
Harnessing FPGAs for Computer Architecture Education
Mark Holland, James Harris, Scott Hauck

Department of Electrical Engineering
University of Washington, Seattle, WA 98195, USA

{mholland, harrisjs, hauck}@ee.washington.edu

Abstract
Computer architecture is often taught by having students
use software to design and simulate individual pieces of a
computer processor. We have developed a method that
will take this classwork beyond software simulation into
actual hardware implementation. Students will be able to
design, implement, and run a single-cycle MIPS
processor on an FPGA. This paper presents the major
steps in this work: the FPGA implementation of a MIPS
processor, a debugging tool which provides complete
control and observability of the processor, the reduction
of the MIPS instruction set into the eight instructions that
will be used by the processor, and an assembler that can
map any MIPS non-floating point instruction into this set
of eight supported instructions.

Introduction
Computer Design and Organization is a common upper-
level engineering course that is offered at universities
throughout the world. In this class students often learn
computer design by implementing individual pieces of a
computer processor. This approach has important
limitations: while students can complete and simulate
their designs using software, they do not have the chance
to implement and run their designs in hardware.

This paper presents our solution to this problem: an
FPGA implementation of the MIPS processor that we will
introduce into the classroom (the processor is from
Computer Organization and Design by David A.
Patterson and John L. Hennessy [1]). The MIPS
processor is commonly used in the teaching of computer
architecture, so our work will be very portable. In
addition to the processor, this paper presents a debugging
tool that will be used to debug the processor and an
assembler that reduces the MIPS instruction set down to a
functionally complete subset of 8 instructions that will
allow a simpler classroom implementation.

These tools can be used to enhance computer architecture
education through the following process: we implement
selected CPU parts onto the processor, give the
incomplete processors to students, and allow the students
to design and integrate the missing pieces. The processor
debugging tool will provide the students with complete
control over their processor, allowing them to debug and
fix their designs. Reducing the MIPS instruction set to
eight instructions allows us to use a simpler

implementation of the processor, and it also simplifies the
parts that the students will design. Our assembler can
reduce a file of any non-floating point/coprocessor
instructions into an implementation using only the set of
eight supported instructions, outputting a machine
language file that can be loaded directly into the
processor.

Combined in the classroom, these tools allow students to
implement and run their processor designs in hardware.
Additionally, the reprogrammable nature of FPGAs
makes them perfect for educational purposes because they
can be reused year after year, resulting in low costs.

FPGA Implementation of the Processor
The most important task in our work was to implement a
single-cycle processor onto an FPGA so that it would
look and behave like the processor presented in
Hennessey and Patterson. We chose to use a XESS-XSV
board for our implementation [2]. This platform includes
one XILINX Virtex XCV300 FPGA, two independent
512K x 16 SRAM banks, one parallel port interface, and
one push-button switch.

Nearly all of the control and the datapath of the processor
can be implemented on the FPGA. The only exceptions
are the data and instruction memories, which are
implemented in SRAM due to a lack of space on the
FPGA. The parallel port is used to load configurations to
the FPGA as well as communicate with the PC, which is
necessary for the debugging tool. The push-button is
used to reset the processor.

Communication between the FPGA components and the
off chip SRAM is controlled by a high frequency clock
that is hidden from the students. A lower frequency clock
(16 times slower) is used to control the actual processor,
and is the clock that the students observe and control.

Debugging Tool
The debugging tool is necessary for making our FPGA-
implemented processor usable in the classroom. The tool
allows the students to observe and control the internal
states of their processors, which is critical for the
designing and debugging processes. We chose to create
the debugging tool using Visual Basic.

