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Abstract 

 
While traditional methods of designing FPGA 

applications have relied on schematics or HDL, much 
interest has been shown in C-to-FPGA tool flows that 
allow users to design FPGA hardware in C. We 
evaluate a C-to-FPGA tool flow (Impulse C) by 
analyzing the performance of three independent 
implementations of the Computed tomography (CT) 
filtered backprojection (FBP) algorithm developed 
using C, Impulse C, and VHDL respectively. In the 
process, we compare the design process of Impulse C 
versus HDL, and discuss the benefits and challenges of 
using Impulse C. In addition, we explore the benefits of 
tightly-coupled FPGA acceleration offered by the 
XtremeData XD1000. The results demonstrate that 
Impulse C designs can achieve over 61x improvement 
over multi-threaded software, and similar performance 
as VHDL, while significantly reducing the design 
effort, and that tightly-coupled FPGA coprocessors 
like the XD1000 effectively overcomes the traditional 
communication bottleneck between CPU and FPGA.  
 
1. Introduction 
 

Tomography (CT) is a medical imaging technique 
used to create cross-sectional images from x-ray 
transmission data acquired by a scanner. In traditional 
tomographic systems, the primary computational 
demand after data capture by the scanner is the 
backprojection of the acquired data to reconstruct the 
scanned object. Backprojection can be viewed as the 
mapping of raw scanner data into the image space. In a 
typical CT system, the data has ~106 entries per cross-
section, and the process of tracing each datum through 
the image space is computationally demanding. As a 
result, hardware acceleration of this process has been 
the focus of several studies [1].  

Previous works often used FPGAs to implement 
such hardware accelerators, and have achieved 
dramatic improvements over microprocessor based 

software systems. However, the traditional method of 
designing FPGA based accelerators, using either 
schematics or HDL to describe the hardware, require 
the skill set and expertise of a hardware engineer. A 
promising method of reducing this barrier to entry is a 
C-to-FPGA tool flow that allows users to describe the 
hardware computations in C and automatically 
generates the hardware description for synthesis.  

The general perception has been that while such 
high level tool flows are simple to use, they do not 
provide the same level of performance as hand coded 
HDL. We investigate this notion by considering a C-
to-FPGA tool flow called Impulse C [2]. Our 
benchmark was an implementation of the filtered 
backprojection (FBP) algorithm running on a 
microprocessor. We partitioned the design such that 
the compute intensive backprojection step was run on 
an FPGA while the user interface and some filtering 
operations were performed on the host processor. The 
XD1000 development system was chosen for the 
implementation because it offers a tightly coupled 
CPU-FPGA platform, reducing communication latency 
that can overshadow the benefits of using hardware 
acceleration. 

Overall, this paper provides a case study of the 
performance of Impulse C in the design and 
implementation of a typical application that can benefit 
from hardware acceleration. We hope to provide an 
accurate representation of the benefits and 
shortcomings of using Impulse C to replace traditional 
development methods for FPGAs. 
 
2. Background 
2.1. Tomographic Reconstruction 
 

Tomographic reconstruction is the process of 
generating cross-sections of an object from a series of 
measurements acquired from many different directions. 
In Computed Tomography (CT scans), the 
measurements are x-ray attenuation data. The set of all 
projections acquired by a scanner is stored as a two 
dimensional matrix, with the dimensions being the 



angle at which the projection was acquired, and the 
position of the detector that recorded the x-ray. This 
data represents a 2-D spatial function termed a 
sinogram. The problem of reconstruction can be 
viewed as the problem of transforming the sinogram 
(θ,S) into the image space (X,Y). 
 
2.2. XD1000 Coprocessor Accelerator 
 

Frequently occurring or complex computations can 
overwhelm the primary microprocessor (host or CPU) 
in a computer system. A solution to this is utilizing 
coprocessors to shoulder some of the burden, allowing 
the CPU to offload these computations. The host 
processor would retain functions such as interfacing 
with the user or peripherals, and the coprocessor would 
be tasked with processing the raw data.  

Companies such as DRC Computer and 
XtremeData take an approach with FPGA coprocessors 
that use a very tightly-coupled FPGA to CPU 
interface, with the FPGA coprocessor module situated 
in one of the CPU sockets in an AMD Opteron 
motherboard. This allows the FPGA module to 
communicate with the CPU via the HyperTransport 
bus, which has a bandwidth of 1.6 GB/s. This remedies 
the bandwidth concern with accelerating applications 
using FPGA coprocessors. 
 
2.3. Impulse C 
 

While FPGAs have traditionally been programmed 
with either schematics or HDL describing the 
hardware, interest has been growing in the use of C-to-
FPGA tool flows. One example is Impulse C, which 
promises to reduce design and programming effort.  

The Impulse C tools include the CoDeveloper C-to-
FPGA tools and the CoDeveloper Platform Support 
Packages (PSPs). PSPs add platform-specific 
capabilities to the Impulse CoDeveloper programming 
tools. With the PSP, users can partition the application 
between the host and coprocessors, make use of other 
on board resources, and automatically generate the 
required interfaces. The interfaces are implemented as 
a wrapper function around the user logic. We used the 
Impulse C tools with the XtremeData XD1000 PSP. 
 
