cost of using a wire n (Equation 2).

Equation 2

nijnij cAdACn *)1(* −+=

The cn term is from Equation 1, dn is the delay incurred in

using the wire, and Aij is the criticality given by Equation

3.

Equation 3

maxijij DDA /=

Dij is the maximum delay of any combinational path that

goes through the source and sink terminals of the net

being routed, and Dmax is the critical path delay of the

netlist. Equation 2 is formulated as a sum of two cost

terms. The first term captures the delay cost of using wire

n, while the second term captures the congestion cost.

When a net is routed, the value of Aij determines whether

the delay or the congestion cost of a wire dominates. If a

net is near critical (i.e. its Aij is close to 1), then

congestion is largely ignored and the cost of using a wire

is primarily determined by the delay term. If the criticality

of a net is low, the congestion term in Equation 2

dominates, and the route found for the net avoids

congestion while potentially incurring delay.

Pathfinder has proved to be one of the most powerful

FPGA routing algorithms to date. Pathfinder’s

negotiation-based framework that trades off delay for

congestion is an extremely effective technique for routing

signals on FPGAs. More importantly, Pathfinder is a truly

architecture-adaptive routing algorithm. The algorithm

operates on a directed graph abstraction of an FPGA’s

routing structure, and can thus be used to route netlists on

any FPGA that can be represented as a directed routing

graph.

B. FPGA Placement

The FPGA placement problem is to determine the

physical assignment of the logic blocks in a netlist to

locations in the FPGA layout. The primary goal of any

FPGA placement approach is to produce a placement that

can be successfully routed using the limited routing

resources provided by the FPGA. Versatile Place and

Route [3,4] (VPR) is the current, public-domain state-of-

the-art FPGA placement tool. VPR consistently produces

high-quality placements, and at the time of this writing,

the best reported placements for the Toronto20 [5]

benchmark netlists are those produced by VPR.

VPR uses a simulated annealing algorithm [12,18] that

attempts to minimize an objective cost function. The

algorithm operates by taking a random initial placement

of the logic blocks in a netlist, and repeatedly moving the

location of a randomly selected logic block. The move is

accepted if it improves the overall cost of the placement.

In order to avoid getting trapped in local minima, non-

improving moves are also sometimes accepted. The

temperature of the annealing algorithm governs the

probability of accepting a “bad” move at that point. The

temperature is initially high, causing a large number of

bad moves to be accepted, and is gradually decreased

until no bad moves are accepted. A large number of

moves are attempted at each temperature. VPR provides a

cooling schedule that is used to determine the number of

moves attempted at each temperature, the maximum

separation between logic blocks that can be moved at a

given temperature, and the rate of temperature decay.

VPR’s objective cost function is a function of the total

wirelength of the current placement. The wirelength is an

estimate of the routing resources needed to completely

route all nets in the netlist. Reductions in wirelength mean

 4

fewer routing wires and switches are required to route

nets. This is an important consideration because the

number of routing resources in an FPGA is limited. Fewer

routing wires and switches typically also translate to

reductions in the delay incurred in routing nets between

logic blocks. The total wirelength of a placement is

estimated using a semi-perimeter metric, given by

Equation 4. N is the total number of nets in the netlist,

bbx(i) is the horizontal span of net i, bby(i) is its vertical

span, and q(i) is a correction factor. Figure 1 illustrates

the calculation of the horizontal and vertical spans of a

hypothetical net that has ten terminals.

Equation 4

∑
=

+=
N

i

yx ibbibbiqWireCost
1

))()((*)(

bb x

bb y

Figure 1: The horizontal and vertical spans of a hypothetical

10-terminal net [4]. The semi-perimeter of the net is bbx +

bby.

The cost function in Equation 4 does not explicitly

consider timing information. Wirelength is a weak

estimate of the delay of a net, especially when the net is

routed on FPGAs that have a mix of segmented routing

wires. In [13], VPR’s placement algorithm is enhanced to

include both wirelength and timing information. The

enhanced algorithm (called TVPlace) starts out with a

preprocessing step that creates a delay lookup table for

the FPGA. This lookup table holds the delay of a

minimum-delay route for every source-sink terminal pair

in the FPGA’s interconnect structure. During the

placement process, the lookup table is used to quickly

estimate the delay of a net given a placement of its

terminals. The timing cost of a placement is calculated

using the cost functions in Equation 5 and Equation 6.

Equation 5
yExponentCriticalitj)y(i,Criticalit*j)Delay(i,j),mingCost(iTi =

Equation 6

∑
⊂∀

=
circuitji,

j)(i,TimingCostingCostTim

In Equation 5, TimingCost(i,j) represents the timing cost

of a net that connects a source-sink pair (i,j), Delay(i,j) is

the delay of the net, and Criticality(i,j) is the criticality of

the net. During the placement process, the delay of a net

is obtained from the lookup table, while the criticality of a

net is calculated using a static timing analysis. The

CriticalityExponent is a parameter that can be tuned to

control the relative importance of the criticality of a net.

The formulation of the timing cost in Equation 5

encourages the placement algorithm to seek solutions that

reduce Delay(i,j) for critical nets.

TVPlace’s cost function is determined by both wirelength

and timing cost, and is given by Equation 7.

Equation 7

ΔC = λ* (ΔTimingCost / prevTimingCost) +

 (1 –λ) * (ΔWireCost / prevWireCost)

Equation 7 calculates the change in cost of a placement

using an auto-normalizing cost function that depends on

changes in WireCost and TimingCost. The parameter λ is

used to vary the relative importance of changes in

 5

TimingCost and WireCost during the placement process.

The two normalization variables prevWireCost and

prevTimingCost are updated at the beginning of a

temperature iteration as per Equation 4 and Equation 6.

The main benefit of using normalization variables is to

make changes in the cost of the placement independent of

the actual magnitude of TimingCost and WireCost. This

makes the cost function adaptive, since the size of a

netlist or the target architecture does not skew cost

calculations. Further, since prevTimingCost and

prevWireCost are recalculated every temperature

iteration, inaccuracies due to mismatched rates of change

of the two cost components are minimized.

III. MOTIVATION

Due to a strong prevalence of routing rich island-style

FPGA architectures, VPR’s placement algorithm is

primarily targeted to island-style FPGAs (Figure 2). The

semi-perimeter based cost function relies on certain

defining features of island-style FPGAs:

Two-dimensional Geometric Layout – An island-

style FPGA is laid out as a regular two-dimensional grid

of logic units surrounded by a sea of routing wires and

switches. As a result, VPR’s cost function is based on the

assumption that the routability of a net is proportional to

the Manhattan distance (measured by semi-perimeter)

between its terminals. A net with terminals that are far

apart needs more routing resources than a net with

terminals close to each other.

Uniform Connectivity – Island-style architectures

provide uniform connectivity. The number and type of

routing resources available for a net with a given semi-

perimeter are independent of the actual placement of the

terminals of the net. Thus, VPR determines the cost of a

net based purely on its semi-perimeter, and not the actual

location of the terminals of the net.

Figure 2: An illustration of an island-style FPGA. The white

boxes represent logic blocks. The horizontal and vertical

intersecting lines represent routing wires. The logic blocks

connect to surrounding wires using programmable

connection-points (shown as crosses), and individual wires

connect to each other by means of programmable routing

switches (shown as gray lines).

VPR’s dependence on island style FPGA architectures

limits its adaptability to architectures that do not provide

features of island-style FPGAs. For instance, the

interconnect structure of an FPGA architecture may not

conform to the Manhattan distance estimate of routability.

One example is the hierarchical interconnect structure

found in tree-based FPGA architectures (Figure 3 (a)). In

tree-based FPGAs, there is no way of estimating the

number of routing resources between two logic units

based on layout positions. In fact, for an architecture like

HSRA [10], the number of routing resources required to

 6

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Manhattan Distance

source sink

actual shortest path

(a)

(b)

(c)

(d)

Figure 3: Non island-style FPGA architectures. (a) HSRA [10], (b) Triptych [6], (c) directional architecture from [11], and (d) a U-

shaped FPGA core [26].

connect a logic unit in one half of the interconnect tree to

a logic unit in the other half does not depend on the actual

locations of the logic units. A strictly semi-perimeter

based cost function does not accurately capture the

routability characteristics of tree-based FPGAs.

Another class of non-island style FPGA architectures

provide heterogeneous interconnect structures. Triptych

[6] (Figure 3 (b)) is an example of an FPGA architecture

that provides only segmented vertical tracks. There are no

segmented horizontal tracks; horizontal routes are built

using directional, nearest-neighbor connections. A second

example of an FPGA architecture that has non-uniform

routing resources can be found in [11] (Figure 3 (c)). The

horizontal channels in this architecture gradually increase

in width from left to right. For a given semi-perimeter, the

amount of routing available to a net at the far right edge

of this architecture exceeds the amount available at the far

left edge. For both Triptych and the architecture presented

in [11], the types and number of routing resources

available to route a net clearly depends on the placement

of the net’s terminals. VPR’s semi-perimeter based cost

function is oblivious of the heterogeneity of such

architectures.

Finally, efforts to incorporate FPGA-like logic in System-

on-Chip designs have motivated non-rectangular FPGA

fabrics. In [26], the authors investigate a directional

FPGA fabric that resembles the shape of a trapezoid. The

FPGA fabrics proposed in [26] are built by abutting

 7

smaller, rectangular fabrics of different aspect ratios

(Figure 3 (d)). In both cases, the semi-perimeter metric is

an inaccurate estimate of the resources available to route

signals.

