
Architecture-Adaptive Range Limit Windowing for
Simulated Annealing FPGA Placement

Ken Eguro Scott Hauck Akshay Sharma
Department of Electrical Engineering

University of Washington
Seattle, WA

{eguro, hauck, akshay}@ee.washington.edu

ABSTRACT
Previous research has shown both theoretically and practically
that simulated annealing can greatly benefit from the
incorporation of an adaptive range limiting window to control the
acceptance ratio of swaps during placement. However, the
implementation of such a system is not necessarily obvious.
Existing range limiting techniques have several fundamental
shortcomings when dealing with both standard island-style
FPGAs and more exotic architectures. In this paper we discuss
the nature of these problems and present a new algorithm that
attempts to deal with these issues.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids – Placement and
routing.

General Terms
Algorithms, Design.

Keywords
Reconfigurable logic, placement, simulated annealing,
windowing, range limiting, architecture-adaptive.

1. INTRODUCTION
In [5], the authors discuss the relationship between move
acceptance rate and magnitude of perturbation during simulated
annealing, and their combined effect on overall solution quality
and speed of convergence. They present a theoretical proof that
roughly states that the best results can be obtained in the shortest
amount of time when the ratio of moves accepted is kept as close
as possible to 44% for the duration of the annealing. Towards this
end they suggest an adaptive range limiter that controls the
maximum distance by which any given block can be moved at
different points of the annealing process.
Figure 1 shows us an example of the behavior of the acceptance
rate during annealing. The bottom-most line assumes that our
moveset allows any block in the array to be swapped with any
other block in the array for the entire cooling schedule. Here we

can see that we quickly migrate from nearly 100% acceptance,
due to the very high temperature, to our target of 44%. However,
we can also see that we would quickly drop below this acceptance
rate as the annealing continues if we were to maintain this
approach. Of course, once the acceptance rate drops too low, our
annealing process makes very slow progress towards exploring
new solutions.
Instead, as suggested in [5], when the annealing reaches the 44%
crossover point we can maintain the target acceptance rate by
introducing a range limiter window. Simulated annealing
operates by always accepting moves that reduce or do not affect
the cost function. Move that increases the cost function are
accepted based on a probability that is directly related to the
temperature and inversely related to how much worse the move
makes the system as a whole. Thus, we can increase the
acceptance rate by reducing the maximum amount by which any
given block can migrate in a single move. This is both because a
move of a smaller magnitude has a greater chance of being a zero-
cost move and because any potential increase in the cost function
would be naturally smaller. Thus, we can see that until we reach a
range limit of one, the cooling schedule’s temperature reduction
can be compensated for by gradually shrinking the maximum
distance by which we can move any block and the acceptance rate
will roughly follow the dotted line in Figure 1 between the two
extreme range limits.
VPR [1] adapts this method to be used for FPGA placement by
defining an Rlimit term that changes during the annealing. In this
case, when we perturb the system we form an imaginary
(2Rlimit+1) x (2Rlimit+1) bounding box centered on a particular
block and the moveset randomly chooses to swap with another
block within this bounding box. Although this system has been

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100 120
Iterations

A
cc

ep
ta

nc
e

R
at

io

1
2
4
8
16

Figure 1. Acceptance rate during annealing for constant

maximum move range.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2005, June13–17, 2005, Anaheim, CA,USA.
Copyright 2005 ACM 1-59593-058-2/05/0006…$5.00

widely accepted as the de facto standard for FPGA placement
range limiting, our paper will discuss some of the shortcomings of
this approach both on island and non-island style FPGAs. This
will motivate our introduction of a new technique that better
embodies the original intent of the theoretical work done in [5].

2. VPR Range Limit Windowing
The range limiting functionality of VPR, detailed in [2], selects,
with equal probability, any of the blocks that have an X and Y
location within Rlimit of a block under consideration. This
approach is simple to implement, and if we examine the
Manhattan distance of each of the possible target locations we can
easily determine the likelihood of selecting a given distance move.
As can be seen in Figure 2, a range limit window of Rlimit = 2
encompasses eight locations that would result in either a distance
two or three move and four that would result in either a distance
one or four move. In Figure 3 we extrapolate out to the case of
Rlimit = 5. If we assume an infinite-sized FPGA (to avoid edge
effects), the fact that any block within the range limit window has
equal probability of being chosen creates the distribution of
possible length moves shown in the right-most graph in Figure 3.
We can see that moves of length five and six are significantly
more likely than shorter moves and the probability of selecting
blocks outside of the Rlimit = 5 window drops to zero.

