

1

Harnessing FPGAs for Computer Architecture Education

Mark Holland

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science
In Electrical Engineering

University of Washington

2002

Program Authorized to Offer Degree: Electrical Engineering

2

University of Washington
Graduate School

This is to certify that I have examined this copy of a master’s thesis by

Mark Holland

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Committee Members:

__
 Scott Hauck

__
 Carl Ebeling

Date: _______________________

3

In presenting this thesis in partial fulfillment of the requirements for a Master’s degree at the University of
Washington, I agree that the Library shall make its copies freely available for inspection. I further agree
that extensive copying of this thesis is allowable only for scholarly purposes, consistent with “fair use” as
prescribed in the U.S. Copyright Law. Any other reproduction for any purposes or by any means shall not
be allowed without my written permission.

Signature_______________________________

Date___________________________________

4

University of Washington

Abstract

Harnessing FPGAs for Computer Architecture Education

Mark Holland

Chair of the Supervisory Committee:

Associate Professor, Scott Hauck
Electrical Engineering

Computer architecture and design is often taught by having students use software to design and simulate

individual pieces of a computer processor. We have developed a method that will take this classwork

beyond software simulation into actual hardware implementation. Students will be able to design,

implement, and run a single-cycle MIPS processor on an FPGA. This paper presents the major steps in this

work: the FPGA implementation of a MIPS processor, a debugging tool which provides complete control

and observability of the processor, the reduction of the MIPS instruction set into eight instructions that will

be used by the processor, and a assembler that can map any MIPS non-floating point instruction into the set

of eight supported instructions.

5

TABLE OF CONTENTS

List of Figures iii

List of Tables iv

Introduction 1

Related Work 3

FPGA Implementation of the Processor 5

Debugging Tool 9

Reduction of MIPS Instruction Set 12

Assembler 15

Classroom Integration 16

Results and Discussion 17

Conclusion 18

Current Status and Future Work 19

Notes 20

End Notes 21

Bibliography 22

Appendix A – Verilog Code for the Single Cycle Processor 23

Appendix B – Schematics for the Single Cycle Processor 44

Appendix C – Verilog Code for the Pipelined Processor 60

6

Appendix D – Schematics for the Pipelined Processor 79

Appendix E – Debugging Interface Code 91

Appendix F – Lex Assembler Code 118

Appendix G – Yacc Assembler Code 134

7

LIST OF FIGURES

Figure 1: Single Cycle MIPS Processor [5] 2

Figure 2: The XSV Board Schematic [12] 5

Figure 3: Register File Implementation 6

Figure 4: (a) Read, (b) Write Waveforms for the SRAM 7

Figure 5: Processor Timing Diagram 8

Figure 6: The Debugging Interface 10

8

LIST OF TABLES

Table 1: Debugger Commands and OP Fields 10

Table 2: Reduced MIPS Instruction Set 11

Table 3: Instruction Inflation Due to Reducing Set 13

Table 4: Implementation Results 16

9

Introduction

Computer Design and Organization is a common upper-level engineering course that is offered at

universities throughout the world. In this class students often learn computer design by implementing

individual pieces of a computer processor. This approach has important limitations: while students can

complete and simulate their designs using software, they do not get the chance to implement and run their

designs. Studies of engineering curriculums have shown that students learn better when given active,

hands-on projects [1], [2], suggesting that students would thrive on the opportunity to implement and run

their processors in hardware.

This paper presents a Field Programmable Gate Array (FPGA) implementation of a computer processor, a

processor debugging tool, the reduction of the MIPS instruction set into eight instructions, and a assembler

that performs the instruction reduction. The processor can be used to enhance computer architecture

education as part of the following process: we will implement selected CPU parts onto the processor, give

the incomplete processors to students, and allow the students to design and integrate the missing pieces.

The processor debugging tool would provide the students with complete control over their processor,

allowing them to debug and fix their designs. Reducing the MIPS instruction set to eight instructions

allows us to use a simpler implementation of the processor, and it also simplifies the parts that the students

will design. Finally, the assembler can reduce a file of any non-floating point/coprocessor instructions into

our set of eight supported instructions, outputting a machine language file that can be loaded directly into

the processor. Combined in the classroom, these tools allow students to implement and run their processor

designs on an actual chip.

FPGAs are logic chips that can be programmed any number of times. The area of an FPGA is devoted

largely to reprogrammable logic, but vendors have recently added sizable memories to their chips in order

to give them a wider range of capabilities. In Xilinx Virtex devices [3] this memory is called Block Ram

(BRAM) [4]. This BRAM provides for shallow RAM structures to be implemented on the FPGA.

The reprogrammable nature of FPGAs makes them perfect for educational purposes because they can be

reused year after year, resulting in low overhead costs. In addition, the reprogrammable nature of FPGAs

allows computer architecture students to have as many iterations as necessary when implementing their

processors.

Our work is modeled on the single-cycle implementation of the MIPS processor, which is shown in Figure

1. We also have a pipelined implementation of the MIPS processor, but most of the paper will focus on the

single-cycle implementation as it will be our primary instructional tool. Both processors operate on the

MIPS instruction set as described in Computer Organization and Design by David A. Patterson and John L.

Hennessy [5]. This book is widely used in the teaching of computer architecture. Using Patterson and

10

Hennessy as a basis for our processor means that the FPGA-implemented processor presented here will be

easily incorporated into a large number of classrooms.

Figure 1: Single Cycle MIPS Processor [5]

Preliminary work on this project was conducted by Jered Aasheim during the summer of 2000. James

Harris and Tim Midget were indispensable for their work on the reduction of the MIPS instruction set, as

was Steve Detmer for working with and critiquing our beta version processor and debugging tool. Scott

Hauck was supported by an NSF Career Award and a Sloan Foundation Fellowship, and Mark Holland was

supported by an NSF Graduate Fellowship. Additionally, this project was funded in part by a donation

from Xilinx.

11

Related Work

As early as 1990, researchers were considering how to increase the effectiveness of microprocessor

architecture education. In A reconfigurable microprocessor teaching tool [6], Diab et al introduced a

software package that could be used to help students understand the internal workings of a microprocessor.

The tool aided students by walking them through a graphical demonstration of the internal behavior of a

processor.

The package included an assembler, a control unit emulator, and a graphics simulator. The presence of the

assembler allowed students to choose either assembly code or machine code to run on the mock processor.

The graphics simulator would walk through the instructions and show the user how the instructions

stimulated specific parts of the microprocessor, including the control logic created by the control unit

emulator. Using this tool, the students could see how the different parts of the processor interact, and how

they functionally combine into a working processor.

Our work is very much in the same flavor as the work done by Diab et al, but with the use of FPGAs we

have been able to actually create a functional processor instead of simply displaying it graphically.

More recently, Salcic and Smailagic [7] designed a custom configurable microprocessor that they called

SimP. While their microprocessor was not intended for use in schools, it does have many attributes that

would make it a good educational tool for a microprocessor class, including a concise 16-bit instruction set,

data registers, ALUs, and a simple datapath. The differences between SimP and the MIPS processor

presented in Patterson and Hennessy, however, are drastic enough that to use SimP while teaching

microprocessor design from Patterson and Hennessy would be comewhat counterproductive. Another

option would be to teach microprocessor design using solely SimP and it’s documentation, but the literature

accompanying the SimP processor is too sparce to be very helpful in the teaching of a course.

Other groups have also successfully placed processors onto FPGAS, including companies such as Xilinx

[8], Altera [9], [10], and Gray Research [11]. Their work, however, has been aimed at obtaining high

performance processors or efficient mapping strategies for processors on FPGAs. Our design goals are

quite different, as we are trying to use FPGA-implemented CPUs as tools for teaching computer

architecture to students, meaning that the focus of the class must be on CPU design and not on FPGAs.

Our design goals did not allow us to use any of these commercial FPGA-optimized CPUs. One major

drawback of their implementations is that the processors are invariably tied to the FPGAs they are

implemented on: to teach CPU design using any of them would require almost as much background in

FPGAs as it would in processor design. We want to keep the focus away from the FPGAs; they should

simply be tools for learning CPU design. As such, we wanted to create a simple CPU that would require

12

almost no FPGA background.

Other design requirements also led us to create our own CPUs. In the classroom, our processors will need

to be easily dissected and understood. Also, since our students will be putting their processors together one

part at a time, we needed a processor that is easily tested and debugged even when incomplete.

Considering these requirements, we determined that the best course of action was to design the processor

from scratch, allowing us to build an integrated debugging tool that would be able to control and debug the

processor.

13

FPGA Implementation of the Processor

The most important task in our work was to implement a single-cycle processor onto an FPGA so that it

would look and behave like the processor presented in Hennessey and Patterson. We chose to do our

implementation on a XESS-XSV board [12], shown in Figure 2. The board components used in this

implementation are as follows: one XILINX Virtex XCV300 FPGA [3], two independent 512K x 16

SRAM banks [13], one parallel port interface [14] that will allow communication between a PC and the

FPGA, and one push-button switch. The Virtex XCV300 FPGA contains 322,970 system gates and 65,535

BRAM bits. Xilinx’s Foundation software was our design platform, and provided us with the bit streams

that were used to program the FPGAs.

Figure 2: The XSV Board Schematic [12]

The FPGA is used for nearly all of the control and datapath of the processor. The only exceptions are the

data and instruction memories, which are implemented in SRAM due to a lack of space on the FPGA. The

parallel port is used for loading configurations to the FPGA as well as communicating with the PC, which

is necessary for the debugging tool. The push-button is used to reset the processor.

14

READ A
DATA [31:16] READ A

DATA [15:0]

READ B
DATA
[31:16]

READ B
DATA [15:0]

While many of the smaller aspects of the processor are trivial to design and implement on the FPGA1,

considerable effort was needed to implement the processor’s memories. This is because FPGAs are

primarily designed to handle logic, not memories, and are therefore fabricated with a very small amount of

memory space. Thus the register file, instruction memory, and data memory must be carefully

implemented so that the chip’s resources are not overused.

The register file is a 32-bit, 32-address memory that has two read ports and one write port. This means that

during any clock cycle, the processor must be able to read values from two different memory addresses as

well as write a value to a third address. In order to avoid taxing the standard logic resources of the FPGA,

we implemented the register file using Block Ram (BRAM). A single BRAM can have data widths of no

greater than 16 bits and has a maximum of two ports; multiple BRAMs were needed in order to implement

the 32-bit, three-ported register file.

Figure 3 shows the implementation of the register file using four dual-ported 16-bit BRAMs. These four

16-bit BRAMs functionally combine to create two 32-bit BRAMs, which is what the processor requires. It

is necessary that writes be performed on both of these 32-bit BRAMs so that a read from either of the

BRAMs will return the proper value. One read port can then be assigned to each of the 32-bit BRAMs,

providing us with a 32-bit, 32-address register file complete with two read ports and one write port.

Figure 3: Register File Implementation

By itself, the FPGA does not have enough storage area to hold the instruction and data memories, so we

chose to put these memories into off-chip SRAM. The instruction and data memories need to be large

enough to hold a complete program in them, and the 2K addresses that are available in the FPGA’s BRAM

are insufficient. Combining the two SRAM banks results in 512K addresses, which is sufficiently large for

the purposes of our instructional processor.

1 The ALUs, shifters, control logic, sign extenders, and multiplexors can all be described in very few lines of verilog
code or with very simple schematics.

WRITE DATA
[15:0]

WRITE DATA
[31:16]

READ A
ADDRESS

READ B
ADDRESS

READ A
DATA [31:0]

READ B
DATA [31:0]

WRITE
ADDRESS

15

CLOCK

Our goal was to present the processor exactly as it is shown in Patterson and Hennessy, which suggests that

we should have implement the memories as two distinct units. Using one bank of off-chip SRAM for the

memories therefore presented a problem: how would we make one memory appear to be two memories?

Also, since we were now using resources that are not on the FPGA, how would we hide the complicated

communications between the FPGA and the SRAM so that the students would not see them?

In the normal operation of the processor, it is common that the instruction memory and the data memory

would both be accessed during the same clock cycle. Since both of these memories are implemented in the

same SRAM and cannot be accessed simultaneously, this requires that the processor clock be divided into

multiple clock cycles: one period for reading instructions, one period for reading data, and one period for

storing data.

In addition, any memory reference requires that the FPGA send multiple signals to the SRAM at specific

times in order to initiate a read or a write. The read and write waveforms for the SRAM, as implemented in

our processor, are shown in Figure 4. These waveforms can each be produced using 4 clock cycles, with

driven signals being changed on the rising edges of the clocks.

Figure 4: (a) Read, (b) Write Waveforms for the SRAM

Each communication with the SRAM requires a minimum of 4 clock cycles, which means that the memory

now requires 12 clock cycles per CPU clock cycle in order to behave like two memories. To accommodate

this, we use a clock of 16 times the frequency of the processor to control the instruction and data memory

communications, supplying extra time where combinational delays exist. The 16-cycle sub-clock is hidden

from the students so that the memory will look and behave like the idealized data and instruction memories

from Patterson and Hennessy.

The overall timing diagram for our processor, including clocks and operations, is shown in Figure 5. In the

single-cycle implementation the clock is always started prior to the current instruction fetch, is run for a

CHIP ENABLE

CHIP ENABLE

OUTPUT ENABLE

WRITE ENABLE

ADDRESS

VALID DATA OUT

OUTPUT ENABLE

WRITE ENABLE

ADDRESS

DATA IN

(a)

(b)

16

certain number of cycles, and then stopped after a memory load. In this way the clock can be run for 0

cycles, which would load an instruction and perform a memory load but would not commit any values to

memory, allowing only combinational effects to occur. Another thing to notice is that the memory store

and register writebacks are timed so that they are edge triggered with respect to the CPU clock.

Figure 5: Processor Timing Diagram

The pipelined implementation of the processor had to use a slightly different clocking scheme than the

single-cycle implementation. Using the single-cycle clocking scheme for the pipelined processor, a conflict

occurs when a specific register is being written to and read from during the same clock cycle. The fact that

the clock is always started before the instruction fetch means that the read would occur before the write,

resulting in the wrong value being read from the register. In the pipelined processor, therefore, the write

back must occur before the read occurs. This is accomplished by always starting the pipelined clock at the

write back, allowing the proper value to be read from the same register during the same clock cycle.

Appendices A and B contain the verilog and schematic files used to create the single cycle processor, and

Appendices C and D contain the additional verilog and schematic files that were needed for the pipelined

processor.

FPGA CLOCK

CPU CLOCK

PREVIOUS STORE INSTRUCTION FETCH MEMORY LOAD

REG WRITE BACK

17

Debugging Tool

The debugging tool is necessary for making our FPGA-implemented processor usable in the classroom.

The tool allows the students to observe and control the internal states of their processors, a necessity for the

designing and debugging processes. We chose to create the debugging tool using Visual Basic, and the

code for the tool appears in Appendix E.

Communications between the PC and the FPGA are carried out over the parallel port. The parallel port

provides a total of twelve signals that can be seen by both the PC and the FPGA. Eight of these signals

(bits) are changeable only by the PC and four of them only by the FPGA. Both the PC and the FPGA can

thus put bits onto the parallel port that can be seen by the other device.

Of these parallel port bits, we use one bit in each direction as an acknowledge signal. When the PC wants

the FPGA to accept new data it changes the value of its acknowledge bit, which the FPGA recognizes as a

prompt to read the other seven PC-controlled bits. When the FPGA has successfully read the bits, it

changes the value of its own acknowledge bit, which tells the PC that the transaction was successful. This

leaves seven actual data bits to be controlled by the PC, and three data bits to be controlled by the FPGA.

The interface of the debugging tool is shown in Figure 6. The tasks that it can perform can be broken into 5

basic categories: clock manipulation, reading of data lines, writing the program counter, reading or writing

the register file, and reading or writing the instruction or data memory. These tasks provide the user with

control of all vital parts of the processor as well as complete observability of the processor’s internal state.

The list of commands that the debugger can perform is shown in Table 1.

We supply two methods for controlling the clock: one which runs the clock for a specified number of

cycles and one which runs the clock until the user gives a stop signal. The student can read data lines

simply by selecting one of the provided lines: PC, INST, DATA (data memory output), REG1, REG2,

ALU, MISC1, or MISC2. MISC1 and MISC2 are lines that the student can hook up to any part of the

processor, providing added debugging flexibility. Students can write to the program counter, register file

and memories by supplying the address and data value to be written, with the exception of the program

counter which does not require an address. They can then perform reads of the register file and memory

simply by supplying the read address.

18

Figure 6: The Debugging Interface

19

Table 1: Debugger Commands and OP Fields

DEBUGGING OPERATION RESULT
CLOCK

Run Runs the processor clock for a specified number of cycles.
Start Starts the processor clock.
Stop Stops the processor clock.

READ DATA LINES
PC Returns the current value of the program counter
INST Returns the current output of the instruction memory
DATA Returns the current output of the data memory
REG1 Returns the current output of register 1
REG2 Returns the current output of register 2
ALU Returns the current output of the datapath ALU
MISC1 Returns the current output of the first miscellaneous line (hooked up by the user to any output)
MISC2 Returns the current output of the second miscellaneous line (hooked up by the user to any output)

SRAM
RUN Runs a routine that tests the SRAM banks
Dump Memory Dumps the contents of the SRAM to a file
Load File Loads the specified file into the SRAM

WRITE DATA LINES
MISC1 Set the first miscellaneous input line to a specified value (hooked up by the user to any input)
MISC2 Set the second miscellaneous input line to a specified value (hooked up by the user to any input)
MISC3 Set the third miscellaneous input line to a specified value (hooked up by the user to any input)
Update All Three Update all three miscellaneous lines

PC: Write Write a value to the program counter
REG: Write Write a value to any register
REG: Read Read a value from any register
MEM: Write Write a value to any instruction or data address
MEM: Read Read a value from any instruction or data address
Get Reg File Obtain the complete state of the register file
INSTRUCTION MEMORY Observe the instructions near the current instruction

20

Reduction of MIPS Instruction Set

The work described in this section was performed by James Harris and Tim Midget under the supervision

of Scott Hauck, and is included in this document because it is an integral part of the project.

We determined that it would not be ideal to implement a processor that ran the complete MIPS instruction

set: it would be too time consuming and too taxing on our FPGA resources, while providing negligible

educational value to the students. At the same time we want our processor to be able to load and run

programs, which would seem to require the ability to execute any instruction. To accommodate these goals

we searched for a small set of instructions that could be used to describe the complete set, but that would

allow us to retain the flavor of a real microprocessor.

At the far end of the spectrum, it is possible to create a “one instruction computer” using only one

instruction to build the rest of the instruction set [15]. Another option we considered was using an 8-bit

implementation rather than a 32-bit set. Both of these options, however, would oversimplify the processor

to a point where it no longer behaved like a standard processor. Since the processor will be used solely for

educational purposes, we wanted to make sure that it would retain enough characteristics of a standard

processor that it would be useful in the classroom.

Other methods of reducing the instruction set proved themselves too inefficient. For example, we could

have pre-loaded our processor with all 232 possible 32-bit values: a negation could then have been

accomplished simply by loading the proper value from memory. The memory overhead from a scheme like

this is ridiculously large, however, which makes it impractical to use.

In the end, we chose to reduce MIPS to the eight instructions shown in Table 2. These are all standard

instructions from the MIPS instruction set.

We can describe any MIPS instruction by some combination of these eight instructions. This set of

instructions maintains the feel of a real processor by providing a wide range of functionality. It contains a

logical operator (NOR), an arithmetic operator (SUBU), loading and storing instructions (LW, SW),

branching and jumping capabilities (BGEZ, JALR), and exceptions (SYSCALL, BREAK). In practice,

programs will be run through our assembler, which will reduce all instructions down to this set of eight.

Instructions will then be turned into machine code, loaded onto the processor, and run.

Different approaches were needed for each type of instruction that we wanted to reduce out of the set. For

example, an ADDU (add unsigned) can be accomplished by subtracting one of the values from 0 and then

subtracting that value from the other. Similarly, an AND is accomplished by negating both values and then

performing a NOR.

21

Table 2: Reduced MIPS Instruction Set

INSTRUCTION / FORMAT OPERATION

NOR rd, rs, rt

(Nor)
perform bit-wise logical NOR on the contents of register rs and rt, place the result in rd

SUBU rd, rs, rt

(Subtract Unsigned)
subtract the contents of rt from rs and place in rd (unsigned)

LW rt, offset(base)

(Load Word)
load into rt the value from memory location that is the sum of offset and the value in register base

SW rt, offset(base)

(Store Word)

Store the value from register rt into the memory location that is the sum of offset and the value in

register base

BGEZ rs, offset

(Branch on Greater Than or Equal to 0)
if the contents of rs >= 0, branch to (PC + offset) (offset is shifted two bits and sign extended)

JALR rd, rs

(Jump and Link Register)
jump to the address in register rs, placing the next instruction in rd

SYSCALL

(System Call)
a system call exception transferring control to the exception handler

BREAK

(Break)
A breakpoint trap occurs, transferring control to the exception handler

Many instructions make use of the fact that adding a number to itself is the same as shifting the number

once to the left. Shift lefts and shift rights are easily accomplished using this concept, and multiplies are

also aided by this fact. We perform our multiplies by shifting the multiplier left one bit at a time, each time

checking the MSB. If the MSB is 1, the multiplicand is added to the product, which is also shifted each

time we check the multiplier. Thus, a multiply is carried out in the same manner that a human would

multiply two numbers by hand. (The multiplier is forced to be positive so that this will work. If a negative

multiplier is present, we negate both the multiplier and multiplicand to achieve this. Checking the MSB of

a number is done via BGEZ.)

The divide instruction is also implemented in the same way that a person would do it by hand. The

dividend is shifted one bit at a time and is compared to the divisor upon each shift. At any step, if the

dividend is greater than or equal to the divisor, the divisor is subtracted from the dividend and the quotient

is incremented by one. Just like with the multiply, the quotient is shifted along with the dividend in order

to keep the answer correct. At the end, the remaining dividend is placed into the remainder register.

Table 3 shows how many instructions must be used to replace each MIPS instruction. The total is the

number of instructions used to replace the given instruction, while the average is the average number of

instructions that will be executed in place of the given instruction. Note that the average can be greater

than the total code expansion because of loops within the code. LUI and LI (load upper immediate and

load immediate, which load 16-bit constants into a register) require only one instruction because the

assembler assists them by placing the value to be loaded into memory prior to operation.

It is clear that by reducing the number of usable instructions we are consequently inflating the overall

22

instruction count and thus reducing our processor’s performance. Remember, however, that performance is

not one of our major design goals. A simpler implementation is more valuable to us than fast processing,

so we believe the instruction inflation shown in Table 3 is acceptable.

Table 3: Instruction Inflation Due to Reducing Set

INST TOT AVG INST TOT AVG INST TOT AVG INST TOT AVG

LB 13 12.5 J 2 2 ORI 3 3 DIVU 30 352.5

LBU 8 8 JAL 2 2 OR 2 2 SLTI 9 5.83

LH 15 9 JR 1 1 XORI 6 6 SLTIU 9 6

LHU 9 6.5 JALR 1 1 XOR 5 5 SLT 8 4.83

LW 1 1 BEQ 5 4 NOR 1 1 SLTU 9 5

LWL 22 47.25 BNE 6 3.63 ADDI 2 2 SLL 9 51.53

LWR 54 81.75 BLEZ 4 2.5 ADDIU 2 2 SRL 16 64.13

LUI 1 1 BGTZ 5 2.75 ADD 17 5.9 SRA 17 65.09

LI 1 1 BLTZ 2 1.5 ADDU 2 2 SLLV 8 50.53

SB 29 17.75 BGEZ 1 1 SUB 2 2 SRLV 15 63.13

SH 15 9.5 BLTZAL 3 2.5 SUBU 1 1 SRAV 16 64.09

SW 1 1 BGEZAL 2 2 MULT 39 212 SYSCALL 1 1

SWR 25 14 AND 3 3 MULTU 26 336.8 BREAK 1 1

SWL 26 16.25 ANDI 4 4 DIV 38 356.8

23

Assembler

We have designed an assembler that is capable of mapping any of the MIPS non-floating point/coprocessor

instructions to this set of eight. The assembler is written using LEX and YACC, and the code is included in

Appendices F and G.

The assembler accepts an input file of assembly language code and goes through two basic steps: first, it

maps the instructions to the set of eight that is supported by the processor, and secondly, it turns the

assembly language code (of the eight instructions) into machine language code. The machine language file

outputted by the assembler can be directly loaded into the processor on the FPGA.

Most of the MIPS instructions can be directly mapped to the supported set of eight, with the exception of

immediate instructions. Since our processor does not support any immediate instructions, there can be no

direct way to access the immediate value. To get around this, whenever the assembler sees an immediate

instruction it writes the immediate value into a data memory section that appears after it’s instruction

memory section. It then adds a load instruction which loads the immediate value from data memory into a

register, allowing the processor to access the immediate value as if it were a simple registered value.