The primary feature that distinguishes the non-island style

FPGAs discussed so far is the nature of the interconnect

structure. The composition, flexibility, and heterogeneity

of the routing resources directly influence the placement

process. For every FPGA that has a unique interconnect

structure, a placement cost function is formulated in terms

of architecture specific parameters that accurately capture

the cost of a placement. The architectural examples cited

in this section clearly show that a semi-perimeter

placement cost function does not adapt well to non-island

style FPGAs. A cost function’s adaptability lies in its

ability to guide a placement algorithm to a high-quality

solution across a range of architecturally diverse FPGAs.

The subject of this paper is the development of an

architecture-adaptive routability-driven FPGA placement

algorithm called Independence. The algorithm’s

adaptability is a direct result of using the Pathfinder [15]

algorithm to calculate the cost of a placement.

Specifically, we use Pathfinder in the inner loop of a

simulated annealing placement algorithm to maintain a

fully routed solution at all times. Thus, instead of using

architecture-specific routability estimates, we use the

routing produced by an architecture adaptive router to

guide the algorithm to a routable placement.

IV. PREVIOUS WORK

Since Independence is rooted in a simultaneous
1
 place-

and-route approach, we briefly survey existing research in

integrated FPGA placement and routing in this section.

1
 We use the words ‘integrated’ and ‘simultaneous’

interchangeably from this point on.

Research in integrated place and route for FPGAs can be

broadly categorized into three categories.

A. Partitioning-based techniques

Partitioning-based FPGA placement is used to obtain a

global routing of the netlist as a direct result of the

partitioning process. Iterative k-way partitioning

techniques are particularly well suited to tree-based

FPGA architectures, and have been used to place and

globally route netlists on HSRA [10] and k-HFPGA [25].

Partitioning-based techniques have also been considered

for simultaneously placing and routing netlists on island-

style FPGA architectures [1,24].

Partitioning-based placement techniques can be used to

simultaneously place and globally route netlists on FPGA

architectures. However, since FPGAs have a finite

number of discrete routing resources, heuristic estimates

of the global routing requirements of a netlist during the

placement process might not be the most accurate

measure of the actual routing requirements of the netlist.

A tighter coupling between partitioning-based placement

and the interconnect structure of the FPGA might be

obtained by finding detailed routes for signals during

partitioning. However, the actual placement of a netlist is

only known at the end of the partitioning-phase, and

hence a complete detailed routing is not possible during

the partitioning process.

B. Cluster-growth placement

Cluster-growth placement is a technique that has been

used to simultaneously place and route netlists on

different FPGA architectures. In cluster-growth

placement, signals are considered one at a time in a

sequential manner. The terminals of the signal under

consideration are placed based on a cost function derived

from heuristic force-directed estimates [2], or global

 8

routing estimates [7]. Once a signal’s terminals have been

placed, it is not possible to change their placement to

accommodate the demands of later signals.

The quality of the placements produced by a cluster-

growth approach is sensitive to the order in which signals

are considered. Since determining an optimal ordering of

the signals is a difficult task, cluster-growth placement is

usually an iterative process and may be prone to

convergence problems.

C. Simulated Annealing Placement

Simulated Annealing based simultaneous place-and-route

techniques are presented in [16]. Fast global and detailed

routing heuristics are used in the simulated annealing

inner loop to estimate the routability and critical path

delay of a placement. Separate techniques for row-based

and island-style FPGAs are presented. A brief description

of the techniques follows:

Row-based FPGAs (PRACT) [16]: The PRACT

algorithm is targeted to row based FPGAs. The cost of a

placement is a weighted, linear function of the number of

globally unrouted nets, the number of nets that lack a

complete detailed routing, and the critical path delay of

the placement. For every move that is attempted during

the annealing process, the nets that connect the moved

logic blocks are ripped up and added to a queue of

unrouted nets. After a move is made, fast heuristics

attempt to find global and detailed routes for the ripped up

nets. PRACT yielded up to a 29% improvement in delay

and 33% improvement in channel widths when compared

to a place-and-route flow used at Texas Instruments (circa

1995).

Island style FPGAs (PROXI) [16]: The PROXI

algorithm uses a cost function that is a linear, weighted

function of the number of unrouted nets, and the critical

path delay of the placement. No global routing is

attempted. The interconnect structure of the FPGA is

represented as a routing graph similar to the directed

graph used by Pathfinder. For each placement move, the

nets connecting the moved logic blocks are ripped up and

added to a global queue of unrouted nets. Nets are

rerouted using a maze routing algorithm augmented with

a cost-to-target predictor. The placements produced by

PROXI exhibited 8 – 15% delay improvement compared

to Xilinx’s XACT5.0 place-and-route flow.

The quality of the placement solutions produced by

PRACT and PROXI was noticeably superior to

commercial, state-of-the-art CAD flows at that time (circa

1995). The results were a strong validation of a simulated

annealing based FPGA placement algorithm that is tightly

coupled with routing heuristics. However, both algorithms

have potential shortcomings from adaptability as well as

CAD perspectives:

� The cost functions developed for the algorithms do

not explicitly consider total wirelength or

congestion.

� The routing heuristics used by PRACT are tied to

row-based FPGAs, and may be difficult to adapt to

FPGA architectures that have different interconnect

structures. At the same time, PROXI uses bounding

box estimates to dynamically weight nodes of the

routing graph when routing nets. This dynamic

weighting approach is targeted at island-style

architectures that have segmented routing wires.

� PROXI’s routing algorithm does not allow sharing

of routing nodes by multiple signals. Disallowing

sharing prevents PROXI from leveraging the

negotiation-based congestion resolution heuristics

from the Pathfinder algorithm.

The approaches and techniques surveyed in this section

are either targeted to certain architectural styles, or use

 9

relatively weak estimates of routability during the

placement process. No clear cost formulation or technique

emerges that can be used to produce high quality

placements across a range of architecturally unique

FPGAs. Research in FPGA architectures would stand to

benefit from a placement algorithm that can quickly be

retargeted to relatively diverse FPGA architectures, while

producing high quality results at the same time.

V. ARCHITECTURE-ADAPTIVE FPGA PLACEMENT

In Section III, we discussed why VPR’s cost formulation

does not adapt to non island-style FPGAs. We then

postulated that an integrated place-and-route approach

that tightly couples placement with an architecture-

adaptive router (Pathfinder) is probably a more

appropriate architecture-adaptive placement approach. In

this chapter we describe Independence, an architecture-

adaptive routability-driven
2
 FPGA placement algorithm.

Pseudo code for the algorithm appears in Figure 4. The

remainder of this section is an explanation of the pseudo

code shown in Figure 4.

A. Placement heuristic and cost formulation

Since simulated annealing has clearly produced some of

the best placement results reported for FPGAs [3,4], we

chose to use simulated annealing as Independence’s

placement heuristic. Independence’s cooling schedule is

largely an adoption of VPR’s cooling schedule. This is

because VPR’s cooling schedule is adaptive, and

incorporates some of the most powerful features from

earlier research in cooling schedules. For similar reasons,

we chose an auto-normalizing formulation for

Independence’s cost function. Independence’s cost

function is described in Equation 8.

2
 Currently, Independence’s cost function is routability-driven.

A timing-driven cost function is currently under development.

Independence(Netlist, G(V,E)){

// Create an initial random placement.
createRandomPlacement(Netlist, G(V,E));

N = set of all nets in Netlist;

// Freely route all nets in N; similar to Pathfinder’s first routing iteration. R contains the complete, current

// routing of the nets in N at any time during the placement.
R = routeNets(N, G(V,E));

// Calculate the cost of the placement.
C = calculateCost(R, G(V,E));

// Calculate the starting temperature of the anneal.
T = StartTemperature(Netlist, G(V,E), R);

while(terminatingCondition() == false){

 while(innerLoopCondition() == false){

// Randomly generate the two locations involved in the move.
(x0,x1) = selectMove(G(V,E));

// Get the nets connected to the logic blocks mapped to x0 and/or x1.
Nx = getNets(x0, x1);

// Cache the routes of the nets connected to the logic blocks mapped to x0 and/or x1.
CacheR = getRoutes(Nx);

// Rip up the nets connected to the logic blocks mapped to x0 and/or x1.
R = R – cacheR;

// Swap the logic blocks mapped to x0 and/or x1. Update the source/sink terminals of the nets in

// Nx to reflect the new placement.
swapBlocks(x0, x1);

// Reroute the nets connected to the logic blocks that are now mapped to x0 and/or x1.
R = R + routeNets(Nx, G(V,E));

// Calculate the change in cost due to the move.
newC = calculateCost(R, G(V,E));

∆∆∆∆C = newC – C;

if(acceptMove(∆∆∆∆C, T) == true){

 // Accept the move.
 C = newC;

}

else{

 // Restore the original placement and routing
 swapBlocks(x0, x1);

 R = R – getRoutes(Nx) + cacheR;

}

 }

 // Update temperature T.
T = updateTemp();

// Update history costs.
updateHistoryCosts(R, G(V,E));

// Refresh routing.

R=ΦΦΦΦ;
R=routeNets(N, G(V,R));

}

}

Figure 4: Pseudo code for the Independence algorithm. Brief

comments accompany the code.

Equation 8

∆ C = ∆ WireCost / prevWireCost +

λ * ∆ CongestionCost / CongestionNorm

WireCost – The wire cost of a placement (Equation 9) is

calculated by summing the number of routing wires used

by each signal in the placed netlist. Routing wire usage is

measured by simply traversing the route-tree of each

signal and increasing WireCost. In Equation 9, N is the

number of signals in the netlist, and NumRoutingWiresi is

the number of routing wires in the route tree of signal i.

The normalization variable prevWireCost in Equation 8 is

equated to the WireCost of a placement before a

placement move is attempted.