3. Implications of Hard Macros, Incremental
Placement and Routing-Poor Architectures
Unfortunately, since this technique only considers swaps within a
hard rectangular bounding box, it fails when not allowed free
reign over the entire architecture during placement. First let us
consider the case in which we are given large pre-placed and
routed macros or are attempting incremental place and route for
new portions of a circuit around unmodified sections. Seen in
Figure 4, if these unchangeable portions of the circuit occupy the
center of the array, when we attempt to place the rest of logic the
range limiter window quickly eliminates any possibility of
swapping blocks between the left and right sides. Effectively, the
very early, high-temperature stages of the annealing process
completely determine the partitioning of the circuit.
We can also consider the situation in which we forbid the
occupation of certain locations before or during the placement
process. One simple example we encountered occurred during
follow-on work to explore some of the issues regarding placement
on routing-poor architectures that we first introduced in [4].
Consider the example in Figure 5 (top) in which we place a 6-
block circuit within a much larger array. Since the normal VPR
toolflow does not consider the distribution of routing resources
during the placement phase, it will place the circuit as tightly as
possible. If the routing channels are not wide enough to support
this close placement, routing will fail. Notice that there might
actually be a routable placement, but in this case, the majority of
the routing resources are inaccessible since they are in unoccupied
regions of the chip.
If we were to take that circuit and evenly space the blocks to
cover the entire array we can roughly double the usable routing in
both the horizontal and vertical directions. One very simple
algorithm that might be able to generate such a depopulated
mapping forbids the placement tool from ever occupying three out
of every group of four logic blocks. Unfortunately, when we
anneal on such a depopulated architecture, the placement will

eventually fail when the range limit window reaches one, since
there are no valid locations for any of the occupied blocks to swap
with, as shown in Figure 5 (bottom).
Although this specific case can be dealt with simply enough,
problems such as these become much more difficult to solve as
the depopulation becomes more sophisticated or less predictable.
For example, it would be very difficult to design an algorithm that
could deal with arbitrary depopulation due to incremental place-
and-route or hard macros. Another extremely relevant example,
we might desire a tool that can place and route around randomly

0

12

1

1

1

2 2

2

2

2

2

2

3

33

3

3

3 3

3

4

4 4

4

Figure 2. Manhattan distance within Rlimit = 2 bounding box.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 2 4 6 8 10

Distance

Pe
r-

sw
ap

 w
ei

gh
t

0

5

10

15

20

25

0 2 4 6 8 10

Distance

N
um

be
r o

f P
os

si
bl

e
Sw

ap
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 2 4 6 8 10

Distance

O
dd

s
of

 s
w

ap

Figure 3. Probability of a distance N swaps using VPR’s

bounding box-based range limiter. The per-swap weight (left)
shows the even probability assigned to each move of distance
N. Given the distribution of possible moves within the square

range limiter (middle), we get the overall distribution of
moves (right).

Figure 4. Placement disrupted by previously placed and

routed blocks.

Figure 5. Placement halts when Rlimit = 1.

occurring chip defects. This concern is particularly important
given the manufacturing difficulties that will likely be
encountered towards the end of the silicon roadmap and the
extremely high defect rate of proposed sub-lithographic nanotube
and nanowire architectures.

4. Implications of Hierarchical Architectures
Another concern is that a hard range limiter will have particularly
poor performance when used on hierarchical architectures. Of
course, the purely Manhattan distance nature of customary range
limiting is not appropriate for such architectures, but even if we
adapt these techniques so that we limit movement based upon the
communication distance between two blocks, a hard windowing
approach will exhibit an unusual partitioning behavior during
placement. Consider the example shown in Figure 6. Here we
show a hierarchical FPGA consisting of 16 logic blocks and a
range limit window of distance four. Notice that the logic block
in the bottom left corner can only be swapped with the three other
blocks in its cluster. When the range limit distance is reduced
from seven to six to four, logic blocks are permanently locked
within their sixteen, eight, or four member clusters, respectively.
Notice that this is dramatically different from the behavior of
range limiting in the island-style FPGA case. Although the range
limiter window prevents a logic block from moving beyond a
particular distance in a single swap, the logic block could
eventually move arbitrarily to any location across the array given
multiple perturbations. This does not hold true in the case of
hierarchical architectures. Instead, each time we reduce the range
limit distance we effectively recursively bi-partition the circuit.