Communication between the debugging platform (a PC)

and the processor occurs via the parallel port. The
debugger provides complete control and observability of
the processor. The tool supplies two methods for
controlling the clock: one runs the clock for a specified
number of cycles and one runs the clock until the user
gives a stop signal. The student can read data lines
simply by selecting one of the defined sources: the
program counter, instruction memory, data memory,
register 1, register 2, ALU, MISC1, or MISC2. MISC1
and MISC2 are lines that the student can connect to any
part of the processor, providing added debugging
flexibility. Students can write to the program counter,
register file and memories by supplying the address and
data value to be written, with the exception of the
program counter which does not require an address. They
can perform reads of the register file and memory simply
by supplying the read address.

Reduction of MIPS Instruction Set
We felt that implementing a processor with the complete
MIPS instruction set would be both overly time-
consuming as well as extremely taxing on the available
FPGA resources. We feel that the students will obtain the
same educational benefit using a reduced MIPS
instruction set. This set of eight instructions provides
functionality identical to the original set. The eight
instructions are: NOR (bitwise NOR), SUBU (subtract
unsigned), LW (load word), SW (store word), BGEZ
(branch on greater than or equal to zero), JALR (jump and
link register), SYSCALL (system call), and BREAK.

Different approaches are used for each type of instruction
that we wanted to reduce out of the set. For example, an
ADDU (add unsigned) can be accomplished by
subtracting one of the values from 0 and then subtracting
that value from the other. Similarly, an AND is
accomplished by negating both values and then
performing a NOR.

Assembler
We have designed an assembler that is capable of
mapping any of the MIPS non-floating point/coprocessor
instructions to our set of eight instructions. The
assembler is written using LEX and YACC.

The assembler accepts an input file of assembly language
code and goes through two basic steps. First, it maps the
instructions to the set of eight that is supported by the
processor. Secondly, it converts the mapped assembly
language code into machine language. The machine
language file outputted by the assembler can be directly
loaded into the processor on the FPGA.

Most of the MIPS instructions can be directly mapped to
the supported set of eight, with the exception of
immediate instructions. Since our processor does not

support any immediate instructions, there can be no direct
way to access the immediate value. Thus whenever the
assembler sees an immediate instruction, it writes the
immediate value into a data memory section that appears
after its instruction memory section. A load instruction is
then added that transfers the immediate value from
memory into a register, allowing the processor to access
the immediate as if it were a simple registered value.

Classroom Integration
We will provide students with access to the following: an
XSV board, access to a computer with Xilinx Foundation
Software, our processor debugging tool, a parallel port
connector, a Foundation project containing the base
framework for our processor, and a power supply for
powering the board. With these tools the students will be
able to design and implement a processor on their FPGA.

An early assignment for the students will likely be to
design the register file. Each student will create their
register file and add it to the Foundation project, then
implement the design onto their FPGA. Once completed,
they can easily use the debugging tool to verify their
register file design and fix any errors they find. Other
projects would be the designing of an ALU and control
logic as well as progressing through a single-cycle to a
pipelined processor design.

Results and Discussion
We have implemented both a single-cycle and pipelined
processor using our proposed framework. For the single-
cycle implementation we were able to fit our design quite
easily onto a XILINX Virtex XCV300 PFGA, using only
22% of the LUTs and 25% of the BRAM units. This
FPGA runs at a maximum frequency of 25MHz, which
results in a processor speed of 1.5MHz (25/16). The
pipelined processor produced similar utilization numbers,
using 29% of the LUTs, 25% of the BRAMs, and running
at 23 MHz (1.4MHz processor clock).

The debugging tool has also been tested, and successfully
supplies a user with complete control of the processor
even when the processor is incomplete. Additionally, an
undergraduate student has successfully implemented
designs onto an FPGA using our tools and provided us
with feedback that was applied to our designs.

Further information on this work can be found in [3].

References
[1] Patterson, D. A., J. L. Hennessy, Computer Organization

and Design: The Hardware/Software Interface, San
Francisco, 1998.

[2] XESS Corp., XSV Board V1.0 Manual, March 1 2000.
[3] Holland, M. Harnessing FPGAs for Computer

Architecture Education, M.S. Thesis, University of
Washington, 2002.