 10

Equation 9

∑
=

=
N

1i

i
WiresNumRoutingWireCost

CongestionCost – The congestion cost (Equation 10)

represents the extent to which the routing wires are

congested in a given placement, and is calculated by

counting the number of times a routing wire is used by a

signal when that wire has already been allocated to

another signal. The congestion cost of a placement is

calculated by visiting all the wires in the routing graph

and increasing CongestionCost by the number of signals

using a shared wire in excess of its capacity. In Equation

10, Occupancyi is the number of signals that are currently

using routing wire i, Capacityi is the capacity of routing

wire i, and R is the total number of wires in the routing

graph of the target architecture. It could be argued that

CongestionCost renders WireCost redundant, since the

objective of an FPGA placement algorithm is to produce a

routable netlist. However, a cost function that is unaware

of changes in wire cost will not recognize moves that

might improve future congestion due to reductions in

routing wire usage.

Equation 10

∑
=

−=

R

1i

ii 0) ,CapacityOccupancymax(CostCongestion

CongestionNorm: This is the auto-normalization term for

the CongestionCost of a placement. Note that the

congestion cost of the placement cannot be used as a

normalizing factor, since CongestionCost might be zero

towards the end of the annealing process. In our current

implementation of Independence, we equate

CongestionNorm to prevWireCost.

λ – This weighting parameter (Equation 8) controls the

relative importance of changes in wire and congestion

costs. Since CongestionNorm is continuously recalculated

as the placement algorithm progresses, the collective λ /

CongestionNorm term also changes dynamically. As a

result, the relative importance of changes in congestion

cost varies with time. This behavior is similar to that of

the cost function presented in [22], in which the weighting

parameter of an individual cost term (overlap penalty)

was dynamically varied during the annealing process.

This dynamic parameter tuning approach proved very

effective in eliminating overlap penalty while minimizing

increases in wirelength.

B. Integrating Pathfinder

FPGA routing is a computationally intensive process and

this makes it infeasible to reroute all the signals in a

netlist after each placement move. Our solution is to start

with an initially complete routing, and then incrementally

reroute signals during placement. Specifically, only the

signals that connect to the logic blocks involved in a

move are ripped up and rerouted. This is based on the

intuition that for any given move, major changes in

congestion and delay will be primarily due to the

rerouting of signals that connect moved logic blocks.

A

D

B

C

E

A

D

B

C

E E

A

D

B

C

E

Figure 5: Logic block E is moved to the location immediately

to the right of D. Its input branch (shown in gray) is ripped

up, and a new route is found from the partial route-tree that

connects logic blocks A, B, C and D.

Signals that terminate at a moved logic block are handled

differently from signals that originate at the moved logic

blocks. When a logic block is moved during the

placement process, only the branch of the net that

connects to the sink of the moved logic block is ripped up

and rerouted. This approach is similar to Pathfinder’s

signal router, which uses the entire partially routed net as

 11

a starting point for the search for a new sink terminal.

Ripping up and rerouting only branches is based on the

assumption that the relocation of a single terminal of a

multi-terminal net will not drastically alter the net’s route.

The runtime benefits of only routing branches are

compelling, especially because FPGA logic units

generally have a relatively large number of inputs. Figure

5 illustrates the process of ripping up and rerouting the

input branches of moved logic blocks.

While nets terminating at moved logic blocks are partially

ripped up and rerouted, the nets that originate at moved

logic blocks are completely rerouted. Merely routing the

output of a moved logic block to the nearest point in the

partial route-tree could produce a poor route. Figure 6

illustrates the benefits of completely rerouting the output

net of a moved logic block.

A

B

C

B

A

C

B

A

C

Figure 6: Logic block A is moved to the location between B

and C. If we reroute from A to the partial route-tree, the

resultant route requires far more routing than is necessary.

Ripping up and rerouting the entire net produces a better

routing.

Since we only attempt an incremental rip-up and reroute

after every move, the routes found for signals during the

early parts of an annealing iteration may not accurately

reflect the congestion profile of the placement at the end

of an iteration. Hence, we periodically refresh the routing

by ripping up and rerouting all signals. Currently, the

netlist is ripped up and rerouted at the end of every

temperature iteration.

In light of the fact that the placement of a netlist is

constantly changing during simulated annealing, it is

necessary to examine whether Pathfinder’s cost function

is directly applicable to finding routes during incremental

rip-up and reroute. When routing a signal, Pathfinder uses

the number of signals currently sharing a routing node

(presentSharing), and the history of congestion on the

node (historyCost) to calculate the cost of the routing

node. Since the netlist is completely routed at any given

point in the placement process, the current sharing of

routing nodes can easily be calculated, and thus we

directly adopt Pathfinder’s presentSharing cost term.

Pathfinder’s history cost term is motivated by the intuition

that routing nodes that have been historically congested

during the routing process probably represent a congested

area of the placed netlist. Thus, if a routing node is shared

at the end of a routing iteration, its history cost is

increased by a fixed amount to make the node more

expensive during subsequent iterations. Note that the

process of updating history costs during a Pathfinder run

makes history cost an increasing function. An increasing

history cost formulation is inappropriate for

Independence. An increasing history cost would reflect

the congestion on a routing node during the entire

placement process. However, since placements are in

constant flux during the placement process, the

congestion on a routing node during the early stages of

the annealing process (when placements are very

different) might not be relevant to the routing process

towards the end.

Independence uses a decaying function to calculate

history costs during incremental rip-up and reroute.

Specifically, we use a mathematical formulation that

decreases the relevance of history information from

earlier parts of the placement process. Currently, we

update history costs once every temperature iteration

based on the assumption that the number of signals ripped

up and rerouted during a temperature iteration is roughly

equivalent to the number of signals routed during a single

 12

or small number of Pathfinder iterations. The history cost

of a routing node during a temperature iteration ‘i+1’ is

presented in Equation 11.

Equation 11

if (shared)

historyCosti+1 = α * historyCosti + β

else

historyCosti+1 = α * historyCosti

In Equation 11, i is a positive integer, and α and β are

empirical parameters. Currently, α = 0.9 and β = 0.5.

Thus, the history cost of a shared routing node during a

new iteration is determined by 90% of the history cost

during earlier iterations plus a small constant. As an

example, the history cost of a node that is shared during

the first five iterations progressively goes from 0 to 0.5, to

0.95, to 1.36, and to 1.72. In cases where a routing node is

not shared during a temperature iteration, its history cost

is allowed to decay as per Equation 11.

As a final note, we would like to point out that congestion

plays two roles in the Independence algorithm. First, the

total congestion cost of a placement plays a direct role in

contributing to the overall cost of a placement (Equation

8). We make the task of eliminating congestion an explicit

goal of the placement process. At the same time, we also

use Pathfinder’s congestion resolution mechanism during

incremental rip-up and reroute, and at the end of every

temperature iteration, to eliminate sharing.

VI. VALIDATING INDEPENDENCE

The goal of our validation strategy is to demonstrate

Independence’s adaptability to different interconnect

styles. Our experiments target three interconnect

structures; island-style, tree-based (HSRA), and a one-

dimensional architecture that has limited inter-track

switching capabilities (RaPiD [9]). The main reasons for

selecting these as target architectures are:

� Each of the three architectures have clearly different

interconnect structures. This will provide a means to

measure the adaptability of our proposed placement

algorithm.

� The existence of place-and-route tools for all three

architectures. This allows us to directly compare the

quality of the placements produced by

Independence with those produced by architecture

specific placement techniques.

A. Island-style FPGA architectures

Our first experiment (Experiment 1) compares the

placements produced by Independence with VPR when

targeted to a clustered, island-style architecture. Each

logic block cluster in this architecture has eighteen inputs,

eight outputs, and eight 4-LUT/FF pairs per cluster. The

interconnect structure consists of staggered length four

track segments and disjoint switchboxes. The input pin

connectivity of a logic block cluster is 0.4*W (where W is

the channel width) and output pin connectivity is

0.125*W. The island-style architecture described here is

similar to the optimal architecture reported in [14].

Table 1: Experiment 1 - A comparison of the placements

produced by VPR and Independence.

 Netlist Nblocks Nets Size VPR Ind

s1423 51 165 6x6 17 18

term1 77 144 6x6 17 17

vda 122 337 9x9 33 33

dalu 154 312 8x8 25 26

x1 181 352 10x10 22 23

apex4 193 869 13x13 60 61

i9 195 214 7x7 19 19

misex3 207 834 14x14 45 48

ex5p 210 767 12x12 60 60

alu4 215 792 14x14 39 41

x3 290 334 8x8 26 25

rot 299 407 8x8 27 29

tseng 307 780 12x12 34 36

pair 380 512 9x9 36 36

dsip 598 762 14x14 31 31

SUM 491 503

 13

Table 1 lists minimum track counts obtained on routing

placements produced by VPR and Independence. Column

1 lists the netlists used in this experiment, column 2 lists

the total number of logic blocks plus IO blocks in the

netlist, column 3 lists the total number of nets in the

netlist, column 4 lists the size of the minimum square

array required to just fit the netlist, column 5 lists the

minimum track counts required to route the placements

produced by VPR, and column 6 reports the minimum

track counts needed to route
3
 placements produced by

Independence. The final row in Table 1 lists the sum of

the minimum track counts (which is our quality metric for

all experiments presented in this chapter) required by

VPR and Independence across the benchmark set.

The track-counts listed in Table 1 show that, on average,

the quality of the placements produced by Independence

is within 2.5% of those produced by VPR. We consider

this a satisfactory result, since it demonstrates that

Independence can target island-style FPGAs and produce

placements that are close in quality to an extensively

tuned, state-of-the-art placement tool.