5. Distance-Based Weighting
Even considering island-style FPGAs, the standard VPR range
limiter technique described above suffers from the artificial
constraints of a hard rectangular bounding box. That is, it
completely disregards locations outside of the range limiter
window even though it does consider equivalent locations inside.
As seen in Figure 7, there are multiple locations outside of a Rlimit
= 2 window that would constitute a swap of length three or four
that should logically be included for consideration. We would
also like to have a windowing technique that works for any FPGA
architecture (such as HSRA) or placement situation (such as the
depopulated or macro-based placement).
To address these concerns we completely eliminate the concept of
a hard range limit and instead weight the probability of swapping
any two blocks in the array solely based upon their distance from
each other:

M
i

i
D

P 1=

Here, Di represents the distance between two blocks and M is a
new dynamically adjusted factor that takes the place of the former
Rlimit term to control the acceptance rate during the annealing
process. Notice that when M equals zero, we do not have any
range limiting. The left-most graph in Figure 8 shows how the
weighting factor of each length move changes across a range of M
values. We can also see the probability for swaps from the center
of an 11 x 11 block array for the same range of M values in the
right-most graph. Although we discuss the implementation more
thoroughly in the next section, we can see that the annealing
process should begin with a small M factor to allow for large

Figure 6. Range limiters on hierarchical architectures.

0

12

1

1

1

2 2

2

2

2

2

2

3

33

3

3

3 3

3

4

4 4

4

3

3

3

3

4

4 4

4

4

44

4

4 4

4

4

Figure 7. Manhattan distance of blocks outside of the

rectangular range limiter window.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 2 4 6 8 10

Distance

P
er

-s
w

ap
 w

ei
gh

t

M=0
M=1
M=2
M=3

0

5

10

15

20

25

0 2 4 6 8 10

Distance

N
um

be
r

of
 P

os
si

bl
e

S
w

ap
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10

Distance

O
dd

s
of

 s
w

ap

M=0
M=1
M=2
M=3

Figure 8. Probability of a distance N swaps using distance-

based range limiter
magnitude moves. This term should then be gradually increased to
reduce the likelihood of long distance moves as the temperature is
reduced. Observe the largest difference between this approach
and traditional windowing, the probability of selecting even the
longest swap never reaches zero regardless of how large M gets.

6. Implementation Details
Implementing the architecture-adaptive windowing presented in
this paper is more complex than the traditional method, but is still
relatively straightforward. First, we need the distance between all
logic blocks in the architecture. This can either be given in an
architecture description file or can be pre-calculated via an all-
pairs shortest path search. The more complex issue is how to
determine the proper M factor between iterations in order to
roughly maintain the 44% acceptance ratio. To do this, we make
a somewhat inaccurate assumption – we pick M such that it would
have achieved a 44% acceptance ratio in the previous iteration.
This is inexact since the next iteration will have a lower
temperature, and thus the probabilistic acceptance function will
likely accept fewer bad moves. However, we have found this to
work acceptably in practice. Adding an empirically-determined
correction factor, such as picking M to achieve a 44%+∆

acceptance ratio in the previous iteration, would be interesting
future work.
To determine M, during each iteration we record arrays of the
number of attempted and accepted moves for each distance. We
can then compute the acceptance ratio at each distance during the
previous iteration. Given a pre-calculated array of the number of
possible moves for each distance, we can estimate the overall
acceptance ratio in the previous iteration for a given M using the
formula:

∑

∑

=

=

max

max

1

1

1*][

][
][*1*][

D

D

M

i
i

D

D i

i
M

i
i

i

i

D
DsNumPosSwap

DNumAttempt
DNumAccept

D
DsNumPosSwap

We can then find the M that would have achieved a 44%
acceptance ratio via a binary search. Range limits can also be
imposed on M, and we found empirically that clamping the value
between one and three provides reasonable results.
Move generation is also more complex in distance windowing
because of the irregular weights. As seen in Figure 9, we first
create a two-dimensional array SwapOdds[from][to], where the
indices are the possible source, from, and destination, to, of a
swap in the architecture. These values are calculated at the
beginning of each iteration based upon the M computed above and
the distance of the swap. Invalid swaps, such as an IOB to CLB
swap are set to 0. We then compute an array
CumeSwapOdds[from][to] as shown in Figure 9. Specifically:

]][[]1][[]][[
]0][[]0][[

jiSwapOddsjiCSOjiCSO
iSwapOddsiCSO

+−=
=

With the creation of the CumeSwapOdds array, we now have an
efficient move generation method. We first pick a random “from”
node, then a random number R on the interval [0,1). We can then
perform a binary search on CumeSwapOdds[from] to determine
which other block represents the interval that includes this random
number.

