
International Conference on Computer-Aided Design, 1997.

Replication for Logic Bipartitioning

Morgan Enos, Scott Hauck, Majid Sarrafzadeh
Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208

{morgan, hauck, majid}@ece.nwu.edu

Abstract

Logic replication, the duplication of logic in order to limit
communication between partitions, is an effective part of
a complete partitioning solution. In this paper we seek a
better understanding of the important issues in logic
replication. By developing new optimizations to existing
algorithms we are able to significantly improve the
quality of these techniques, achieving up to 12.5% better
results than the best existing replication techniques.
When integrated into our already state-of-the-art
partitioner, we improve overall cutsizes by 37.8%, while
requiring the duplication of at most 7% of the logic.

1 Introduction
Logic partitioning is one of the critical issues in CAD

for digital logic. For most applications the goal is to
minimize the communication between partitions while
ensuring that each partition is no larger than the capacity
of the target device. While it is possible to solve the case
of unbounded partition sizes exactly [3], the case of
balanced partition sizes is NP-complete [9]. As a result,
numerous heuristic algorithms have been proposed [1].

We have already demonstrated that a careful
integration of existing bipartitioning techniques, along
with some new approaches and optimizations, can yield a
bipartitioning algorithm significantly better than the
current state-of-the-art [12]. Our algorithm achieved a
8% improvement over PROP [5], 16% improvement over
FBB [19], 22% improvement over Paraboli [18] and
MELO [2], 50% improvement over Fiduccia-Mattheyses
[7], and a 58% improvement over EIG1 [10] [2], some of
the best current bipartitioning algorithms.

In this paper, we seek to understand the critical issues
in logic replication, the selective duplication of logic to
reduce the resulting cutset. We examine most of the
current logic replication literature, integrating it into our
already extremely efficient partitioning system. We also
develop techniques to significantly improve the quality of
their results, yielding much smaller cutsets. This will lead
to a complete logic bipartitioning algorithm with
replication which delivers superior results.
1.1 Optimized FM

Most of the algorithms for replication use the
Fiduccia-Mattheyses (FM) algorithm [7]. FM is a widely
used algorithm, and as such a number of ideas have
emerged which improve upon the basic design. By a

judicious combination of these ideas, improvements in
performance can be realized. This is the premise behind
Strawman [11] [12], for this partitioner actually consists
of many techniques which achieve a synergistic reduction
in cut size. As far as we know, this partitioner delivers
the best standard bipartitioning results in the literature
today. Because of these strong results we have chosen to
use this system as a base for our replication work.

Although a complete description of the Strawman
partitioner is beyond the scope of this paper, it will be
important to understand three of its optimizations.
• Random initial partition creation. The partitioner

randomly creates an initial partition, and multiple
runs of the partitioner use different initial partitions.

• Hierarchical clustering and iterative unclustering.
The algorithm clusters the circuit recursively,
building a hierarchy of clusters. Then it first
partitions at the top level of the hierarchy. Once it
can find no improvement, the highest level of
clustering is removed, and the partitioning resumed.
This continues until all clusterings are removed.

• Higher-level gains. We use higher-level gains as
proposed by Krishnamurthy [15]. This is a tie-
breaking mechanism for nodes with identical gains
which adds some foresight to the algorithm. A net
contributes an nth level gain of +1 to a node S on the
net if there are n-1 other nodes on the net in the same
partition as S which are unlocked, and zero which are
locked. A net contributes a -1 nth level gain to a
node S on the net if there are n-1 unlocked nodes on
the net in the partition opposite to S, and zero locked.

A A1 A2

Figure 1. An example of node replication. Node A
is replicated into A1 and A2, yielding a gain of 1.

1.2 Methodology
Replication for cut minimization seeks out cells that

when replicated reduce the number of nets in the cut set.
Replication reduces the number of cut nets in a partition
by creating redundancy in signal pathways.

As Figure 1 illustrates, the output net of a replicated
cell need no longer span partitions since each partition has

2

its own copy of the cell to generate the signal. However,
to ensure that the correct signal is generated, every input
net of the original cell must also input the replicated cell.
Hence, the gain of cell replication is:
 (Eqn. 1) | cut outputs | - | uncut, unreplicated inputs |

By unreplicated input net we refer to input nets of the
cell that have a replicated source. Since such nets can
never be cut, they are excluded from the gain calculation.