Our second experiment (Experiment 2) studies

Independence’s adaptability to routing-poor island-style

architectures. The philosophy behind routing-poor

architectures [6,10] is that overall silicon utilization can

be increased by reducing the amount of interconnect,

which can account for more than 90% of the total area in

current FPGAs. Even though logic utilization percentage

may be reduced, because much more logic is available,

overall amount of logic used is increased. This approach

is in direct contrast to VPR’s exploratory approach, which

fixes logic utilization and then increases the amount of

interconnect until a netlist’s placement is successfully

3
 The placements produced by VPR and Independence are both

routed using VPR’s implementation of the Pathfinder algorithm.

routed. Figure 7 (top left) shows a placement produced by

VPR for the netlist alu2 on a target architecture
4
 that has

four times as many logic blocks as a minimum size square

array required to fit the netlist. VPR’s router needs five

tracks to route this placement. Our first observation is the

tightly packed nature of the placement in Figure 7 (top

left), and our second observation is that the placement

produced by VPR does not change with the actual number

of tracks in the target architecture. As a result, VPR is

unable to produce routable placements for alu2 on target

architectures that have less than five tracks. VPR’s

limited adaptability to routing-poor architectures is a

direct consequence of VPR’s semi-perimeter based cost

formulation that has no knowledge of the actual number

of routing resources in the target device.

Unlike VPR, Independence’s integrated approach, which

tightly couples placement with an architecture adaptive

router is in fact able to produce routable placements on

routing-poor island-style architectures. Figure 7 shows

successfully routed placements produced by

Independence on 34x34 arrays that have five (Figure 7

top right), four (Figure 7 bottom left) and three tracks

(Figure 7 bottom right) respectively.

4
 Each logic block has a single LUT/FF pair, and the

interconnect structure contains only length-one wire segments.

This is the VPR “challenge” architecture [3].

 14

Table 2: Experiment 2 - Quantifying the extent to which Independence adapts to routing-poor island-style architectures.

Netlist Nblocks WVPR 1.0*WVPR 0.9*WVPR 0.8*WVPR 0.7*WVPR 0.6*WVPR 0.5*WVPR

s1423 51 17 17 16 14 12 11 9

vda 122 33 33 30 27 24 20 17

rot 299 30 30 27 24 21 18 15

alu4 215 37 37 34 30 26 23 19

misex3 207 43 43 39 35 31 26 22

ex5p 210 52 52 47 42 37 32 26

tseng 307 33 33 30 27 24 20 17

apex4 193 52 52 47 42 37 32 26

diffeq 292 31 31 28 25 22 19 16

dsip 598 34 34 31 28 24 21 17

Figure 7: A placement produced by VPR for alu2 on a 34x34 array (top left). VPR needed 5 tracks to route this placement.

Placements produced by Independence for alu2 on a 34x34 array that has 5 (top right), 4 (bottom left) and 3 (bottom right) tracks

respectively.

 15

Table 2 shows the extent to which Independence is able to

adapt to routing-poor island-style FPGAs. The parameters

of the target array are identical to those used in Experiment

1. The only exception is the logic capacity, which is four

times (the width and height of the target array are each 2X

the minimum required to fit the netlist) that of a minimum

size square array. Column 1 lists the netlists used in the

experiment, column 2 lists the number of logic blocks plus

IO blocks in the netlist, and column 3 lists the minimum

track counts needed by VPR to route each netlist. Let the

minimum track count needed by VPR to route a netlist be

WVPR. Columns 4 through 9 list the number of tracks in a

target device that has 1.0*WVPR, 0.9*WVPR, 0.8*WVPR,

0.7*WVPR, 0.6*WVPR, and 0.5*WVPR tracks respectively. In

Columns 4 – 9, a lightly shaded table entry (black text)

means that Independence produces a routable placement on

that device, while a dark shaded entry (white text) means

that Independence is unable to produce a routable

placement. So, for example, the lightly shaded table entry

37 for the netlist ex5p means Independence produces a

routable placement for ex5p on a 37-track (0.7*52)

architecture. Similarly, the dark shaded entry 32 for ex5p

means that Independence fails to produce a routable

placement for ex5p on a 32-track (0.6*52) architecture. The

results in

Table 2 show that Independence produces up to 40% better

placements than VPR on routing-poor island-style

interconnect structures. Note that VPR does not possess the

ability to adjust to routing-poor architectures, and thus

cannot use the extra space to reduce track count.

Finally, since the height and width of a target array in

Experiment 2 is approximately twice the minimum

required, the bandwidth
5
 of any target array in Experiment

1 is approximately equal to the bandwidth of the

5
 The bandwidth is measured by the number of routing tracks that

cut a horizontal or vertical partition of the target array.

corresponding target array in Experiment 2 at 0.5*WVPR.

Coincidentally, 0.5*WVPR is also the point at which

Independence is not able to produce any further reductions

in track count. Thus, although the target arrays are of

different sizes, both VPR and Independence produce

placements that require comparable bandwidths.

B. Hierarchical FPGAs

Our third experiment (Experiment 3) targets an architecture

(HSRA) that has a hierarchical, tree-based interconnect

structure (Figure 8). The richness of HSRA’s interconnect

structure is defined by its base channel width and

interconnect growth rate. The base channel width ‘c’ is the

number of tracks at the leaves of the interconnect tree (in

Figure 8, c=3). The growth rate ‘p’ is the rate at which the

interconnect grows towards the root (in Figure 8, p=0.5).

The growth rate is realized using the following types of

switch-blocks:

� Non-compressing (2:1) switch blocks - The number

of root-going tracks is equal to the sum of the number

of root-going tracks of the two child switch blocks.

� Compressing (1:1) switch blocks – The number of

root-going tracks is equal to the number of root-going

tracks of either child switch block.

 16

Figure 8: [10] An illustration of HSRA’s interconnect

structure. The leaves of the interconnect tree represent logic

blocks, the crosses represent connection points, the hexagon-

shaped boxes represent non-compressing switches, and the

diamond-shaped boxes represent compressing switches. The

base channel width of this architecture is three (c=3), and the

interconnect growth rate is 0.5 (p=0.5).

A repeating combination of non-compressing and

compressing switch blocks can be used to realize any value

of p less than one. A repeating pattern of 2:1 � 1:1 switch

blocks realizes p=0.5, while the pattern 2:1 � 2:1 � 1:1

realizes p=0.67. In HSRA, each logic block has a single

LUT/FF pair. The input-pin connectivity is based on a c-

choose-k strategy [10], and the output pins are fully

connected. The base channel width of the target architecture

is eight, and the interconnect growth-rate is 0.5. The base

channel width and interconnect growth rate are both

selected so that the placements produced by HSRA’s CAD

tool are noticeably depopulated.

Table 3: Experiment 3 - Independence compared to HSRA's

placement tool.

 Netlist NLUTs HSRA Ind

mm9b 120 10 9

cse 134 11 8

s1423 162 10 8

9sym 177 11 8

ttt2 198 10 8

keyb 209 12 9

clip 243 11 9

term1 246 11 10

apex6 258 10 10

vg2 277 11 9

frg1 282 12 10

sbc 332 11 8

styr 341 12 9

i9 347 11 9

C3540 382 11 8

sand 406 12 9

x3 441 11 10

planet 410 12 9

rd84 405 12 8

dalu 502 12 8

SUM 223 176

Table 3 compares the minimum base channel widths

required to route placements produced by HSRA’s

placement tool and Independence. Column 1 lists the

netlists used in this experiment, column 2 lists the number

of LUTs in each netlist, column 3 lists the minimum base

channel widths required to route placements produced by

HSRA’s placement tool, and column 4 lists the minimum

base channel widths required to route placements produced

by Independence. To ensure a fair comparison,

Independence is targeted to architectures with the same

horizontal span (lsize as defined in [10]) and interconnect

levels as required by HSRA’s placement tool. Overall,

Independence is able to produce placements that require

21% fewer tracks compared to HSRA’s placement tool.

 17

C. RaPiD

Our fourth experiment (Experiment 4) targets the RaPiD

architecture [9]. RaPiD’s interconnect structure consists of

segmented 16-bit buses. There are two types of buses; short

buses provide local communication between logic blocks,

while long buses can be used to establish longer

connections using bidirectional switches called bus-

connectors (shown as the small square boxes in Figure 9).

RaPiD’s interconnect structure is relatively constrained

because there is no inter-bus switching capability in the

interconnect structure. A bus-connector can only be used to

connect the two bus-segments incident to it. Thus, RaPiD’s

interconnect structure is an interesting candidate for a

routability-driven placement algorithm.

 G
P

R

G
P

R

R
A

M

R
A

M

M
U

L
T

A
L

U

G
P

R

A
L

U

G
P

R

G
P

R

R
A

M

A
L

U

G
P

R

Figure 9: RaPiD’s interconnected structure consists of

segmented 16-bit buses. The small square boxes represent

bidirectional switches called bus connectors.

Table 4 presents the results of Experiment 4. Column 1 lists

the netlist, column 2 lists the number of RaPiD cells in the

target array, column 3 lists the minimum track-count

required by placements produced by the placer described in

[19], and column 4 lists the minimum track-count required

to route placements produced by Independence. Overall, the

min track-counts required by RaPiD’s placer and

Independence were within 0.7%.

Table 4: Experiment 4 - A comparison of the track-counts

required by a placement tool targeted to RaPiD and

Independence.