24

Classroom Integration

We will provide the students with access to the following items: an XSV board, access to a computer with

Xilinx Foundation Software, our processor debugging tool, a parallel port connector, a Foundation project

containing an incomplete version of our processor, and a power supply for powering the board. With these

tools the students will be able to design and implement a processor on their FPGA. A possible set of

projects is suggested here in order to illustrate the use of our tools.

An early assignment for the students will likely be the designing of the register file. Each student will

design their register file and add it to the Foundation project, then implement the design onto their FPGA.

Once done, they can use their debugging tool to verify their register file design in multiple ways. The

simplest way will be to write values directly to the register file and then read them to assure correct

operation, but they could also use the debugging tool to simulate a specific instruction and see that the

instruction has the proper effects on the register file.

The next design project might be the ALU. After designing the ALU and implementing it onto the FPGA

along with their register file, a student would again have a number of ways to test their designs. First, they

could simply use the debugging tool to stimulate the ALU’s inputs and control values, observing that the

proper value is outputted. They could also hook up the register file outputs to the ALU inputs, testing the

two units together by giving addresses to the register file and observing the ALU output. A third option is

to simulate a specific instruction and observe its propagation through the register file and ALU. Again, the

debugging tool will provide many testing options to the students, allowing them to debug in almost any

manner they wish.

When a student has designed a complete single-cycle processor, the debugging tool will then be used not

only to stimulate inputs and read outputs, but also to control the CPU clock. A student will be able to read

or write any of the processor’s memories in order to obtain the state they want, and then they will be able to

walk the CPU clock in any increment they wish. For example, a student might load a specific instruction

into memory and then run the processor for 0 cycles, thereby loading the instruction and observing the

propagation of values through the combinational paths of the CPU. The student could also run the

processor for a full cycle, committing to memory whatever the instruction specifies, thereby making certain

that the memories are working correctly. Again, a number of debugging options are made available, giving

the students the freedom to debug however they wish.

Beyond a single-cycle implementation, the students might also be asked to design a multi-cycle or

pipelined processor. In reality, these and almost any projects relating to processor design can be completed

because the debugging tool supplies complete control and observability of the processor’s internal state.

25

Results and Discussion

The results of our FPGA implementations of two processors appear in Table 4. For the single-cycle

implementation we were able to fit our design quite easily into our XILINX Virtex XCV300 PFGA, using

only 22% of the LUTs and 25% of the BRAM units. Our FPGA runs at a maximum frequency of 25MHz,

which means that the actual processor runs at 1.5MHz (25/16). The pipelined processor produced similar

utilization numbers, using 29% of the LUTs, 25% of the BRAMs, and running at 23 MHz (1.4MHz for the

processor).

Table 4: Implementation Results

PROCESSOR TYPE
FPGA CLOCK

FREQ

PROC. CLOCK

FREQ

% LUTS

USED

% BRAM

USED

SINGLE-CYCLE MIPS 25 MHz 1.5 MHz 22% 25%

PIPELINED MIPS 23 MHz 1.4 MHz 29% 25%

The debugging tool has also been tested, and successfully supplies a user with complete control of the

processor even when the processor is incomplete.

The work presented in this paper describes a completely functional and debuggable processor. While we

have offered an outline of some possible class projects, instructors who wish to use our implementation will

ultimately make the decision on what aspects of architecture to teach. By providing the students with a

Foundation file that already has most parts of the processor, instructors will be able to have their students

design and replace the missing parts. Upon completion, students will have a working processor that they

can actually operate.

26

Conclusion

The FPGA-implemented processor, debugging tool, and reduced instruction set presented in this paper

represent the primary step in our goal of introducing FPGAs into the teaching of computer architecture.

The processor and debugging tool should be easy to integrate into the classroom, where they will provide

students with a hands-on experience that was previously unavailable to them. We are convinced that when

teachers incorporate these tools into their classrooms that students will display better retention of the

intended lessons as well as increased enthusiasm about the work performed.

27

Current Status and Future Work

In the fall of 2001, an undergraduate student named Steve Detmer tested the basic lesson plan that we are

developing for this project. Steve took a microprocessor design course (EE471) in the spring of 2001, and

in the fall we had him implement his class designs onto the FPGA in order to test the debugging tool and

FPGA-implemented processor. He was successful in using his designs to create a functional FPGA with

the aid of our debugging tool, and the suggestions and criticisms that came out of Steve’s work have since

been integrated into the project and into this paper.

In addition, the assembler that we developed has been provided to the students in the spring 2002 offering

of EE471. Use of the compiler will allow the students to create and run programs in software, adding to

their understanding of the material. Feedback from the students will also enable us to fix any bugs or user-

unfriendly aspects that are present in the compiler.

The next step is to get this complete project integrated into the teaching of Computer Organization and

Design. We will be looking into the hardware and software requirements of incorporating our research into

EE471 at the University of Washington, with the goal of integrating our work into the classroom in the fall

of 2002.

In the future, there also exists the possibility of merging this work with student-built compilers and

operating systems. By combining the teachings of processor design, compilers, and operating systems,

students will eventually be able to turn chips into complete working computers. By doing this, the

interactions and tradeoffs between these various fields can be explored in real terms, with concrete results.

28

Notes

Along with the previously mentioned eight instructions, our processor also supports the instructions that are

presented in Patterson and Hennessy: BEQ, ADD, SUB, AND, OR, SLT, and J. This set includes simple

and easily understood instructions, and supporting them will provide the students a larger range of

instructions with which to test and debug their processor. Thus in total our processor supports 15

instructions.

29

End Notes

[1] Courter, S.S., S. B. Millar, and L. Lyons, “From the Students’ Point of View: Experiences in a
Freshman Engineering Design Course”, Journal of Engineering Education, vol. 87, no. 3, 1998.

[2] Mahendran, M, “Project-Based Civil Engineering Courses”, Journal of Engineering Education, vol.

84, no. 1, 1995.

[3] Xilinx Inc., The Programmable Logic Data Book, pp. 3.3-3.12, 1999.

[4] Xilinx Inc., Dual Port Block Memory: Product Specification, May 28 1999.

[5] Patterson, D. A., J. L. Hennessy, Computer Organization and Design: The Hardware/Software

Interface, San Francisco, 1998.

[6] Diab, H, and I. Demashkieh, “A reconfigurable microprocessor teaching tool”, IEEE Proceedings,

vol. 137, Pt. A, No. 5, September 1990.

[7] Salcic, Zoran and Asim Smailagic, Digital Systems Design and Prototyping Using Field

Programmable Logic, pp. 203-242, Norwell, 1997.

[8] Alliance Core, ARC 32-Bit Configurable RISC Processor: Datasheet, July 3 2000.

[9] Altera Corporation, ARM-Based Embedded Processor Device Overview: Datasheet, ver. 1.2,

February 2001.

[10] Altera Corporation, MIPS-Based Embedded Processor Device Overview: Datasheet, ver. 1.2,

February 2001.

[11] Gray, J., “Designing a Simple FPGA-Optimized RISC CPU and System-on-a-Chip”, 2000.

[12] XESS Corporation, XSV Board V1.0 Manual, March 1 2000.

[13] Alliance Semiconductor, 5V/3.3V 512K x 8 CMOS SRAM: Datasheet, ver. 1.0, January 12 2001.

[14] XESS Corporation, XSV Parallel Port Interface: Application Note by D. Vanden Bout, ver. 1.0,

April 10 2000.

[15] Styer, Eugene, “One Instruction Computers”, http://eagle.eku.edu/faculty/styer/oisc.html, 1996.

30

Bibliography

Alliance Core, ARC 32-Bit Configurable RISC Processor: Datasheet, July 3 2000.

Alliance Semiconductor, 5V/3.3V 512K x 8 CMOS SRAM: Datasheet, ver. 1.0, January 12 2001.

Altera Corporation, ARM-Based Embedded Processor Device Overview: Datasheet, ver. 1.2, February

2001.

Altera Corporation, MIPS-Based Embedded Processor Device Overview: Datasheet, ver. 1.2, February

2001.

Courter, S.S., S. B. Millar, and L. Lyons, “From the Students’ Point of View: Experiences in a Freshman

Engineering Design Course”, Journal of Engineering Education, vol. 87, no. 3, 1998.

Diab, H, and I. Demashkieh, “A reconfigurable microprocessor teaching tool”, IEEE Proceedings, vol. 137,

Pt. A, No. 5, September 1990.

Gray, J., “Designing a Simple FPGA-Optimized RISC CPU and System-on-a-Chip”, 2000.

Mahendran, M, “Project-Based Civil Engineering Courses”, Journal of Engineering Education, vol. 84, no.

1, 1995.

Patterson, D. A., J. L. Hennessy, Computer Organization and Design: The Hardware/Software Interface,

San Francisco, 1998.

Salcic, Zoran and Asim Smailagic, Digital Systems Design and Prototyping Using Field Programmable

Logic, pp. 203-242, Norwell, 1997.

Styer, Eugene, “One Instruction Computers”, http://eagle.eku.edu/faculty/styer/oisc.html, 1996.

XESS Corporation, XSV Board V1.0 Manual, March 1 2000.

XESS Corporation, XSV Parallel Port Interface: Application Note by D. Vanden Bout, ver. 1.0, April 10

2000.

Xilinx Inc., The Programmable Logic Data Book, pp. 3.3-3.12, 1999.

Xilinx Inc., Dual Port Block Memory: Product Specification, May 28 1999.

31

Appendix A – Verilog Code for the Single Cycle Processor

//File: add1.v
//Author: Mark Holland
//Last Modified: May 29, 2002
//This is a simple ADD 1 Unit, where out = in + 1.

module add1(in, out);

input [31:0] in;
output [31:0] out;

assign out = in + 1;

endmodule

//File: adder.v
//Author: Mark Holland
//Last Modified: May 29, 2002
//This 32 bit adder performs out = in1 + in2.

module adder(in1, in2, out);

input [31:0] in1;
input [31:0] in2;
output [31:0] out;

assign out = in1 + in2;

endmodule

32

//File: alu2.v
//author: Mark Holland
//Last Modified: May 29, 2002
//a 32-bit ALU composed of 8 4-bit ALUs.

//Performs AND, OR, ADD, SUB, and SLT on two 32-bit numbers.

module alu32(control, a, b, result, overflow, zero);

input [2:0] control;
input [31:0] a;
input [31:0] b;

output [31:0] result;
output overflow;
output zero;

wire zero;
wire overflow;
wire final_carry;

wire set;

wire [6:0] carry;

assign zero = ~| result[31:0];

assign overflow = (!control[2] && control[1] && !control[0] && !a[31] && !b[31] && result[31])
+
 (!control[2] && control[1] && !control[0] && a[31] && b[31] && !result[31]) +
 (control[2] && control[1] && !control[0] && !a[31] && b[31] && result[31]) +
 (control[2] && control[1] && !control[0] && a[31] && !b[31] && !result[31]) +
 (!control[2] && control[1] && control[0] && result[31]);

alu4 adder4_0(control, control[2], a[3:0], b[3:0], {3'b000, set}, result[3:0], carry[0]);
alu4 adder4_1(control, carry[0], a[7:4], b[7:4], 4'b0000, result[7:4], carry[1]);
alu4 adder4_2(control, carry[1], a[11:8], b[11:8], 4'b0000, result[11:8], carry[2]);
alu4 adder4_3(control, carry[2], a[15:12], b[15:12], 4'b0000, result[15:12], carry[3]);
alu4 adder4_4(control, carry[3], a[19:16], b[19:16], 4'b0000, result[19:16], carry[4]);
alu4 adder4_5(control, carry[4], a[23:20], b[23:20], 4'b0000, result[23:20], carry[5]);
alu4 adder4_6(control, carry[5], a[27:24], b[27:24], 4'b0000, result[27:24], carry[6]);
alu4_top adder4_7(control, carry[6], a[31:28], b[31:28], 4'b0000, result[31:28], final_carry, set);

endmodule

//author: Mark Holland
//the upper most 4-bit ALU, which contains the set signal needed for SLT

module alu4_top(control, c_in, a, b, less, result, c_out, set);

input [2:0] control;
input c_in;
input [3:0] a, b;
input [3:0] less;

output [3:0] result;
output c_out;
output set;

wire [2:0] carry;

alu1 adder_0(control, c_in, a[0], b[0], less[0], result[0], carry[0]);
alu1 adder_1(control, carry[0], a[1], b[1], less[1], result[1], carry[1]);
alu1 adder_2(control, carry[1], a[2], b[2], less[2], result[2], carry[2]);
alu1_top adder_3(control, carry[2], a[3], b[3], less[3], result[3], c_out, set);

endmodule

//author: Mark Holland
//a 4-bit ALU composed of 4 1-bit ALUs

module alu4(control, c_in, a, b, less, result, c_out);

input [2:0] control;

33

input c_in;
input [3:0] a, b;
input [3:0] less;

output [3:0] result;
output c_out;

wire [2:0] carry;

alu1 adder_0(control, c_in, a[0], b[0], less[0], result[0], carry[0]);
alu1 adder_1(control, carry[0], a[1], b[1], less[1], result[1], carry[1]);
alu1 adder_2(control, carry[1], a[2], b[2], less[2], result[2], carry[2]);
alu1 adder_3(control, carry[2], a[3], b[3], less[3], result[3], c_out);

endmodule

//author: Mark Holland
//the upper most 1-bit adder

//This differs from the normal 1-bit adder in that it will produce a set
//signal that will be 1 if a < b.

module alu1_top(control, c_in, a, b, less, result, c_out, set);

input [2:0] control;
input c_in;
input a, b;
input less;

output result;
output c_out;
output set;

reg result;
reg c_out;
reg set;

always @ (control or a or b or c_in or less)

 case(control)

 0: result = a && b;
 1: result = a || b;
 2: begin
 result = a ^ b ^ c_in;
 c_out = (a && b) + (a && c_in) + (b && c_in);
 end
//I'll check this result for overflow for BGEZ
 3: result = !a;
 4: result = !a || !b;
 5: result = !a && !b;
 6: begin
 result = a ^ !b ^ c_in;
 c_out = (a && !b) + (a && c_in) + (!b && c_in);
 end
 7: begin
 result = less;
 c_out = (a && !b) + (a && c_in) + (!b && c_in);

 case({a, b})

 0: set = a ^ !b ^ c_in;
 1: set = 0;
 2: set = 1;
 3: set = a ^ !b ^ c_in;

 endcase

 end

 endcase

endmodule

34

//author: Mark Holland
//a 1 bit ALU which performs AND, OR, ADD, SUB, NAND, NOR, and SLT

module alu1(control, c_in, a, b, less, result, c_out);

input [2:0] control;
input c_in;
input a, b;
input less;

output result;
output c_out;

reg result;
reg c_out;

always @ (control or a or b or c_in or less)

//control: 0 = and
// 1 = or
// 2 = add
// 3 = check sign
// 4 = nand
// 5 = nor
// 6 = subtract
// 7 = set on less than
//
// && = and bits
// || = or bits
// ^ = xor bits
// ! = negate bit
// ~& = nand bits
// ~| = nor bits

 case(control)

 0: result = a && b;
 1: result = a || b;
 2: begin
 result = a ^ b ^ c_in;
 c_out = (a && b) + (a && c_in) + (b && c_in);
 end
 4: result = !a || !b;
 5: result = !a && !b;
 6: begin
 result = a ^ !b ^ c_in;
 c_out = (a && !b) + (a && c_in) + (!b && c_in);
 end
 7: begin
 result = less;
 c_out = (a && !b) + (a && c_in) + (!b && c_in);
 end

 endcase

endmodule

35

//File: io_control_box.v
//Author: Mark Holland
//Module: io_control_box
//Last Modified: May 29, 2002
//Operation: This control box serves as the interface between the PC and
//the FPGA for all communications. It also produces the CPU clock and
//the memory clocks that are used during processor operations, as well
//as special control signals needed by the processor for operation.

module io_control_box(inst_address, data_address, write_data, data_in, clock, reset, pc_ack,
parallel_in, reg1_in, reg2_in, misc1_in, misc2_in, MR, MW, RW, ERR, misc1_out, misc2_out, misc3_out,
instruction, read_data, address_out, data_out, v_ack, ce_bar, we_bar, oe_bar, reg_file_clock,
parallel_out, pc_write_value, pc_write, pc_clk, reg_write_value, reg_write_address, reg_read_address,
reg_we, clock_running, jalr_pc_store_value, error_reg_choose);

input [31:0] inst_address;
input [31:0] data_address;
input [31:0] write_data;
input [31:0] data_in;

input clock;
input reset;
input pc_ack;
input [6:0] parallel_in;
//input [31:0] pc_in;
//input [31:0] inst_in;
//input [31:0] dataline_in;
input [31:0] reg1_in;
input [31:0] reg2_in;
//input [31:0] alu_in;
input [31:0] misc1_in;
input [31:0] misc2_in;
input MR;
input MW;
input RW;
input ERR;

//added 10-12 for debugging
output [31:0] misc1_out;
output [31:0] misc2_out;
output [31:0] misc3_out;

output [31:0] instruction;
output [31:0] read_data;

output [18:0] address_out;
output [31:0] data_out;

//output cpu_clk;
//output mem_clk;
output v_ack;
output ce_bar;
output we_bar;
output oe_bar;
output reg_file_clock;

output [2:0] parallel_out;

output [31:0] pc_write_value;
output pc_write;
output pc_clk;

output [31:0] reg_write_value;
output [4:0] reg_write_address;
output [4:0] reg_read_address;
output reg_we;

output clock_running;

//added for jalr
output [31:0] jalr_pc_store_value;

//added for exception

36

output error_reg_choose;

//added
wire cpu_clk;
wire mem_clk;

//added for debugging 10-12
reg [31:0] misc1_out;
reg [31:0] misc2_out;
reg [31:0] misc3_out;

//added for jalr
reg [31:0] jalr_pc_store_value;

//added for exception
reg error_reg_choose;

reg [10:0] cpu_clock;
reg [3:0] state;
reg [69:0] shift_in;
reg [63:0] op_in;
reg [31:0] shift_out;
reg [3:0] ack_num;
reg stop_clock;
reg [18:0] address_out;

reg v_ack;
reg ce_bar;
reg we_bar;
reg oe_bar;
reg reg_file_clock;
reg [31:0] pc_write_value;
reg pc_write;
reg pc_clk;
reg [31:0] reg_write_value;
reg [4:0] reg_write_address;
reg [4:0] reg_read_address;
reg [1:0] reg_write;
reg [31:0] data_out;
reg [2:0] mem_write;
reg [1:0] reg_read;
reg [2:0] mem_read;
reg reg_we;

reg [31:0] instruction;
reg [31:0] read_data;

reg [1:0] pc_num;

assign parallel_out = shift_out[2:0];
assign cpu_clk = cpu_clock[3];
assign mem_clk = cpu_clock[0];

assign clock_running = |cpu_clock;

parameter TRUE = 1'b1,
 FALSE = 1'b0;

parameter CLOCK_RESET = 11'b100_0000_0000,
 CLOCK_SET = 11'b111_1111_1111,
 CLOCK_SET2 = 11'b111_1111_1100;

parameter ACK_IN_DONE = 4'b1010,
 ACK_OUT_LAST = 4'b1010;

parameter ZERO4_ = 4'b0000,
 ZERO5_ = 5'b0_0000,
 ZERO11_ = 11'b000_0000_0000,
 ZERO19_ = 19'b000_0000_0000_0000_0000,
 ZERO32_ = 32'b0000_0000_0000_0000_0000_0000_0000_0000,

37

 ZERO64_ =
64'b0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000,
 ZERO70_ =
70'b00_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000;

parameter NO_OP = 32'b0000_0000_0000_0000_0000_0000_0010_0000;

parameter WAITING = 4'b0000,
 GET_OP = 4'b0001,
 RUN_CLOCK = 4'b0010,
 RUN_CLOCK2 = 4'b0011,
 START_CLOCK = 4'b0100,
 STANDARD_READ = 4'b0101,
 WRITE_PC = 4'b0110,
 WRITE_REG = 4'b0111,
 WRITE_MEM = 4'b1000,
 READ_FROM_REG = 4'b1001,
 READ_FROM_MEM = 4'b1010;

parameter ZERO = 4'b0000,
 ONE = 4'b0001,
 TWO = 4'b0010,
 THREE = 4'b0011,
 FOUR = 4'b0100,
 FIVE = 4'b0101,
 SIX = 4'b0110,
 SEVEN = 4'b0111,
 EIGHT = 4'b1000,
 NINE = 4'b1001,
 TEN = 4'b1010,
 ELEVEN = 4'b1011,
 TWELVE = 4'b1100,
 THIRTEEN = 4'b1101,
 FOURTEEN = 4'b1110,
 FIFTEEN = 4'b1111;

parameter ZERO6 = 6'b000000,
 ONE6 = 6'b000001,
 TWO6 = 6'b000010,
 THREE6 = 6'b000011,
 FOUR6 = 6'b000100,
 FIVE6 = 6'b000101,
 SIX6 = 6'b000110,
 SEVEN6 = 6'b000111,
 EIGHT6 = 6'b001000,
 NINE6 = 6'b001001,
 TEN6 = 6'b001010,
 ELEVEN6 = 6'b001011,
 TWELVE6 = 6'b001100,
 THIRTEEN6 = 6'b001101,
 FOURTEEN6 = 6'b001110,
 FIFTEEN6 = 6'b001111,
 SIXTEEN6 = 6'b010000,
 SEVENTEEN6 = 6'b010001;

parameter MEM_ZERO = 3'b000,
 MEM_ONE = 3'b001,
 MEM_TWO = 3'b010,
 MEM_THREE = 3'b011,
 MEM_FOUR = 3'b100;

parameter REG_ZERO = 2'b00,
 REG_ONE = 2'b01,
 REG_TWO = 2'b10;

parameter PC_ZERO = 2'b00,
 PC_ONE = 2'b01,
 PC_TWO = 2'b10;

always @ (posedge clock or negedge reset)

//On reset we initialize all values.

38

if (!reset) begin

 state = WAITING;
 shift_in = ZERO70_;
 ack_num = ZERO;
 v_ack = 0;
 op_in = ZERO64_;
 state = WAITING;
 cpu_clock = ZERO11_;
 we_bar = 1;
 oe_bar = 1;
 ce_bar = 1;
 reg_file_clock = 0;
 reg_write = REG_ZERO;
 stop_clock = 0;
 shift_out = ZERO32_;
 pc_write_value = ZERO32_;
 pc_write = 0;
 pc_clk = 0;
 reg_write_value = ZERO32_;
 reg_write_address = ZERO5_;
 reg_read_address = ZERO5_;
 data_out = ZERO32_;
 address_out = ZERO19_;
 mem_write = MEM_ZERO;
 reg_read = REG_ZERO;
 mem_read = MEM_ZERO;
 reg_we = 0;
 instruction = ZERO32_;
 read_data = ZERO32_;
 error_reg_choose = 0;
 pc_num = PC_ZERO;
 misc1_out = ZERO32_;
 misc2_out = ZERO32_;
 misc3_out = ZERO32_;

end
else begin

 case (state)

//The WAITING state of our FSM. The FPGA is waiting for the PC debugging
//tool to give it an instruction. Instructions get shifted in 7 bits at a
//time (70 bits -> 64 bits total). When an instruction has been shifted in
//all the way we go to GET_OP and decode the instruction.

 WAITING: begin

 if (stop_clock) begin

 stop_clock = 0;

 end

 if (pc_ack) begin

 if (ack_num != ACK_IN_DONE) begin

 shift_in = {parallel_in, shift_in[69:7]};
 ack_num = ack_num + 1;
 v_ack = !v_ack;

 end
 else begin

 op_in = shift_in[63:0];
 state = GET_OP;
 ack_num = ZERO4_;
 v_ack = !v_ack;

 end

 end

39

 end

//State GET_OP. Here we decode the instruction we got from the debugging tool
//and go to the proper next state.

// OP | COMMAND
// __________|___
// 0 | run clock for specified number of cycles
// 1 | run clock until told to stop
// 2 | read program counter
// 3 | read instruction value
// 4 | read data value
// 5 | read register 1 value
// 6 | read register 2 value
// 7 | read ALU output value
// 8 | write the program counter with the specified value
// 9 | write the specified register with the specified value
// 10 | write the specified memory address with the specified value
// 11 | read the value from the specified register
// 12 | read the value from the specified memory address
// 13 | read misc1 value
// 14 | read misc2 value
// 15 | drive misc1_out value
// 16 | drive misc2_out value
// 17 | drive misc3_out value

// 0 | 11 sends for OP, 1 send to choose OP, 11 sends to receive return value

 GET_OP: begin

 if (pc_ack) begin

 case (op_in[63:58])

//OP = 0: We set the clock to the number of cycles to run and go to state
//RUN_CLOCK.

 ZERO6: begin

 cpu_clock = {1'b0, op_in[5:0], 4'b1100};
// ce_bar = 0;
 state = RUN_CLOCK;

 end

//OP = 1: We set the clock to running and go to START_CLOCK.