To determine the effectiveness of the replication
algorithms, we run each thirty times on a SPARC5 on the
benchmarks in Table 1. Partitions are allowed to grow to
at most 53.6% of the circuit size (Strawman normally
allows a partition to grow to 51% of total circuit size, and
by allowing 5% of the logic to be replicated we reach an
upper limit of .51*1.05 ≅ 0.536). When using Strawman
to produce partitions for comparison against the various
replication algorithms, we allow each partition to grow to
53.6% of the original circuit size. We also require that if
a circuit input is replicated, a net must be added to the
cutset to carry the input between partitions [6].

The 11 benchmarks used in this paper are given in
Table 1. Although this is a subset of the circuits typically
used in partitioning research, these were the only circuits
available to us that contained information on what node
generates a given net, which is necessary for replication.

benchmark # cells # nets # iopads # pins

s5378 3225 3176 88 8241
s9234 6098 6076 45 15026
s13207 9445 9324 156 23442
s15850 11071 10984 105 27209
C6388 1956 1924 64 7046
biomed 6494 6442 77 24537
prim2 3035 3028 128 11294
struct 1952 1920 64 5535

s35932 19880 19560 359 55420
s38584 22451 22173 294 61309
s38417 25589 25483 138 64299

Table 1. Characteristics of benchmark circuits.
In this paper we investigate most of the replication

algorithms from the literature, as well as some novel
extensions. Throughout this paper, algorithms directly
from the literature will be referred to as “Basic”.
2 Kring/Newton Replication

The algorithm proposed by Kring and Newton (KN)
is a fairly straight-forward adaptation of FM to support
cell replication [14]. In the FM algorithm, a node can
exist in one of two states dependent upon which partition
it is currently located. Kring and Newton introduce a
third state – replication, in which a node exists in both
partitions simultaneously. Also, nodes now have two
potential moves: unreplicated nodes can either be
replicated or moved to the other partition, and replicated
nodes can be unreplicated into either of the two partitions.

The Kring/Newton algorithm always requires that
unreplication move with a positive gain be taken before
any normal moves, and disallows replication moves with
a gain of less than 1. Our experiments indicate that
allowing replication moves with a gain of 0 are useful,
and our version of Kring/Newton allows such moves.
2.1 Basic Kring/Newton

The simplest way to integrated KN replication into
Strawman is to replace Strawman’s final FM run on the
unclustered circuit with the KN algorithm. Essentially,
this is the KN algorithm performed on an optimized initial
partition – a modification proposed by Kring and Newton
which was found to be useful for larger benchmarks.
2.2 Higher-Level Gains

In general, if we have two moves that have the same
impact on the cutsize, but one is a normal move and the
other is a replication move, we should choose the normal
move in order to limit the amount of replication. To do
this we set all higher-level gains of replication moves to
-∞. This achieves a slight improvement over KN with a
normal gain function (Table 2), and thus all future KN
variants will be performed with higher-level gains.

Bench. Straw Basic
KN

KN
HLG

KN
Clust.

KN
Grad.

s5378 60 41 39 48 43
s9234 45 30 32 33 32
s13207 67 53 48 49 43
s15850 52 43 43 39 41
C6288 50 33 33 34 33
biomed 161 136 137 126 130
prim2 133 114 114 110 114
struct 33 33 33 33 33

s35932 46 39 39 28 23
s38584 50 35 35 46 32
s38417 55 51 49 47 49
Mean 60.8 48.2 47.7 47.6 44.7
Time 17.4 17.3 17.6 17.1 19.7

Rep % 0.0% 4.2% 4.5% 6.2% 3.5%

Table 2. Comparison of different optimizations to
KN replication. “HLG” is higher-level gains. Each
algorithm is executed thirty times, and the best
cutsize is kept. “Time” is the geometric mean total
CPU minutes for all 30 runs for a given benchmark.
“Rep %” is the average percentage of the logic that is
replicated to achieve the best cut for each benchmark.