 Netlist Ncells RaPiD Ind

matmult4 16 12 11

firtm 16 9 11

sort_rb 8 11 11

sort_g 8 11 11

firsymeven 16 8 9

cascade 16 10 10

sobel 18 15 13

fft16 12 11 12

imagerapid 14 12 11

fft64 24 29 28

log8 48 12 14

SUM 140 141

D. Summary of results

The results of our experiments demonstrate Independence’s

adaptability to three different interconnect styles. The

quality of the placements produced by Independence are

within 2.5% of VPR, 0.7% of RaPiD’s placement tool, and

21% better than HSRA’s placement tool. Further, our

experiment with routing-poor island-style structures shows

that Independence is appropriately sensitive to the richness

of interconnect structures. Thus, even on island-style

architectures, Independence is able to provide placements in

situations VPR cannot handle. When considered together,

the results presented in Sections VI.A, VI.B and VI.C are a

clear validation of using an architecture-adaptive router to

guide FPGA placement.

VII. RUNTIME ACCELERATION USING A* SEARCH

The Independence algorithm integrates an adaptive, search-

based router with a simulated annealing placement

algorithm. Using a router in the simulated annealing inner

loop is clearly a computationally expensive approach. In

this section we discuss the A* algorithm [17], a technique

 18

that has been used to speed up Pathfinder with a negligible

degradation in quality [21].

The A* algorithm speeds up routing by pruning the search

space of Dijkstra’s algorithm. The search space is pruned

by preferentially expanding the search wavefront in the

direction of the target node. Thus, when the search is

expanded from a given node, the routing algorithm expands

the search through the neighbor node that is nearest the

target node. This form of directed search is accomplished

by augmenting the cost of the current partial path with a

heuristically calculated estimate of the cost of the remaining

path to the target node.

Equation 12 gives the equation for fn , the estimated cost of

a shortest path from the source to the target through the

node n. gn is the cost of a shortest path from the source to

node n, and hn is a heuristically calculated estimate of the

cost of a shortest path from n to the target node. Hereafter,

we refer to this estimate as a ‘cost-to-target’ estimate. The

A* algorithm uses fn to determine the cost of expanding the

search through node n while Dijkstra’s algorithm uses gn

only.

Equation 12

nnn hgf +=

To guarantee optimality, the cost-to-target estimate hn for a

wire n must be less than or equal to the actual cost of the

shortest path to the target. Overestimating the cost to the

target node may provide even greater speedups, but then the

search is not guaranteed to find an optimal path to the

target. Currently, there is no architecture-adaptive, memory

efficient technique for performing A* search on FPGAs. In

the next section, we briefly describe previous research in

A*-based FPGA routing. We then discuss techniques that

can be used to speed up Pathfinder without relying on

architecture-specific cost-to-target estimates. Recall that the

strength of our placement algorithm lies in its adaptability,

and it is imperative that any runtime enhancements preserve

the algorithm’s adaptability.

VIII. PREVIOUS WORK IN A* FPGA ROUTING

The work described in [21,23] discusses directed search

techniques that can speed up the Pathfinder algorithm.

These techniques use the A* algorithm, but use geometric

information to estimate the cost-to-target. These

calculations often require potentially complex operations

which can slow down the router may need to be re-

implemented whenever the interconnect architecture is

changed, and cannot be applied to non-Manhattan

interconnect structures. Two examples of such interconnect

structures are shown in Figure 3(a) and Figure 3(b). The

architecture in Figure 3(a) has a strictly hierarchical

interconnect structure, and the architecture in Figure 3(b)

provides different types of routing wires in the horizontal

and vertical directions.

These A* techniques are not truly adaptive since they hard-

code interconnect assumptions into the cost-to-target

estimators. Thus they are not suitable for our use in

Independence. In the next section, we present architecture-

adaptive runtime enhancements to the Pathfinder algorithm.

IX. ARCHITECTURE-ADAPTIVE A* TECHNIQUES

The developers of the Pathfinder algorithm briefly

discussed the idea of using the A* algorithm to speed up

routing [15]. They proposed the use of a pre-computed

lookup table that would hold the cost of a shortest path from

every routing wire to every sink terminal in the interconnect

structure. Specifically, there would be a separate entry for

every routing wire in this lookup table, and each entry

would hold cost-to-target estimates for all sink terminals in

the interconnect structure. During routing, the cost-to-target

 19

estimate at a routing wire could then be obtained using a

simple table lookup.

Pre-computing and tabulating cost-to-target estimates in

this fashion is indeed an adaptive scheme. Shortest paths

can be calculated using Dijkstra’s algorithm, and no

architecture-specific information is required. The approach

also guarantees an exact estimate of the shortest path in the

absence of routing congestion. However, while the

computational complexity of this approach is manageable,

the space requirements for routing-rich structures makes it

infeasible for large FPGAs. Assuming an island-style, 10-

track, 100x100 FPGA that has only single-length segments,

the memory required to store the cost-to-target lookup table

would be measured in GigaBytes.

Sharing a table entry among multiple routing wires that

have similar cost-to-target estimates can reduce the memory

requirement of the lookup table. For example, if one

hundred wires share each table entry, the size of the table

may be reduced by one hundred times. The cost-to-target

estimate for a given sink terminal is the same for all wires

that share the table entry, and can be calculated using a

Dijkstra search that begins at the wire closest to the target.

Specifically, the entire set of wires that share a table entry

constitutes a “super” source node for the Dijkstra search. In

this manner, we ensure that the cost-to-target estimate for a

given sink terminal is the cost of a shortest path from the

wire that is closest to the sink terminal. From this point on,

we will refer to this method for calculating cost-to-target

estimates as the superDijkstra method.

The important question now is how to identify wires that

should share a table entry. Clearly, we would like to

identify clusters of wires that have similar cost-to-target

estimates, so that we can collect them together in a set that

points to a single entry in the cost-to-target lookup table.

Our first technique for clustering wires together is inspired

by two observations:

� The number of logic units in an FPGA is generally

much less than the number of interconnect wires.

� Logic units and interconnect wires are often

interspersed in the FPGA fabric in a regular fashion.

Based on these observations, our first technique uses a

proximity metric, described in the Section X, to associate

each wire with a logic unit. After each interconnect wire has

been associated with a logic unit, all wires associated with

the same logic unit are assigned to the same cluster. The

cost-to-target estimates for each cluster are calculated using

the superDijkstra method and stored in a lookup table.

Since the number of table entries is equal to the number of

logic units, the memory requirements of this technique are

significantly less than a lookup table that has a separate

entry for each wire in the interconnect structure.

The associate-with-closest-logic-unit technique is probably

well suited to island-style FPGAs. Since the logic and

interconnect structures of an island-style FPGA are closely

coupled, this approach may produce clusters of wires that

have reasonably similar cost-to-target estimates. On

hierarchical structures, the accuracy of an associate-with-

closest-logic-unit approach may not be quite as good. For

example, consider the tree-like interconnect structure in

Figure 10. The routing wire that is topmost in the

interconnect hierarchy is equally close to all logic units,

while the wires in the next level are equally close to half the

logic units, and so on. Associating wires with individual

logic units in a strictly hierarchical interconnect structure

may result in large cost-to-target underestimates.

 20

Figure 10: An example of a tree-based, hierarchical

interconnect structure. Assume that the wires shown in black

belong to the same cluster.

In Figure 10, assume that the wires shown in black are

associated with the black logic unit, and that the cost-to-

target estimates for the cluster have been calculated using

the superDijkstra method. The wire that directly connects to

the black logic unit will have a cost-to-target estimate of

five for the logic units in the northeast, southeast and

southwest quadrants of the architecture. Note that the actual

cost is nine wires for the northeast quadrant, and ten for the

southeast and southwest quadrants. Estimates that are a

factor of two below exact might slow down the router

considerably. However, every wire in the cluster shown in

Figure 10 does not suffer from the same problem. The

cluster wire that is topmost in the interconnect hierarchy

(black vertical line down the middle of Figure 10) will have

exact cost-to-target estimates for all logic units in the

northeast, southeast and southwest quadrants, and

underestimates for logic units in the northwest quadrant.

To summarize, while the associate-with-closest-logic-unit

approach works well for island-style structures, due to the

potential limitations on hierarchical structures, a more

sophisticated technique is necessary to provide good cost-

to-target estimates across different interconnect

architectures.

X. K-MEANS CLUSTERING

Our second technique for solving the architecture adaptive

clustering problem is to use the K-means algorithm. K-

means clustering is an iterative heuristic that is used to

divide a dataset into K non-overlapping clusters based on a

proximity metric. Pseudocode for the K-Means algorithm

appears in Figure 11.

// D is the set of data-points in n-dimensional space that has to be divided into K clusters.

// The co-ordinates of a data-point di ∈ D are contained in the vector di.vec.

// di.vec is an n-dimensional vector.

K-Means {

for i in 1…K {

randomly select a data-point di from the set D.

initialize the centroid of cluster clusi to di.vec.

}

while (terminating condition not met) {

for each di ∈ D {
remove di’s cluster assignment.

}

for each di ∈ D {
for j in 1…K {

diffij = vectorDifference (di.vec,clusj.centroid)

}

assign di to the cluster clusy such that diffiy is

minimum.

}

for j in 1…K {

recalculate clusj.centroid using the data-points

currently assigned to clusj.

}

}

}

Figure 11: Pseudocode for the K-Means clustering algorithm.

We use the following parameters to characterize the K-

Means algorithm.

Dataset (D): The dataset D simply consists of all

the routing wires in the interconnect structure of the target

device.

Number of Clusters (K): We experimentally

determined that a value of K greater than or equal to the

number of logic units in the target device is a reasonable

choice. Section X.B describes the effect of K on the quality

of clustering solutions.

 21

Initial Seed Selection: The initial seeds consist of

K/2 randomly selected logic-block output wires and K/2

randomly selected routing wires.

Terminating Condition: The K-Means algorithm is

terminated when less than 1% of the dataset changed

clusters during the previous clustering iteration.