3. Design 
3.1. System Parameters 
 
We chose to first implement 512x512 (θxS) 
backprojectors independently in VHDL and Impulse 
C, followed by 1024x1024 versions using each 
approach. The algorithm discussions in this section 

reflect the 1024x1024 implementations. Performance 
results for both the 512x512 and 1024x1024 
implementations can be found in the results section. 

3.2. Backprojection 
 

The CT scanning process can be modeled as 
detectors acquiring line integrals of the attenuation 
coefficient along the scanned object.  When 
reconstructing, we start with an image initialized to 0. 
Corresponding to each entry of the sinogram we 
identify all the pixels that lie on the ray. The values of 
those image pixels are then increased by the 
corresponding ray-value. When this process is 
performed for all entries in the sinogram, we have 
reconstructed the image. This is ray-by-ray 
reconstruction. Another way to approach this is to 
reconstruct one pixel at a time. Given a pixel and an 
angle of measurement, the ray-value that contributes to 
the pixel needs to be identified. If we go through all 
angles, identifying all rays that the pixel was on, and 
sum those values, that pixel is fully reconstructed. We 
can then go ahead and reconstruct all other pixels in 
the same way. This is pixel-by-pixel reconstruction. 

Since both pixel-by-pixel and ray-by-ray 
reconstruction methods require the compute loop to 
touch every angle of the sinogram for every point on 
the image (an O(n3) operation), the main difference 
between these two methods is the outer loop of the 
processing algorithm [4]. The pixel-by-pixel approach 
places the x-y loops outside of the angle loop, with the 
opposite being true for the ray-by-ray method. Both of 
these methods can be made parallel by introducing 
blocks into the image and sinogram respectively. For 
the pixel-by-pixel method, each column of the image 
can be assigned to a separate processing engine. An 
example is a system with four 128x512 blocks, which 
will require 128 processing engines. The ray-by-ray 
method can be made parallel by partitioning the 
sinogram into blocks of 128x1024 (θxS) with each 
angle of the sinogram block assigned to a separate 
processing engine. 

These two methods produce identical reconstructed 
images, and primarily differ in their resource 
requirements [4]. However, since the hand-coded 
VHDL and Impulse C versions of the backprojector 
were designed independently of each other, a split 
occurred at this point. Initial analysis indicated that the 
pixel-by-pixel algorithm appeared more compatible 
with the hardware hierarchical design abilities of HDL, 
and analysis on the ray-by-ray algorithm [3] indicated 
that it was compatible with the programming model of 
Impulse C. 



4. Implementation 
4.1. Impulse C Backprojector 
 

The sequence of operations can be found in [3]. 
 

Initially, we experienced difficulty getting the 
Impulse C design to meet timing when the onboard 
accumulation algorithm was used. This forced us to 
create a version of the backprojector where partially 
created images would be sent back to the CPU, and 
later accumulated in software. While this is a fast 
computation, we still wanted to avoid the additional 
data transfers this would require. After analysis, it was 
determined that our timing issues originated from the 
declaration of an imgRAM that would span 8 MRAMs 
on the FPGA. This forced the Quartus tools to connect 
all 8 MRAMs together, which resulted in timing issues 
since the MRAMs are spread across the FPGA. A fix 
for this was found by manually declaring separate 
arrays for each MRAM, and introducing separate 
pipelined logic to tie them together. 

Another issue we ran into during our 
implementation of the above system was the pipeline 
throughput generated by Impulse C. Since the XD1000 
platform support package for Impulse C imposed a 
fixed 100 MHz clock on the design, we aim to have the 
pipeline accept inputs and produce results every cycle. 
However, the pipeline could only achieve a rate of 2 
cycles per input/output due to operations within the 
compute loop requiring two values from the same 
memory. This can be resolved with the use of true-dual 
port memories; however, efforts to implement true-
dual port memories in Impulse C resulted in the design 
failing to meet timing.  Improvements to the PSP could 
likely fix this. 
 
4.2. VHDL Backprojector 
 

The VHDL Backprojector shares many of the same 
operation steps as the Impulse C backprojector. Details 
of the differences between the two backprojector 
implementations can be found in [4]. 

 After the 512x512 VHDL backprojector was 
complete, several observations regarding the 
performance of the pixel-by-pixel and ray-by-ray 
methods of reconstruction were made. First, the pixel-
by-pixel method would not scale as effectively to 
1024x1024 due to resource utilization. Since ray-by-
ray can use the MRAM to store the image data, much 
more of the M4K and M512 RAMs were available for 
the sinogram data. We realized that if we use pixel-by-
pixel to construct a 1024x1024 projector, we would 
need to decrease the number of processing engines to 

64. Second, we realized that the transfer time saved by 
overlapping communication with computation is not 
significant compared to the runtime of the compute 
loop. We decided the benefits of pixel-by-pixel did not 
outweigh the cost for the 1024x1024 projector, so we 
adopted ray-by-ray (similar to the Impulse C design) 
for the 1024x1024 version. 
 