2.3 Extension to Clustering
It was hoped that by earlier application of KN, better

results might be achieved via increased opportunity for
replication. So rather than perform KN style replication
only after complete unclustering, KN replication was
performed at each clustering level in place of the
Strawman FM algorithm. To facilitate replication at each
level of the clustering hierarchy, the total allowed circuit

3

expansion was evenly distributed among all levels, and so
if there were seven clustering levels, and we allowed up
to seven percent circuit expansion via replication, then
KN would be allowed to expand the circuit by one percent
at each clustering level. Such expansion is cumulative.
2.4 Gradient Method

As the FM algorithm progresses the partitions get
steadily better. Early in the algorithm there may be many
high gain moves, and the partitioner radically changes the
current partitioning. However, in later iterations the
current partitioning is close to the final result, and the
partitioner makes relatively minor alterations to the
partitioning. When we add replication to this process, it
can create a significant amount of duplication early in the
partitioning process, limiting the partitioner’s ability to
change the current partitioning. Thus, replicating too
early can degrade the final results. To deal with this, in
Gradient KN we only attempt further replication when the
cut sizes between successive inner-loop iterations of the
Strawman FM algorithm change by less than ten percent.
The circuit is expanded as in the previous section.
2.5 Kring/Newton Results

The results for the various optimizations to the KN
algorithm are given in Table 2. As can be seen, basic KN
produces results 20.7% better than the non-replicating
algorithm. Higher-level gains improve this by an
additional 0.8%, hierarchical partitioning yields an
additional 0.2%, and the Gradient approach yields an
additional 4.8%. This produces an overall 26.5%
improvement over the basic Strawman algorithm.

Original Network

Duplicate Network

Source
Partition

Non-source
Partition

Figure 2. Hypothetical duplicated graph with
infinite edges in both directions between original and
duplicated nodes (left). Gray arrows are infinite
weight edges. The replication graph has infinite
edges only from original to duplicate (right). A
duplicate node in the source partition with it’s
original in the non-source partition is considered
duplicated (such as the node shown in white).

3 DFRG
Another move based approach is the Directed

Fiduccia-Mattheyses on a Replication Graph, or DFRG

[17]. DFRG uses a directed version of FM, where one
partition is designated the “source” partition, and a net is
considered cut only if one of its sources is in the source
partition, and one of its sinks is in the other partition.

Imagine that we duplicate the circuit graph , and in
the duplicate we reverse the signal flow direction (sources
become sinks, sinks become sources). We connect each
node to its duplicate with two infinite weight edges (edges
that should never be cut), one directed from original to
duplicate, another from duplicate to original (see Figure 2
left). This means that a node and its duplicate will always
been in the same partition. Assuming a partitioning does
not cut an infinite weight edge, it can be shown that the
directed cutsize of this graph is the same as the undirected
cutsize of the nets in the original graph. Thus, a directed
partitioning of this graph is equivalent to an undirected
partitioning of the original graph.

In DFRG partitioning we use the same graph, but
remove the infinite weight edges from duplicate to
original (the other edge remains). In this graph we can
now have an original node in the non-source partition and
its duplicate in the source partition (Figure 2 right). All
such nodes will be replicated, and the directed cutsize of
this graph accurately reflects this. Specifically, it can be
shown that all input nets to a replicated node will be in the
directed cutset unless their source is replicated, and the
outputs of a replicated node are never in the directed
cutset. Thus, performing directed partitioning of this
replication graph allows partitioning and replication of the
original graph to be performed simultaneously.

For basic DFRG we obtain an initial partition via
Strawman and use DFRG as a post-processor. This is
essentially DFRG performed upon a good initial partition.

Bench. Straw Basic DFRG DFRG HLG DFRG Clust.

s5378 60 40 41 41
s9234 45 34 34 32
s13207 67 54 47 63
s15850 52 45 44 45
C6288 50 33 33 33
biomed 161 136 136 107
prim2 133 114 116 121
struct 33 33 33 33

s35932 46 39 39 24
s38584 50 37 35 29
s38417 55 48 48 45
Mean 60.8 48.9 48.2 44.9
Time 17.4 27.8 31.6 48.2

Rep % 0.0% 3.5% 3.5% 5.1%

Table 3. Comparison of DFRG optimizations.
3.1 Higher-Level Gains

A net can be uncut either by moving all sources to the
“non-source” partition, or by moving all sinks to the
“source” partition. By moving a source, one does not lose