7. Results
7.1 Conventional Island-Style Architectures
In Figure 10 we provide a comparison of range limiter techniques
on the 20 MCNC benchmarks included in the VPR suite. Here we
report the channel width of the best of five placement and detailed
routing runs on the 4lut_sanitized architecture using bounding box
placement and breadth-first routing. “VPR” indicates that we
used normal VPR windowing in which we use the built-in
dynamically controlled square range limit window within which
all swaps have the same probability. “Distance” refers to our
suggested technique in which we eliminate the hard range limit
window entirely and any block can be swapped with any other in
the array with a probability proportional to (1/D)N. For a point of
reference we also include two other tests, “Rlimit = ∞” in which we
eliminate all range limiting and allow all length swaps with equal
probability, and “Rlimit = 1” in which we only allow swaps between
a block and the immediately surrounding blocks. One issue when
comparing these windowing techniques is that a change in the
moveset can also affect the cooling schedule. Although the CPU
time per move was approximately the same for all of the
windowing approaches, the adaptive nature of the cooling

schedule described in [1] makes the total number of temperature
iterations for every placement run variable, even given different
seeds using the same windowing technique. To account for this,
we have not only conducted multiple runs of each technique using
different random seeds, but also varied the number of moves per
iteration to build the curves shown in Figure 10.
As predicted by the curves we introduced in Figure 1, eliminating
range-limiting altogether clearly causes the annealing to settle on
mediocre results when the acceptance ratio becomes too small to
explore new solutions. Although restricting all movements to
nearest-neighbor performs slightly better, it likely runs into
problems adequately exploring diverse portions of the problem
space, particularly for shorter placement runs. Although since we
report detailed routing results and not merely placement cost there
is some noise in the data, we can also see that our window-less
distance range limiter generally performs as well or better the
original VPR algorithm. It is also quite possible that there is room
for further improvement. Any gains provided by a more graceful
distribution of possible swap lengths might be offset by our very
rudimentary adaptive weighting function and we might spend too
much time exploring inappropriate length moves. Although we
would like to explore this further and refine our probability
weighting function, most importantly this testing shows that our
new system performs at least as well or better than the state-of-
the-art adaptive VPR range limiter.

SwapOdds[0][1-8]

8

54

7

2

6

3

10

8

54

7

2

6

3

10 1
2

3
4

8
7

6
5

1
2

3
4

8
7

6
5

CumeSwapOdds[0][1-8]

0 1
1 2 3 4 8765

R

0 1

Figure 9. Implementation of move generation

0.95

1.00

1.05

1.10

1.15

0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

Normalized Annealing Moves

N
or

m
al

iz
ed

 T
ra

ck
 C

ou
nt

Rlim = inf
Rlim = 1
VPR
Distance

 VPR Distance Rlimit = ∞ Rlimit = 1

Place Move 0.50 0.47 0.51 0.49
Tracks 1.00 1.01 1.09 1.05
Place Move 1.00 1.04 1.02 0.97
Tracks 1.00 0.98 1.05 1.02

Figure 10. Comparison of range limiter techniques – Detailed
routing channel width for 20 MCNC benchmarks