 ONE6: begin

 cpu_clock = CLOCK_SET2;
// ce_bar = 0;
 v_ack = !v_ack;
 state = START_CLOCK;

 end

//OP = 2: We put the program counter value on the shift_out bus and go
//to state STANDARD_READ to shift out the value.

 TWO6: begin

 shift_out = inst_address;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

//OP = 3: We put the instruction value on the shift_out bus and go
//to state STANDARD_READ to shift out the value.

 THREE6: begin

 shift_out = instruction;
 ack_num = ack_num + 1;

40

 v_ack = !v_ack;
 state = STANDARD_READ;

 end

//OP = 4: We put the data value on the shift_out bus and go
//to state STANDARD_READ to shift out the value.

 FOUR6: begin

 shift_out = read_data;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

//OP = 5: We put the first register's value on the shift_out bus and go
//to state STANDARD_READ to shift out the value.

 FIVE6: begin

 shift_out = reg1_in;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

//OP = 6: We put the second register's value on the shift_out bus and go
//to state STANDARD_READ to shift out the value.

 SIX6: begin

 shift_out = reg2_in;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

//OP = 7: We put the ALU output's value on the shift_out bus and go
//to state STANDARD_READ to shift out the value.

 SEVEN6: begin

 shift_out = data_address;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

//OP = 8: We grab the value that we wish to write to the program counter
//and go to state WRITE_PC.

 EIGHT6: begin

//changed inst. to make sure that new value propogates through
 instruction = NO_OP;
 pc_num = PC_ZERO;
 pc_write_value = {13'b0_0000_0000_0000, shift_in[50:32]};
 state = WRITE_PC;

 end

//OP = 9: We grab the address of the destination register and the write
//value and then go to state WRITE_REG.

 NINE6: begin

 reg_write_value = shift_in[31:0];
 reg_write_address = shift_in[36:32];
 reg_write = REG_ZERO;
 reg_we = 1;

41

 state = WRITE_REG;

 end

//OP = 10: We grab the address of memory and the write value and then
//go to state WRITE_MEM.

 TEN6: begin

 data_out = shift_in[31:0];
 address_out = shift_in[50:32];
 mem_write = MEM_ZERO;
 state = WRITE_MEM;

 end

//OP = 11: We grab the register address we wish to read and go to
//state READ_FROM_REG.

 ELEVEN6: begin

 reg_read_address = shift_in[36:32];
 reg_read = REG_ZERO;
 state = READ_FROM_REG;

 end

//OP = 12: We grab the memory address we wish to read from and go
//to state READ_FROM_MEM.

 TWELVE6: begin

 address_out = shift_in[50:32];
 mem_read = MEM_ZERO;
 state = READ_FROM_MEM;

 end

//OP = 13: We put the misc1 value on the shift_out bus and go
//to state STANDARD_READ to shift out the value.

 THIRTEEN6: begin

 shift_out = misc1_in;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

//OP = 14: We put the misc2 value on the shift_out bus and go
//to state STANDARD_READ to shift out the value.

 FOURTEEN6: begin

 shift_out = misc2_in;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

//OP = 15: We grab the misc1 value and output it to the CPU. This
//line is used solely for debugging.

 FIFTEEN6: begin

 misc1_out = shift_in[31:0];
 shift_out = shift_in[31:0];
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

42

//OP = 16: We grab the misc2 value and output it to the CPU. This
//line is used solely for debugging.

 SIXTEEN6: begin

 misc2_out = shift_in[31:0];
 shift_out = shift_in[31:0];
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

//OP = 17: We grab the misc3 value and output it to the CPU. This
//line is used solely for debugging.

 SEVENTEEN6: begin

 misc3_out = shift_in[31:0];
 shift_out = shift_in[31:0];
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

 default: begin

 end

 endcase

 end

 end

//State RUN_CLOCK. Here we run the clock for the specified number
//of cycles.

//cpu_clock[10:4] is the number of cycles to run
//cpu_clock[3] is the main CPU clock
//cpu_clock[0] is the memory clock which is used for controlling
// memory references

//The cpu_clock counts down until it equals zero, at which point
//the proper number of cycles has occured. We then return to
//state WAITING.

//The case statement controls the memory references, making the
//instruction fetch, register manipulations, and data store/loads
//occur. The standard CPU control lines control which of these
//occur.

 RUN_CLOCK: begin

 if (cpu_clock != ZERO11_) begin

 case (cpu_clock[3:0])

 ZERO: begin

 ce_bar = 0;

 end

 FIFTEEN: begin

 error_reg_choose = 0;
 reg_we = RW || ERR;
 we_bar = !MW;
 pc_clk = 1;

 end

43

 FOURTEEN: begin

 reg_file_clock = RW || ERR;
 pc_clk = 0;

 end

 THIRTEEN: begin

 error_reg_choose = 1;
 reg_file_clock = 0;
 reg_we = ERR;
 we_bar = 1;

 end

 TWELVE: begin

 reg_file_clock = ERR;
 ce_bar = 1;
 address_out = inst_address[18:0];

 end

 ELEVEN: begin

 reg_file_clock = 0;
 ce_bar = 0;
 oe_bar = 0;
 reg_we = 0;

 end

 TEN: begin

 end

 NINE: begin

 end

 EIGHT: begin

 instruction = data_in;

 end

 SEVEN: begin

 ce_bar = 1;
 oe_bar = 1;
 reg_file_clock = 1;

 end

 SIX: begin

 reg_file_clock = 0;
 address_out = data_address[18:0];

 end

 FIVE: begin

 oe_bar = !MR;
 ce_bar = !MR;
 end

 FOUR: begin

 end

 THREE: begin

44

 end

 TWO: begin

 if(MR) begin
 read_data = data_in;
 end

 end

 ONE: begin

 oe_bar = 1;
 ce_bar = 1;
 data_out = write_data;

 jalr_pc_store_value = inst_address + 1;

 end

 default: begin

 end

 endcase

 cpu_clock = cpu_clock - 1;

 end
 else begin

 ce_bar = 1;
 shift_out = inst_address;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

 end

//state START_CLOCK. This operates the same as RUN_CLOCK, with one exception.
//In this state we run the clock until we receive a signal from the PC saying
//to stop. This clock thus runs indefinitely.

//When the stop signal is given, the current cycle is allowed to finish and then
//we go to state WAITING.

 START_CLOCK: begin

 if (pc_ack) begin

 stop_clock = 1;

 end

 case (cpu_clock[3:0])

 ZERO: begin

 if (stop_clock) begin

 ce_bar = 1;
// cpu_clock = ZERO11_;
 shift_out = inst_address;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

 else begin

 ce_bar = 0;

45

 end

 end

 FIFTEEN: begin

 error_reg_choose = 0;
 reg_we = RW || ERR;
 we_bar = !MW;
 pc_clk = 1;

 end

 FOURTEEN: begin

 reg_file_clock = RW || ERR;
 pc_clk = 0;

 end

 THIRTEEN: begin

 error_reg_choose = 1;
 reg_file_clock = 0;
 reg_we = ERR;
 we_bar = 1;

 end

 TWELVE: begin

 reg_file_clock = ERR;
 ce_bar = 1;
 address_out = inst_address[18:0];

 end

 ELEVEN: begin

 reg_file_clock = 0;
 ce_bar = 0;
 oe_bar = 0;
 reg_we = 0;

 end

 TEN: begin

 end

 NINE: begin

 end

 EIGHT: begin

 instruction = data_in;

 end

 SEVEN: begin

 ce_bar = 1;
 oe_bar = 1;
 reg_file_clock = 1;

 end

 SIX: begin

 reg_file_clock = 0;
 address_out = data_address[18:0];

 end

46

 FIVE: begin

 oe_bar = !MR;
 ce_bar = !MR;
 end

 FOUR: begin

 end

 THREE: begin

 end

 TWO: begin

 if(MR) begin
 read_data = data_in;
 end

 end

 ONE: begin

 oe_bar = 1;
 ce_bar = 1;
 data_out = write_data;

 jalr_pc_store_value = inst_address + 1;

 end

 default: begin

 end

 endcase

 case ({stop_clock, cpu_clock[3:0]})

 5'b10000: begin

 cpu_clock = ZERO11_;

 end

 default: begin

 if (cpu_clock == CLOCK_RESET) begin

 cpu_clock = CLOCK_SET;

 end

 else begin

 cpu_clock = cpu_clock - 1;

 end

 end

 endcase

 end

//state STANDARD_READ. Whenever we want to return a value to the PC, we
//do it in this state. We send bits to the PC 3 at a time, offering 3 new
//bits upon requests from the PC. This returns one 32-bit value to the PC
//debugging tool.

//When completed, we return to state WAITING.

 STANDARD_READ: begin

47

 if (pc_ack) begin

 if (ack_num != ACK_OUT_LAST) begin

 shift_out = {3'b0, shift_out[31:3]};
 ack_num = ack_num + 1;
 v_ack = !v_ack;

 end

 else begin

 shift_out = {3'b0, shift_out[31:3]};
 ack_num = ZERO4_;
 v_ack = !v_ack;
 state = WAITING;

 end
 end

 end

//state WRITE_PC. Here we write the specified value to the program counter.
//This is done by first setting the write value (done in GET_OP), and then
//pulling high the write enable line.

//After writing the value, we go to STANDARD_READ and return the PC value
//to the debugging tool to ensure that it was written correctly. From there
//we go to state WAITING.

 WRITE_PC: begin

 case (pc_num)

 PC_ZERO: begin

 pc_write = 1;
 pc_num = PC_ONE;

 end

 PC_ONE: begin

 pc_write = 0;
 pc_num = PC_TWO;

 end

 PC_TWO: begin

 pc_write_value = ZERO32_;
 shift_out = inst_address;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;
 pc_num = PC_ZERO;

 end
 endcase

 end

//state WRITE_REG. Here we write the specified register with the
//specified value. We then go to STANDARD_READ to return the value
//to the PC, and then go to state WAITING.

 WRITE_REG: begin

 case (reg_write)

 REG_ZERO: begin

 reg_file_clock = 1;
 reg_write = REG_ONE;

48

 end

 REG_ONE: begin

 reg_file_clock = 0;
 reg_write = REG_TWO;

 end

 REG_TWO: begin

 reg_we = 0;
 reg_write_value = ZERO32_;
 reg_write_address = ZERO5_;
 reg_write = REG_ZERO;
 reg_read_address = shift_in[36:32];
 reg_read = REG_ZERO;
 state = READ_FROM_REG;

 end

 default: begin

 end

 endcase

 end

//state WRITE_MEM. Here we write the specified memory address with the
//specified value. We then go to STANDARD_READ to return the value
//to the PC, and then go to state WAITING.

 WRITE_MEM: begin

 case(mem_write)

 MEM_ZERO: begin

 ce_bar = 0;
 mem_write = MEM_ONE;

 end

 MEM_ONE: begin

 we_bar = 0;
 mem_write = MEM_TWO;

 end

 MEM_TWO: begin

 mem_write = MEM_THREE;

 end

 MEM_THREE: begin

 we_bar = 1;
 mem_write = MEM_FOUR;

 end

 MEM_FOUR: begin

 ce_bar = 1;
// mem_write = ZERO4_;
// data_out = ZERO32_;
 mem_read = MEM_ZERO;
 state = READ_FROM_MEM;

 end

49

 default: begin

 end

 endcase

 end

//state READ_FROM_REG. Here we obtain the value from the specified
//register. We then go to state STANDARD_RETURN and return the value
//to the debugging tool. Finally, we go back to state WAITING.

 READ_FROM_REG: begin

 case (reg_read)

 REG_ZERO: begin

 reg_file_clock = 1;
 reg_read = REG_ONE;

 end

 REG_ONE: begin

 reg_file_clock = 0;
 reg_read = REG_TWO;

 end

 REG_TWO: begin

 shift_out = reg1_in;
 reg_read_address = ZERO5_;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

 default: begin

 end

 endcase

 end

//state READ_FROM_MEM. Here we obtain the value from the specified
//memory address. We then go to state STANDARD_RETURN and return the value
//to the debugging tool. Finally, we go back to state WAITING.

 READ_FROM_MEM: begin

 case (mem_read)

 MEM_ZERO: begin

 ce_bar = 0;
 oe_bar = 0;
 mem_read = MEM_ONE;

 end

 MEM_ONE: begin

 mem_read = MEM_TWO;

 end

 MEM_TWO: begin

 mem_read = MEM_THREE;

 end

50

 MEM_THREE: begin

 shift_out = data_in;
 mem_read = MEM_FOUR;

 end

 MEM_FOUR: begin

 ce_bar = 1;
 oe_bar = 1;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

 default: begin

 end

 endcase

 end

 default: begin

 end

 endcase

end

endmodule

51

//File: jcombine.v
//Author: Mark Holland
//Last Modified: May 29, 2002
//This module combines the lower 28 bits of one bus with the upper
//4 bits of another bus to make a 32-bit result.

module jcombine(in, pc, out);

input [31:0] in;
input [31:0] pc;
output [31:0] out;

assign out = {2'b00, pc[31:28], in[25:0]};

endmodule

//File: pc2.v
//Author: Mark Holland
//Last Modified: May 29, 2002
//This module is a program counter, which is a 32-bit register
//with asynchronous write capability.

module pc2(clock, we, write_value, D, Q);

input clock;
input we;
input [31:0] write_value;
input [31:0] D;

output [31:0] Q;

reg [31:0] Q;

always @ (posedge clock or posedge we)

if (we) begin

 Q = write_value;

end else

 Q = D;

endmodule

//File: signext.v
//Author: Mark Holland
//Last Modified: May 29, 2002
//This module sign extends a 16-bit value to 32 bits.

module SignExt(in, out);

input [15:0] in;

output [31:0] out;

assign out[15:0] = in[15:0];
assign out[31:16] = {in[15], in[15], in[15], in[15], in[15], in[15], in[15], in[15], in[15], in[15],
in[15], in[15], in[15], in[15], in[15], in[15]};

endmodule

52

Appendix B – Schematics for the Single Cycle Processor

Schematic: full.sch
Description: Schematic for the single cycle processor.

53

Schematic: ACK_TO_ENABLE.sch
Description: Creates the enable signal for PC to FPGA communications.

54

Schematic: ALU_CONTROL1.sch
Description: Control logic for the ALU following the register file.

55

Schematic: BRANCHER.sch
Description: Logic to calculate whether a branch is going to be taken.

56

Schematic: CONTROL3.sch
Description: Control signals for the single cycle processor.

57

Schematic: ERR_ADD.sch
Description: The address in the register file that is written with information about any unrecognized
instruction.

58

Schematic: ERR_DI.sch
Description: Controls the data to be written to the error register.

59

Schematic: EXC_ADD.sch
Description: The memory address of the exception handler.

60

Schematic: INST_DIV2.sch
Description: Breaks an instruction into its separate fields.

61

Schematic: JALR_DEFAULT.sch
Description: The default register for a JALR instruction.

62

Schematic: JUMP_MUX.sch
Description: Calculates the jump address for a JALR instruction.

63

Schematic: MUX32BIT.sch
Description: A 32-bit multiplexor.

64

Schematic: MUX5BIT.sch
Description: A 5-bit multiplexor.

65

Schematic: MUX8BIT.sch
Description: An 8-bit multiplexor.

66

Schematic: REG_FILE.sch
Description: The register file, implemented using four Block RAM units.

67

Schematic: REGFILE2.sch
Description: The complete register file, along with logic to write the error registers.

68

Appendix C – Verilog Code for the Pipelined Processor

//File: branch_calculator.v
//Author: Mark Holland
//Last Modified: May 29, 2002
//This calculates whether a branch is going to occur in the pipelined processor

module branch_calculator(a_in, b_in, b_type, b_take);

input [31:0] a_in;
input [31:0] b_in;
input b_type;
output b_take;

assign b_take = b_type ? (!a_in[31]) : (a_in == b_in);

endmodule

//File: branch_forwarder.v
//Author: Mark Holland
//Last Modified: May 29, 2002
//This branch forwarder is used in the pipelined MIPS processor.
//It looks at control lines in the ex/mem and id/ex sections
//of the processor and forwards the necessary values to earlier
//elements.

module branch_forwarder(rs, rt, id_ex_rd, ex_mem_rd, id_ex_rw, ex_mem_rw, for_a, for_b);

input [4:0] rs;
input [4:0] rt;
input [4:0] id_ex_rd;
input [4:0] ex_mem_rd;
input id_ex_rw;
input ex_mem_rw;
output [1:0] for_a;
output [1:0] for_b;

parameter r0 = 5'b00000;

assign for_a[1] = ((rs == id_ex_rd) && id_ex_rw && (id_ex_rd != r0));
assign for_a[0] = ((rs == ex_mem_rd) && ex_mem_rw && (ex_mem_rd != r0));

assign for_b[1] = ((rt == id_ex_rd) && id_ex_rw && (id_ex_rd != rs) && (id_ex_rd != r0));
assign for_b[0] = ((rt == ex_mem_rd) && ex_mem_rw && !((id_ex_rd == rt) && id_ex_rw) && (ex_mem_rd !=
r0));

endmodule

69

//File: control_staller
//Author: Mark Holland
//Last Modified: May 29, 2002
//This module will stall the control signals if the pipelined processor stalls.

module control_staller(causevalue_in, causevalue_out, err_in, err_out, gototrap_in, gototrap_out,
regdatasrc_in, regdatasrc_out, jump_in, jump_out, regdst_in, regdst_out, branch_in, branch_out,
memread_in, memread_out, memtoreg_in, memtoreg_out, aluop_in, aluop_out, memwrite_in, memwrite_out,
alusrc_in, alusrc_out, regwrite_in, regwrite_out, functsrc_in, functsrc_out, stall);

input [31:0] causevalue_in;
output [31:0] causevalue_out;

input err_in;
output err_out;

input gototrap_in;
output gototrap_out;

input regdatasrc_in;
output regdatasrc_out;

input jump_in;
output jump_out;

input regdst_in;
output regdst_out;

input branch_in;
output branch_out;

input memread_in;
output memread_out;

input memtoreg_in;
output memtoreg_out;

input [1:0] aluop_in;
output [1:0] aluop_out;

input memwrite_in;
output memwrite_out;

input alusrc_in;
output alusrc_out;

input regwrite_in;
output regwrite_out;

input functsrc_in;
output functsrc_out;

input stall;

assign causevalue_out = stall ? 32'b0000_0000_0000_0000_0000_0000_0000_0000 : causevalue_in;
assign err_out = stall ? 0 : err_in;
assign gototrap_out = stall ? 0 : gototrap_in;
assign regdatasrc_out = stall ? 0 : regdatasrc_in;
assign jump_out = stall ? 0 : jump_in;
assign regdst_out = stall ? 0 : regdst_in;
assign branch_out = stall ? 0 : branch_in;
assign memread_out = stall ? 0 : memread_in;
assign memtoreg_out = stall ? 0 : memtoreg_in;
assign aluop_out = stall ? 2'b00 : aluop_in;
assign memwrite_out = stall ? 0 : memwrite_in;
assign alusrc_out = stall ? 0 : alusrc_in;
assign regwrite_out = stall ? 0 : regwrite_in;
assign functsrc_out = stall ? 0 : functsrc_in;

endmodule

70

//File: forward_mux.v
//Author: Mark Holland
//Last Modified: May 29, 2002
//This 32-bit mux takes three inputs and decides which
//value to output according to the value outputted by the
//forwarder.

module forward_mux(ex_val, mem_val, rb_val, pick, out_);

input [31:0] ex_val;
input [31:0] mem_val;
input [31:0] rb_val;
input [1:0] pick;
output [31:0] out_;

assign out_ = pick[1] ? (mem_val) : (pick[0] ? rb_val :ex_val);

endmodule

//File: forwarder.v
//Author: Mark Holland
//Last Modified: May 29, 2002
//The forwarder forwards signals to the earlier parts of the pipelined
//MIPS processor according to the control lines coming into it.

module forwarder(rs, rt, ex_mem_rd, mem_wb_rd, ex_mem_rw, mem_wb_rw, for_a, for_b);

input [4:0] rs;
input [4:0] rt;
input [4:0] ex_mem_rd;
input [4:0] mem_wb_rd;
input ex_mem_rw;
input mem_wb_rw;
output [1:0] for_a;
output [1:0] for_b;

parameter r0 = 5'b00000;

assign for_a[1] = ((rs == ex_mem_rd) && ex_mem_rw && (ex_mem_rd != r0));
assign for_a[0] = ((rs == mem_wb_rd) && mem_wb_rw && !((ex_mem_rd == rs) && ex_mem_rw) && (mem_wb_rd
!= r0));

assign for_b[1] = ((rt == ex_mem_rd) && ex_mem_rw && (ex_mem_rd != r0));
assign for_b[0] = ((rt == mem_wb_rd) && mem_wb_rw && !((ex_mem_rd == rt) && ex_mem_rw) && (mem_wb_rd
!= r0));

endmodule

//File: hazard_detecter.v
//Author: Mark Holland
//Last Modified: May 29, 2002
//This module detects hazards and determines whether a stall is necesary.

module hazard_detecter(rs, rt, id_ex_rd, id_ex_mr, stall, branch, ex_mem_rd, ex_mem_mr);

input [4:0] rs;
input [4:0] rt;
input [4:0] id_ex_rd;
input id_ex_mr;
output stall;

input branch;
input [4:0] ex_mem_rd;
input ex_mem_mr;

assign stall = (id_ex_mr && ((id_ex_rd == rs) || (id_ex_rd == rt))) || (ex_mem_mr && branch &&
((ex_mem_rd == rs) || (ex_mem_rd == rt)));

endmodule

71

//File: io_control_box.v
//Author: Mark Holland
//Last Modified: May 29, 2002
//Module: io_control_box
//Operation: This control box serves as the interface between the PC and
//the FPGA for all communications. It also produces the CPU clock and
//the memory clocks that are used during processor operations, as well
//as special control signals needed by the processor for operation.

module io_control_box(inst_address, data_address, write_data, data_in, clock, reset, pc_ack,
parallel_in, inst_in, reg1_in, reg2_in, misc1_in, misc2_in, MR, MW, RW, ERR, misc1_out, misc2_out,
misc3_out, instruction, read_data, address_out, data_out, v_ack, ce_bar, we_bar, oe_bar,
reg_file_clock, parallel_out, pc_write_value, pc_write, pc_clk, reg_write_value, reg_write_address,
reg_read_address, reg_we, clock_running, jalr_pc_store_value, error_reg_choose);

input [31:0] inst_address;
input [31:0] data_address;
input [31:0] write_data;
input [31:0] data_in;

input clock;
input reset;
input pc_ack;
input [6:0] parallel_in;
//input [31:0] pc_in;
input [31:0] inst_in;
//input [31:0] dataline_in;
input [31:0] reg1_in;
input [31:0] reg2_in;
//input [31:0] alu_in;
input [31:0] misc1_in;
input [31:0] misc2_in;
input MR;
input MW;
input RW;
input ERR;

//added 10-12 for debugging
output [31:0] misc1_out;
output [31:0] misc2_out;
output [31:0] misc3_out;

output [31:0] instruction;
output [31:0] read_data;

output [18:0] address_out;
output [31:0] data_out;

//output cpu_clk;
//output mem_clk;
output v_ack;
output ce_bar;
output we_bar;
output oe_bar;
output reg_file_clock;

output [2:0] parallel_out;

output [31:0] pc_write_value;
output pc_write;
output pc_clk;

output [31:0] reg_write_value;
output [4:0] reg_write_address;
output [4:0] reg_read_address;
output reg_we;

output clock_running;

//added for jalr
output [31:0] jalr_pc_store_value;

//added for exception

72

output error_reg_choose;

//added
wire cpu_clk;
wire mem_clk;

//added for debugging 10-12
reg [31:0] misc1_out;
reg [31:0] misc2_out;
reg [31:0] misc3_out;

//added for jalr
reg [31:0] jalr_pc_store_value;

//added for exception
reg error_reg_choose;

reg [10:0] cpu_clock;
reg [3:0] state;
reg [69:0] shift_in;
reg [63:0] op_in;
reg [31:0] shift_out;
reg [3:0] ack_num;
reg stop_clock;
reg [18:0] address_out;

reg v_ack;
reg ce_bar;
reg we_bar;
reg oe_bar;
reg reg_file_clock;
reg [31:0] pc_write_value;
reg pc_write;
reg pc_clk;
reg [31:0] reg_write_value;
reg [4:0] reg_write_address;
reg [4:0] reg_read_address;
reg [1:0] reg_write;
reg [31:0] data_out;
reg [2:0] mem_write;
reg [1:0] reg_read;
reg [2:0] mem_read;
reg reg_we;

reg [31:0] instruction;
reg [31:0] read_data;

reg [1:0] pc_num;

assign parallel_out = shift_out[2:0];
assign cpu_clk = cpu_clock[3];
assign mem_clk = cpu_clock[0];

assign clock_running = |cpu_clock;

parameter TRUE = 1'b1,
 FALSE = 1'b0;

parameter CLOCK_RESET = 11'b100_0000_0000,
 CLOCK_SET = 11'b111_1111_1111,
 CLOCK_SET2 = 11'b111_1111_0000;

parameter ACK_IN_DONE = 4'b1010,
 ACK_OUT_LAST = 4'b1010;

parameter ZERO4_ = 4'b0000,
 ZERO5_ = 5'b0_0000,
 ZERO11_ = 11'b000_0000_0000,
 ZERO19_ = 19'b000_0000_0000_0000_0000,
 ZERO32_ = 32'b0000_0000_0000_0000_0000_0000_0000_0000,

73

 ZERO64_ =
64'b0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000,
 ZERO70_ =
70'b00_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000;

parameter NO_OP = 32'b0000_0000_0000_0000_0000_0000_0010_0000;

parameter WAITING = 4'b0000,
 GET_OP = 4'b0001,
 RUN_CLOCK = 4'b0010,
 RUN_CLOCK2 = 4'b0011,
 START_CLOCK = 4'b0100,
 STANDARD_READ = 4'b0101,
 WRITE_PC = 4'b0110,
 WRITE_REG = 4'b0111,
 WRITE_MEM = 4'b1000,
 READ_FROM_REG = 4'b1001,
 READ_FROM_MEM = 4'b1010;

parameter ZERO = 4'b0000,
 ONE = 4'b0001,
 TWO = 4'b0010,
 THREE = 4'b0011,
 FOUR = 4'b0100,
 FIVE = 4'b0101,
 SIX = 4'b0110,
 SEVEN = 4'b0111,
 EIGHT = 4'b1000,
 NINE = 4'b1001,
 TEN = 4'b1010,
 ELEVEN = 4'b1011,
 TWELVE = 4'b1100,
 THIRTEEN = 4'b1101,
 FOURTEEN = 4'b1110,
 FIFTEEN = 4'b1111;

parameter ZERO6 = 6'b000000,
 ONE6 = 6'b000001,
 TWO6 = 6'b000010,
 THREE6 = 6'b000011,
 FOUR6 = 6'b000100,
 FIVE6 = 6'b000101,
 SIX6 = 6'b000110,
 SEVEN6 = 6'b000111,
 EIGHT6 = 6'b001000,
 NINE6 = 6'b001001,
 TEN6 = 6'b001010,
 ELEVEN6 = 6'b001011,
 TWELVE6 = 6'b001100,
 THIRTEEN6 = 6'b001101,
 FOURTEEN6 = 6'b001110,
 FIFTEEN6 = 6'b001111,
 SIXTEEN6 = 6'b010000,
 SEVENTEEN6 = 6'b010001;

parameter MEM_ZERO = 3'b000,
 MEM_ONE = 3'b001,
 MEM_TWO = 3'b010,
 MEM_THREE = 3'b011,
 MEM_FOUR = 3'b100;

parameter REG_ZERO = 2'b00,
 REG_ONE = 2'b01,
 REG_TWO = 2'b10;

parameter PC_ZERO = 2'b00,
 PC_ONE = 2'b01,
 PC_TWO = 2'b10;

always @ (posedge clock or negedge reset)

//On reset we initialize all values.