4

any opportunities for uncutting a net via sink movements,
and by moving a sink, one does not lose any opportunities
for uncutting the net via source movements. Since source
and sink motion operates independently in determining
the state of a net, we use the following higher-level gains
formulation: a cut net contributes +1 to the nth level gain
of a source node S if S is in the “source” partition, and
there are n-1 other unlocked sources of the net, and no
locked sources, in the “source” partition; a cut net
contributes a -1 to the nth level gain of a source node S if
S is in the “non-source” partition, and there are n-1
unlocked sources, and no locked sources, in the source
partition; Higher-level gains for sink nodes are defined
similarly. For ease of implementation, only cut nets
contribute to the higher level gains of a node.
3.2 Extension to Clustering

Because DFRG more than doubles the size of the
network, we thought that it would benefit from reducing
the problem size via clustering. Thus, we perform DFRG
at each clustering level in place of the Strawman FM, and
gradually expand the maximum circuit size as in the KN
extension to clustering. The clustering is performed upon
the original graph, and the replication graph is created
from the clustered graph at each clustering level.
3.3 DFRG Results

The results for the various optimizations to the
DFRG algorithm are given in Table 3. As can be seen,
basic DFRG produces results 19.6% better than the non-
replicating algorithm. Higher-level gains improve this by
an additional 1.1% and DFRG hierarchical partitioning
yields an additional 5.5%. Combined together, these
techniques produce an overall 26.2% improvement over
the basic Strawman algorithm.
4 Flow Based Techniques

The final algorithms are significantly different from
the preceding in that they are flow based rather than move
based. The flow based algorithms strive to capitalize on a
flow network formulation which derives an optimal
minimum-cut replication set (without size bounds) when
provided with an initial partition. To develop this
technique, we require the following definitions [4] [8]:

A flow network, G = (V,E), is a directed graph in
which each edge, (u,v) ∈ E, has a non-negative
capacity, and there exists two special nodes S, T
∈ V designated as a source and sink respectively.

A flow in G is a function f: V x V → ℜ (where “ℜ“ is the
set of reals) such that
(1) f(u,v) ≤ c(u,v), u,v ∈ V,
 where c(u,v) is the capacity of the edge (u,v) ∈ E
(2) f(u,v) = -f(v,u), u,v ∈ V

(3) f (u,v) = 0
v ∈V
∑ , u ∈ V - {S,T}

Ford-Fulkerson max-flow/min-cut theorem [8]:
For any network the maximal flow value from S
to T is the size of a minimum cut in G.

4.1 The Optimal Algorithm for Unconstrained
Replication Size [13, 20]

Given an initial partitioning of the vertices we select
a source partition arbitrarily. We form a flow network by
creating a node S, which will be the source of the
network, and clustering with S nodes in the source
partition which we would like to act as a sources of flow
in the network (see Figure 3 left). We also create a node
T, which will be the sink of the network, and cluster with
T all nodes which are in the non-source (sink) partition,
and are attached to edges which have their source in the
source partition. All edges which have their source in the
sink partition are removed from the network, and all
remaining edges are given a capacity of one.

d

b

a

e

c
S

T

1

1

1

1

Min
Cutd

b

a

e

c

f

Figure 3. A directed graph (left) is turned into a
flow graph. Once a maximum flow is found, which
induces a minimum cut, nodes between the min cut
and the original partitioning are replicated (right).
The replicated node is shown in white.

We push as much flow from S to T as we can, and
thus by the Ford-Fulkerson Theorem we produce a
minimum cut. We find the minimum cut closest to T by a
breadth-first search from T, and every node in partition X
on the sink side of the minimum cut is replicated. By
replicating these nodes we place all edges in the minimum
cut into the cut set, and guarantee that any other edge
which has its source in the source partition is not in the
cut set. The original graph is then reestablished; we select
the opposite partition as the source partition, and we
repeat the above. By finding the replication subset which
minimizes the cut edges which have their source in each
partition we find the replication set which minimizes the
number of cut edges for this partitioning.

The above algorithm has two limitations: it applies
only to directed graphs (not hypergraphs), and it assumes
unbounded partition size. By extending this algorithm to
incorporate directed hyper-edges or size constraints we
lose optimality, and therefore must resort to heuristics.
4.2 Hyper-MAMC (Min-Area Min-Cut) [20]

To use the network flow formulation we must reduce
hyperedges to edges. This is done as shown in Figure 4.
For each hyperedge we create a hypernode with an edge
of weight 1 from the source to the hypernode, and an edge

5

of infinite weight from the hypernode to each sink. In this
way, we restrict each hyperedge to unit flow, and ensure
that the hyperedge can only be cut in the edge from the
source to the hypernode. This guarantees that each
hyperedge contributes at most once to the minimum cut
derived from the maximum flow.

b

a

c

1 ∞ b

a

c
∞

Figure 4. Reduction of hyper-edges to normal edges.
White node is the hyper-node.