7.2 Depopulated Architectures
Of course, conventional placement on an island-style FPGA is not
necessarily where we expect the distance-based weighting system
to truly show its value. Figure 11 and Figure 12 show how the
architecture adaptive window-less range limiter compares to a
custom-designed solution for a depopulated architecture.
In this testing we determined the baseline routing channel width
for each of the twenty benchmarks included in the VPR suite on
the 4x4lut_sanitized architecture using the default placement and
routing options. We then re-placed and routed the benchmarks on
arrays with fewer routing tracks per channel and determined how
much larger an array was needed to compensate for the thinner
routing channels.
As seen in Figure 11, the normal VPR toolflow does not consider
routing density during placement and thus produces tight
configurations in which the extra routing capacity afforded by a
larger array cannot be utilized. Arrays up to four times minimum
size were considered before a technique was deemed a failure.
We can see that none of the twenty benchmarks are successfully
placed and routed using normal VPR placement once we reach a
routing channel width of 70% the baseline.
To account for this we repeated the testing, but evenly distributed
specifically forbidden blocks starting from the initial placement.
For every size array we determined how many unoccupied blocks
there would be in the architecture and uniformly “locked” the
extra logic locations throughout the array. We then placed the
benchmarks on these arrays using both our distance-based
probability weighting system and a slightly modified VPR
windowing system in which instead of clamping Rlimit between the
maximum size of the array and one, we clamp the value between
the maximum size of the array and two. Notice that since we
tested architectures that have down to half of the “suggested”
channel width, feasible placements almost certainly exist for
arrays four times the minimum size. In this case we will rarely
forbid more than three out of every group of four blocks, as
shown in Figure 5, so restricting Rlimit to a minimum of two will
always allow an occupied block to find at least one other valid
location to swap with during placement.
As seen in Figure 11, the depopulation technique indeed finds
valid placements and routings for the entire suite of twenty
benchmarks in all but the highest stress cases. As seen in Figure
12, our distance-based range limiter performs on par with the
modified VPR windowing system using 29% fewer placement
moves. Although due to computing time and resource constraints
we could not repeat an exploration of placement effort versus
quality as in Section 7.1, producing virtually identical results with
a large difference in placement moves indicates again, that at the
very least our new windowing technique performs as well or
better than VPR’s more traditional formulation.
More importantly, to use the existing VPR hard windowing
approach we needed to manually adjust the parameters on the
limits of the range window to prevent the placement from entering
an infinite loop when Rlimit= 1. Not only does this potentially
require the intervention of a specialist, determining the lower limit
for the range window is not obvious if the distribution of
forbidden locations is not predictable, as in the cases mentioned
earlier of hard macros, incremental placement or placement in the
face of manufacturing defects.

7.3 Hierarchical Architectures
We also expect that a hard range limiter will perform poorly when
considering hierarchical architectures. To test this theory we
examine benchmarks on the HSRA[6] architecture. In this
architecture, logic blocks reside at the leaf nodes and are
interconnected via a tree structure that is defined by a base
channel width, or the number of tracks connecting neighboring
pairs of leaves together, and an interconnect growth rate, which
defines how rich the routing resource are compared to the base
channel width as we move up the tree.
For our testing we began by randomly selecting fifteen netlists
that require between 128 and 512 nodes out of the 180 netlists
examined in [3]. To determine a baseline architecture for each
netlist we used the HSRA placement tool also from that paper.
This placement tool takes in two parameters in addition to the
netlist: a target base channel width and an interconnect growth
rate. Based upon these three factors the tool not only produces a
placement but also determines what it believes to be an
appropriate width, or lsize, architecture. Notice that the width of
the architecture also determines the number of interconnect levels
or height of the architecture. If we were following the normal
toolflow this information would be forwarded to the HSRA
routing tool, arvc. Here, based upon the specified interconnect
growth rate the router determines the minimum base channel
width – normally larger than the target base channel width
provided to the placement tool.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

VPR - 1 VPR - 2 VPR - 3 .9 VPR .8 VPR .7 VPR .6 VPR .5 VPR

Channel Width

P
&

 R
 S

uc
ce

ss
 R

at
e

VPR
Distance
Modified VPR

Figure 11. P&R success rate on routing-poor architectures

0.00

0.50

1.00

1.50

2.00

2.50

3.00

VPR - 1 VPR - 2 VPR - 3 .9 VPR .8 VPR .7 VPR .6 VPR

Channel Width

N
or

m
al

iz
ed

 A
ve

ra
ge

Distance Array Size
Mod. VPR Array Size
Dist. Place Iterations
Mod. VPR Place Iter.

 Distance Modified VPR
Ave. Array Size 1.58 1.58
Ave. Place Moves 0.99 1.28

Figure 12. Routing-poor architecture results. Average across
20 MCNC benchmarks and normalized to default VPR

results.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

HSRA Window Rlimit = inf Distance

N
or

m
al

iz
ed

 A
ve

ra
ge

Chan. Width
Ave. Moves

 HSRA Window Rlimit = ∞ Distance
Chan. Width 0.87 1.00 0.72 0.70
Place Iterations - 1.00 0.96 0.92

Figure 13. HSRA testing results. Average results normalized
to conventional hard range limiting data.