Calculating Cost-to-Target Estimates: On

completion of the clustering algorithm, the actual A*

estimates for a cluster are calculated using the

superDijkstra method.

Co-ordinate Space and Proximity Metric: The

most important consideration in applying the K-Means

algorithm to solve the interconnect clustering problem is the

proximity metric. Specifically, we need to determine a co-

ordinate space that is representative of the A* cost-to-target

estimate at each wire in the dataset. In our implementation,

the co-ordinates of a routing wire represent the cost of the

shortest path to a randomly chosen subset S of the sink

terminals in the interconnect structure. The co-ordinates of

each routing wire are pre-calculated using Dijkstra’s

algorithm and stored in a table.

If the number of sink terminals in S is n, then the co-

ordinates of a routing wire di ∈ D are represented by an n-

dimensional vector di.vec. Each entry cij (j ∈ 1…n) in the

vector di.vec is the cost of a shortest path from the routing

wire di to the sink terminal j. The co-ordinates for all di ∈ D

are calculated by launching individual Dijkstra searches

from each sink terminal in the set S. Note that the edges in

the underlying routing graph are reversed to enable Dijkstra

searches that originate at sink terminals. At the end of a

Dijkstra search that is launched at sink terminal j, the cost

of a shortest path from every di to the terminal j is written

into the corresponding cij entry of di.vec. The vector di.vec

is used by the K-Means algorithm to calculate the

“distance” between the wire di and the centroid of each

cluster. The distance between di and a cluster centroid is

defined as the magnitude of the vector difference between

di.vec and the cluster centroid.

Note that the size of S directly influences the memory

requirements of our clustering implementation. In the

extreme case where S contains every sink terminal in the

target device, the memory requirements would match the

prohibitively large requirements of the full table that stores

the cost of a shortest path from each routing wire to every

sink terminal. This would undermine the purpose of using a

clustering algorithm to reduce the memory requirements of

an A* estimate table. It is thus useful to sub-sample the

number of sinks in the target device when setting up S.

Table 5: Comparison of memory requirements. Table sizes are

in GB.
Pathfinder

Size ChanWidth |S| = NT |S| = 0.06*NT Estimates

10x10 10 0.0012 0.0001 0.0001

20x20 10 0.0151 0.0009 0.0007

30x30 10 0.0707 0.0043 0.0035

40x40 10 0.2152 0.0130 0.0106

50x50 10 0.5132 0.0310 0.0253

60x60 10 1.0474 0.0631 0.0518

70x70 10 1.9185 0.1155 0.0949

80x80 10 3.2449 0.1951 0.1607

90x90 10 5.1629 0.3103 0.2559

100x100 10 7.8268 0.4703 0.3882

110x110 10 11.4087 0.6854 0.5662

120x120 10 16.0986 0.9669 0.7994

130x130 10 22.1044 1.3275 1.0980

140x140 10 29.6517 1.7805 1.4735

150x150 10 38.9842 2.3406 1.9380

160x160 10 50.3636 3.0236 2.5045

170x170 10 64.0690 3.8462 3.1869

180x180 10 80.3979 4.8262 4.0001

190x190 10 99.6654 5.9825 4.9599

200x200 10 122.2044 7.3351 6.0828

Clustering

Table 5 compares the memory requirements of a clustering-

based implementation that sub-samples the sink terminals

with a table that stores the cost of a shortest path from each

routing wire to every sink terminal in the target device. The

target architecture is assumed to be a square island-style

array that has only single-length wire segments. In our

 22

calculations, we assume that the sizes of a floating-point

number, integer number, and a pointer are all four bytes.

Column 1 lists the size of the target array, and column 2

lists the channel width of the target array. Let the total

number of sink terminals in the target array be NT. Column

3 lists the memory requirements of a table that stores the

cost of a shortest path from each wire to every sink terminal

in the target device (i.e. |S| = NT). This corresponds to the

exhaustive lookup table approach described by the authors

of the Pathfinder algorithm in [15]. Column 4 lists the size

of a table that stores costs to only 6% of the sink terminals

(|S| = 0.06*NT), and column 5 lists the size of a table that

holds cost-to-target estimates for the clusters produced by a

K-Means implementation where K = number of logic units

in the target device. All memory requirements are reported

in Gigabytes. It is clear from Table 5 that our K-Means

clustering approach greatly reduces the memory

requirements for storing pre-calculated distance estimates.

Finally, note that the clustering process is a one-time

preprocessing step that needs to be performed only on a

per-architecture basis. The table of cost-to-target estimates

produced by the clustering algorithm can be reused every

time a new netlist is routed, and there is no additional

runtime or memory cost incurred by our techniques on a

per-netlist basis.

X. RESULTS

We conduct three experiments to test the validity of using

the K-Means algorithm to cluster the interconnect structure

of an FPGA. The first experiment studies the effect of sub-

sampling the sink terminals in the target device on the

quality of clustering solutions. The second experiment

studies the effect of the number of clusters (K) on quality,

and the third experiment compares the quality of clustering-

based A* estimates with heuristically calculated estimates.

To evaluate the adaptability of our techniques, we conduct

the experiments on an island-style interconnect architecture

and HSRA [10]. Details of the architectural parameters used

in our experiments can be found in Sections VI.A and VI.B.

Since the truest measure of the quality of an A* estimate is

routing runtime, our quality metric is defined to be the CPU

runtime per routing iteration when routing a placement on

the target device. The placements for our experiments on

island-style structures are obtained using VPR [3], and the

placements for our experiments on HSRA are produced

using Independence. Finally, note that our clustering

techniques are guaranteed to produce conservative cost-to-

target estimates, and hence these techniques have no effect

on the quality of routes produced by these techniques.

A. Experiment 5 – Sub-sampling sink terminals

Experiment 5 studies the effect of sub-sampling the number

of sink terminals in the target device. The set of benchmark

netlists used in this experiment is a subset of the netlists

shown in Table 6 (island-style) and Table 7 (HSRA).

Figure 12 shows the variation in quality of clustering

solutions. The x-axis represents the fraction of sink

terminals that are used to represent the co-ordinates of each

wire during clustering. The subset of sink terminals used in

the experiment is randomly generated. The y-axis

represents routing runtime measured in seconds per routing

iteration. The curves show the variation in routing runtimes

when using A* estimates produced by the K-Means

clustering technique. The flat line shows the routing

runtime when using architecture-specific heuristic A*

estimates. The value of K in this experiment is equal to the

number of logic units in the target device.

 23

 Island-Style

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25

Sub-Sample (Fraction of sink nodes in target device)

R
u

n
ti

m
e

 (
s

 /
 i
te

ra
ti

o
n

)

Clustering

Heuristic

HSRA

0

0.5

1

1.5

2

2.5

3

0 0.05 0.1 0.15 0.2 0.25

Sub-sample (Fraction of sink nodes in target device)

R
u

n
ti

m
e

 (
s

 /
 i
te

ra
ti

o
n

)

Clustering

Heuristic

Figure 12: The effect of sub-sampling the number of sink

terminals on routing runtime.

Figure 12 shows that using as little as 5% of the sink

terminals during clustering may be sufficient to produce

estimates that are comparable to heuristic estimates. This is

not a surprising result. Due to the regularity of an FPGA’s

interconnect structure, a small subset of sink terminals may

be sufficient in resolving the interconnect wires into

reasonably formed clusters. Note that 5% of the sink

terminals represents a variable number of sink terminals

across the set of benchmark netlists. Depending on the size

of the netlist, 5% of the sink terminals could be anywhere

between two and fifty sink terminals.

In Figure 13, we present the results of a second study that

evaluates the quality of clustering solutions when using a

small, fixed number of sink terminals. Figure 13 shows that

using a small number (say 16) of randomly selected sink

nodes may be enough to produce clustering solutions that

are within approximately 15% of heuristic estimates.

Island-Style

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16

Sub-sample (sink nodes in target device)

R
u

n
ti

m
e

 (
s

 /
 i
te

ra
ti

o
n

)

Clustering

Heuristic

HSRA

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16

SubSample (sink nodes in target device)

R
u

n
ti

m
e

 (
s

 /
 i
te

ra
ti

o
n

)

Clustering

Heuristic

Figure 13: Using a small number of sink nodes may produce

clustering solutions of acceptable quality.

B. Experiment 6 – Number of clusters (K)

Experiment 6 studies the effect of the number of clusters

(K) on the quality of clustering solutions. The set of

benchmark netlists used in this experiment is identical to

the set used in Experiment 5. We use a sub-sample of 6%

for island-style architectures, and 14% for HSRA.

Figure 14 shows the effect of K on routing runtime. The x-

axis shows the value of K as a fraction of the number of

logic units in the target device, and the y-axis shows routing

runtime in seconds per routing iteration. The charts in

Figure 14 show that a value of K equal to or greater than the

number of logic units in the target device produces

 24

clustering solutions of qualities similar (within 10%) to

heuristic estimates.

 Island-Style

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

K (Fraction of logic blocks in target device)

R
u

n
ti

m
e

 (
s

 /
 i
te

ra
ti

o
n

)

Clustering

Heuristic

HSRA

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2

K (Fraction of logic blocks in target device)

R
u

n
ti

m
e

 (
s

 /
 i
te

ra
ti

o
n

)

Clustering

Heuristic

Figure 14: The effect of K on routing runtime.

C. Quantitative comparison

Experiment 7 is a quantitative comparison of the quality of

the A* estimates produced by our clustering techniques vs.

heuristically calculated estimates. We use the following

settings in this experiment:

� Associate-with-closest-logic-unit technique. This

technique is implemented by running only the first

iteration of K-Means clustering. K is chosen to be

equal to the number of logic units in the target device

(K = NL), and initial seeds chosen to be logic unit

outputs. The value of sink sub-sample is 6% (|S| =

0.06*NT). These settings represent a relatively low-

effort clustering step. This step might be undertaken

when clustering runtime and memory requirements

need to be very low.