Hyper-MAMC proceeds similarly to the optimal
algorithm, pushing flow through the network and finding
nodes to be replicated. However, before replicating these
nodes it first checks if this replication would exceed the
partition size limits. If so, we determine all hyperedges
which have their source clustered with the network
source, and which have positive flow. A sink of such a
hyperedge is selected, provided it is in the same partition
as the network source, and it is clustered with the network
source. The hyper-MAMC algorithm is then rerun. By
doing this the chosen sink cannot be replicated, and it
now acts as a source of flow. This can increase the flow,
and reduce the size of the replication set (see Figure 5).
This process of incrementing the flow is repeated until the
the replication set size is acceptable. Once we have a
sufficiently small set for replication, we dismantle the
flow network, select the opposite partition, and repeat.

A peculiarity of this algorithm is that we may exceed
partition size limits, yet there may be no node available to
cluster with the source. This is caused by large numbers
of nodes in the active partition which are unreachable
from the network source. However, this is a fairly rare
event, and when it occurs we default to a directed-FM
(see MC-Rep below) on the modified network graph.
4.2.1 Node Choice for Source Clustering

When creating the flow network we must choose

nodes to cluster together to create the network source.
The most obvious candidates for source clustering are
circuit inputs (IBUFs). These nodes tend to be liberally
scattered about both partitions, and presumably every
node in the graph is reachable through some IBUF.
However, it appears that a random node selection tends to
produce better results. This is likely due to the variability
in node selection which it introduces, providing the
algorithm with an opportunity to get “lucky” with its
source choice when iterated multiple times.

Bench. Hyper-MAMC
IBUF RANDOM

2.0 1.0 0.5 0.25 0.125

s5378 46 44 42 41 39 40
s9234 31 32 29 29 28 29
s13207 45 46 48 47 46 45
s15850 40 39 39 38 37 37
C6288 34 34 33 33 33 33
biomed 70 92 79 75 73 83
prim2 115 120 112 109 110 110
struct 34 33 33 33 33 33

s35932 39 39 39 39 39 39
s38584 26 28 26 25 25 25
s38417 40 40 37 37 37 38
Mean 43.2 44.5 42.5 41.8 41.2 42.0
Time 24.7 21.7 22.5 23.4 24.3 21.9

Table 4. Effect of source choice on cut size for
Hyper-MAMC. Initial partitions are generated by
Strawman with a maximum partition size of 51%.

When choosing nodes randomly to cluster with the
source, we select the number of nodes as a function of
initial directed cut size. The initial directed cut size is the
number of hyperedges which have their source in the
chosen partition, and one or more sinks in the opposite
partition. Table 4 details the various source selection
strategies. The IBUF column uses all IBUFs in the source
partition as flow sources. The other columns randomly
select a number of sources equal to X * directed_cut_size,

Source

min-cut

1

1

1 min-cut
1

1

1

1

1

1

Source

Source

Figure 5. Given an initial flow network that replicates too much logic (left), incrementing the flow reduces the
replication set and increases the cut size (center). However, nodes which cannot be reached from the source, such as
those at the top of the figure at right, will always be replicated.

6

where X is the number listed in the column heading.
Randomly selecting a number of sources equal to one-
quarter the directed cut size produces the best cuts.
Therefore all future hyper-MAMC variants in this paper
will incorporate this strategy of source selection.

Bench. Straw Initial Partition size limit
49%/51% 48%/52% 47%/53%

s5378 60 39 40 41
s9234 45 28 31 35
s13207 67 46 44 47
s15850 52 37 38 39
C6288 50 33 33 33
biomed 161 73 61 84
prim2 133 110 113 107
struct 33 33 33 33

s35932 46 39 23 39
s38584 50 25 25 25
s38417 55 37 36 38
Mean 60.8 41.2 39.1 43.1
Time 17.4 24.3 24.3 21.8

Table 5. Effect of initial partition size limit on
Hyper-MAMC.