74

if (!reset) begin

 state = WAITING;
 shift_in = ZERO70_;
 ack_num = ZERO;
 v_ack = 0;
 op_in = ZERO64_;
 state = WAITING;
 cpu_clock = ZERO11_;
 we_bar = 1;
 oe_bar = 1;
 ce_bar = 1;
 reg_file_clock = 0;
 reg_write = REG_ZERO;
 stop_clock = 0;
 shift_out = ZERO32_;
 pc_write_value = ZERO32_;
 pc_write = 0;
 pc_clk = 0;
 reg_write_value = ZERO32_;
 reg_write_address = ZERO5_;
 reg_read_address = ZERO5_;
 data_out = ZERO32_;
 address_out = ZERO19_;
 mem_write = MEM_ZERO;
 reg_read = REG_ZERO;
 mem_read = MEM_ZERO;
 reg_we = 0;
 instruction = ZERO32_;
 read_data = ZERO32_;
 error_reg_choose = 0;
 pc_num = PC_ZERO;
 misc1_out = ZERO32_;
 misc2_out = ZERO32_;
 misc3_out = ZERO32_;

end
else begin

 case (state)

//The WAITING state of our FSM. The FPGA is waiting for the PC debugging
//tool to give it an instruction. Instructions get shifted in 7 bits at a
//time (70 bits -> 64 bits total). When an instruction has been shifted in
//all the way we go to GET_OP and decode the instruction.

 WAITING: begin

 if (stop_clock) begin

 stop_clock = 0;

 end

 if (pc_ack) begin

 if (ack_num != ACK_IN_DONE) begin

 shift_in = {parallel_in, shift_in[69:7]};
 ack_num = ack_num + 1;
 v_ack = !v_ack;

 end
 else begin

 op_in = shift_in[63:0];
 state = GET_OP;
 ack_num = ZERO4_;
 v_ack = !v_ack;

 end

 end

75

 end

//State GET_OP. Here we decode the instruction we got from the debugging tool
//and go to the proper next state.

// OP | COMMAND
// __________|___
// 0 | run clock for specified number of cycles
// 1 | run clock until told to stop
// 2 | read program counter
// 3 | read instruction value
// 4 | read data value
// 5 | read register 1 value
// 6 | read register 2 value
// 7 | read ALU output value
// 8 | write the program counter with the specified value
// 9 | write the specified register with the specified value
// 10 | write the specified memory address with the specified value
// 11 | read the value from the specified register
// 12 | read the value from the specified memory address
// 13 | read misc1 value
// 14 | read misc2 value
// 15 | drive misc1_out value
// 16 | drive misc2_out value
// 17 | drive misc3_out value

// 0 | 10 sends for OP, 1 send to choose OP, 11 sends to receive return value

 GET_OP: begin

 if (pc_ack) begin

 case (op_in[63:58])

//OP = 0: We set the clock to the number of cycles to run and go to state
//RUN_CLOCK.

 ZERO6: begin
//changed to 4'b0000 for pipelining 9/25/01
 cpu_clock = {1'b0, op_in[5:0], 4'b0000};
// ce_bar = 0;
 state = RUN_CLOCK;

 end

//OP = 1: We set the clock to running and go to START_CLOCK.

 ONE6: begin

 cpu_clock = CLOCK_SET2;
// ce_bar = 0;
 v_ack = !v_ack;
 state = START_CLOCK;

 end

//OP = 2: We put the program counter value on the shift_out bus and go
//to state STANDARD_READ to shift out the value.

 TWO6: begin

 shift_out = inst_address;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

//OP = 3: We put the instruction value on the shift_out bus and go
//to state STANDARD_READ to shift out the value.

 THREE6: begin

 shift_out = inst_in;
 ack_num = ack_num + 1;

76

 v_ack = !v_ack;
 state = STANDARD_READ;

 end

//OP = 4: We put the data value on the shift_out bus and go
//to state STANDARD_READ to shift out the value.

 FOUR6: begin

 shift_out = read_data;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

//OP = 5: We put the first register's value on the shift_out bus and go
//to state STANDARD_READ to shift out the value.

 FIVE6: begin

 shift_out = reg1_in;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

//OP = 6: We put the second register's value on the shift_out bus and go
//to state STANDARD_READ to shift out the value.

 SIX6: begin

 shift_out = reg2_in;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

//OP = 7: We put the ALU output's value on the shift_out bus and go
//to state STANDARD_READ to shift out the value.

 SEVEN6: begin

 shift_out = data_address;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

//OP = 8: We grab the value that we wish to write to the program counter
//and go to state WRITE_PC.

 EIGHT6: begin

//changed inst. to make sure that new value propogates through
 instruction = NO_OP;
 pc_num = PC_ZERO;
 pc_write_value = {13'b0_0000_0000_0000, shift_in[50:32]};
 state = WRITE_PC;

 end

//OP = 9: We grab the address of the destination register and the write
//value and then go to state WRITE_REG.

 NINE6: begin

 reg_write_value = shift_in[31:0];
 reg_write_address = shift_in[36:32];
 reg_write = REG_ZERO;
 reg_we = 1;

77

 state = WRITE_REG;

 end

//OP = 10: We grab the address of memory and the write value and then
//go to state WRITE_MEM.

 TEN6: begin

 data_out = shift_in[31:0];
 address_out = shift_in[50:32];
 mem_write = MEM_ZERO;
 state = WRITE_MEM;

 end

//OP = 11: We grab the register address we wish to read and go to
//state READ_FROM_REG.

 ELEVEN6: begin

 reg_read_address = shift_in[36:32];
 reg_read = REG_ZERO;
 state = READ_FROM_REG;

 end

//OP = 12: We grab the memory address we wish to read from and go
//to state READ_FROM_MEM.

 TWELVE6: begin

 address_out = shift_in[50:32];
 mem_read = MEM_ZERO;
 state = READ_FROM_MEM;

 end

//OP = 13: We put the misc1 value on the shift_out bus and go
//to state STANDARD_READ to shift out the value.

 THIRTEEN6: begin

 shift_out = misc1_in;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

//OP = 14: We put the misc2 value on the shift_out bus and go
//to state STANDARD_READ to shift out the value.

 FOURTEEN6: begin

 shift_out = misc2_in;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

//OP = 15: We grab the misc1 value and output it to the CPU. This
//line is used solely for debugging.

 FIFTEEN6: begin

 misc1_out = shift_in[31:0];
 shift_out = shift_in[31:0];
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

78

//OP = 16: We grab the misc2 value and output it to the CPU. This
//line is used solely for debugging.

 SIXTEEN6: begin

 misc2_out = shift_in[31:0];
 shift_out = shift_in[31:0];
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

//OP = 17: We grab the misc3 value and output it to the CPU. This
//line is used solely for debugging.

 SEVENTEEN6: begin

 misc3_out = shift_in[31:0];
 shift_out = shift_in[31:0];
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

 default: begin

 end

 endcase

 end

 end

//State RUN_CLOCK. Here we run the clock for the specified number
//of cycles.

//cpu_clock[10:4] is the number of cycles to run
//cpu_clock[3] is the main CPU clock
//cpu_clock[0] is the memory clock which is used for controlling
// memory references

//The cpu_clock counts down until it equals zero, at which point
//the proper number of cycles has occured. We then return to
//state WAITING.

//The case statement controls the memory references, making the
//instruction fetch, register manipulations, and data store/loads
//occur. The standard CPU control lines control which of these
//occur.

 RUN_CLOCK: begin

 if (cpu_clock != ZERO11_) begin

 case (cpu_clock[3:0])

 ZERO: begin

 ce_bar = 0;
 data_out = write_data;
 address_out = data_address[18:0];
 jalr_pc_store_value = inst_address + 1;
 pc_clk = 0;

 end

 FIFTEEN: begin

 error_reg_choose = 0;
 reg_we = RW || ERR;

79

 we_bar = !MW;
//moved for pipelining pc_clk = 1;

 end

 FOURTEEN: begin

 reg_file_clock = RW || ERR;
//moved for pipelining pc_clk = 0;

 end

 THIRTEEN: begin

 error_reg_choose = 1;
 reg_file_clock = 0;
 reg_we = ERR;
 we_bar = 1;

 end

 TWELVE: begin

 reg_file_clock = ERR;
 ce_bar = 1;
 address_out = inst_address[18:0];

 end

 ELEVEN: begin

 reg_file_clock = 0;
 ce_bar = 0;
 oe_bar = 0;
 reg_we = 0;

 end

 TEN: begin

 end

 NINE: begin

 end

 EIGHT: begin

 instruction = data_in;

 end

 SEVEN: begin

 ce_bar = 1;
 oe_bar = 1;
 reg_file_clock = 1;
 end

 SIX: begin

 reg_file_clock = 0;
 address_out = data_address[18:0];
 end

 FIVE: begin

 oe_bar = !MR;
 ce_bar = !MR;
 end

 FOUR: begin

 end

80

 THREE: begin

 end

 TWO: begin

 if(MR) begin
 read_data = data_in;
 end

 end

 ONE: begin

 oe_bar = 1;
 ce_bar = 1;
 pc_clk = 1;

//moved to 0 for pipelining data_out = write_data;

//moved to 0 for pipelining jalr_pc_store_value = inst_address + 1;

 end

 default: begin

 end

 endcase

 cpu_clock = cpu_clock - 1;

 end
 else begin

 ce_bar = 1;
//added for pipelining
 pc_clk = 0;
 shift_out = inst_address;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

 end

//state START_CLOCK. This operates the same as RUN_CLOCK, with one exception.
//In this state we run the clock until we receive a signal from the PC saying
//to stop. This clock thus runs indefinitely.

//When the stop signal is given, the current cycle is allowed to finish and then
//we go to state WAITING.

 START_CLOCK: begin

 if (pc_ack) begin

 stop_clock = 1;

 end

 case (cpu_clock[3:0])

 ZERO: begin

 if (stop_clock) begin

 ce_bar = 1;
// cpu_clock = ZERO11_;
 shift_out = inst_address;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

81

 end

 else begin

 ce_bar = 0;
 data_out = write_data;
 address_out = data_address[18:0];
 jalr_pc_store_value = inst_address + 1;
 pc_clk = 0;

 end

 end

 FIFTEEN: begin

 error_reg_choose = 0;
 reg_we = RW || ERR;
 we_bar = !MW;
//moved for pipelining pc_clk = 1;

 end

 FOURTEEN: begin

 reg_file_clock = RW || ERR;
//moved for pipelining pc_clk = 0;

 end

 THIRTEEN: begin

 error_reg_choose = 1;
 reg_file_clock = 0;
 reg_we = ERR;
 we_bar = 1;

 end

 TWELVE: begin

 reg_file_clock = ERR;
 ce_bar = 1;
 address_out = inst_address[18:0];

 end

 ELEVEN: begin

 reg_file_clock = 0;
 ce_bar = 0;
 oe_bar = 0;
 reg_we = 0;

 end

 TEN: begin

 end

 NINE: begin

 end

 EIGHT: begin

 instruction = data_in;

 end

 SEVEN: begin

 ce_bar = 1;
 oe_bar = 1;
 reg_file_clock = 1;

82

 end

 SIX: begin

 reg_file_clock = 0;
 address_out = data_address[18:0];
 end

 FIVE: begin

 oe_bar = !MR;
 ce_bar = !MR;
 end

 FOUR: begin

 end

 THREE: begin

 end

 TWO: begin

 if(MR) begin
 read_data = data_in;
 end

 end

 ONE: begin

 oe_bar = 1;
 ce_bar = 1;
 pc_clk = 1;

//moved to 0 for pipelining data_out = write_data;

//moved to 0 for pipelining jalr_pc_store_value = inst_address + 1;

 end

 default: begin

 end

 endcase

 case ({stop_clock, cpu_clock[3:0]})

 5'b10000: begin

 cpu_clock = ZERO11_;

 end

 default: begin

 if (cpu_clock == CLOCK_RESET) begin

 cpu_clock = CLOCK_SET;

 end

 else begin

 cpu_clock = cpu_clock - 1;

 end

 end

 endcase

83

 end

//state STANDARD_READ. Whenever we want to return a value to the PC, we
//do it in this state. We send bits to the PC 3 at a time, offering 3 new
//bits upon requests from the PC. This returns one 32-bit value to the PC
//debugging tool.

//When completed, we return to state WAITING.

 STANDARD_READ: begin

 if (pc_ack) begin

 if (ack_num != ACK_OUT_LAST) begin

 shift_out = {3'b0, shift_out[31:3]};
 ack_num = ack_num + 1;
 v_ack = !v_ack;

 end

 else begin

 shift_out = {3'b0, shift_out[31:3]};
 ack_num = ZERO4_;
 v_ack = !v_ack;
 state = WAITING;

 end
 end

 end

//state WRITE_PC. Here we write the specified value to the program counter.
//This is done by first setting the write value (done in GET_OP), and then
//pulling high the write enable line.

//After writing the value, we go to STANDARD_READ and return the PC value
//to the debugging tool to ensure that it was written correctly. From there
//we go to state WAITING.

 WRITE_PC: begin

 case (pc_num)

 PC_ZERO: begin

 pc_write = 1;
 pc_num = PC_ONE;

 end

 PC_ONE: begin

 pc_write = 0;
 pc_num = PC_TWO;

 end

 PC_TWO: begin

 pc_write_value = ZERO32_;
 shift_out = inst_address;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;
 pc_num = PC_ZERO;

 end
 endcase

 end

//state WRITE_REG. Here we write the specified register with the
//specified value. We then go to STANDARD_READ to return the value

84

//to the PC, and then go to state WAITING.

 WRITE_REG: begin

 case (reg_write)

 REG_ZERO: begin

 reg_file_clock = 1;
 reg_write = REG_ONE;

 end

 REG_ONE: begin

 reg_file_clock = 0;
 reg_write = REG_TWO;

 end

 REG_TWO: begin

 reg_we = 0;
 reg_write_value = ZERO32_;
 reg_write_address = ZERO5_;
 reg_write = REG_ZERO;
 reg_read_address = shift_in[36:32];
 reg_read = REG_ZERO;
 state = READ_FROM_REG;

 end

 default: begin

 end

 endcase

 end

//state WRITE_MEM. Here we write the specified memory address with the
//specified value. We then go to STANDARD_READ to return the value
//to the PC, and then go to state WAITING.

 WRITE_MEM: begin

 case(mem_write)

 MEM_ZERO: begin

 ce_bar = 0;
 mem_write = MEM_ONE;

 end

 MEM_ONE: begin

 we_bar = 0;
 mem_write = MEM_TWO;

 end

 MEM_TWO: begin

 mem_write = MEM_THREE;

 end

 MEM_THREE: begin

 we_bar = 1;
 mem_write = MEM_FOUR;

 end

85

 MEM_FOUR: begin

 ce_bar = 1;
// mem_write = ZERO4_;
// data_out = ZERO32_;
 mem_read = MEM_ZERO;
 state = READ_FROM_MEM;

 end

 default: begin

 end

 endcase

 end

//state READ_FROM_REG. Here we obtain the value from the specified
//register. We then go to state STANDARD_RETURN and return the value
//to the debugging tool. Finally, we go back to state WAITING.

 READ_FROM_REG: begin

 case (reg_read)

 REG_ZERO: begin

 reg_file_clock = 1;
 reg_read = REG_ONE;

 end

 REG_ONE: begin

 reg_file_clock = 0;
 reg_read = REG_TWO;

 end

 REG_TWO: begin

 shift_out = reg1_in;
 reg_read_address = ZERO5_;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

 default: begin

 end

 endcase

 end

//state READ_FROM_MEM. Here we obtain the value from the specified
//memory address. We then go to state STANDARD_RETURN and return the value
//to the debugging tool. Finally, we go back to state WAITING.

 READ_FROM_MEM: begin

 case (mem_read)

 MEM_ZERO: begin

 ce_bar = 0;
 oe_bar = 0;
 mem_read = MEM_ONE;

 end

 MEM_ONE: begin

86

 mem_read = MEM_TWO;

 end

 MEM_TWO: begin

 mem_read = MEM_THREE;

 end

 MEM_THREE: begin

 shift_out = data_in;
 mem_read = MEM_FOUR;

 end

 MEM_FOUR: begin

 ce_bar = 1;
 oe_bar = 1;
 ack_num = ack_num + 1;
 v_ack = !v_ack;
 state = STANDARD_READ;

 end

 default: begin

 end

 endcase

 end

 default: begin

 end

 endcase

end

endmodule

87

Appendix D – Schematics for the Pipelined Processor

Schematic: full.sch
Description: Schematic for the pipelined processor.

88

Schematic: BRANCH_PREDICTER.sch
Description: Predicts whether a branch is going to be taken.

89

Schematic: CONTROL4.sch
Description: Control signals for the pipelined processor.

90

Schematic: EX_MEM.sch
Description: The Execution/Memory pipeline register.

91

Schematic: ID_EX.sch
Description: The Instruction Decode/Execution pipeline register.

92

Schematic: IF_ID.sch
Description: The Instruction Fetch/Instruction Decode pipeline register.

93

Schematic: MEM_WB.sch
Description: The Memory/Write Back pipeline register.

94

Schematic: REG32.sch
Description: A 32-bit register.

95

Schematic: REG32ST.sch
Description: A 32-bit register that can be stalled.

96

Schematic: REG32ST_FL.sch
Description: A 32-bit register that can be stalled or flushed.

97

Schematic: REG5.sch
Description: A 5-bit register.

98

Schematic: REG6.sch
Description: A 6-bit register.

99

Appendix E – Debugging Interface Code

'***
'* Tester.vbp
'* Author: Mark Holland
'* Last Revised: May 3 2002
'*
'* Purpose: This visual basic program runs the PC side of the debugging
'* interface for the FPGA-implemented processor that Mark Holland
'* developed for his Master's thesis, to be used in EE471.
'*
'* The DLLs that are referenced at the start of the program are specific
'* to Windows95, and at the current time that is the only platform that
'* this tool will run on.
'*
'* The communications between the PC and the FPGA are all initiated from
'* this program, and therefore from the PC. Responses are returned from
'* the FPGA to this program and displayed on the debugging interface
'* in a user friendly fashion.
'*
'* All of the methods/functions have descriptions and whatever is not
'* commented about should be somewhat self explanatory.
'***

Private Declare Sub vbOut Lib "WIN95IO.DLL" (ByVal nPort As Integer, ByVal nData As Integer)
Private Declare Sub vbOutw Lib "WIN95IO.DLL" (ByVal nPort As Integer, ByVal nData As Integer)
Private Declare Function vbInp Lib "WIN95IO.DLL" (ByVal nPort As Integer) As Integer
Private Declare Function vbInpw Lib "WIN95IO.DLL" (ByVal nPort As Integer) As Integer
Private Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)
Private Declare Function GetTickCount Lib "kernel32" () As Long

'***
'************************** Used Everywhere **************************
'***
Dim Bit(0 To 69) As Byte
Dim Rbit(0 To 32) As Byte
Dim BitsToSend(0 To 9) As Byte
Dim Clock_Running As Boolean

Dim Temp As Double
'Dim Index As Integer
'Dim Bits As Integer
'Dim Val As Double
Dim TempNum As Double

'*************************
'*** Used in Get_Bit() ***
'*************************
Dim Port_num_gb As Byte
Dim Bit_pos_gb As Byte
Dim Num_bits_gb As Byte
Dim Port_gb As Byte
Dim Bit_gb(0 To 7) As Byte

'*************************
'***** Used in Send() ****
'*************************
Dim PC_ack_s As Byte
Dim Send_value_s As Integer
Dim V_ack_s As Byte
Dim New_ack_s As Byte
Dim Bit_Index As Byte

'*************************

100

'***** Used in Recv() ****
'*************************
Dim Port1_v As Byte
Dim PC_ack_v As Byte
Dim Port2_v As Byte
Dim V_ack_v As Byte
Dim New_ack_v As Byte

'***
'************************** Used for IO Test *************************
'***
Dim Errors As Double
Dim Iterations As Double
Dim Rand(0 To 9) As Byte
Dim Ret(0 To 10) As Byte
Dim Returned_Value As Byte

'***
'************************ Used for Register Op ***********************
'***
Dim Returned(0 To 10) As Byte
Dim Received(0 To 10) As Byte
Dim Reg_ As Byte
Dim ReturnedBit(0 To 32) As Byte
'Dim AddressBinary As Boolean
'Dim ValueBinary As Boolean

Dim HexNum As Byte
Dim HexBit(0 To 7) As String

Dim Time(0 To 20) As Long

Dim misc1_num As Double

Dim TempDecimal As Long
Dim PCAddress As Long

'***
'***
'**************************** *****************************
'**************************** CODE START *****************************
'**************************** *****************************
'***
'***

'***
'************** ClockStart_Click()
'**************
'************** Starts the clock, which will stop when ClockStop is hit.
'**************
'************** Uses: Standard_Send
'***

Private Sub ClockStart_Click()

If Clock_Running = False Then

For i = 0 To 69

 Bit(i) = 0

Next

Bit(58) = 1

Clock_Running = True

Standard_Send

Else

MsgBox ("You must stop the CPU clock before you may do this!")

End If

101

End Sub

'***
'************** ClockStop_Click()
'**************
'************** Stops the clock.
'**************
'************** Uses: Standard_Send, vbInp, Get_bit
'***

Private Sub ClockStop_Click()

If Clock_Running = True Then

Clock_Running = False

Port1_v = vbInp(888)

PC_ack_v = Get_bit(888, 7)

V_ack_v = Get_bit(889, 6)

If PC_ack_v = 1 Then

 Port1_v = Port1_v - 128

Else

 Port1_v = Port1_v + 128

End If

vbOut 888, Port1_v

New_ack_v = Get_bit(889, 6)

Do While V_ack_v = New_ack_v

 New_ack_v = Get_bit(889, 6)

Loop

Standard_Return

ReadPC_Click

ReadInst_Click

ReadData_Click
ReadReg1_Click
ReadReg2_Click
ReadALU_Click
ReadMISC1_Click
ReadMISC2_Click
GetRegFile_Click
GetInstMem_Click

Else

MsgBox ("You must start the CPU clock before you may do this!")