We have developed our own simulated annealing-based
placement tool for HSRA [6], which produces very high-quality
placements for HSRA. To determine the effect of different range
limiting methodologies on placement quality we implemented
three range limiting techniques: a hard adaptive range limit
window based upon communication distance, as described in
Section 4; a windowless distance-based range limiter, as described
in Section 5; and no range limiting. We used the HSRA
placement tool to determine an appropriate lsize for each netlist
given a target base channel width of eight and an interconnect
growth rate of 0.5. These parameters were chosen to provide a
medium-stress placement problem for all of the netlists. We then
fed the lsize determined by the HSRA placement tool and the
netlist into our own tool to get three placements, one for each
range limiting technique. These placements were then fed into
arvc to provide the results shown in Figure 13.
As predicted, a hard range limit window ends up unnaturally
partitioning the circuit very early in the annealing process,
producing poor results. We can see that the original
quadratic/partitioning-based HSRA placement tool is able to beat
this approach by an average of 13% base channel tracks. One
surprise, however, is that the naïve windowing technique of
allowing all swaps during the annealing process easily
outperforms both the hard range limit window and original HSRA
placement tool by an average of 28% and 15% respectively.
Finally, our adaptive window-less distance-based technique
surpasses all of the other techniques: quadratic
placement/recursive bi-partitioning, adaptive hard windowing,
and no range limiting by 30%, 17%, and 2% fewer base routing
tracks.
Again, due to computing time and resource constraints we could
not repeat a detailed exploration of placement effort versus quality
as in Section 7.1. However, in the brief testing we were able to
perform we determined that, similar to the results in Figure 10, we
do not expect the amount of required routing to change
dramatically even over a wide range of placement moves and that
our architecture-adaptive windowless range limiter will
consistently out-perform other approaches.

8. Conclusions
In this paper we have shown that although range limiting
techniques have the ability to greatly improve the convergence

speed and quality of simulated annealing placement, existing
methodologies has fundamental shortcomings when dealing with
both island-style and hierarchical FPGA architectures. Not only is
there a question about solution quality, the conventional approach
has significant issues that might limit its use considering modern
problems such as incremental or defect-tolerant placement. In the
worst case, conventional placement tools may not function at all,
requiring specialist intervention to develop problem-specific
solutions.
We presented a new range limiting technique that attempts to
address these issues. Our approach eliminates the concept of a
range limit window entirely. Instead, any block has the possibility
of swapping with any other block in the array throughout the
annealing process and we control the movement acceptance ratio
by changing the relative probability of longer versus shorter
length moves. This technique, without any tuning or special
cases, provides an architecture-independent methodology that
performed equal to or better than standard windowing in all three
placement situations considered: conventional island-style
placement, island-style placement in the face of block restrictions
and hierarchical architectures.

9. Acknowledgements
We would like to thank André DeHon at Caltech for providing the
HSRA toolflow and helping us to understand various aspects of
the architecture.

10. References
[1] Betz, Vaughn and Jonathon Rose. “VPR: A New Packing,

Placement and Routing Tool for FPGA Research.”
International Workshop on Field Programmable Logic and
Applications, 1997: 213-22.

[2] Betz, Vaughn, Jonathan Rose, and Alexander Marquardt,
Architecture and CAD for Deep-Submicron FPGAs, Kluwer
Academic Publishers, 1999.

[3] DeHon, A. “Balancing Interconnect and Computation in a
Reconfigurable Computing Array (or, why you don't really
want 100% LUT utilization).” International Symposium on
Field Programmable Gate Arrays, 1999: 125-34.

[4] Eguro, K. and S. Hauck, "Issues of Wirelength Cost Models
in Routing-Constrained FPGAs", University of Washington,
Dept. of EE Technical Report UWEETR-2004-0006, 2004.

[5] Lam, J. and J. M. Delosme, "Performance of a New
Annealing Schedule." Proc. 25th Design Automation Conf.,
1988, pp. 306-11.

[6] Sharma, A., C. Ebeling, and S. Hauck. “Architecture
Adaptive Routability-Driven Placement for FPGAs”.
Submitted to International Symposium on Field
Programmable Logic and Applications, 2005.

[7] Tsu, W., K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung,
O. Rowhani, V. George, J. Wawrzynek, and A. DeHon.
"HSRA: High-Speed, Hierarchical Synchronous
Reconfigurable Array". International Symposium on Field
Programmable Gate Arrays, 1999: 125-34.

