
Impulse C vs. VHDL for Accelerating Tomographic Reconstruction

Jimmy Xu1, Nikhil Subramanian1, Adam Alessio2, Scott Hauck1

1 Department of Electrical Engineering, 2 Department of Radiology, University of Washington,
Seattle, WA. USA

{jimmyxu, niksubr, aalessio, hauck}@u.washington.edu

Abstract

While traditional methods of designing FPGA

applications have relied on schematics or HDL, much
interest has been shown in C-to-FPGA tool flows that
allow users to design FPGA hardware in C. We
evaluate a C-to-FPGA tool flow (Impulse C) by
analyzing the performance of three independent
implementations of the Computed tomography (CT)
filtered backprojection (FBP) algorithm developed
using C, Impulse C, and VHDL respectively. In the
process, we compare the design process of Impulse C
versus HDL, and discuss the benefits and challenges of
using Impulse C. In addition, we explore the benefits of
tightly-coupled FPGA acceleration offered by the
XtremeData XD1000. The results demonstrate that
Impulse C designs can achieve over 61x improvement
over multi-threaded software, and similar performance
as VHDL, while significantly reducing the design
effort, and that tightly-coupled FPGA coprocessors
like the XD1000 effectively overcomes the traditional
communication bottleneck between CPU and FPGA.

1. Introduction

Tomography (CT) is a medical imaging technique
used to create cross-sectional images from x-ray
transmission data acquired by a scanner. In traditional
tomographic systems, the primary computational
demand after data capture by the scanner is the
backprojection of the acquired data to reconstruct the
scanned object. Backprojection can be viewed as the
mapping of raw scanner data into the image space. In a
typical CT system, the data has ~106 entries per cross-
section, and the process of tracing each datum through
the image space is computationally demanding. As a
result, hardware acceleration of this process has been
the focus of several studies [1].

Previous works often used FPGAs to implement
such hardware accelerators, and have achieved
dramatic improvements over microprocessor based

software systems. However, the traditional method of
designing FPGA based accelerators, using either
schematics or HDL to describe the hardware, require
the skill set and expertise of a hardware engineer. A
promising method of reducing this barrier to entry is a
C-to-FPGA tool flow that allows users to describe the
hardware computations in C and automatically
generates the hardware description for synthesis.

The general perception has been that while such
high level tool flows are simple to use, they do not
provide the same level of performance as hand coded
HDL. We investigate this notion by considering a C-
to-FPGA tool flow called Impulse C [2]. Our
benchmark was an implementation of the filtered
backprojection (FBP) algorithm running on a
microprocessor. We partitioned the design such that
the compute intensive backprojection step was run on
an FPGA while the user interface and some filtering
operations were performed on the host processor. The
XD1000 development system was chosen for the
implementation because it offers a tightly coupled
CPU-FPGA platform, reducing communication latency
that can overshadow the benefits of using hardware
acceleration.

Overall, this paper provides a case study of the
performance of Impulse C in the design and
implementation of a typical application that can benefit
from hardware acceleration. We hope to provide an
accurate representation of the benefits and
shortcomings of using Impulse C to replace traditional
development methods for FPGAs.

2. Background
2.1. Tomographic Reconstruction

Tomographic reconstruction is the process of
generating cross-sections of an object from a series of
measurements acquired from many different directions.
In Computed Tomography (CT scans), the
measurements are x-ray attenuation data. The set of all
projections acquired by a scanner is stored as a two
dimensional matrix, with the dimensions being the

angle at which the projection was acquired, and the
position of the detector that recorded the x-ray. This
data represents a 2-D spatial function termed a
sinogram. The problem of reconstruction can be
viewed as the problem of transforming the sinogram
(θ,S) into the image space (X,Y).

2.2. XD1000 Coprocessor Accelerator

Frequently occurring or complex computations can
overwhelm the primary microprocessor (host or CPU)
in a computer system. A solution to this is utilizing
coprocessors to shoulder some of the burden, allowing
the CPU to offload these computations. The host
processor would retain functions such as interfacing
with the user or peripherals, and the coprocessor would
be tasked with processing the raw data.

Companies such as DRC Computer and
XtremeData take an approach with FPGA coprocessors
that use a very tightly-coupled FPGA to CPU
interface, with the FPGA coprocessor module situated
in one of the CPU sockets in an AMD Opteron
motherboard. This allows the FPGA module to
communicate with the CPU via the HyperTransport
bus, which has a bandwidth of 1.6 GB/s. This remedies
the bandwidth concern with accelerating applications
using FPGA coprocessors.

2.3. Impulse C

While FPGAs have traditionally been programmed
with either schematics or HDL describing the
hardware, interest has been growing in the use of C-to-
FPGA tool flows. One example is Impulse C, which
promises to reduce design and programming effort.

The Impulse C tools include the CoDeveloper C-to-
FPGA tools and the CoDeveloper Platform Support
Packages (PSPs). PSPs add platform-specific
capabilities to the Impulse CoDeveloper programming
tools. With the PSP, users can partition the application
between the host and coprocessors, make use of other
on board resources, and automatically generate the
required interfaces. The interfaces are implemented as
a wrapper function around the user logic. We used the
Impulse C tools with the XtremeData XD1000 PSP.