4.2.2 Initial Partition Variation
In move-based algorithms, size limits were expressed

as maximum partition sizes, limiting both partition size
imbalance and replication. Thus, with a limit of 53.6% of
the logic, one partition could contain 53.6% of the logic
an have no replication, or both partitions could contain
46.4% unreplicated logic and 7.2% replicated logic. This
ability to trade size imbalance with replication yields an
added optimization opportunity. Hyper-MAMC is a post-
processing algorithm, where the partitioning of the circuit,
and thus the partition size imbalance, must be fixed before
replication begins. In Table 5 we explore how the limits

applied to partition size imbalance affect the final results.
The results indicate that improving initial partition quality
does indeed improve the cuts created by hyper-MAMC,
but we must leave the algorithm some room to operate.
All hyper-MAMC variants in this paper will use an initial
partition size limit of 52%/48% circuit size.
4.2.3 Node Choice for Incrementing Flow

When faced with an large replication set, the hyper-
MAMC algorithm will increment the flow by clustering a
node with the network source. We can attempt to find the
best node by testing each node, and determining which
produces the best result. Unfortunately this exhaustive
search is too time consuming, and therefore the hyper-
MAMC algorithm includes a threshold parameter for use
with node choice [19]. When incrementing the flow, and
choosing from among a threshold number of nodes or
less, we determine the effects of incrementing the flow to
each node, and use that node which produced the best
results (least increase in max-flow, with ties broken by the
largest decrease in total size of nodes replicated). If we
have more than a threshold number of nodes to choose
from we choose arbitrarily.

As shown in Table 6, small threshold values have
little impact on partition quality. Apparently there are
few occasions where the node choice falls below the
threshold value on these benchmarks. Unfortunately, a
higher threshold value tends to greatly slow the algorithm.
To avoid this performance penalty, we decided to select
the initial partition (produced by Strawman) which
produced the best final cut size after performing hyper-
MAMC with a zero size threshold, and then run a high
threshold hyper-MAMC on only this initial partition.
This amortizes the time cost of a high threshold hyper-
MAMC run over all thirty iterations of hyper-MAMC.

Bench. Straw Threshold Amortized Random MC-Rep
0 25 50 100 200 5

s5378 60 40 40 40 40 40 39 44
s9234 45 31 31 31 28 28 28 37
s13207 67 44 44 44 44 44 42 61
s15850 52 38 38 38 38 38 38 50
C6288 50 33 33 33 33 33 33 33
biomed 161 61 61 61 58 58 58 127
prim2 133 113 113 113 108 108 106 121
struct 33 33 33 33 33 33 33 33

s35932 46 23 23 23 23 23 23 23
s38584 50 25 25 25 25 25 25 25
s38417 55 36 36 36 36 36 34 44
Mean 60.8 39.1 39.1 39.1 38.4 38.4 37.8 46.3
Time 17.4 21.9 37.6 26.3 28.1 32.0 59.7 21.7

Table 6. Effect of node choice for incrementing flow on partition quality. Threshold columns try all node choices
when the number of choices is less than the threshold, and otherwise randomly pick a single node. Amortized columns
run threshold 0, pick the best of 30 runs, and then uses the listed threshold on just that best partitioning. Random 5
always randomly tries 5 nodes each time the flow must be incremented. MC-Rep results are also included.

7

An alternative to a threshold function is to instead
always randomly choose a small number of nodes to test
whenever we must increment the flow. In this way we
always make a (somewhat) informed decision about what
node to add to the source set. Although this greatly
increases the processing time, we reduce this time by also
amortizing the cost, only optimizing the best of the 30
runs as determined by threshold 0 runs. This techniques
is used in the “Random 5” column of Table 6.
4.2.4 Hyper-MAMC Replication Results

The results for the various optimizations to the
Hyper-MAMC algorithm are given in Table 4 - Table 6.
As can be seen, the choice of flow sources can make a
significant difference, with randomly picking 1/4 as many
sources as the cutsize of the initial partitioning producing
a 4.6% improvement over using the circuit’s IBUFs.
Balancing the amount of flexibility given to the
partitioner verses the amount of replication allowed is
also an issue, providing up to a 9.3% difference. Finally,
always evaluating five random nodes to add to the source
when incrementing the flow is important, providing a
3.3% improvement over just randomly adding nodes.
However, this does almost triple the runtime, even though
this technique is only applied to the most promising of the
30 partitioning attempts. Combining these approaches
produces cutsizes 37.8% smaller than the unreplicated
version, significantly better than any other technique.
4.3 MC-Rep [13]

MC-Rep is a simpler version of Hyper-MAMC. Just
as in Hyper-MAMC it uses the minimum cut in a flow
network to form the replication set. However, unlike
Hyper-MAMC, if the the replication set is too large we
re-establish the original hypergraph. All nodes which
were not in the selected partition are permanently locked,

and a directed FM is performed upon the hypergraph. We
only allow replication and unreplication moves, and only
by nodes which were in the selected partition. In this
way, a replication set is derived that meets the size limit.
We then select the opposite partition and repeat.