End If

End Sub

'***
'************** ClockRun_Click()
'**************
'************** Runs the clock for the specified number of cycles.
'**************
'************** Uses: DecimalToBits, Standard_Send, Standard_Return
'***

102

Private Sub ClockRun_Click()

If Clock_Running = False Then

For i = 0 To 69

 Bit(i) = 0

Next

Temp = ClockCycles.Text

DecimalToBits 0, 6, Temp

Standard_Send
'*ADDED
Standard_Return

'PCValue.Text = Rbit(31) & Rbit(30) & Rbit(29) & Rbit(28) & Rbit(27) & Rbit(26) & Rbit(25) & Rbit(24)
& Rbit(23) & Rbit(22) & Rbit(21) & Rbit(20) & Rbit(19) & Rbit(18) & Rbit(17) & Rbit(16) & Rbit(15) &
Rbit(14) & Rbit(13) & Rbit(12) & Rbit(11) & Rbit(10) & Rbit(9) & Rbit(8) & Rbit(7) & Rbit(6) & Rbit(5)
& Rbit(4) & Rbit(3) & Rbit(2) & Rbit(1) & Rbit(0)

ReadPC_Click

ReadInst_Click

ReadData_Click
ReadReg1_Click
ReadReg2_Click
ReadALU_Click
ReadMISC1_Click
ReadMISC2_Click
GetRegFile_Click
GetInstMem_Click

Else

MsgBox ("You must stop the CPU clock before you may do this!")

End If

End Sub

'***
'************** PCWrite_Click()
'**************
'************** Writes the specified value to the PC.
'**************
'************** Uses: Standard_Send, Standard_Return
'***

Private Sub PCWrite_Click()

If Clock_Running = False Then

For i = 0 To 69

 Bit(i) = 0

Next

For j = 0 To 18

 Bit(32 + j) = PCVal(j).Caption

Next

Bit(61) = 1

Standard_Send

103

'added
Standard_Return
'added
PCValue.Text = Rbit(31) & Rbit(30) & Rbit(29) & Rbit(28) & Rbit(27) & Rbit(26) & Rbit(25) & Rbit(24) &
Rbit(23) & Rbit(22) & Rbit(21) & Rbit(20) & Rbit(19) & Rbit(18) & Rbit(17) & Rbit(16) & Rbit(15) &
Rbit(14) & Rbit(13) & Rbit(12) & Rbit(11) & Rbit(10) & Rbit(9) & Rbit(8) & Rbit(7) & Rbit(6) & Rbit(5)
& Rbit(4) & Rbit(3) & Rbit(2) & Rbit(1) & Rbit(0)

Else

MsgBox ("You must stop the CPU clock before you may do this!")

End If

End Sub

'***
'************** RegWrite_Click()
'**************
'************** Writes the specified value to the specified register.
'**************
'************** Uses: Standard_Send, Standard_Return
'***

Private Sub RegWrite_Click()

If Clock_Running = False Then

For i = 37 To 69

 Bit(i) = 0

Next

For j = 0 To 31

 Bit(j) = RegVal(j).Caption

Next

For k = 0 To 4

 Bit(32 + k) = RegAdd(k).Caption

Next

Bit(58) = 1
Bit(61) = 1

Standard_Send
'added
Standard_Return
'added
RegValue.Text = Rbit(31) & Rbit(30) & Rbit(29) & Rbit(28) & Rbit(27) & Rbit(26) & Rbit(25) & Rbit(24)
& Rbit(23) & Rbit(22) & Rbit(21) & Rbit(20) & Rbit(19) & Rbit(18) & Rbit(17) & Rbit(16) & Rbit(15) &
Rbit(14) & Rbit(13) & Rbit(12) & Rbit(11) & Rbit(10) & Rbit(9) & Rbit(8) & Rbit(7) & Rbit(6) & Rbit(5)
& Rbit(4) & Rbit(3) & Rbit(2) & Rbit(1) & Rbit(0)

Else

MsgBox ("You must stop the CPU clock before you may do this!")

End If

End Sub

'***
'************** MemWrite_Click()
'**************
'************** Writes the specified value to memory.
'**************

104

'************** Uses: Standard_Send, Standard_Return
'***

Private Sub MemWrite_Click()

If Clock_Running = False Then

For i = 51 To 69

 Bit(i) = 0

Next

For j = 0 To 31

 Bit(j) = MemVal(j).Caption

Next

For k = 0 To 18

 Bit(32 + k) = MemAdd(k).Caption

Next

Bit(59) = 1
Bit(61) = 1

Standard_Send
'added
Standard_Return
'added
MemValue.Text = Rbit(31) & Rbit(30) & Rbit(29) & Rbit(28) & Rbit(27) & Rbit(26) & Rbit(25) & Rbit(24)
& Rbit(23) & Rbit(22) & Rbit(21) & Rbit(20) & Rbit(19) & Rbit(18) & Rbit(17) & Rbit(16) & Rbit(15) &
Rbit(14) & Rbit(13) & Rbit(12) & Rbit(11) & Rbit(10) & Rbit(9) & Rbit(8) & Rbit(7) & Rbit(6) & Rbit(5)
& Rbit(4) & Rbit(3) & Rbit(2) & Rbit(1) & Rbit(0)

Else

MsgBox ("You must stop the CPU clock before you may do this!")

End If

End Sub

'***
'************** RegRead_Click()
'**************
'************** Reads the specified register.
'**************
'************** Uses: Standard_Send, Standard_Return
'***

Private Sub RegRead_Click()

If Clock_Running = False Then

For i = 0 To 69

 Bit(i) = 0

Next

For j = 0 To 4

 Bit(32 + j) = RegAdd(j).Caption

Next

Bit(58) = 1
Bit(59) = 1
Bit(61) = 1

Standard_Send

105

Standard_Return

RegValue.Text = Rbit(31) & Rbit(30) & Rbit(29) & Rbit(28) & Rbit(27) & Rbit(26) & Rbit(25) & Rbit(24)
& Rbit(23) & Rbit(22) & Rbit(21) & Rbit(20) & Rbit(19) & Rbit(18) & Rbit(17) & Rbit(16) & Rbit(15) &
Rbit(14) & Rbit(13) & Rbit(12) & Rbit(11) & Rbit(10) & Rbit(9) & Rbit(8) & Rbit(7) & Rbit(6) & Rbit(5)
& Rbit(4) & Rbit(3) & Rbit(2) & Rbit(1) & Rbit(0)

Else

MsgBox ("You must stop the CPU clock before you may do this!")

End If

End Sub

'***
'************** MemRead_Click()
'**************
'************** Reads the specified memory address.
'**************
'************** Uses: Standard_Send, Standard_Return
'***

Private Sub MemRead_Click()

If Clock_Running = False Then

For i = 0 To 69

 Bit(i) = 0

Next

For j = 0 To 18

 Bit(32 + j) = MemAdd(j).Caption

Next

Bit(60) = 1
Bit(61) = 1

Standard_Send

Standard_Return

MemValue.Text = Rbit(31) & Rbit(30) & Rbit(29) & Rbit(28) & Rbit(27) & Rbit(26) & Rbit(25) & Rbit(24)
& Rbit(23) & Rbit(22) & Rbit(21) & Rbit(20) & Rbit(19) & Rbit(18) & Rbit(17) & Rbit(16) & Rbit(15) &
Rbit(14) & Rbit(13) & Rbit(12) & Rbit(11) & Rbit(10) & Rbit(9) & Rbit(8) & Rbit(7) & Rbit(6) & Rbit(5)
& Rbit(4) & Rbit(3) & Rbit(2) & Rbit(1) & Rbit(0)

Else

MsgBox ("You must stop the CPU clock before you may do this!")

End If

End Sub

'***
'************** ReadALU_Click()
'**************
'************** Reads the ALU output.
'**************
'************** Uses: Standard_Send, Standard_Return
'***

Private Sub ReadALU_Click()

If Clock_Running = False Then

For i = 0 To 69

 Bit(i) = 0

106

Next

Bit(58) = 1
Bit(59) = 1
Bit(60) = 1

Standard_Send

Standard_Return

ALUValue.Text = Rbit(31) & Rbit(30) & Rbit(29) & Rbit(28) & Rbit(27) & Rbit(26) & Rbit(25) & Rbit(24)
& Rbit(23) & Rbit(22) & Rbit(21) & Rbit(20) & Rbit(19) & Rbit(18) & Rbit(17) & Rbit(16) & Rbit(15) &
Rbit(14) & Rbit(13) & Rbit(12) & Rbit(11) & Rbit(10) & Rbit(9) & Rbit(8) & Rbit(7) & Rbit(6) & Rbit(5)
& Rbit(4) & Rbit(3) & Rbit(2) & Rbit(1) & Rbit(0)

Else

MsgBox ("You must stop the CPU clock before you may do this!")

End If

End Sub

'***
'************** ReadData_Click()
'**************
'************** Reads the data line.
'**************
'************** Uses: Standard_Send, Standard_Return
'***

Private Sub ReadData_Click()

If Clock_Running = False Then

For i = 0 To 69

 Bit(i) = 0

Next

Bit(60) = 1

Standard_Send

Standard_Return

DataValue.Text = Rbit(31) & Rbit(30) & Rbit(29) & Rbit(28) & Rbit(27) & Rbit(26) & Rbit(25) & Rbit(24)
& Rbit(23) & Rbit(22) & Rbit(21) & Rbit(20) & Rbit(19) & Rbit(18) & Rbit(17) & Rbit(16) & Rbit(15) &
Rbit(14) & Rbit(13) & Rbit(12) & Rbit(11) & Rbit(10) & Rbit(9) & Rbit(8) & Rbit(7) & Rbit(6) & Rbit(5)
& Rbit(4) & Rbit(3) & Rbit(2) & Rbit(1) & Rbit(0)

Else

MsgBox ("You must stop the CPU clock before you may do this!")

End If

End Sub

'***
'************** ReadInst_Click()
'**************
'************** Reads the instruction line.
'**************
'************** Uses: Standard_Send, Standard_Return
'***

Private Sub ReadInst_Click()

If Clock_Running = False Then

For i = 0 To 69

107

 Bit(i) = 0

Next

Bit(58) = 1
Bit(59) = 1

Standard_Send

Standard_Return

InstValue.Text = Rbit(31) & Rbit(30) & Rbit(29) & Rbit(28) & Rbit(27) & Rbit(26) & Rbit(25) & Rbit(24)
& Rbit(23) & Rbit(22) & Rbit(21) & Rbit(20) & Rbit(19) & Rbit(18) & Rbit(17) & Rbit(16) & Rbit(15) &
Rbit(14) & Rbit(13) & Rbit(12) & Rbit(11) & Rbit(10) & Rbit(9) & Rbit(8) & Rbit(7) & Rbit(6) & Rbit(5)
& Rbit(4) & Rbit(3) & Rbit(2) & Rbit(1) & Rbit(0)

Else

MsgBox ("You must stop the CPU clock before you may do this!")

End If

End Sub

'***
'************** ReadPC_Click()
'**************
'************** Reads the program counter (PC).
'**************
'************** Uses: Standard_Send, Standard_Return
'***

Private Sub ReadPC_Click()

If Clock_Running = False Then

For i = 0 To 69

 Bit(i) = 0

Next

Bit(59) = 1

Standard_Send

Standard_Return

PCValue.Text = Rbit(31) & Rbit(30) & Rbit(29) & Rbit(28) & Rbit(27) & Rbit(26) & Rbit(25) & Rbit(24) &
Rbit(23) & Rbit(22) & Rbit(21) & Rbit(20) & Rbit(19) & Rbit(18) & Rbit(17) & Rbit(16) & Rbit(15) &
Rbit(14) & Rbit(13) & Rbit(12) & Rbit(11) & Rbit(10) & Rbit(9) & Rbit(8) & Rbit(7) & Rbit(6) & Rbit(5)
& Rbit(4) & Rbit(3) & Rbit(2) & Rbit(1) & Rbit(0)

Else

MsgBox ("You must stop the CPU clock before you may do this!")

End If

End Sub

'***
'************** ReadReg1_Click()
'**************
'************** Reads Register 1 output.
'**************
'************** Uses: Standard_Send, Standard_Return
'***

Private Sub ReadReg1_Click()

If Clock_Running = False Then

For i = 0 To 69

108

 Bit(i) = 0

Next

Bit(58) = 1
Bit(60) = 1

Standard_Send

Standard_Return

Reg1Value.Text = Rbit(31) & Rbit(30) & Rbit(29) & Rbit(28) & Rbit(27) & Rbit(26) & Rbit(25) & Rbit(24)
& Rbit(23) & Rbit(22) & Rbit(21) & Rbit(20) & Rbit(19) & Rbit(18) & Rbit(17) & Rbit(16) & Rbit(15) &
Rbit(14) & Rbit(13) & Rbit(12) & Rbit(11) & Rbit(10) & Rbit(9) & Rbit(8) & Rbit(7) & Rbit(6) & Rbit(5)
& Rbit(4) & Rbit(3) & Rbit(2) & Rbit(1) & Rbit(0)

Else

MsgBox ("You must stop the CPU clock before you may do this!")

End If

End Sub

'***
'************** ReadReg2_Click()
'**************
'************** Reads Register 2 output.
'**************
'************** Uses: Standard_Send, Standard_Return
'***

Private Sub ReadReg2_Click()

If Clock_Running = False Then

For i = 0 To 69

 Bit(i) = 0

Next

Bit(59) = 1
Bit(60) = 1

Standard_Send

Standard_Return

Reg2Value.Text = Rbit(31) & Rbit(30) & Rbit(29) & Rbit(28) & Rbit(27) & Rbit(26) & Rbit(25) & Rbit(24)
& Rbit(23) & Rbit(22) & Rbit(21) & Rbit(20) & Rbit(19) & Rbit(18) & Rbit(17) & Rbit(16) & Rbit(15) &
Rbit(14) & Rbit(13) & Rbit(12) & Rbit(11) & Rbit(10) & Rbit(9) & Rbit(8) & Rbit(7) & Rbit(6) & Rbit(5)
& Rbit(4) & Rbit(3) & Rbit(2) & Rbit(1) & Rbit(0)

Else

MsgBox ("You must stop the CPU clock before you may do this!")

End If

End Sub

'***
'************** ReadMISC1_Click()
'**************
'************** Reads MISC1 output.
'**************
'************** Uses: Standard_Send, Standard_Return
'***

Private Sub ReadMISC1_Click()

If Clock_Running = False Then

109

For i = 0 To 69

 Bit(i) = 0

Next

Bit(58) = 1
Bit(60) = 1
Bit(61) = 1

Standard_Send

Standard_Return

MISC1Value.Text = Rbit(31) & Rbit(30) & Rbit(29) & Rbit(28) & Rbit(27) & Rbit(26) & Rbit(25) &
Rbit(24) & Rbit(23) & Rbit(22) & Rbit(21) & Rbit(20) & Rbit(19) & Rbit(18) & Rbit(17) & Rbit(16) &
Rbit(15) & Rbit(14) & Rbit(13) & Rbit(12) & Rbit(11) & Rbit(10) & Rbit(9) & Rbit(8) & Rbit(7) &
Rbit(6) & Rbit(5) & Rbit(4) & Rbit(3) & Rbit(2) & Rbit(1) & Rbit(0)

Else

MsgBox ("You must stop the CPU clock before you may do this!")

End If

End Sub

'***
'************** ReadMISC2_Click()
'**************
'************** Reads MISC2 output.
'**************
'************** Uses: Standard_Send, Standard_Return
'***

Private Sub ReadMISC2_Click()

If Clock_Running = False Then

For i = 0 To 69

 Bit(i) = 0

Next

Bit(59) = 1
Bit(60) = 1
Bit(61) = 1

Standard_Send

Standard_Return

MISC2Value.Text = Rbit(31) & Rbit(30) & Rbit(29) & Rbit(28) & Rbit(27) & Rbit(26) & Rbit(25) &
Rbit(24) & Rbit(23) & Rbit(22) & Rbit(21) & Rbit(20) & Rbit(19) & Rbit(18) & Rbit(17) & Rbit(16) &
Rbit(15) & Rbit(14) & Rbit(13) & Rbit(12) & Rbit(11) & Rbit(10) & Rbit(9) & Rbit(8) & Rbit(7) &
Rbit(6) & Rbit(5) & Rbit(4) & Rbit(3) & Rbit(2) & Rbit(1) & Rbit(0)

Else

MsgBox ("You must stop the CPU clock before you may do this!")

End If

End Sub

'***
'************** PCVal_Click()
'**************
'************** Sets the specified PC value bit.
'**************
'************** Uses:
'***

110

Private Sub PCVal_Click(Index As Integer)

If PCVal(Index).Caption = 1 Then

 PCVal(Index).Caption = 0

Else

 PCVal(Index).Caption = 1

End If

End Sub

'***
'************** RegVal_Click()
'**************
'************** Sets the specified register value bit.
'**************
'************** Uses:
'***

Private Sub RegVal_Click(Index As Integer)

If RegVal(Index).Caption = 1 Then

 RegVal(Index).Caption = 0

Else

 RegVal(Index).Caption = 1

End If

End Sub

'***
'************** RegAdd_Click()
'**************
'************** Sets the specified register address bit.
'**************
'************** Uses:
'***

Private Sub RegAdd_Click(Index As Integer)

If RegAdd(Index).Caption = 1 Then

 RegAdd(Index).Caption = 0

Else

 RegAdd(Index).Caption = 1

End If

End Sub

'***
'************** MemVal_Click()
'**************
'************** Sets the specified memory value bit.
'**************
'************** Uses:
'***

Private Sub MemVal_Click(Index As Integer)

If MemVal(Index).Caption = 1 Then

 MemVal(Index).Caption = 0

111

Else

 MemVal(Index).Caption = 1

End If

End Sub

'***
'************** MemAdd_Click()
'**************
'************** Sets the specified memory address bit.
'**************
'************** Uses:
'***

Private Sub MemAdd_Click(Index As Integer)

If MemAdd(Index).Caption = 1 Then

 MemAdd(Index).Caption = 0

Else

 MemAdd(Index).Caption = 1

End If

End Sub

'***
'************** DecimalToBits(Index, Bits, Val)
'**************
'************** Takes the decimal value Val and makes Bits bits starting
'************** at index Index
'**************
'************** Uses:
'***

Sub DecimalToBits(Index, Bits, Val)

Temp = Val

For i = 0 To (Bits - 1)

 Bit(Index + i) = Temp Mod 2

 Temp = Fix(Temp / 2)

Next

End Sub

'***
'************** BitsToDecimal(Index, Bits)
'**************
'************** Takes the bits starting at index Index, Bits long, and
'************** puts their decimal value into TempDecimal
'**************
'************** Uses:
'***

Sub BitsToDecimal(Index, Bits)

TempDecimal = 0

For i = 0 To (Bits - 1)

 TempDecimal = TempDecimal + ((2 ^ i) * Bit(Index + i))

Next

112

End Sub

'***
'************** BinaryToBits(Index, Bits, Val)
'**************
'************** Takes the binary value Val and makes Bits bits starting
'************** at index Index
'**************
'************** Uses:
'***

Sub BinaryToBits(Index, Bits, Val)

Temp = Val

For i = 0 To (Bits - 1)

 Bit(Index + i) = Temp Mod 10

 Temp = Fix(Temp / 10)

Next

End Sub

'***
'************** FixBits()
'**************
'************** Fixes the bits so that they are sendable. The top two
'************** bits of each send must be inverted.
'**************
'************** Uses:
'***

Sub FixBits()

For i = 0 To 9

 If Bit(7 * i) = 0 Then

 Bit(7 * i) = 1

 Else

 Bit(7 * i) = 0

 End If

 If Bit(7 * i + 1) = 0 Then

 Bit(7 * i + 1) = 1

 Else

 Bit(7 * i + 1) = 0

 End If

Next

End Sub

'***
'************** MakeBitsSendable()
'**************
'************** Puts each 7 bit send into a value to be sent.
'**************
'************** Uses:
'***

Sub MakeBitsSendable()

For i = 0 To 9

113

 BitsToSend(i) = Bit((7 * i)) + 2 * Bit((7 * i) + 1) + 4 * Bit((7 * i) + 2) + 8 * Bit((7 * i) + 3)
+ 16 * Bit((7 * i) + 4) + 32 * Bit((7 * i) + 5) + 64 * Bit((7 * i) + 6)

Next

End Sub

'***
'************** Get_bit(Port_num_gb, Bit_pos_gb) As Byte
'**************
'************** Returns the bit from position Bit_pos_gb of port Port_num_gb.
'**************
'************** Uses: vbInp
'***

Function Get_bit(Port_num_gb, Bit_pos_gb) As Byte

'This function returns the specified bit from the specified port

' Num_bits_gb = 8

Port_gb = vbInp(Port_num_gb)

For i = 0 To (7)

Time(1) = GetTickCount

 Bit_gb(i) = Port_gb Mod 2

Time(2) = GetTickCount
Time(10) = Time(10) + Time(2) - Time(1)

 Port_gb = Fix(Port_gb / 2)

Time(3) = GetTickCount
Time(11) = Time(11) + Time(3) - Time(2)
Time(12) = Time(12) + Time(3) - Time(1)

Next

Get_bit = Bit_gb(Bit_pos_gb)

End Function

'***
'************** Standard_Send
'**************
'************** Sends the value to the FPGA.
'************** Sends 10 values + 2 extra PC_ACKs, waits for last V_ACK.
'************** In all: 11 PC_ACKS
'**************
'************** Uses: vbInp, Get_bit, vbOut
'***

Sub Standard_Send()

'MsgBox ("OP:" & Bit(63) & Bit(62) & Bit(61) & Bit(60) & Bit(59) & Bit(58))

FixBits

MakeBitsSendable

For i = 0 To 9

 PC_ack_s = Get_bit(888, 7)

 V_ack_s = Get_bit(889, 6)

 If PC_ack_s = 1 Then

 vbOut 888, BitsToSend(i)

 Else

114

 BitsToSend(i) = BitsToSend(i) + 128

 vbOut 888, BitsToSend(i)

 End If

 New_ack_s = Get_bit(889, 6)

 Do While V_ack_s = New_ack_s

 New_ack_s = Get_bit(889, 6)

 Loop

Next

For j = 0 To 1

 V_ack_s = Get_bit(889, 6)

 If BitsToSend(9) < 128 Then

 BitsToSend(9) = BitsToSend(9) + 128

 Else

 BitsToSend(9) = BitsToSend(9) - 128

 End If

 vbOut 888, BitsToSend(9)

 New_ack_s = Get_bit(889, 6)

 Do While V_ack_s = New_ack_s

 New_ack_s = Get_bit(889, 6)

 Loop

Next

End Sub

'***
'************** Standard_Return()
'**************
'************** Gets a return value from the FPGA. Does 10 PC_ACKS and
'************** waits for last V_ACK.
'**************
'************** Uses: vbInp, Get_bit, vbOut
'***

Sub Standard_Return()

For i = 0 To 9

 Port2_v = vbInp(889)

 'MsgBox ("Port 2: " & Port2_v)

 V_ack_v = Get_bit(889, 6)

 If V_ack_v = 1 Then

 Port2_v = Port2_v - 199

 Else

 Port2_v = Port2_v - 135

 End If

 Received(i) = Port2_v / 8

115

 For j = 0 To 2

 Rbit(3 * i + j) = Received(i) Mod 2

 Received(i) = Fix(Received(i) / 2)

 Next

 Port1_v = vbInp(888)

 PC_ack_v = Get_bit(888, 7)

 V_ack_v = Get_bit(889, 6)

 If PC_ack_v = 1 Then

 Port1_v = Port1_v - 128

 Else

 Port1_v = Port1_v + 128

 End If

 vbOut 888, Port1_v

 New_ack_v = Get_bit(889, 6)

 Do While V_ack_v = New_ack_v

 New_ack_v = Get_bit(889, 6)

 Loop

Next

 i = 10

 Port2_v = vbInp(889)

 'MsgBox ("Port 2: " & Port2_v)

 V_ack_v = Get_bit(889, 6)

 If V_ack_v = 1 Then

 Port2_v = Port2_v - 199

 Else

 Port2_v = Port2_v - 135

 End If

 Received(i) = Port2_v / 8

 For j = 0 To 2

 Rbit(3 * i + j) = Received(i) Mod 2

 Received(i) = Fix(Received(i) / 2)

 Next

End Sub

'***
'************** Run_Click()
'**************
'************** Runs the memory checker ... UNDER CONSTRUCTION!
'**************
'************** Uses:
'***

116

Private Sub Run_Click()