3. Design
3.1. System Parameters

We chose to first implement 512x512 (θxS)
backprojectors independently in VHDL and Impulse
C, followed by 1024x1024 versions using each
approach. The algorithm discussions in this section

reflect the 1024x1024 implementations. Performance
results for both the 512x512 and 1024x1024
implementations can be found in the results section.

3.2. Backprojection

The CT scanning process can be modeled as
detectors acquiring line integrals of the attenuation
coefficient along the scanned object. When
reconstructing, we start with an image initialized to 0.
Corresponding to each entry of the sinogram we
identify all the pixels that lie on the ray. The values of
those image pixels are then increased by the
corresponding ray-value. When this process is
performed for all entries in the sinogram, we have
reconstructed the image. This is ray-by-ray
reconstruction. Another way to approach this is to
reconstruct one pixel at a time. Given a pixel and an
angle of measurement, the ray-value that contributes to
the pixel needs to be identified. If we go through all
angles, identifying all rays that the pixel was on, and
sum those values, that pixel is fully reconstructed. We
can then go ahead and reconstruct all other pixels in
the same way. This is pixel-by-pixel reconstruction.

Since both pixel-by-pixel and ray-by-ray
reconstruction methods require the compute loop to
touch every angle of the sinogram for every point on
the image (an O(n3) operation), the main difference
between these two methods is the outer loop of the
processing algorithm [4]. The pixel-by-pixel approach
places the x-y loops outside of the angle loop, with the
opposite being true for the ray-by-ray method. Both of
these methods can be made parallel by introducing
blocks into the image and sinogram respectively. For
the pixel-by-pixel method, each column of the image
can be assigned to a separate processing engine. An
example is a system with four 128x512 blocks, which
will require 128 processing engines. The ray-by-ray
method can be made parallel by partitioning the
sinogram into blocks of 128x1024 (θxS) with each
angle of the sinogram block assigned to a separate
processing engine.

These two methods produce identical reconstructed
images, and primarily differ in their resource
requirements [4]. However, since the hand-coded
VHDL and Impulse C versions of the backprojector
were designed independently of each other, a split
occurred at this point. Initial analysis indicated that the
pixel-by-pixel algorithm appeared more compatible
with the hardware hierarchical design abilities of HDL,
and analysis on the ray-by-ray algorithm [3] indicated
that it was compatible with the programming model of
Impulse C.

4. Implementation
4.1. Impulse C Backprojector

The sequence of operations can be found in [3].

Initially, we experienced difficulty getting the
Impulse C design to meet timing when the onboard
accumulation algorithm was used. This forced us to
create a version of the backprojector where partially
created images would be sent back to the CPU, and
later accumulated in software. While this is a fast
computation, we still wanted to avoid the additional
data transfers this would require. After analysis, it was
determined that our timing issues originated from the
declaration of an imgRAM that would span 8 MRAMs
on the FPGA. This forced the Quartus tools to connect
all 8 MRAMs together, which resulted in timing issues
since the MRAMs are spread across the FPGA. A fix
for this was found by manually declaring separate
arrays for each MRAM, and introducing separate
pipelined logic to tie them together.

Another issue we ran into during our
implementation of the above system was the pipeline
throughput generated by Impulse C. Since the XD1000
platform support package for Impulse C imposed a
fixed 100 MHz clock on the design, we aim to have the
pipeline accept inputs and produce results every cycle.
However, the pipeline could only achieve a rate of 2
cycles per input/output due to operations within the
compute loop requiring two values from the same
memory. This can be resolved with the use of true-dual
port memories; however, efforts to implement true-
dual port memories in Impulse C resulted in the design
failing to meet timing. Improvements to the PSP could
likely fix this.

4.2. VHDL Backprojector

The VHDL Backprojector shares many of the same
operation steps as the Impulse C backprojector. Details
of the differences between the two backprojector
implementations can be found in [4].

 After the 512x512 VHDL backprojector was
complete, several observations regarding the
performance of the pixel-by-pixel and ray-by-ray
methods of reconstruction were made. First, the pixel-
by-pixel method would not scale as effectively to
1024x1024 due to resource utilization. Since ray-by-
ray can use the MRAM to store the image data, much
more of the M4K and M512 RAMs were available for
the sinogram data. We realized that if we use pixel-by-
pixel to construct a 1024x1024 projector, we would
need to decrease the number of processing engines to

64. Second, we realized that the transfer time saved by
overlapping communication with computation is not
significant compared to the runtime of the compute
loop. We decided the benefits of pixel-by-pixel did not
outweigh the cost for the 1024x1024 projector, so we
adopted ray-by-ray (similar to the Impulse C design)
for the 1024x1024 version.

4.3. Software

The software benchmark performance numbers
were obtained using two quad-core Intel Xeon L5320
processors with operating frequencies of 1.86 GHz.
The base results represent a serial execution, and the
multi-threaded result is obtained using OpenMP and 8
threads distributed across each of the eight available
CPU cores.