4.3. Software 
 

The software benchmark performance numbers 
were obtained using two quad-core Intel Xeon L5320 
processors with operating frequencies of 1.86 GHz. 
The base results represent a serial execution, and the 
multi-threaded result is obtained using OpenMP and 8 
threads distributed across each of the eight available 
CPU cores. 
 
5. Results 
5.1. Performance Comparisons 
 

Table I shows the VHDL implementation and 
Impulse C implementation, compared to the software 
benchmarks. 

TABLE I.  EXECUTION TIMES (SECONDS) 

Design 512 Project 1024 Project 
Base Software 5.17 20.93 
Multi-threaded Software 1.06   3.95 
Impulse C 0.03183   0.06452 
VHDL 0.02168   0.03802 

 
The major reasons for the FPGA implementations 

being significantly faster than the software benchmark 
are pipelining and loop unrolling. These two 
techniques allowed us to process 128 elements in 
parallel, resulting in a much faster implementation than 
the software versions.  

The tight coupling of the FPGA and the CPU in the 
XD1000 also played a pivotal role in the results we 
achieved. Due to the high bandwidth and low latency 
between the CPU and the FPGA, transferring data to 
the FPGA did not prove to be a bottleneck for this 
application (Table II), and we were able to focus the 
resources and effort to optimize other areas of the 
system. 

The compute pipeline in the HDL version produces 
a result every cycle, whereas the Impulse C version 
produces a result only once every two cycles. This 
makes the hand-coded compute pipeline 2x faster. 
Furthermore, in the hand-coded version the final image 
is streamed directly to the CPU instead of using the 
SRAM as an intermediate, making that process 30% 



faster. Lastly, the hand-coded version has a custom 
SRAM controller that achieves 2x faster data access to 
the onboard SRAM than the Impulse C version.  
However, the Impulse C library for loading data to the 
SRAM was significantly faster than our VHDL 
version. Additional details can be found in [3, 4]. 

 
5.2. Design Effort 
 

To quantify the ease of use of Impulse C compared 
to VHDL, we compare the design time and lines of 
code in the 512x512 projector designs. Both the 
Impulse C and VHDL designs were created by 
designers with similar hardware engineering 
background and FPGA design experience. Creating the 
initial version of the design using Impulse C took 25% 
less time than the HDL version. This includes the time 
it took us to get acquainted to the Impulse C tools, and 
understand the tool flow and design methodology.  
This represents the time it takes an experienced 
hardware designer to learn and use Impulse C, vs. 
implementing in an existing flow. To add an additional 
data point to this analysis, we created a 1024x1024 
version of the VHDL pixel-by-pixel backprojector, and 
compared the implementation time to Impulse C. The 
incremental time taken to design, test and debug the 
1024 version of the design using Impulse C was much 
less when compared to HDL. 

TABLE II.  COMPARISON OF DESIGN TIME 

Design Version VHDL Impuse C 
512 Projections 12 weeks 9 weeks 
Time to extend 
design to support 
1024 projections 

1 week 1 day 

 
6. Discussion 
6.1. Strengths and Weaknesses of Impulse C 
 

Impulse C is an effective design methodology for 
targeting a hardware platform. The ability to create 
applications entirely in C, but have them easily 
partitioned across the CPU and FPGA, is very 
attractive. Also, the ability to perform functional 
verification on the complete design is greatly 
enhanced. If one were creating the FPGA design 
separately by writing HDL and C to run on the host, 
the design verification is much more complex. Further, 
because the design of the software and hardware is so 
tightly coupled the eventual implementation is 
seamless. With traditional methods it takes extra effort 
to integrate the software and hardware execution 
stages.  

One of the drawbacks of Impulse C is the loss of 
fine grained control over the resulting hardware. In 
certain situations we might want to make simple 
modifications like adding registers to the input and 
output of a computation. For example, we discovered 
that writing to the image cache was a step that failed 
timing. A simple work-around we wanted to 
implement was to postpone the write to the next clock 
cycle by adding a register to the input and output of the 
cache. These sorts of fine grained changes are not 
easily communicated to the compiler. An upshot of the 
above drawback is that it is extremely difficult to 
efficiently implement control logic in the pipeline. 
 
6.2. XD1000 Bandwidth 
 

We found the tightly-coupled FPGA coprocessor 
offered by the XD1000 is a significant advantage. Our 
results showed that, contrary to commonly held beliefs, 
the time spent transferring data to and from the FPGA 
was not the bottleneck of our application. Instead, data 
transfer occupied a small fraction of the total execution 
time. This suggests that as technology moves towards 
higher bandwidth and lower latency in FPGA 
coprocessor implementations, designers can instead 
focus on utilizing available hardware resources to 
produce the most efficient computation structure.  
There will always be applications where the 
communication to computation ratio rules out FPGA 
coprocessor implementations, but tightly coupled 
FPGA-CPU systems allows many more applications to 
benefit from these systems. 
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