Dim nFileNum As Integer

' Get a free file number
nFileNum = FreeFile

' Create Test.txt
Open App.Path & "\super.txt" For Output As nFileNum

' Write the contents of TextBox1 to Test.txt
Write #nFileNum, "ADDRESS" & " " & "DATA"

For j = 0 To 1

 For i = 51 To 69

 Bit(i) = 0

 Next

 Bit(59) = 1
 Bit(61) = 1

 Make_Random
'MsgBox ("Sending")

 Write #nFileNum, Bit(50) & Bit(49) & Bit(48) & Bit(47) & Bit(46) & Bit(45) & Bit(44) & Bit(43) &
Bit(42) & Bit(41) & Bit(40) & Bit(39) & Bit(38) & Bit(37) & Bit(36) & Bit(35) & Bit(34) & Bit(33) &
Bit(32) & " " & Bit(31) & Bit(30) & Bit(29) & Bit(28) & Bit(27) & Bit(26) & Bit(25) & Bit(24) &
Bit(23) & Bit(22) & Bit(21) & Bit(20) & Bit(19) & Bit(18) & Bit(17) & Bit(16) & Bit(15) & Bit(14) &
Bit(13) & Bit(12) & Bit(11) & Bit(10) & Bit(9) & Bit(8) & Bit(7) & Bit(6) & Bit(5) & Bit(4) & Bit(3) &
Bit(2) & Bit(1) & Bit(0)

 Standard_Send
'MsgBox ("Receiving")
 Standard_Return
'MsgBox ("Done Receiving")

MemValue.Text = Rbit(31) & Rbit(30) & Rbit(29) & Rbit(28) & Rbit(27) & Rbit(26) & Rbit(25) & Rbit(24)
& Rbit(23) & Rbit(22) & Rbit(21) & Rbit(20) & Rbit(19) & Rbit(18) & Rbit(17) & Rbit(16) & Rbit(15) &
Rbit(14) & Rbit(13) & Rbit(12) & Rbit(11) & Rbit(10) & Rbit(9) & Rbit(8) & Rbit(7) & Rbit(6) & Rbit(5)
& Rbit(4) & Rbit(3) & Rbit(2) & Rbit(1) & Rbit(0)

 ' Close the file

Next

 Close nFileNum

End Sub

'***
'************** Make_Random()
'**************
'************** Makes 51 random bits.
'**************
'************** Uses:
'***

Function Make_Random()

For i = 0 To 50

 Randomize

117

 Bit(i) = Int(2 * Rnd)

Next

End Function

'***
'************** Test_Send
'**************
'************** Sends the value to the FPGA.
'************** Sends 10 values and waits for last V_ACK.
'************** In all: 10 PC_ACKS
'**************
'************** Uses: vbInp, Get_bit, vbOut
'***

Sub Test_Send()

'MsgBox ("OP:" & Bit(63) & Bit(62) & Bit(61) & Bit(60) & Bit(59) & Bit(58))

FixBits

MakeBitsSendable

For i = 0 To 9

 PC_ack_s = Get_bit(888, 7)

 V_ack_s = Get_bit(889, 6)

 If PC_ack_s = 1 Then

 vbOut 888, BitsToSend(i)

 Else

 BitsToSend(i) = BitsToSend(i) + 128

 vbOut 888, BitsToSend(i)

 End If

 New_ack_s = Get_bit(889, 6)

'MsgBox ("up to loop")

 Do While V_ack_s = New_ack_s

'MsgBox ("into loop")

 New_ack_s = Get_bit(889, 6)

 Loop

Next
'
'V_ack_s = Get_bit(889, 6)
'
'If BitsToSend(9) < 128 Then
'
' BitsToSend(9) = BitsToSend(9) + 128
'
'Else
'
' BitsToSend(9) = BitsToSend(9) - 128
'
'End If
'
'vbOut 888, BitsToSend(9)
'
'New_ack_s = Get_bit(889, 6)
'
'Do While V_ack_s = New_ack_s
'

118

' New_ack_s = Get_bit(889, 6)
'
'Loop

End Sub

'***
'************** Test_Return()
'**************
'************** Gets a return value from the FPGA. Does 11 PC_ACKS and
'************** waits for last V_ACK.
'**************
'************** Uses: vbInp, Get_bit, vbOut
'***

Sub Test_Return()

For i = 0 To 10

MsgBox ("Return: " & i)

 Port1_v = vbInp(888)

 PC_ack_v = Get_bit(888, 7)

 V_ack_v = Get_bit(889, 6)

 If PC_ack_v = 1 Then

 Port1_v = Port1_v - 128

 Else

 Port1_v = Port1_v + 128

 End If

 vbOut 888, Port1_v

 New_ack_v = Get_bit(889, 6)

 Do While V_ack_v = New_ack_v

 New_ack_v = Get_bit(889, 6)

 Loop

 Port2_v = vbInp(889)

 'MsgBox ("Port 2: " & Port2_v)

 V_ack_v = Get_bit(889, 6)

 If V_ack_v = 1 Then

 Port2_v = Port2_v - 199

 Else

 Port2_v = Port2_v - 135

 End If

 Received(i) = Port2_v / 8

'MsgBox ("Received: " & Received(i))

 For j = 0 To 2

 Rbit(3 * i + j) = Received(i) Mod 2

 Received(i) = Fix(Received(i) / 2)

 Next

119

Next

End Sub

'***
'************** GetRegFile_Click()
'**************
'************** Gets the complete status of the register file.
'**************
'************** Uses: DecimalToBits, Standard_Send, Standard_Return, MakeHexBits
'***

Private Sub GetRegFile_Click()

For m = 0 To 31

 For i = 0 To 69

 Bit(i) = 0

 Next

Bit(58) = 1
Bit(59) = 1
Bit(61) = 1

 DecimalToBits 32, 5, m

 Standard_Send

 Standard_Return

 MakeHexBits

 RegFileValue(m).Text = HexBit(7) & HexBit(6) & HexBit(5) & HexBit(4) & HexBit(3) & HexBit(2) &
HexBit(1) & HexBit(0)

Next

End Sub

'***
'************** MakeHexBits()
'**************
'************** Turns the binary bits into hex Strings.
'**************
'************** Uses:
'***

Sub MakeHexBits()

For i = 0 To 7

 HexNum = Rbit(4 * i) + 2 * Rbit(4 * i + 1) + 4 * Rbit(4 * i + 2) + 8 * Rbit(4 * i + 3)

 HexBit(i) = Hex$(HexNum)

'MsgBox HexNum & " => " & HexBit(i)

Next

End Sub

'***

120

'************** ReadFile_Click()
'**************
'************** Reads the file specified in FileName.Text into memory.
'************** See Test.txt for an example of the file formatting.
'**************
'************** Uses: DecimalToBits, Standard_Send, Standard_Return
'***

Private Sub ReadFile_Click()

Dim nFileNum As Integer, RR As String
Dim Count As Integer

' Get a free file number
nFileNum = FreeFile

' Open Test.txt for input. App.Path returns the path your app is saved in
Open App.Path & "\" & FileName.Text For Input As nFileNum

Count = 0

Do While Not EOF(nFileNum)

 ' Read the contents of the file
 For i = 0 To 31

 Bit(31 - i) = Input(1, nFileNum)

 Next

 Line Input #nFileNum, RR

 For j = 51 To 69

 Bit(j) = 0

 Next

 DecimalToBits 32, 19, Count

 Bit(59) = 1
 Bit(61) = 1

 'Line Input #nFileNum, RR

 ' MemValue.Text = Bit(31) & Bit(30) & Bit(29) & Bit(28) & Bit(27) & Bit(26)

 Standard_Send
 'added
 Standard_Return
 'added
 MemValue.Text = Rbit(31) & Rbit(30) & Rbit(29) & Rbit(28) & Rbit(27) & Rbit(26) & Rbit(25) &
Rbit(24) & Rbit(23) & Rbit(22) & Rbit(21) & Rbit(20) & Rbit(19) & Rbit(18) & Rbit(17) & Rbit(16) &
Rbit(15) & Rbit(14) & Rbit(13) & Rbit(12) & Rbit(11) & Rbit(10) & Rbit(9) & Rbit(8) & Rbit(7) &
Rbit(6) & Rbit(5) & Rbit(4) & Rbit(3) & Rbit(2) & Rbit(1) & Rbit(0)
 'If Count = 5 Then

 ' Done = True

 'End If

 Count = Count + 1

Loop
MsgBox "Done"

 ' Close the file
 Close nFileNum

End Sub

121

'***
'************** DumpMem_Click()
'**************
'************** Dumps the memory to Dump.txt in the VB directory.
'**************
'************** Uses: DecimalToBits, Standard_Send, Standard_Return
'***

Private Sub DumpMem_Click()

Dim nFileNum As Integer

Time(0) = GetTickCount

' Get a free file number
nFileNum = FreeFile

' Create Test.txt
Open App.Path & "\Dump.txt" For Output As nFileNum

For j = 0 To 100

For i = 0 To 69

 Bit(i) = 0

 Next

 DecimalToBits 32, 19, j

 Bit(60) = 1
 Bit(61) = 1

 Standard_Send

 Standard_Return

 Write #nFileNum, j & ": " & Rbit(31) & Rbit(30) & Rbit(29) & Rbit(28) & Rbit(27) & Rbit(26) &
Rbit(25) & Rbit(24) & Rbit(23) & Rbit(22) & Rbit(21) & Rbit(20) & Rbit(19) & Rbit(18) & Rbit(17) &
Rbit(16) & Rbit(15) & Rbit(14) & Rbit(13) & Rbit(12) & Rbit(11) & Rbit(10) & Rbit(9) & Rbit(8) &
Rbit(7) & Rbit(6) & Rbit(5) & Rbit(4) & Rbit(3) & Rbit(2) & Rbit(1) & Rbit(0)

Next

'MsgBox "Done"
' Write the contents of TextBox1 to Test.txt
'Write #nFileNum, TextBox1.Text

' Close the file
Close nFileNum

Time(6) = GetTickCount
Time(15) = Time(6) - Time(0)

MsgBox "Time 0: " & Time(0) & vbCrLf & "Time 1: " & Time(1) & vbCrLf & "Time 2: " & Time(2) & vbCrLf &
"Time 3: " & Time(3) & vbCrLf & "Time 4: " & Time(4) & vbCrLf & "Time 5: " & Time(5) & vbCrLf & "Time
6: " & Time(6) & vbCrLf & "Time 7: " & Time(7) & vbCrLf & "Time 8: " & Time(8) & vbCrLf & "Time 9: " &
Time(9) & vbCrLf & "Time 10: " & Time(10) & vbCrLf & "Time 11: " & Time(11) & vbCrLf & "Time 12: " &
Time(12) & vbCrLf & "Time 13: " & Time(13) & vbCrLf & "Time 14: " & Time(14) & vbCrLf & "Time 15: " &
Time(15) & vbCrLf & "Time 16: " & Time(16) & vbCrLf & "Time 17: " & Time(17) & vbCrLf & "Time 18: " &
Time(18)

End Sub

'***
'************** WriteMISC1_Click()
'**************
'************** Writes the specified value to the MISC1 input bus.
'**************
'************** Uses: DecimalToBits, Standard_Send, Standard_Return
'***

122

Private Sub WriteMISC1_Click()

For i = 0 To 69

 Bit(i) = 0

Next

misc1_num_high = Val("&H" + MISC1WriteValueHigh.Text)
misc1_num_low = Val("&H" + MISC1WriteValueLow.Text)

'MsgBox misc1_num_high
'MsgBox misc1_num_low

If (misc1_num_high < 0) Then
 Bit(31) = 1
 misc1_num_high = misc1_num_high + 32768
 DecimalToBits 16, 15, misc1_num_high

Else

 DecimalToBits 16, 16, misc1_num_high

End If

If (misc1_num_low < 0) Then
 Bit(15) = 1
 misc1_num_low = misc1_num_low + 32768
 DecimalToBits 0, 15, misc1_num_low

Else

 DecimalToBits 0, 16, misc1_num_low

End If

Bit(61) = 1
Bit(60) = 1
Bit(59) = 1
Bit(58) = 1

Standard_Send

Standard_Return

ReadMISC1_Click
ReadMISC2_Click

'MsgBox Bit(31) & Bit(30) & Bit(29) & Bit(28) & Bit(27) & Bit(26) & Bit(25) & Bit(24) & Bit(23) &
Bit(22) & Bit(21) & Bit(20) & Bit(19) & Bit(18) & Bit(17) & Bit(16) & Bit(15) & Bit(14) & Bit(13) &
Bit(12) & Bit(11) & Bit(10) & Bit(9) & Bit(8) & Bit(7) & Bit(6) & Bit(5) & Bit(4) & Bit(3) & Bit(2) &
Bit(1) & Bit(0)

End Sub

'***
'************** WriteMISC2_Click()
'**************
'************** Writes the specified value to the MISC2 input bus.
'**************
'************** Uses: DecimalToBits, Standard_Send, Standard_Return
'***

Private Sub WriteMISC2_Click()

For i = 0 To 69

 Bit(i) = 0

Next

misc2_num_high = Val("&H" + MISC2WriteValueHigh.Text)

123

misc2_num_low = Val("&H" + MISC2WriteValueLow.Text)

'MsgBox misc2_num_high
'MsgBox misc2_num_low

If (misc2_num_high < 0) Then
 Bit(31) = 1
 misc2_num_high = misc2_num_high + 32768
 DecimalToBits 16, 15, misc2_num_high

Else

 DecimalToBits 16, 16, misc2_num_high

End If

If (misc2_num_low < 0) Then
 Bit(15) = 1
 misc2_num_low = misc2_num_low + 32768
 DecimalToBits 0, 15, misc2_num_low

Else

 DecimalToBits 0, 16, misc2_num_low

End If

Bit(62) = 1

Standard_Send

Standard_Return

ReadMISC1_Click
ReadMISC2_Click

'MsgBox Bit(31) & Bit(30) & Bit(29) & Bit(28) & Bit(27) & Bit(26) & Bit(25) & Bit(24) & Bit(23) &
Bit(22) & Bit(21) & Bit(20) & Bit(19) & Bit(18) & Bit(17) & Bit(16) & Bit(15) & Bit(14) & Bit(13) &
Bit(12) & Bit(11) & Bit(10) & Bit(9) & Bit(8) & Bit(7) & Bit(6) & Bit(5) & Bit(4) & Bit(3) & Bit(2) &
Bit(1) & Bit(0)

End Sub

'***
'************** WriteMISC3_Click()
'**************
'************** Writes the specified value to the MISC3 input bus.
'**************
'************** Uses: DecimalToBits, Standard_Send, Standard_Return
'***

Private Sub WriteMISC3_Click()

For i = 0 To 69

 Bit(i) = 0

Next

misc3_num_high = Val("&H" + MISC3WriteValueHigh.Text)
misc3_num_low = Val("&H" + MISC3WriteValueLow.Text)

'MsgBox misc3_num_high
'MsgBox misc3_num_low

If (misc3_num_high < 0) Then
 Bit(31) = 1
 misc3_num_high = misc3_num_high + 32768
 DecimalToBits 16, 15, misc3_num_high

Else

 DecimalToBits 16, 16, misc3_num_high

124

End If

If (misc3_num_low < 0) Then
 Bit(15) = 1
 misc3_num_low = misc3_num_low + 32768
 DecimalToBits 0, 15, misc3_num_low

Else

 DecimalToBits 0, 16, misc3_num_low

End If

Bit(62) = 1
Bit(58) = 1

Standard_Send

Standard_Return

ReadMISC1_Click
ReadMISC2_Click

'MsgBox Bit(31) & Bit(30) & Bit(29) & Bit(28) & Bit(27) & Bit(26) & Bit(25) & Bit(24) & Bit(23) &
Bit(22) & Bit(21) & Bit(20) & Bit(19) & Bit(18) & Bit(17) & Bit(16) & Bit(15) & Bit(14) & Bit(13) &
Bit(12) & Bit(11) & Bit(10) & Bit(9) & Bit(8) & Bit(7) & Bit(6) & Bit(5) & Bit(4) & Bit(3) & Bit(2) &
Bit(1) & Bit(0)

End Sub

'***
'************** MISCUpdate_Click()
'**************
'************** Writes the specified values to the MISC input busses.
'**************
'************** Uses: MISC1, MISC2, MISC3
'***

Private Sub MISCUpdate_Click()

WriteMISC1_Click
WriteMISC2_Click
WriteMISC3_Click

End Sub

Private Sub GetInstMem_Click()

' BitsToDecimal(Index, Bits)

 ReadPC_Click

 For i = 0 To 18

 Bit(i) = Rbit(i)

 Next

 BitsToDecimal 0, 19

 PCAddress = TempDecimal

 For m = 0 To 6

 For j = 0 To 69

 Bit(j) = 0

 Next

 Bit(60) = 1

125

 Bit(61) = 1

 DecimalToBits 32, 19, (PCAddress + m)

 Standard_Send

 Standard_Return

 MakeHexBits

 InstVal(m).Text = HexBit(7) & HexBit(6) & HexBit(5) & HexBit(4) & HexBit(3) & HexBit(2) &
HexBit(1) & HexBit(0)

 DecimalToBits 0, 32, (PCAddress + m)

 For i = 0 To 31

 Rbit(i) = Bit(i)

 Next

 MakeHexBits

 InstAdd(m).Text = HexBit(7) & HexBit(6) & HexBit(5) & HexBit(4) & HexBit(3) & HexBit(2) &
HexBit(1) & HexBit(0)

 Next

End Sub

126

Appendix F – Lex Assembler Code

%{

/**
 * File: comp.l
 * Author: Mark Holland
 * Last Modified: May 6, 2002
 *
 * This is the lex file for my assembler, written
 * in lex and yacc. This file matches input
 * strings and hands tokens to the yacc file,
 * which will use the tokens to match specific
 * grammars.
 *
 * The assembler takes a file of all MIPs non-floating
 * point/coprocessor instructions and maps them to
 * the following set: LW, SW, JALR, BGEZ, NOR, SUBU,
 * SYSCALL, and BREAK.
 *
 * We go through a total of 9 assembler passes.
 * The first 4 passes perform instruction expansion,
 * the 5th and 6th passes perform label offset
 * computations, the 7th does data insertions for
 * LI instructions, the 8th drops the labels and
 * allows the data to become binary in form, and the
 * 9th pass maps to machine code.
 **/

#include <stdlib.h>
#include "comp.tab.h"
#include "string.h"

#define LOOKUP -1
#define FALSE 0
#define TRUE 1
#define FIVE 5
#define SIXTEEN 16
#define TWENTY_SIX 26
#define THIRTY_TWO 32

int initialized = FALSE;
int load_imm = FALSE;
int negative = FALSE;
int num_length; //num_length is needed for knowing
 //which instructions have what
 //data field lengths
int line_number = 1;
int output_line_number = 0; //keeps track of output line no.
int error_cause = 0; //specifies error and error message
int fill_int = 0; //fills depending on pos. or neg.
int compiler_pass = 1; //which pass we're on
int num_instructions = 0; //keeps track of input line no.
int label_type = 0;
char * make_binary(long num, int bits);
char * reg_number(char *reg);
%}

%%

data {

//The data memory section is created on the fifth
//pass, so the sixth pass is the first time
//it must be parsed.

 if(compiler_pass < 6) {
 error_cause = 2;
 return ERROR;
 }
 num_length = THIRTY_TWO;

127

 return DATA;
 }

nop {
 return NOP;
 }

lb {
 num_length = SIXTEEN;
 return LB;
 }

lbu {
 num_length = SIXTEEN;
 return LBU;
 }

lh {
 num_length = SIXTEEN;
 return LH;
 }

lhu {
 num_length = SIXTEEN;
 return LHU;
 }

lw {
 num_length = SIXTEEN;
 return LW;
 }

lwl {
 num_length = SIXTEEN;
 return LWL;
 }

lwr {
 num_length = SIXTEEN;
 return LWR;
 }

lui {
 num_length = SIXTEEN;
 return LUI;
 }

li {
 num_length = SIXTEEN;
 return LI;
 }

li32 {
 load_imm = TRUE;
 num_length = THIRTY_TWO;
 return LI;
 }

lij {
 label_type = 1;
 return LIJ;
 }

sb {
 num_length = SIXTEEN;
 return SB;
 }

sh {
 num_length = SIXTEEN;
 return SH;
 }

sw {
 num_length = SIXTEEN;

128

 return SW;
 }

swr {
 num_length = SIXTEEN;
 return SWR;
 }

swl {
 num_length = SIXTEEN;
 return SWL;
 }

j {
 num_length = TWENTY_SIX;
 return J;
 }

jal {
 num_length = TWENTY_SIX;
 return JAL;
 }

jr {
 return JR;
 }

jalr {
 return JALR;
 }

beq {
 num_length = SIXTEEN;
 return BEQ;
 }

bne {
 num_length = SIXTEEN;
 return BNE;
 }

blez {
 num_length = SIXTEEN;
 return BLEZ;
 }

bgtz {
 num_length = SIXTEEN;
 return BGTZ;
 }

bltz {
 num_length = SIXTEEN;
 return BLTZ;
 }

bgez {
 num_length = SIXTEEN;
 label_type = 0;
 return BGEZ;
 }

bltzal {
 num_length = SIXTEEN;
 return BLTZAL;
 }

bgezal {
 num_length = SIXTEEN;
 return BGEZAL;
 }

and {
 return AND;
 }

129

andi {
 num_length = SIXTEEN;
 return ANDI;
 }

andi32 {
 num_length = THIRTY_TWO;
 return ANDI;
 }

or {
 return OR;
 }

ori {
 num_length = SIXTEEN;
 return ORI;
 }

ori32 {
 num_length = THIRTY_TWO;
 return ORI;
 }

xor {
 return XOR;
 }

xori {
 num_length = SIXTEEN;
 return XORI;
 }

xori32 {
 num_length = THIRTY_TWO;
 return XORI;
 }

nor {
 return NOR;
 }

addi {
 num_length = SIXTEEN;
 return ADDI;
 }

addi32 {
 num_length = THIRTY_TWO;
 return ADDI;
 }

addiu {
 num_length = SIXTEEN;
 return ADDIU;
 }

addiu32 {
 num_length = THIRTY_TWO;
 return ADDIU;
 }

add {
 return ADD;
 }

addu {
 return ADDU;
 }

sub {
 return SUB;
 }

130

subu {
 return SUBU;
 }

mult {
 return MULT;
 }

multu {
 return MULTU;
 }

div {
 return DIV;
 }

divu {
 return DIVU;
 }

slti {
 num_length = SIXTEEN;
 return SLTI;
 }

slti32 {
 num_length = THIRTY_TWO;
 return SLTI;
 }

sltiu {
 num_length = SIXTEEN;
 return SLTIU;
 }

sltiu32 {
 num_length = THIRTY_TWO;
 return SLTIU;
 }

slt {
 return SLT;
 }

sltu {
 return SLTU;
 }

sll {
 num_length = FIVE;
 return SLL;
 }

srl {
 num_length = FIVE;
 return SRL;
 }

sra {
 num_length = FIVE;
 return SRA;
 }

sllv {
 return SLLV;
 }

srlv {
 return SRLV;
 }

srav {
 return SRAV;
 }

131

syscall {
 return SYSCALL;
 }

break {
 return BREAK;
 }

\$t[0-2]|\$s[0-4]|\$zero|\$gp|\$fp|\$sp|\$ra|\$v[0-1]|\$a[0-3] {

//These are the user's alloted registers.

 yylval.sval = strdup(yytext);

 if(compiler_pass == 9) {
 yytext = reg_number(yylval.sval);
 yylval.sval = strdup(yytext);
 }

 return REG;
 }

\$t[3-9]|\$s[5-7]|\$at|\$k[0-1] {

//These registers are reserved for the compiler, so they can
//only be used by intermediate compiler files.

 yylval.sval = strdup(yytext);
 if(compiler_pass == 1) {
 error_cause = 2;
 return ERROR;
 }

 if(compiler_pass == 9) {
 yytext = reg_number(yylval.sval);
 yylval.sval = strdup(yytext);
 }

 return REG;
 }

[A-Z][A-Z0-9_]*: {

//The code for a label destination. On compiler pass 5 the
//label destinations are all recorded so that on pass 6 the
//offsets can be calculated and the labels can be removed.

 yylval.sval = strdup(yytext);

 if(compiler_pass == 5)
 add_label(line_number, yylval.sval);

 if(compiler_pass == 8)
 yylval.sval = "";

 return LABEL_DEST;
 }

[A-Z][A-Z0-9_]* {

//The code for a label. On compiler pass 6 the labels are
//matched with their destination so that their offsets can
//be calculated and the actual labels can be removed.

 int label_line;
 yylval.sval = strdup(yytext);

 if(compiler_pass == 6) {
 label_line = lookup_label(strcat(yylval.sval,":"));
 if(label_line != LOOKUP) {

//This is for calculating the offset
//and replacing the labels with it.