5. Results
5.1. Performance Comparisons

Table I shows the VHDL implementation and
Impulse C implementation, compared to the software
benchmarks.

TABLE I. EXECUTION TIMES (SECONDS)

Design 512 Project 1024 Project
Base Software 5.17 20.93
Multi-threaded Software 1.06 3.95
Impulse C 0.03183 0.06452
VHDL 0.02168 0.03802

The major reasons for the FPGA implementations

being significantly faster than the software benchmark
are pipelining and loop unrolling. These two
techniques allowed us to process 128 elements in
parallel, resulting in a much faster implementation than
the software versions.

The tight coupling of the FPGA and the CPU in the
XD1000 also played a pivotal role in the results we
achieved. Due to the high bandwidth and low latency
between the CPU and the FPGA, transferring data to
the FPGA did not prove to be a bottleneck for this
application (Table II), and we were able to focus the
resources and effort to optimize other areas of the
system.

The compute pipeline in the HDL version produces
a result every cycle, whereas the Impulse C version
produces a result only once every two cycles. This
makes the hand-coded compute pipeline 2x faster.
Furthermore, in the hand-coded version the final image
is streamed directly to the CPU instead of using the
SRAM as an intermediate, making that process 30%

faster. Lastly, the hand-coded version has a custom
SRAM controller that achieves 2x faster data access to
the onboard SRAM than the Impulse C version.
However, the Impulse C library for loading data to the
SRAM was significantly faster than our VHDL
version. Additional details can be found in [3, 4].

5.2. Design Effort

To quantify the ease of use of Impulse C compared
to VHDL, we compare the design time and lines of
code in the 512x512 projector designs. Both the
Impulse C and VHDL designs were created by
designers with similar hardware engineering
background and FPGA design experience. Creating the
initial version of the design using Impulse C took 25%
less time than the HDL version. This includes the time
it took us to get acquainted to the Impulse C tools, and
understand the tool flow and design methodology.
This represents the time it takes an experienced
hardware designer to learn and use Impulse C, vs.
implementing in an existing flow. To add an additional
data point to this analysis, we created a 1024x1024
version of the VHDL pixel-by-pixel backprojector, and
compared the implementation time to Impulse C. The
incremental time taken to design, test and debug the
1024 version of the design using Impulse C was much
less when compared to HDL.

TABLE II. COMPARISON OF DESIGN TIME

Design Version VHDL Impuse C
512 Projections 12 weeks 9 weeks
Time to extend
design to support
1024 projections

1 week 1 day

6. Discussion
6.1. Strengths and Weaknesses of Impulse C

Impulse C is an effective design methodology for
targeting a hardware platform. The ability to create
applications entirely in C, but have them easily
partitioned across the CPU and FPGA, is very
attractive. Also, the ability to perform functional
verification on the complete design is greatly
enhanced. If one were creating the FPGA design
separately by writing HDL and C to run on the host,
the design verification is much more complex. Further,
because the design of the software and hardware is so
tightly coupled the eventual implementation is
seamless. With traditional methods it takes extra effort
to integrate the software and hardware execution
stages.

One of the drawbacks of Impulse C is the loss of
fine grained control over the resulting hardware. In
certain situations we might want to make simple
modifications like adding registers to the input and
output of a computation. For example, we discovered
that writing to the image cache was a step that failed
timing. A simple work-around we wanted to
implement was to postpone the write to the next clock
cycle by adding a register to the input and output of the
cache. These sorts of fine grained changes are not
easily communicated to the compiler. An upshot of the
above drawback is that it is extremely difficult to
efficiently implement control logic in the pipeline.

6.2. XD1000 Bandwidth

We found the tightly-coupled FPGA coprocessor
offered by the XD1000 is a significant advantage. Our
results showed that, contrary to commonly held beliefs,
the time spent transferring data to and from the FPGA
was not the bottleneck of our application. Instead, data
transfer occupied a small fraction of the total execution
time. This suggests that as technology moves towards
higher bandwidth and lower latency in FPGA
coprocessor implementations, designers can instead
focus on utilizing available hardware resources to
produce the most efficient computation structure.
There will always be applications where the
communication to computation ratio rules out FPGA
coprocessor implementations, but tightly coupled
FPGA-CPU systems allows many more applications to
benefit from these systems.

7. Acknowledgements

This project was supported by the Washington State
Technology Center and Impulse Accelerated
Technologies.

8. References

[1] M. Leeser, S. Coric, E. Miller, H. Yu, and M. Trepanier,

“Parallel–beam backprojection: An FPGA
implementation optimized for medicalimaging,” Int.
Symposium on FPGAs, pp. 217–226, 2002.

[2] http://www.impulseaccelerated.com/ , Impulse
Accelerated Tech-nologies.

[3] N.Subramanian, A C-to-FPGA Solution for
Accelerating Tomographic Reconstruction, M.S. thesis,
University of Washington, Washington, USA, June
2009.

[4] J. Xu, An FPGA Hardware Solution for Accelerating
Tomographic Reconstruction, M.S. thesis, University of
Washington, USA, June 2009