We apply the lessons learned from hyper-MAMC and
randomly cluster a number of nodes equal to twenty-five
percent of the directed cut size to create the network
source. We also use Strawman to generate an initial
partition with 48%/52% size limits. As shown in Table 6,
MC-Rep performs significantly worse than Hyper-
MAMC, which is able to stay closer to the basic network
flow formulation for unbounded size replication.
6 Conclusion

We have investigated replication, seeking to develop
the best possible bipartitioning results. In the process we
were able to reduce cutsizes by 37.8% over Strawman’s
already impressive results. Also, these improvements are
obtained with relatively little logic duplication, with most
techniques replicating less than 5% of the logic.

The replication techniques in the literature are not so
much partitioning algorithms in their own right, but are
optimizations to be added into an existing partitioner. In
order to perform a comparison we have implemented
most of the replication algorithms from the literature
within our Strawman system. Thus, we can directly
compare all of the algorithms on the same benchmarks,
with the same size constraints, using the same partitioner.
The only difference is the replication techniques. This
comparison is shown in Table 7, which includes all of the
algorithms discussed in this paper. Results are included
for comparing the optimized replication techniques
against non-replicating Strawman, as well as the new
optimized replication techniques proposed in this paper

Replication Algorithm Cutsize Improvement over Straw Improvement over Basic Alg. Time (minutes, 30 runs)

Strawman 60.8 --- --- 17.4
KN 48.2 20.7% --- 17.3
 higher-level gains 47.7 21.5% 1.0% 17.6
 clustering 47.6 21.7% 1.2% 17.1
 gradient 44.7 26.5% 7.3% 19.7
DFRG 48.9 19.6% --- 27.8
 higher-level gains 48.2 20.7% 1.4% 31.6
 clustering 44.9 26.2% 8.2% 48.2
Hyper-MAMC 43.2 28.9% --- 24.7
 flow source node choice 41.2 32.2% 4.6% 24.3
 partition variation 39.1 35.7% 9.5% 24.3
 flow incr. node choice 37.8 37.8% 12.5% 59.7
MC-Rep 46.3 23.8% --- 21.7

Table 7. Summary of optimizations. Basic algorithms are shown in bold, followed by the new optimizations in this
paper. “Improvement over Strawman” represents how much each replication technique improves over a non-replicated
bipartitioning. “Improvement over Basic Algorithm” is how much better the optimized version does as compared to
the unoptimized replication technique (i.e. the version taken directly from the literature). All algorithms are allowed to
generate partitions containing at most 53.6% of the logic through both bipartitioning imbalance and replication.

8

against the basic versions from the literature. As can be
seen, our optimized algorithms achieve a 12.5% to 13.5%
improvement over the existing techniques even factoring
out the benefits of our Strawman bipartitioner.

Achieving these high-quality results has required
innovative optimizations to the individual algorithms. To
improve the KN algorithm we extended it to take
advantage of higher-level gains and recursive clustering.
We also developed the Gradient method to delay
replication until the latter stages of partitioning, avoiding
ignorant replication moves. Combined together, this
improves the results by 7.3%. To improve the DFRG
algorithm we developed a directed graph partitioning
formulation for higher-level gains and extended the
algorithm to work under recursive clustering. This
achieved a 8.2% improvement over the basic DFRG
algorithm. Finally, we improved the Hyper-MAMC
algorithm by carefully considering which nodes should be
used as flow network sources, by varying the amount of
size imbalance allowed for bipartitioning verses
replication, and by developing methods for deciding
which nodes to add as flow sources, and thus reduce the
replication set. This provides a 12.5% improvement over
the basic Hyper-MAMC algorithm, and generates the best
results for any single replication technique.

Our investigations of Functional Replication [16] do
not appear here because of space limitations. It produces
only a 6% improvement over Strawman, making it less
interesting than the other approaches.