132

 if(label_type == 0)
 yytext = make_binary((label_line - line_number - 1), 18);
 else {
 yytext = make_binary((4 * (label_line - 1)), 16);
 if(yytext[0] == '0')
 fill_int = 0;
 else
 fill_int = 1;
 }
 yylval.sval = strdup(yytext);
 }
 else {
 error_cause = 3;
 return ERROR;
 }
 }

 return LABEL;
 }

[A-Z][A-Z0-9_#]*: {

//The code for a label destination that was created by the
//compiler in an intermediate file as part of the expansion.
//Treated just as the previous label destinations were.

 if(compiler_pass == 1) {
 error_cause = 2;
 return ERROR;
 }
 else {
 yylval.sval = strdup(yytext);

 if(compiler_pass == 5)
 add_label(line_number, yylval.sval);

 if(compiler_pass == 8)
 yylval.sval = "";

 return LABEL_DEST;
 }
 }

[A-Z][A-Z0-9_#]* {

//The code for a label that was created by the compiler in
//an intermediate file, as part of the expansion. Treated just
//as the previous labels were.

 int label_line;
 if(compiler_pass == 1) {
 error_cause = 2;
 return ERROR;
 }
 else {
 yylval.sval = strdup(yytext);

 if(compiler_pass == 6) {
 label_line = lookup_label(strcat(yylval.sval,":"));
 if(label_line != LOOKUP) {
 if(label_type == 0)
 yytext = make_binary((label_line - line_number - 1), 18);
 else
 yytext = make_binary((4 * (label_line - 1)), 18);
 yytext[0] = '0';
 yytext[1] = 'b';
 yylval.sval = strdup(yytext);
 }
 else {
 error_cause = 3;
 return ERROR;
 }
 }

133

 return LABEL;
 }

 }

TRAP {

//For the ADD instruction, if there is an overflow we must jump
//to the exception handler. The *TRAP* label will branch to the
//end of the instruction memory section, where I have inserted a
//jump instruction that will jump to the exception handler.

 if(compiler_pass == 1) {
 error_cause = 2;
 return ERROR;
 }
 else {
 yylval.sval = strdup(yytext);
 return TRAP;
 }
 }

0b[01]{32} {

//A 32 bit binary number. I must handle it in a special manner
//because the largest data type I can use is only a 32 bit
//unsigned number, while I need a 32 bit signed number. Therefore
//I make note of the sign of the number (i.e. the 32nd bit) and
//only use a 31 bit number, replacing the sign bit later.
//The 32 bit numbers are mostly for immediate fields, and on
//compiler pass 7 are turned into data entries.

 long num;
 negative = FALSE;
 yytext[0] = '0';
 yytext[1] = '0';
 if(yytext[2] == '1') {
 yytext[2] = '0';
 negative = TRUE;
 }
 else {
 negative = FALSE;
 }

 num = strtol(yytext, (char **)NULL, 2);

 if((compiler_pass == 7) && (load_imm == TRUE)) {
 load_imm = FALSE;
 add_data(num, negative);
 }

 yytext = make_binary(num, 32);
 if(negative == TRUE) {
 yytext[0] = '1';
 }
 yylval.sval = strdup(yytext);
 return VALUE_32;
 }

0b[01]{26} {

//A 26 bit binary number, used for jumps.

 long num;
 yytext[0] = '0';
 yytext[1] = '0';
 num = strtol(yytext, (char **)NULL, 2);
 yytext = make_binary(num, 26);
 yylval.sval = strdup(yytext);
 return VALUE_26;
 }

134

0b[01]{16} {

//A 16 bit binary number, used in many branch and imediate
//instructions. The fill int will allow the value to
//be sign extended if/when I turn it into a 32 bit value.

 long num;
 yytext[0] = '0';
 yytext[1] = '0';
 num = strtol(yytext, (char **)NULL, 2);
 if(num >= 32768) {
 fill_int = 1;
 }
 else {
 fill_int = 0;
 }
 yytext = make_binary(num, 16);
 yylval.sval = strdup(yytext);
 return VALUE_16;
 }

0b[01]{5} {

//A 5 bit binary number.

 long num;
 yytext[0] = '0';
 yytext[1] = '0';
 num = strtol(yytext, (char **)NULL, 2);
 yytext = make_binary(num, 5);
 yylval.sval = strdup(yytext);
 return VALUE_5;
 }

0x[0-9a-fA-F]{2} {

//A 2 digit hex number signifies a 5 bit number.

 long num = strtol(yytext, (char **)NULL, 0);
 yytext = make_binary(num, 5);
 yylval.sval = strdup(yytext);
 return VALUE_5;
 }

0x[0-9a-fA-F]{4} {

//A 4 digit hex number signifies a 16 bit number. The fill
//int is used for sign extension if/when I turn the number
//to 32 bits.

 long num = strtol(yytext, (char **)NULL, 0);
 if(num >= 32768) {
 fill_int = 1;
 }
 else {
 fill_int = 0;
 }
 yytext = make_binary(num, 16);
 yylval.sval = strdup(yytext);
 return VALUE_16;
 }

0x[0-9a-fA-F]{7} {

//A 7 digit hex number signifies a 26 bit number.

 long num = strtol(yytext, (char **)NULL, 0);
 yytext = make_binary(num, 26);
 yylval.sval = strdup(yytext);
 return VALUE_26;
 }

0x[0-9a-fA-F]{8} {

135

//An 8 digit hext number signifies a 32 bit number. I use
//the first digit to tell whether the number is positive or
//negative, which allows me to use only a 31 bit number
//for manipulation purposes. I turn it back into 32 bits
//later. This is all done due to the lack of a 32 bit
//signed data type.

 long num;
 negative = FALSE;

 if(yytext[2] == '8') {
 yytext[2] = '0';
 negative = TRUE;
 }
 else if(yytext[2] == '9') {
 yytext[2] = '1';
 negative = TRUE;
 }
 else if(yytext[2] == 'A') {
 yytext[2] = '2';
 negative = TRUE;
 }
 else if(yytext[2] == 'B') {
 yytext[2] = '3';
 negative = TRUE;
 }
 else if(yytext[2] == 'C') {
 yytext[2] = '4';
 negative = TRUE;
 }
 else if(yytext[2] == 'D') {
 yytext[2] = '5';
 negative = TRUE;
 }
 else if(yytext[2] == 'E') {
 yytext[2] = '6';
 negative = TRUE;
 }
 else if(yytext[2] == 'F') {
 yytext[2] = '7';
 negative = TRUE;
 }
 else {
 negative = FALSE;
 }

 num = strtol(yytext, (char **)NULL, 0);
 yytext = make_binary(num, 32);
 if(negative == TRUE) {
 yytext[0] = '1';
 }
 yylval.sval = strdup(yytext);
 return VALUE_32;
 }

-?[0-9]+ {

//A decimal value. It could signify a 5, 16, 26, or 32
//bit value, and I use num_length to determine which
//it is.

 long num = atoi(yytext);

 negative = FALSE;

 yytext = make_binary(num, num_length);

 yylval.sval = strdup(yytext);
 if(num_length == FIVE)
 return VALUE_5;
 if(num_length == SIXTEEN) {
 if(num >= 32768 || num < 0) {
 fill_int = 1;
 }
 else {

136

 fill_int = 0;
 }
 return VALUE_16;
 }
 if(num_length == TWENTY_SIX)
 return VALUE_26;
 if(num_length == THIRTY_TWO)
 return VALUE_32;
 }

\n {

//The end of line (EOL) term. I keep track of the line
//number for error reporting/debugging purposes.

 line_number++;
 }

[\t]+ /* ignore whitespace*/ ;

"//"[^\n]* /* ignore parts that are commented out with // */ ;

, return yytext[0];

\(return yytext[0];

\) return yytext[0];

. {

//Anything that is unmatched is an error, so
//print an error message to the user.

 yylval.sval = strdup(yytext);
 error_cause = 1;
 return ERROR;
 }

%%

#include <stdlib.h>
#define NUM_ENTRIES 197

//This struct keeps track of the labels by
//name and line number, as well as the next label
//they point to in the linked list.

struct LabelData {
 char *name;
 int line;
 struct LabelData *next;
};

//This struct is for the data memory entries,
//and is in linked list form.

struct DataEntry {
 int value;
 struct DataEntry *next;
};

struct LabelData *hash[NUM_ENTRIES];

extern void *malloc();

/*
 *
 *My function for keeping track of label locations, adding them into
 *a hash table of size 197 dependent upon the values of their ascii
 *characters. This will provide a sufficiently random distribution
 *for my purposes.
 *
 */

137

int add_label(int line_number, char *word)
{

 struct LabelData *label;

 label = (struct LabelData *) malloc(sizeof(struct LabelData));

 label->next = hash[compute_hash(word)];

 label->name = (char *) malloc(strlen(word)+1);
 strcpy(label->name, word);
 label->line = line_number;
 hash[compute_hash(word)] = label;

//Debug lines which can be handy

// printf("Word: %s Line: %d\n", label->name, label->line);
// printf("Hash: %d\n", compute_hash(word));

}

/*
 *
 *This is my function for computing the hash value for a given
 *label. The hash value depends upon the ascii values of
 *the characters, multiplied by the position place of the
 *character. This provides a sufficiently random distribution.
 *
 */

int compute_hash(char *word)
{
 int hashValue = 0;
 int i = 0;

 while(word[i] != '\0'){
 hashValue += (word[i] * (i + 1));
 i++;
 }

 return (hashValue % NUM_ENTRIES);
}

/*
 *
 *My function for looking up a label in the hash table.
 *If a match is found, I return the line that it was
 *found on. This allows me to compute jump and branch
 *destination addresses.
 *
 */

int lookup_label(char *word)
{
//debug lines which can be handy

// printf("Word: %s\n", word);
// printf("Hash: %d\n", compute_hash(word));

 struct LabelData *label = hash[compute_hash(word)];

 for(; label; label = label->next) {
 if(strcmp(label->name, word) == 0)
 return label->line;
 }

 return LOOKUP;

}

/*

138

 *
 *This is my linked list of data values. "Load immediates"
 *require the data value to be written to memory so that
 *a "load word" can retrieve the value, since we support
 *no immediate instructions.
 *
 */

struct DataEntry *data;
struct DataEntry *data2;
extern void *malloc();

int add_data(int data_value, int negative)
{

 struct DataEntry *new_data;

 new_data = (struct DataEntry *) malloc(sizeof(struct DataEntry));

 new_data->next = data;
 if(negative == FALSE) {
 new_data->value = data_value;
 }
 else {
 new_data->value = (data_value - 2147483647 - 1);
 }

 data = new_data;

//a debug line which can be handy

// printf("Data value: %d recorded.\n", new_data->value);

}

/*
 *
 *This simply reverses the order of the data list so that I can
 *print it easily. I use a second linked list and copy the
 *first one into it in reversed order.
 *
 */

int copy_data()
{
 for(; data; data = data->next) {

 struct DataEntry *new_data;

 new_data = (struct DataEntry *) malloc(sizeof(struct DataEntry));
 new_data->next = data2;
 new_data->value = data->value;

 data2 = new_data;
 }
}

/*
 *My function for printing the data values. This occurs
 *during pass 7 of the assembler.
 *
 */

int print_values()
{

 copy_data();

 for(; data2; data2 = data2->next) {
 fprintf(yyout," data %d\n", data2->value);
 }
}

139

/*
 *
 *This is my function for turning numbers into binary.
 *Some of the data fields I deal with are signed 32-bit
 *numbers, and there is no data type that I can easily
 *use to represent such a large number. Instead I
 *sometimes record the sign of the number and turn it
 *into a 31 bit number so that it'll fit into the long
 *data type, and I use the sign information to add the
 *top bit later.
 *
 */

char *
make_binary(long num, int bits)
{
 char *value;
 int i;
 int temp;

 value = (char *)malloc(sizeof(char) * (bits + 1));
 if(num >= 0){
 for(i = 1; i <= bits; i++){
 temp = num % 2;
 if(temp == 0)
 value[bits-i] = '0';
 else
 value[bits-i] = '1';
 num = num / 2;
 }
 }
 else{
 num = num + 1;
 num = num * -1;
 for(i = 1; i <= bits; i++){
 temp = num % 2;
 if(temp == 0)
 value[bits-i] = '1';
 else
 value[bits-i] = '0';
 num = num / 2;
 }
 }
 value[bits] = '\0';
 return value;
}

/*
 *
 *This is my function for turning a register
 *into it's numerical representation. This occurs
 *during the last pass of the assembler.
 *
 */

char *
reg_number(char *reg) {

 char *number;

 number = (char *)malloc(sizeof(char) * 5);

 if(!strcmp(reg, "$zero")) {
 number = "00000";
 return number;
 }
 else if(!strcmp(reg, "$at")) {
 number = "00001";
 return number;
 }
 else if(!strcmp(reg, "$v0")) {
 number = "00010";
 return number;
 }

140

 else if(!strcmp(reg, "$v1")) {
 number = "00011";
 return number;
 }
 else if(!strcmp(reg, "$a0")) {
 number = "00100";
 return number;
 }
 else if(!strcmp(reg, "$a1")) {
 number = "00101";
 return number;
 }
 else if(!strcmp(reg, "$a2")) {
 number = "00110";
 return number;
 }
 else if(!strcmp(reg, "$a3")) {
 number = "00111";
 return number;
 }
 else if(!strcmp(reg, "$t0")) {
 number = "01000";
 return number;
 }
 else if(!strcmp(reg, "$t1")) {
 number = "01001";
 return number;
 }
 else if(!strcmp(reg, "$t2")) {
 number = "01010";
 return number;
 }
 else if(!strcmp(reg, "$t3")) {
 number = "01011";
 return number;
 }
 else if(!strcmp(reg, "$t4")) {
 number = "01100";
 return number;
 }
 else if(!strcmp(reg, "$t5")) {
 number = "01101";
 return number;
 }
 else if(!strcmp(reg, "$t6")) {
 number = "01110";
 return number;
 }
 else if(!strcmp(reg, "$t7")) {
 number = "01111";
 return number;
 }
 else if(!strcmp(reg, "$s0")) {
 number = "10000";
 return number;
 }
 else if(!strcmp(reg, "$s1")) {
 number = "10001";
 return number;
 }
 else if(!strcmp(reg, "$s2")) {
 number = "10010";
 return number;
 }
 else if(!strcmp(reg, "$s3")) {
 number = "10011";
 return number;
 }
 else if(!strcmp(reg, "$s4")) {
 number = "10100";
 return number;
 }
 else if(!strcmp(reg, "$s5")) {
 number = "10101";
 return number;

141

 }
 else if(!strcmp(reg, "$s6")) {
 number = "10110";
 return number;
 }
 else if(!strcmp(reg, "$s7")) {
 number = "10111";
 return number;
 }
 else if(!strcmp(reg, "$t8")) {
 number = "11000";
 return number;
 }
 else if(!strcmp(reg, "$t9")) {
 number = "11001";
 return number;
 }
 else if(!strcmp(reg, "$k0")) {
 number = "11010";
 return number;
 }
 else if(!strcmp(reg, "$k1")) {
 number = "11011";
 return number;
 }
 else if(!strcmp(reg, "$gp")) {
 number = "11100";
 return number;
 }
 else if(!strcmp(reg, "$sp")) {
 number = "11101";
 return number;
 }
 else if(!strcmp(reg, "$fp")) {
 number = "11110";
 return number;
 }
 else if(!strcmp(reg, "$ra")) {
 number = "11111";
 return number;
 }

 return number;

}

142

Appendix G – Yacc Assembler Code

%{

/**
 * File: comp.y
 * Author: Mark Holland
 * Last Modified: May 6, 2002
 *
 * This is the yacc file for my assembler, written
 * in lex and yacc. This file accepts tokens from
 * the lexer and matches them in specific grammars,
 * which are basically legal instructions.
 *
 * The assembler takes a file of all MIPs non-floating
 * point/coprocessor instructions and maps them to
 * the following set: LW, SW, JALR, BGEZ, NOR, SUBU,
 * SYSCALL, and BREAK.
 **/

#include <stdio.h>

#define FALSE 0
#define TRUE 1

//These extern variables are used in both the lex and
//yacc programs, so they are declared external here.

extern FILE *yyout; //The output file
extern int fill_int; //The fill integer, for
 //sign extending
extern int output_line_number; //output line number
extern int compiler_pass; //pass of the compiler
extern int num_instructions; //Number of total insts
extern int negative; //Whether a number is <0
int label_num = 0; //Used for giving unique
 //label names.

//Below are the tokens that come from the lexer. They
//signify different parts of the instructions that the
//lexer sees.

//Following the token definitions is the grammar section.
//When a specific set of tokens matches a complete grammar,
//the proper text is outputted. So if an input instruction
//that our processor doesn't support is seen, the instruction
//will be matched by it's grammar and we will output the
//expansion of that instruction.

//The bulk of this file is simple expansions of input
//instructions.

%}

%union {
 char *sval;
}

%token <sval> REG
%token <sval> LABEL
%token <sval> LABEL_DEST
%token <sval> TRAP
%token <sval> VALUE_32
%token <sval> VALUE_26
%token <sval> VALUE_16
%token <sval> VALUE_5
%token <sval> ERROR

%token <sval> DATA
%token <sval> NOP
%token <sval> LB
%token <sval> LBU
%token <sval> LH

143

%token <sval> LHU
%token <sval> LW
%token <sval> LWL
%token <sval> LWR
%token <sval> LUI
%token <sval> LI
%token <sval> LIJ
%token <sval> SB
%token <sval> SH
%token <sval> SW
%token <sval> SWR
%token <sval> SWL
%token <sval> J
%token <sval> JAL
%token <sval> JR
%token <sval> JALR
%token <sval> BEQ
%token <sval> BNE
%token <sval> BLEZ
%token <sval> BGTZ
%token <sval> BLTZ
%token <sval> BGEZ
%token <sval> BLTZAL
%token <sval> BGEZAL
%token <sval> AND
%token <sval> ANDI
%token <sval> OR
%token <sval> ORI
%token <sval> XOR
%token <sval> XORI
%token <sval> NOR
%token <sval> ADDI
%token <sval> ADDIU
%token <sval> ADD
%token <sval> ADDU
%token <sval> SUB
%token <sval> SUBU
%token <sval> MULT
%token <sval> MULTU
%token <sval> DIV
%token <sval> DIVU
%token <sval> SLTI
%token <sval> SLTIU
%token <sval> SLT
%token <sval> SLTU
%token <sval> SLL
%token <sval> SRL
%token <sval> SRA
%token <sval> SLLV
%token <sval> SRLV
%token <sval> SRAV
%token <sval> SYSCALL
%token <sval> BREAK

%%

list: instruction
 | label instruction
 | label label instruction
 | list instruction
 | list label instruction
 | list label label instruction
 ;

instruction: LB REG ',' VALUE_16 '(' REG ')'
 {
 if(fill_int == 0) {
 fprintf(yyout," addi32 $t3,%s,0b0000000000000000%s\n", $6, $4);
output_line_number++;
 }
 else {
 fprintf(yyout," addi32 $t3,%s,0b1111111111111111%s\n", $6, $4);
output_line_number++;
 }

144

 fprintf(yyout," ori32 $t4,$t3,0xFFFFFFFC\n"); output_line_number++;
 fprintf(yyout," addi32 $t4,$t4,0x00000004\n"); output_line_number++;
 fprintf(yyout," subu $t3,$t3,$t4\n"); output_line_number++;
 fprintf(yyout," lw %s,0($t3)\n", $2); output_line_number++;
 fprintf(yyout," sll $t4,$t4,3\n"); output_line_number++;
 fprintf(yyout," srlv %s,%s,$t4\n", $2, $2); output_line_number++;
 fprintf(yyout," andi32 $t3,%s,0x00000080\n", $2); output_line_number++;
 fprintf(yyout," subu $t3,$zero,$t3\n"); output_line_number++;
 fprintf(yyout," bgez $t3,POS#%d\n", label_num); output_line_number++;
 fprintf(yyout," or %s,%s,$t3\n", $2, $2); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"POS#%d: andi32 %s,%s,0x000000FF\n", label_num, $2, $2);
output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | LBU REG ',' VALUE_16 '(' REG ')'
 {
 if(fill_int == 0) {
 fprintf(yyout," addi32 $t3,%s,0b0000000000000000%s\n", $6, $4);
output_line_number++;
 }
 else {
 fprintf(yyout," addi32 $t3,%s,0b1111111111111111%s\n", $6, $4);
output_line_number++;
 }
 fprintf(yyout," ori32 $t4,$t3,0xFFFFFFFC\n"); output_line_number++;
 fprintf(yyout," addi32 $t4,$t4,0x00000004\n"); output_line_number++;
 fprintf(yyout," subu $t3,$t3,$t4\n"); output_line_number++;
 fprintf(yyout," lw %s,0($t3)\n", $2); output_line_number++;
 fprintf(yyout," sll $t4,$t4,3\n"); output_line_number++;
 fprintf(yyout," srlv %s,%s,$t4\n", $2, $2); output_line_number++;
 fprintf(yyout," andi32 %s,%s,0x000000FF\n", $2, $2); output_line_number++;
 }

 | LH REG ',' VALUE_16 '(' REG ')'
 {
 if(fill_int == 0) {
 fprintf(yyout," addi32 $t3,%s,0b0000000000000000%s\n", $6, $4);
output_line_number++;
 fprintf(yyout," li32 $t4,0b0000000000000000%s\n", $4); output_line_number++;
 }
 else {
 fprintf(yyout," addi32 $t3,%s,0b1111111111111111%s\n",$6, $4);
output_line_number++;
 fprintf(yyout," li32 $t4,0b1111111111111111%s\n", $4); output_line_number++;
 }
 fprintf(yyout," ori32 $t4,$t3,0xFFFFFFFC\n"); output_line_number++;
 fprintf(yyout," addi32 $t4,$t4,0x00000002\n"); output_line_number++;
 fprintf(yyout," bgez $t4,LOADHI#%d\n", label_num); output_line_number++;
 fprintf(yyout," lw $t3,0($t3)\n"); output_line_number++;
 fprintf(yyout," andi32 $t4,$t3,0x00008000\n"); output_line_number++;
 fprintf(yyout," subu $t4,$zero,$t4\n"); output_line_number++;
 fprintf(yyout," bgez $t4,POS#%d\n", label_num); output_line_number++;
 fprintf(yyout," or %s,$t3,$t4\n", $2); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"POS#%d: andi32 %s,$t3,0x0000FFFF\n", label_num, $2);
output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"LOADHI#%d: lw %s,-2($t3)\n", label_num, $2); output_line_number++;
 fprintf(yyout," sra %s,%s,16\n", $2, $2); output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | LHU REG ',' VALUE_16 '(' REG ')'
 {
 if(fill_int == 0) {
 fprintf(yyout," addi32 $t3,%s,0b0000000000000000%s\n", $6, $4);
output_line_number++;
 }
 else {
 fprintf(yyout," addi32 $t3,%s,0b1111111111111111%s\n", $6, $4);
output_line_number++;

145

 }
 fprintf(yyout," ori32 $t4,$t3,0xFFFFFFFC\n"); output_line_number++;
 fprintf(yyout," addi32 $t4,$t4,0x00000002\n"); output_line_number++;
 fprintf(yyout," bgez $t4,LOADHI#%d\n", label_num); output_line_number++;
 fprintf(yyout," lw $t3,0($t3)\n"); output_line_number++;
 fprintf(yyout," andi32 %s,$t3,0x0000FFFF\n", $2); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"LOADHI#%d: lw $t4,-2($t3)\n", label_num); output_line_number++;
 fprintf(yyout," srl %s,%s,16\n", $2, $2); output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | LW REG ',' VALUE_16 '(' REG ')'
 {
 if(compiler_pass != 9) {
 fprintf(yyout," lw %s,0b%s(%s)\n", $2, $4, $6); output_line_number++;
 }
 else {
 fprintf(yyout,"100011%s%s%s\n", $6, $2, $4); output_line_number++;
 }
 }

 | LWL REG ',' VALUE_16 '(' REG ')'
 {
 if(fill_int == 0) {
 fprintf(yyout," addi32 $t3,%s,0b0000000000000000%s\n", $6, $4);
output_line_number++;
 }
 else {
 fprintf(yyout," addi32 $t3,%s,0b1111111111111111%s\n", $6, $4);
output_line_number++;
 }
 fprintf(yyout," andi32 $t4,$t3,0x00000003\n"); output_line_number++;
 fprintf(yyout," subu $t3,$t3,$t4\n"); output_line_number++;
 fprintf(yyout," addi32 $t4,$t4,0xFFFFFFFD\n"); output_line_number++;
 fprintf(yyout," bgez $t4,AL3#%d\n", label_num); output_line_number++;
 fprintf(yyout," lw $t3,0($t3)\n"); output_line_number++;
 fprintf(yyout," andi32 $t5,%s,0x000000FF\n", $2); output_line_number++;
 fprintf(yyout," addi32 $t6,$zero,0x00000007\n"); output_line_number++;
 fprintf(yyout," addi32 $t4,$t4,0x00000001\n"); output_line_number++;
 fprintf(yyout," bgez $t4,SHIFT#%d\n", label_num); output_line_number++;
 fprintf(yyout," andi32 $t5,%s,0x0000FFFF\n", $2); output_line_number++;
 fprintf(yyout," addi32 $t6,$t6,0x00000008\n"); output_line_number++;
 fprintf(yyout," addi32 $t4,$t4,0x00000001\n"); output_line_number++;
 fprintf(yyout," bgez $t4,SHIFT#%d\n", label_num); output_line_number++;
 fprintf(yyout," andi32 $t5,%s,0x00FFFFFF\n", $2); output_line_number++;
 fprintf(yyout," addi32 $t6,$t6,0x00000008\n"); output_line_number++;
 fprintf(yyout,"SHIFT#%d: addi32 $t6,$t6,0xFFFFFFFF\n", label_num);
output_line_number++;
 fprintf(yyout," addu $t3,$t3,$t3\n"); output_line_number++;
 fprintf(yyout," bgez $t6,SHIFT#%d\n", label_num); output_line_number++;
 fprintf(yyout," or %s,$t5,$t3\n", $2); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"AL3#%d: lw %s,0($t3)\n", label_num, $2); output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | LWR REG ',' VALUE_16 '(' REG ')'
 {
 if(fill_int == 0) {
 fprintf(yyout," addi32 $t3,%s,0b0000000000000000%s\n", $6, $4);
output_line_number++;
 }
 else {
 fprintf(yyout," addi32 $t3,%s,0b1111111111111111%s\n", $6, $4);
output_line_number++;
 }
 fprintf(yyout," andi32 $t4,$t3,0x00000003\n"); output_line_number++;
 fprintf(yyout," subu $t3,$t3,$t4\n"); output_line_number++;
 fprintf(yyout," lw $t3,0($t3)\n"); output_line_number++;
 fprintf(yyout," blez $t4,ALIGNED#%d\n", label_num); output_line_number++;
 fprintf(yyout," addi32 $t4,$t4,0xFFFFFFFC\n"); output_line_number++;
 fprintf(yyout," subu $t4,$zero,$t4\n"); output_line_number++;