� K-Means clustering, with a sink sub-sample value of

6% (|S| = 0.06*NT) and K equal to the number of

logic units in the target device (K = NL). NT is the

total number of sink terminals in the target device,

and NL is the total number of logic units in the target

device. These settings represent an empirically

determined sweet-spot for our K-Means clustering

technique.

� K-Means clustering, with a sink sub-sample value of

20% (|S| = 0.2*NT) and K equal to twice the number

of logic units in the target device (K = 2*NL). These

are aggressive settings that represent potentially high

quality clustering solutions. Such settings may be

used when absolutely the best quality clustering

solutions are required, and clustering runtime and

memory are of less concern.

Table 6 shows the results we obtained on the island-style

architecture. Column 1 lists the netlist, column 2 lists the

size of the smallest square array needed to just fit the

netlist, and column 3 lists routing runtimes obtained when

using heuristic estimates. Columns 4, 5, and 6 list routing

runtimes and compression ratios (shown in brackets)

produced by the low-effort associate-with-logic-unit

technique, K-Means clustering at empirically determined

settings (|S| = 0.06*NT, K = NL), and K-Means clustering at

high-quality settings (|S| = 0.20*NT, K = 2*NL)

respectively. Routing runtimes are normalized to runtimes

produced by heuristic geometrically-based estimates. The

compression ratio is defined as the ratio between the size of

an exhaustive lookup table and a lookup table that holds

cost-to-target estimates for the clusters produced by each of

the three techniques. The compression ratio is a measure of

the memory gap between a version of Pathfinder that uses

an exhaustive lookup table and a version that uses cost-to-

 25

target estimates produced by our clustering techniques.

Column 7 shows routing runtimes produced by an

undirected (no A*) search technique.

Table 6: A comparison of routing runtimes on an island-style

architecture.

|S| = 0.06*NT |S| = 0.20*NT

Netlist Size Heur Associate
K-Means
(K = NL)

K-Means
(K = 2*NL) no A*

term1 6x6 1.00 0.89 (17:1) 1.44 (17:1) 1.22 (10:1) 4.22

s1423 6x6 1.00 1.57 (20:1) 1.57 (18:1) 1.14 (10:1) 3.86

i9 7x7 1.00 1.30 (17:1) 1.30 (17:1) 1.10 (10:1) 3.40

dalu 8x8 1.00 0.93 (24:1) 0.93 (22:1) 1.15 (13:1) 4.04

vda 9x9 1.00 1.20 (29:1) 1.08 (32:1) 1.08 (16:1) 4.78

x1 10x10 1.00 1.13 (20:1) 0.94 (19:1) 1.17 (11:1) 4.66

rot 8x8 1.00 0.95 (26:1) 1.11 (25:1) 0.89 (14:1) 3.32

pair 9x9 1.00 0.89 (30:1) 0.94 (36:1) 0.94 (18:1) 4.83

apex1 11x11 1.00 0.97 (40:1) 0.96 (37:1) 1.00 (23:1) 6.03

dsip 14x14 1.00 1.13 (22:1) 1.06 (23:1) 1.07 (13:1) 8.21

ex5p 12x12 1.00 1.03 (48:1) 1.12 (48:1) 1.05 (29:1) 7.30

s298 16x16 1.00 1.58 (25:1) 1.37 (23:1) 1.36 (14:1) 10.38

tseng 12x12 1.00 1.05 (27:1) 1.07 (29:1) 1.04 (17:1) 6.30

alu4 14x14 1.00 1.09 (30:1) 1.14 (30:1) 1.14 (19:1) 7.48

misex3 14x14 1.00 1.16 (40:1) 1.08 (41:1) 1.05 (23:1) 9.80

apex4 13x13 1.00 1.10 (46:1) 1.02 (45:1) 1.07 (27:1) 5.04

diffeq 14x14 1.00 1.19 (26:1) 1.13 (26:1) 1.08 (15:1) 5.29

bigkey 15x15 1.00 1.38 (26:1) 1.18 (26:1) 1.08 (16:1) 8.95

seq 15x15 1.00 1.19 (37:1) 1.10 (39:1) 1.05 (23:1) 7.22

des 15x15 1.00 1.20 (29:1) 1.17 (29:1) 1.05 (18:1) 4.35

apex2 16x16 1.00 1.08 (43:1) 1.09 (42:1) 1.04 (26:1) 8.19

frisc 22x22 1.00 1.08 (41:1) 1.02 (41:1) 1.06 (25:1) 8.56

elliptic 22x22 1.00 1.23 (41:1) 1.00 (40:1) 1.05 (24:1) 10.73

ex1010 25x25 1.00 0.92 (48:1) 1.15 (47:1) 1.07 (29:1) 9.66

s38584.1 29x29 1.00 1.07 (31:1) 1.20 (31:1) 1.07 (18:1) 17.07

clma 33x33 1.00 1.03 (48:1) 1.02 (48:1) 1.00 (29:1) 15.25

GEOMEAN 1.00 1.12 (30:1) 1.11 (30:1) 1.07 (18:1) 6.59

Across the set of benchmarks, the runtimes produced by our

K-Means clustering techniques are approximately 7%

(high-quality settings) and 11% (empirical settings) slower

than the runtimes achieved by geometrically estimating A*

costs. Both heuristic and clustering-based estimates are

approximately 6X faster than an undirected search-based

router. Finally, the routing runtimes produced by the

associate-with-closest-logic-unit technique is within 5% of

the runtimes produced by either of the K-Means clustering

techniques. The near identical runtimes show that the

associate-with-closest-logic-unit approach presented in

Section IX works as well as a more sophisticated clustering

approach on an island-style architecture. The geometric

mean of the compression ratios is 30:1 for the associate-

with-closest-logic-unit approach and K-Means clustering at

empirical settings. The ratio goes down to 18:1 for the

higher-quality settings. This is to be expected, since we use

double the number of starting clusters (K = 2*NL) at the

higher-quality settings.

Table 7: A comparison of routing runtimes on HSRA.

 |S| = 0.06*NT |S| = 0.20*NT

Netlist Size Heur Associate
K-Means
(K = NL)

K-Means
(K = 2*NL) no A*

mm9b 256 1.00 1.48 (149:1) 1.16 (85:1) 1.29 (35:1) 3.87

Cse 256 1.00 1.22 (149:1) 1.03 (85:1) 1.06 (35:1) 4.39
s1423 256 1.00 1.00 (149:1) 0.92 (85:1) 0.85 (35:1) 5.23

9sym 512 1.00 1.20 (135:1) 0.81 (83:1) 0.69 (36:1) 15.42

ttt2 256 1.00 1.25 (149:1) 1.06 (85:1) 1.14 (35:1) 13.58

keyb 256 1.00 1.16 (149:1) 1.16 (85:1) 1.01 (35:1) 4.25
clip 512 1.00 1.14 (135:1) 1.02 (83:1) 1.01 (36:1) 21.38

term1 512 1.00 1.11 (150:1) 0.83 (95:1) 0.74 (39:1) 19.56

apex6 1024 1.00 1.26 (128:1) 1.24 (80:1) 1.34 (35:1) 6.53
vg2 512 1.00 1.16 (135:1) 0.96 (83:1) 0.95 (36:1) 16.81

frg1 1024 1.00 0.85 (142:1) 0.81 (88:1) 0.63 (39:1) 26.73
sbc 1024 1.00 1.13 (142:1) 0.87 (88:1) 0.87 (39:1) 12.41

styr 1024 1.00 1.06 (128:1) 0.83 (80:1) 0.74 (35:1) 13.60

i9 512 1.00 1.32 (150:1) 1.01 (95:1) 0.96 (39:1) 12.12
C3540 1024 1.00 0.79 (128:1) 0.79 (80:1) 0.72 (35:1) 5.89

sand 1024 1.00 0.88 (142:1) 0.80 (88:1) 0.81 (39:1) 10.67

x3 1024 1.00 0.88 (142:1) 0.80 (88:1) 0.85 (39:1) 3.60

planet 2048 1.00 1.14 (135:1) 0.81 (81:1) 0.89 (39:1) 13.67
rd84 2048 1.00 1.08 (135:1) 1.09 (81:1) 1.13 (39:1) 21.04

dalu 2048 1.00 0.84 (135:1) 0.82 (81:1) 0.89 (39:1) 16.62

GEOMEAN 1.00 1.08 (140:1) 0.93 (85:1) 0.91 (37:1) 10.39

Table 7 shows the results that we obtained on HSRA. With

the exception of column 2, the settings and columns are

identical to Table 6. In this case, column 2 lists the number

of logic units in the target device. Across the set of

benchmarks, the runtimes produced by our clustering-based

techniques are approximately 9% (higher-quality) and 7%

(empirical settings) faster than the runtimes achieved by

heuristically estimating A* costs. Both heuristic and

clustering-based techniques are approximately ten times

faster than an undirected search-based router. The runtimes

produced by the associate-with-closest-logic-unit technique

are approximately 16% slower than K-Means clustering at

empirical settings, and 20% slower than higher-quality K-

Means clustering. This is consistent with our intuition that

associating interconnect wires with logic units in a

hierarchical structure (Figure 10) will probably produce

cost-to-target underestimates.

 26

D. Summary of results

The results of our experiments show that K-Means

clustering produces A* estimates that are comparable to

architecture-specific heuristic estimates. A sink sub-sample

value of 6%, coupled with a value of K that is equal to the

number of logic units in the target device, produces

estimates that are up to 9% better than heuristically

calculated estimates for HSRA, and within 7% of heuristic

estimates for island-style interconnect structures.