As has been demonstrated in this paper, achieving the
greatest possible partitioning quality requires the careful
consideration not only of individual techniques, but also
how these techniques fit together. Optimizations such as
higher-level gains, multiple random initializations, and
recursive clustering may be key to achieving the best
standard bipartitioning results, but integrating replication
techniques into such a system can cause significant added
concerns. Also, subtle issues such as node choice for
flow sources and incrementing flows can easily be
overlooked, yet can provide significant quality
improvements. Thus we believe that as we continue to
add to the repertoire of replication techniques, we must
also consider how these techniques can be added to what
is already known to produce the best overall algorithm.
References
[1] C. J. Alpert, A. B. Kahng, "Recent Directions in Netlist

Partitioning: A Survey", Integration: the VLSI Journal,
Vol. 19, No. 1-2, pp. 1-81, 1995.

[2] C. J. Alpert, S.-Z. Yao, “Spectral Partitioning: The More
Eigenvectors, The Better”, Design Automation Conference ,
pp. 195-200, 1995.

[3] C. K. Cheng, T. C. Hu, “Maximum Concurrent Flow and
Minimum Ratio-cut”, Technical Report CS88-141,
University of California, San Diego, December, 1988.

[4] T. H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to
Algorithms, MIT Press/McGraw-Hill, Cambridge, MA,
1990.

[5] S. Dutt, W. Deng, “A Probability-Based Approach to VLSI
Circuit Partitioning”, Design Automation Conference, pp.
100-105, 1996.

[6] M. Enos, M.S., “Replication for Logic Bipartitioning”,
Master’s Thesis, Northwestern University, Department of
ECE, 1996.

[7] C. M. Fiduccia, R. M. Mattheyses, “A Linear-Time
Heuristic for Improved Network Partitions”, Design
Automation Conference, pp. 241-247, 1982.

[8] L.R. Ford, D.R. Fulkerson, Flows in Networks, Princeton
Univ. Press, Princeton, NJ, 1962.

[9] M. Garey, D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, San Francisco,
CA: Freeman, 1979.

[10] L. Hagen, A. B. Kahng, “New Spectral Methods for Ratio
Cut Partitioning and Clustering”, IEEE Transactions on
Computer-Aided Design, Vol. 11, No. 9, pp. 1074-1085,
Sept. 1992.

[11] S. A. Hauck, Multi-FPGA Systems, Ph.D. dissertation,
University of Washington, Dept. of CSE., pp. 131-168,
1995.

[12] S. Hauck, G. Borriello, “An Evaluation of Bipartitioning
Techniques”, Chapel Hill Conference on Advanced
Research in VLSI, pp. 383-402, March, 1995.

[13] L. J. Hwang, A. El Gamal, “Min-Cut Replication in
Partitioned Networks”, IEEE Transactions on Computer-
Aided Design, Vol. 14, No. 1, pp. 96-106, Jan 1995.

[14] C. Kring, A. R. Newton, “A Cell-Replicating Approach to
Mincut-Based Circuit Partitioning”, International
Conference on Computer-Aided Design, pp. 2-5, 1991.

[15] B. Krishnamurthy, “An Improved Min-Cut Algorithm for
Partitioning VLSI Networks”, IEEE Transactions on
Computers, Vol. C-33, No. 5, pp. 438-446, May 1984.

[16] R. Kuznar, F. Brglez, B. Zajc, “Multi-way Netlist
Partitioning into Heterogeneous FPGAs and Minimization
of Total Device Cost and Interconnect”, Design Automation
Conference, pp. 238-243, 1994.

[17] L. Liu, M. Kuo, C. K. Cheng, T. C. Hu, “A Replication Cut
for Two-Way Partitioning”, IEEE Transactions on
Computed-Aided Design, Vol. 14, No. 5, May 1995, pp.
623-632.

[18] G. M. Riess, K. Doll, F. M. Johannes, “Partitioning Very
Large Circuits Using Analytical Placement Techniques”,
Design Automation Conference, pp. 646-651, 1994.

[19] H. H. Yang, D. F. Wong, “Efficient Network Flow Based
Min-Cut Balanced Partitioning”, International Conference
on Computer-Aided Design, pp. 50-55, 1994.

[20] H. H. Yang, D. F. Wong, “New Algorithms for Min-Cut
Replication in Partitioned Circuits”, International
Conference on Computer-Aided Design, pp. 216-222, 1995.