Experiment 5 also shows that a small number of sink

terminals might be sufficient to produce estimates that are

comparable to heuristic estimates. Finally, the quality of the

clustering solutions produced by a low-effort clustering step

is surprisingly good when compared to a more sophisticated

K-Means clustering approach.

XI. CONCLUSIONS

The primary motivation for Independence was the lack of

an FPGA placement algorithm that truly adapts to the target

FPGA’s interconnect structure. We thought that FPGA

architecture development efforts would benefit from an

adaptive placement algorithm that could be used both as an

early evaluation mechanism, as well as a quality goal

during CAD tool development. Since the primary goal of an

FPGA placement algorithm is to produce a routable

placement, our solution to architecture adaptive FPGA

placement was centered on using an architecture-adaptive

router (Pathfinder) to guide a conventional simulated

annealing placement algorithm. Specifically, we used

Pathfinder in the simulated annealing inner loop to maintain

a fully routed solution at all times. As a result, our cost

calculations were based on actual routing information

instead of architecture-specific heuristic estimates of

routability.

The results presented in Section VI clearly demonstrated

Independence’s adaptability to island-style FPGAs, a

hierarchical FPGA architecture (HSRA), and a domain-

specific reconfigurable architecture (RaPiD). The quality of

the placements produced by Independence was within 2.5%

of the quality of VPR’s placements, 21% better than the

placements produced by HSRA’s place-and-route tool, and

within 1% of RaPiD's placement tool. Further, our results

also showed that Independence successfully adapts to

routing-poor island-style FPGA architectures. When

considered together, these results were a convincing

validation of using an architecture adaptive router to guide

FPGA placement.

In our opinion, Independence’s main weakness is its

runtime. The algorithm pays a stiff runtime penalty for

using a graph-based router in the simulated annealing inner

loop. In Sections IX and X, we presented ideas on speeding

up Independence (and FPGA routing in general) using the

A* algorithm. Again, to preserve adaptability, we

concentrated on developing an approach that would work

across different FPGA architectures. Memory

considerations quickly eliminated a straightforward

approach that would pre-compute and store A* estimates

for every sink terminal at each interconnect wire. The

central idea behind our approach was to cluster interconnect

wires that have similar A* estimates, so that all wires that

belong to the same cluster could share an entry in the A*

estimate table. Thus, the memory requirements of the A*

estimate table produced by our clustering technique were

comfortably manageable when compared to the

straightforward approach.

We evaluated the efficacy of our clustering-based technique

on an island–style architecture and a hierarchical

architecture (HSRA). The quality of the A* estimates

produced by our technique was within 7% of heuristic

estimates on the island-style architecture, and up to 9%

better than heuristically calculated estimates for HSRA. The

overall speedups produced by our techniques when

 27

compared to a non-A* approach were approximately 6X for

island-style devices and 10X for HSRA. Lastly, we also

observed that a low-effort clustering technique might

produce estimates that are comparable in quality to both

heuristic and clustering-based estimates.

In Table 8, we present runtime comparisons between VPR

and Independence. The version of Independence used to

obtain the numbers in Table 8 includes runtime

enhancements based on the A* algorithm. Column 1 lists

benchmark netlists, column 2 lists the number of logic plus

IO blocks in the netlist, column 3 lists the number of nets,

column 4 lists the size of the target array, column 5 lists

VPR’s runtime, column 6 lists Independence’s runtime, and

column 7 lists the ratio between Independence’s and VPR’s

runtime. All runtimes are in seconds. Across the benchmark

set, Independence requires between approximately three

minutes (s1423) and seven hours (dsip). Based on these

runtimes, there is a compelling need to explore techniques

that might reduce Independence’s runtime even further.

Table 8: A comparison of placement runtimes on an island-

style interconnect architecture.
 Netlist Nblocks Nets Size VPR Ind Norm

s1423 51 165 6x6 0.3 192 640

term1 77 144 6x6 0.34 193 568

i9 195 214 7x7 0.71 555 782

dalu 154 312 8x8 0.95 1124 1183

vda 122 337 9x9 1 1187 1187

x3 290 334 8x8 1.25 1354 1083

rot 299 407 8x8 1.39 1925 1385

x1 181 352 10x10 1.29 2257 1750

pair 380 512 9x9 1.85 3365 1819

ex5p 210 767 12x12 2.6 5924 2278

apex4 193 869 13x13 2.82 7670 2720

tseng 307 780 12x12 2.75 8725 3173

misex3 207 834 14x14 3.08 10054 3264

alu4 215 792 14x14 3.1 10913 3520

dsip 598 762 14x14 4.95 24719 4994

REFERENCES

[1] M. Alexander, J. Cohoon, J. Ganley, G. Robins, “ Performance-

Oriented Placement and Routing for Field-Programmable Gate

Arrays”, European Design Automation Conference, pp. 80 – 85,

1995.

[2] J. Beetem, “Simultaneous Placement and Routing of the

LABYRINTH Reconfigurable Logic Array”, In Will Moore and

Wayne Luk, editors, FPGAs, pp. 232-243, 1991.

[3] V. Betz and J. Rose, “VPR: A New Packing, Placement and

Routing Tool for FPGA Research”, 7th International Workshop on

Field-Programmable Logic and Applications, pp 213-222, 1997.

[4] V. Betz, J. Rose and A. Marquardt, Architecture and CAD for

Deep-Submicron FPGAs, Kluwer Academic Publishers, Boston,

MA:1999.

[5] V Betz, “The FPGA Place-and-Route Challenge”, at

http://www.eecg.toronto.edu/~vaughn/

[6] G. Boriello, C. Ebeling, S Hauck, S. Burns, “The Triptych FPGA

Architecture”, IEEE Transactions on VLS Systems, Vol. 3, No. 4,

pp. 473 – 482, 1995.

[7] Y.W. Chang and Y.T. Chang, “An Architecture-Driven Metric for

Simultaneous Placement and Global Routing for FPGAs”,

ACM/IEEE Design Automation Conference, pp. 567-572, 2000.

[8] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms,

MIT Press, Cambridge, MA:1990.

[9] D. Cronquist, P. Franklin, C. Fisher, M. Figueroa, and C. Ebeling,

“Architecture Design of Reconfigurable Pipelined Datapaths”,

Twentieth Anniversary Conference on Advanced Research in

VLSI, pp 23-40, 1999.

[10] A. DeHon, “Balancing Interconnect and Computation in a

Reconfigurable Computing Array (or, why you don’t really want

100% LUT utilization),” ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays, 1999.

[11] N. Kafafi, K. Bozman, S Wilton, “Architectures and Algorithms

for Synthesizable Embedded Programmable Logic Cores”,

ACM/SIGDA International Symposium on Field Programmable

Gate Arrays, pp. 3 – 11, 2003.

[12] S. Kirkpatrick, C. Gelatt Jr., M. Vecchi, “Optimization by

Simulated Annealing”, Science, 220, pp. 671-680, 1983.

[13] A. Marquardt, V. Betz and J. Rose, “Timing Driven Placement for

FPGAs”, ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, pp. 203 – 213, 2000.

[14] A. Marquardt, V. Betz and J. Rose, “Speed and Area Tradeoffs in

Cluster-Based FPGA Architectures”, IEEE Transactions on VLSI

Systems, Vol. 8, No. 1, pp. 84 – 93, 2000.

[15] L. McMurchie and C. Ebeling, “PathFinder: A Negotiation-Based

Performance-Driven Router for FPGAs”, ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, pp

111-117, 1995.

[16] S. Nag and R. Rutenbar, “ Performance-Driven Simultaneous

Placement and Routing for FPGAs”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits, Vol. 17, No. 6, pp.

499 – 518, 1998.

[17] N. Nilsson, Principles of Artificial Intelligence, Morgan

Kaufmann, San Francisco CA, 1980.

[18] C. Sechen, VLSI Placement and Global Routing Using Simulated

 28

Annealing, Kluwer Academic Publishers, Boston, MA: 1988.

[19] A. Sharma, “Development of a Place and Route Tool for the

RaPiD Architecture”, Master’s Project, University of Washington,

December 2001.

[20] A Sharma, C. Ebeling, and S. Hauck, “Architecture-Adaptive

Routability-Driven Placement for FPGAs”, in International

Conference on Field Programmable Logic and Applications,

2005.

[21] J. Swartz, V. Betz and J. Rose, “A Fast Routability-Driven Router

for FPGAs”, ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, pp. 140 – 149, 1998.

[22] W. Swartz and C Sechen. “New Algorithms for the Placement and

Routing of Macrocells”, IEEE International Conference on

Computer Aided Design, pp. 336 – 339, 1990.

[23] R. Tessier, “Negotiated A* Routing for FPGAs”, Fifth Canadian

Workshop on Field Programmable Devices, 1998.

[24] N. Togawa, M. Yanigasawa, T. Ohtsuki, “Maple-opt: A

Performance-Oriented Simultaneous Technology Mapping,

Placement, and Global Routing Algorithm for FPGAs”, IEEE

Transactions on Computer-Aided Design of Integrated Circuits,

Vol. 17, No. 9, pp. 803 – 818, 1998.

[25] P. Wang and K. Chen, “A Simultaneous Placement and Global

Routing Algorithm for an FPGA with Hierarchical

Interconnection Structure”, International Symposium on Circuits

and Systems, pp. 659 – 662, 1996.

[26] T. Wong, “Non-Rectangular Embedded Programmable Logic

Cores”, M.A.Sc. Thesis, University of British Columbia, May

2002.