146

 fprintf(yyout," addi32 $t6,$zero,0x00000007\n"); output_line_number++;
 fprintf(yyout,"AL1#%d: addi32 $t6,$t6,0xFFFFFFFF\n", label_num);
output_line_number++;
 fprintf(yyout," subu $t5,$zero,$t3\n"); output_line_number++;
 fprintf(yyout," bgez $t3,NOT1#%d\n", label_num); output_line_number++;
 fprintf(yyout," subu $t3,$t3,$t5\n"); output_line_number++;
 fprintf(yyout," addi32 $t3,$t3,0x00000001\n"); output_line_number++;
 fprintf(yyout," bgez $t6,AL1#%d\n", label_num); output_line_number++;
 fprintf(yyout," bgez $zero,FIN1#%d\n", label_num); output_line_number++;
 fprintf(yyout,"NOT1#%d: subu $t3,$t3,$t5\n", label_num); output_line_number++;
 fprintf(yyout," bgez $t6,AL1#%d\n", label_num); output_line_number++;
 fprintf(yyout,"FIN1#%d: addi32 $t4,$t4,0xFFFFFFFF\n", label_num);
output_line_number++;
 fprintf(yyout," bgtz $t4,AL2#%d\n", label_num); output_line_number++;
 fprintf(yyout," andi32 $t3,$t3,0x000000FF\n"); output_line_number++;
 fprintf(yyout," andi32 %s,%s,0xFFFFFF00\n", $2, $2); output_line_number++;
 fprintf(yyout," or %s,%s,$t3\n", $2, $2); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"AL2#%d: addi32 $t6,$zero,0x00000007\n", label_num);
output_line_number++;
 fprintf(yyout,"LOOP2#%d: addi32 $t6,$t6,0xFFFFFFFF\n", label_num);
output_line_number++;
 fprintf(yyout," subu $t5,$zero,$t3\n"); output_line_number++;
 fprintf(yyout," bgez $t3,NOT2#%d\n", label_num); output_line_number++;
 fprintf(yyout," subu $t3,$t3,$t5\n"); output_line_number++;
 fprintf(yyout," addi32 $t3,$t3,0x00000001\n"); output_line_number++;
 fprintf(yyout," bgez $t6,LOOP2#%d\n", label_num); output_line_number++;
 fprintf(yyout," bgez $zero,FIN2#%d\n", label_num); output_line_number++;
 fprintf(yyout,"NOT2#%d: subu $t3,$t3,$t5\n", label_num); output_line_number++;
 fprintf(yyout," bgez $t6,LOOP2#%d\n", label_num); output_line_number++;
 fprintf(yyout,"FIN2#%d: addi32 $t4,$t4,0xFFFFFFFF\n", label_num);
output_line_number++;
 fprintf(yyout," bgtz $t4,AL3#%d\n", label_num); output_line_number++;
 fprintf(yyout," andi32 $t3,$t3,0x0000FFFF\n"); output_line_number++;
 fprintf(yyout," andi32 %s,%s,0xFFFF0000\n", $2, $2); output_line_number++;
 fprintf(yyout," or %s,%s,$t3\n", $2, $2); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"AL3#%d: addi32 $t6,$zero,0x00000007\n", label_num);
output_line_number++;
 fprintf(yyout,"LOOP3#%d: addi32 $t6,$t6,0xFFFFFFFF\n", label_num);
output_line_number++;
 fprintf(yyout," subu $t5,$zero,$t3\n"); output_line_number++;
 fprintf(yyout," bgez $t3,NOT3#%d\n", label_num); output_line_number++;
 fprintf(yyout," subu $t3,$t3,$t5\n"); output_line_number++;
 fprintf(yyout," addi32 $t3,$t3,0x00000001\n"); output_line_number++;
 fprintf(yyout," bgez $t6,LOOP3#%d\n", label_num); output_line_number++;
 fprintf(yyout," bgez $zero,FIN3#%d\n", label_num); output_line_number++;
 fprintf(yyout,"NOT3#%d: subu $t3,$t3,$t5\n", label_num); output_line_number++;
 fprintf(yyout," bgez $t6,LOOP3#%d\n", label_num); output_line_number++;
 fprintf(yyout,"FIN3#%d: andi32 $t3,$t3,0x00FFFFFF\n", label_num);
output_line_number++;
 fprintf(yyout," andi32 %s,%s,0xFF000000\n", $2, $2); output_line_number++;
 fprintf(yyout," or %s,%s,$t3\n", $2, $2); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"ALIGNED#%d: subu %s,$t3,$zero\n", label_num, $2);
output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | LUI REG ',' VALUE_16
 {
 fprintf(yyout," li32 %s,0b%s0000000000000000\n", $2, $4); output_line_number++;
 }

 | LUI REG ',' VALUE_32
 {
 fprintf(yyout," li32 %s,0b%s\n", $2, $4); output_line_number++;
 }

 | LI REG ',' VALUE_16
 {
 if(fill_int == 0) {
 fprintf(yyout," li32 %s,0b0000000000000000%s\n", $2, $4);
output_line_number++;

147

 }
 else {
 fprintf(yyout," li32 %s,0b1111111111111111%s\n", $2, $4);
output_line_number++;
 }
 }

 | LI REG ',' VALUE_32
 {
 if(compiler_pass != 7) {
 fprintf(yyout," li32 %s,0b%s\n", $2, $4); output_line_number++;
 }
 else {
 fprintf(yyout," lw %s,%d($zero)\n", $2, (4 * num_instructions));
output_line_number++;
 num_instructions++;
 }
 }

 | LI REG ',' BLTZAL
 {
 if(compiler_pass != 5) {
 fprintf(yyout," li %s,bltzal\n", $2); output_line_number++;
 }
 else {
 fprintf(yyout," li %s,%d\n", $2, (output_line_number + 20));
output_line_number++;
 }
 }

 | LI REG ',' BGEZAL
 {
 if(compiler_pass != 5) {
 fprintf(yyout," li %s,bgezal\n", $2); output_line_number++;
 }
 else {
 fprintf(yyout," li %s,%d\n", $2, (output_line_number + 19));
output_line_number++;
 }
 }

 | LIJ REG ',' LABEL
 {
 if(compiler_pass == 6) {
 if(fill_int == 0) {
 fprintf(yyout," li32 %s,0b0000000000000000%s\n", $2, $4);
output_line_number++;
 }
 else {
 fprintf(yyout," li32 %s,0b1111111111111111%s\n", $2, $4);
output_line_number++;
 }
 }
 else {
 fprintf(yyout," lij %s,%s\n", $2, $4); output_line_number++;
 }
 }

 | SB REG ',' VALUE_16 '(' REG ')'
 {
 if(fill_int == 0) {
 fprintf(yyout," li32 $t4,0b0000000000000000%s\n", $4); output_line_number++;
 }
 else {
 fprintf(yyout," li32 $t4,0b1111111111111111%s\n", $4); output_line_number++;
 }
 fprintf(yyout," add $t3,%s,$t4\n", $6); output_line_number++;
 fprintf(yyout," ori32 $t4,$t3,0xFFFFFFFC\n"); output_line_number++;
 fprintf(yyout," subu $t3,$t3,$t4\n"); output_line_number++;
 fprintf(yyout," addi32 $t3,$t3,0xFFFFFFFC\n"); output_line_number++;
 fprintf(yyout," lw $t5,0($t3)\n"); output_line_number++;
 fprintf(yyout," addi32 $t4,$t4,0x00000001\n"); output_line_number++;
 fprintf(yyout," bgez $t4,STOREMSB#%d\n", label_num); output_line_number++;
 fprintf(yyout," addi32 $t4,$t4,0x00000001\n"); output_line_number++;
 fprintf(yyout," bgez $t4,STOREHI#%d\n", label_num); output_line_number++;

148

 fprintf(yyout," addi32 $t4,$t4,0x00000001\n"); output_line_number++;
 fprintf(yyout," bgez $t4,STORELO#%d\n", label_num); output_line_number++;
 fprintf(yyout," andi32 $t4,$t5,0xFFFFFF00\n"); output_line_number++;
 fprintf(yyout," andi32 $t5,%s,0x000000FF\n", $2); output_line_number++;
 fprintf(yyout," bgez $zero,COMBINE#%d\n", label_num); output_line_number++;
 fprintf(yyout,"STORELO#%d: andi32 $t4,$t5,0xFFFF00FF\n", label_num);
output_line_number++;
 fprintf(yyout," andi32 $t5,%s,0x000000FF\n", $2); output_line_number++;
 fprintf(yyout," li32 $t6,0x00000008\n"); output_line_number++;
 fprintf(yyout," bgez $zero,COMBINE#%d\n", label_num); output_line_number++;
 fprintf(yyout,"STOREHI#%d: andi32 $t4,$t5,0xFF00FFFF\n", label_num);
output_line_number++;
 fprintf(yyout," andi32 $t5,%s,0x000000FF\n", $2); output_line_number++;
 fprintf(yyout," li32 $t6,0x00000010\n"); output_line_number++;
 fprintf(yyout," bgez $zero,COMBINE#%d\n", label_num); output_line_number++;
 fprintf(yyout,"STOREMSB#%d: andi32 $t4,$t5,0x00FFFFFF\n", label_num);
output_line_number++;
 fprintf(yyout," andi32 $t5,%s,0x000000FF\n", $2); output_line_number++;
 fprintf(yyout," li32 $t6,0x00000018\n"); output_line_number++;
 fprintf(yyout,"COMBINE#%d: sllv $t5,$t5,$t6\n", label_num);
output_line_number++;
 fprintf(yyout," or $t4,$t4,$t5\n"); output_line_number++;
 fprintf(yyout," sw $t4,0($t3)\n"); output_line_number++;
 label_num++;
 }

 | SH REG ',' VALUE_16 '(' REG ')'
 {
 if(fill_int == 0) {
 fprintf(yyout," addi32 $t3,%s,0b0000000000000000%s\n", $6, $4);
output_line_number++;
 }
 else {
 fprintf(yyout," addi32 $t3,%s,0b1111111111111111%s\n", $6, $4);
output_line_number++;
 }
 fprintf(yyout," ori32 $t4,$t3,0xFFFFFFFC\n"); output_line_number++;
 fprintf(yyout," addi32 $t4,$t4,0x00000002\n"); output_line_number++;
 fprintf(yyout," bgez $t4,LOADHI#%d\n", label_num); output_line_number++;
 fprintf(yyout," lw $t4,0($t0)\n"); output_line_number++;
 fprintf(yyout," andi32 $t4,$t4,0xFFFF0000\n"); output_line_number++;
 fprintf(yyout," andi32 $t5,%s,0x0000FFFF\n", $2); output_line_number++;
 fprintf(yyout," or $t4,$t4,$t5\n"); output_line_number++;
 fprintf(yyout," sw $t4,0($t3)\n"); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"LOADHI#%d: lw $t4,-2($t3)\n", label_num); output_line_number++;
 fprintf(yyout," andi32 $t4,$t4,0x0000FFFF\n"); output_line_number++;
 fprintf(yyout," sll $t5,%s,16\n", $2); output_line_number++;
 fprintf(yyout," or $t4,$t4,$t5\n"); output_line_number++;
 fprintf(yyout," sw $t4,-2($t3)\n"); output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | SW REG ',' VALUE_16 '(' REG ')'
 {
 if(compiler_pass != 9) {
 fprintf(yyout," sw %s,0b%s(%s)\n", $2, $4, $6); output_line_number++;
 }
 else {
 fprintf(yyout,"101011%s%s%s\n", $6, $2, $4); output_line_number++;
 }
 }

 | SWR REG ',' VALUE_16 '(' REG ')'
 {
 if(fill_int == 0) {
 fprintf(yyout," li32 $t4,0b0000000000000000%s\n", $4); output_line_number++;
 }
 else {
 fprintf(yyout," li32 $t4,0b1111111111111111%s\n", $4); output_line_number++;
 }
 fprintf(yyout," add $t3,%s,$t4\n", $6); output_line_number++;
 fprintf(yyout," ori32 $t4,$t3,0xFFFFFFFC\n"); output_line_number++;
 fprintf(yyout," subu $t3,$t3,$t4\n"); output_line_number++;

149

 fprintf(yyout," addi32 $t3,$t3,0xFFFFFFFC\n"); output_line_number++;
 fprintf(yyout," lw $t5,0($t3)\n"); output_line_number++;
 fprintf(yyout," addi32 $t4,$t4,0x00000001\n"); output_line_number++;
 fprintf(yyout," bgez $t4,STOREMSB#%d\n", label_num); output_line_number++;
 fprintf(yyout," addi32 $t4,$t4,0x00000001\n"); output_line_number++;
 fprintf(yyout," bgez $t4,STOREHI#%d\n", label_num); output_line_number++;
 fprintf(yyout," addi32 $t4,$t4,0x00000001\n"); output_line_number++;
 fprintf(yyout," bgez $t4,STORELO#%d\n", label_num); output_line_number++;
 fprintf(yyout," sw %s,0($t3)\n", $2); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"STOREMSB#%d: andi32 $t4,$t5,0x00FFFFFF\n", label_num);
output_line_number++;
 fprintf(yyout," li32 $t5,0x00000018\n"); output_line_number++;
 fprintf(yyout," bgez $zero,COMBINE#%d\n", label_num); output_line_number++;
 fprintf(yyout,"STOREHI#%d: andi32 $t4,$t5,0x0000FFFF\n", label_num);
output_line_number++;
 fprintf(yyout," li32 $t5,0x00000010\n"); output_line_number++;
 fprintf(yyout," bgez $zero,COMBINE#%d\n", label_num); output_line_number++;
 fprintf(yyout,"STORELO#%d: andi32 $t4,$t5,0x000000FF\n", label_num);
output_line_number++;
 fprintf(yyout," li32 $t5,0x00000008\n"); output_line_number++;
 fprintf(yyout,"COMBINE#%d: sllv $t5,%s,$t5\n", label_num, $2);
output_line_number++;
 fprintf(yyout," or $t4,$t4,$t5\n"); output_line_number++;
 fprintf(yyout," sw $t4,0($t3)\n"); output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | SWL REG ',' VALUE_16 '(' REG ')'
 {
 if(fill_int == 0) {
 fprintf(yyout," li32 $t4,0b0000000000000000%s\n", $4); output_line_number++;
 }
 else {
 fprintf(yyout," li32 $t4,0b1111111111111111%s\n", $4); output_line_number++;
 }
 fprintf(yyout," add $t3,%s,$t4\n", $6); output_line_number++;
 fprintf(yyout," ori32 $t4,$t3,0xFFFFFFFC\n"); output_line_number++;
 fprintf(yyout," subu $t3,$t3,$t4\n"); output_line_number++;
 fprintf(yyout," addi32 $t3,$t3,0xFFFFFFFC\n"); output_line_number++;
 fprintf(yyout," lw $t5,0($t3)\n"); output_line_number++;
 fprintf(yyout," addi32 $t4,$t4,0x00000001\n"); output_line_number++;
 fprintf(yyout," bgez $t4,STOREMSB#%d\n", label_num); output_line_number++;
 fprintf(yyout," addi32 $t4,$t4,0x00000001\n"); output_line_number++;
 fprintf(yyout," bgez $t4,STOREHI#%d\n", label_num); output_line_number++;
 fprintf(yyout," addi32 $t4,$t4,0x00000001\n"); output_line_number++;
 fprintf(yyout," bgez $t4,STORELO#%d\n", label_num); output_line_number++;
 fprintf(yyout," addi32 $t4,$t4,0x00000001\n"); output_line_number++;
 fprintf(yyout," andi32 $t4,$t5,0xFFFFFF00\n"); output_line_number++;
 fprintf(yyout," li32 $t5,0x00000018\n"); output_line_number++;
 fprintf(yyout," bgez $zero,COMBINE#%d\n", label_num); output_line_number++;
 fprintf(yyout,"STORELO#%d: andi32 $t4,$t5,0xFFFF0000\n", label_num);
output_line_number++;
 fprintf(yyout," li32 $t5,0x00000010\n"); output_line_number++;
 fprintf(yyout," bgez $zero,COMBINE#%d\n", label_num); output_line_number++;
 fprintf(yyout,"STOREHI#%d: andi32 $t4,$t5,0xFF000000\n", label_num);
output_line_number++;
 fprintf(yyout," li32 $t5,0x00000008\n"); output_line_number++;
 fprintf(yyout," bgez $zero,COMBINE#%d\n", label_num); output_line_number++;
 fprintf(yyout,"STOREMSB#%d: subu $t5,$zero,$zero\n", label_num);
output_line_number++;
 fprintf(yyout,"COMBINE#%d: srlv $t5,%s,$t5\n", label_num, $2);
output_line_number++;
 fprintf(yyout," or $t4,$t4,$t5\n"); output_line_number++;
 fprintf(yyout," sw $t4,0($t3)\n"); output_line_number++;
 label_num++;
 }

 | J LABEL
 {
 fprintf(yyout," lij $t3,%s\n", $2); output_line_number++;
 fprintf(yyout," jalr $t3,$t3\n"); output_line_number++;
 }

150

 | JAL LABEL
 {
 fprintf(yyout," lij $t3,%s\n", $2); output_line_number++;
 fprintf(yyout," jalr $ra,$t3\n"); output_line_number++;
 }

 | JR REG
 {
 fprintf(yyout," jalr $t3,%s\n", $2); output_line_number++;
 }

 | JALR REG ',' REG
 {
 if(compiler_pass != 9) {
 fprintf(yyout," jalr %s,%s\n", $2, $4); output_line_number++;
 }
 else {
 fprintf(yyout,"000000%s00000%s00000001001\n", $4, $2); output_line_number++;
 }
 }

 | JALR REG
 {
 if(compiler_pass != 9) {
 fprintf(yyout," jalr $ra,%s\n", $2); output_line_number++;
 }
 else {
 fprintf(yyout,"000000%s000001111100000001001\n", $2); output_line_number++;
 }
 }

 | BEQ REG ',' REG ',' LABEL
 {
 fprintf(yyout," subu $t3,%s,%s\n", $4, $2); output_line_number++;
 fprintf(yyout," bgez $t3,BEQ1#%d\n", label_num); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"BEQ1#%d: subu $t3,$zero,$t3\n", label_num); output_line_number++;
 fprintf(yyout," bgez $t3,%s\n", $6); output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | BNE REG ',' REG ',' LABEL
 {
 fprintf(yyout," subu $t3,%s,%s\n", $4, $2); output_line_number++;
 fprintf(yyout," bgez $t3,BNE1#%d\n", label_num); output_line_number++;
 fprintf(yyout," bgez $zero,2\n"); output_line_number++;
 fprintf(yyout,"BNE1#%d subu $t3,$zero,$t3\n", label_num); output_line_number++;
 fprintf(yyout," bgez $t3,END#%d\n", label_num); output_line_number++;
 fprintf(yyout," bgez $zero,%s\n", $6); output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | BLEZ REG ',' LABEL
 {
 fprintf(yyout," bgez %s,BLEZ1#%d\n", $2, label_num); output_line_number++;
 fprintf(yyout," bgez $zero,%s\n", $4); output_line_number++;
 fprintf(yyout,"BLEZ1#%d: subu $t7,$zero,%s\n", label_num, $2); output_line_number++;
 fprintf(yyout," bgez $t7,-3\n"); output_line_number++;
 label_num++;
 }

 | BGTZ REG ',' LABEL
 {
 fprintf(yyout," bgez %s,BGTZ1#%d\n", $2, label_num); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"BGTZ1#%d: subu $t3,$zero,%s\n", label_num, $2); output_line_number++;
 fprintf(yyout," bgez $t3,END#%d\n", label_num); output_line_number++;
 fprintf(yyout," bgez $zero,%s\n", $4); output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | BLTZ REG ',' LABEL

151

 {
 fprintf(yyout," bgez %s,END#%d\n", $2, label_num); output_line_number++;
 fprintf(yyout," bgez $zero,%s\n", $4); output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | BGEZ REG ',' LABEL
 {
 fprintf(yyout," bgez %s,%s\n", $2, $4); output_line_number++;
 }

 | BGEZ REG ',' TRAP
 {
 if(compiler_pass != 5) {
 fprintf(yyout," bgez %s,%s\n", $2, $4); output_line_number++;
 }
 else {
 fprintf(yyout," bgez %s,%d\n", $2, (num_instructions - output_line_number -
3));
 output_line_number++;
 }
 }

 | BGEZ REG ',' VALUE_16
 {
 if(compiler_pass != 9) {
 fprintf(yyout," bgez %s,0b%s\n", $2, $4); output_line_number++;
 }
 else {
 fprintf(yyout,"000001%s00001%s\n", $2, $4); output_line_number++;
 }
 }

 | BLTZAL REG ',' LABEL
 {
 fprintf(yyout," addi $ra,$zero,bltzal\n"); output_line_number++;
 fprintf(yyout," bgez %s,END#%d\n", $2, label_num); output_line_number++;
 fprintf(yyout," bgez $zero,%s\n", $4); output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | BGEZAL REG ',' LABEL
 {
 fprintf(yyout," addi $ra,$zero,bgezal\n"); output_line_number++;
 fprintf(yyout," bgez %s,%s\n", $2, $4); output_line_number++;
 }

 | AND REG ',' REG ',' REG
 {
 fprintf(yyout," nor $s5,%s,%s\n", $4, $4); output_line_number++;
 fprintf(yyout," nor $at,%s,%s\n", $6, $6); output_line_number++;
 fprintf(yyout," nor %s,$s5,$at\n", $2); output_line_number++;
 }

 | ANDI REG ',' REG ',' VALUE_16
 {
 fprintf(yyout," li32 $at,0b0000000000000000%s\n", $6); output_line_number++;
 fprintf(yyout," nor $s5,%s,%s\n", $4, $4); output_line_number++;
 fprintf(yyout," nor $at,$at,$at\n"); output_line_number++;
 fprintf(yyout," nor %s,$s5,$at\n", $2); output_line_number++;
 }

 | ANDI REG ',' REG ',' VALUE_32
 {
 fprintf(yyout," li32 $at,0b%s\n", $6); output_line_number++;
 fprintf(yyout," nor $s5,%s,%s\n", $4, $4); output_line_number++;
 fprintf(yyout," nor $at,$at,$at\n"); output_line_number++;
 fprintf(yyout," nor %s,$s5,$at\n", $2); output_line_number++;
 }

 | OR REG ',' REG ',' REG
 {
 fprintf(yyout," nor $t7,%s,%s\n", $4, $6); output_line_number++;

152

 fprintf(yyout," nor %s,$t7,$t7\n", $2); output_line_number++;
 }

 | ORI REG ',' REG ',' VALUE_16
 {
 fprintf(yyout," li32 $t7,0b0000000000000000%s\n", $6); output_line_number++;
 fprintf(yyout," nor $t7,%s,$t7\n", $4); output_line_number++;
 fprintf(yyout," nor %s,$t7,$t7\n", $2); output_line_number++;
 }

 | ORI REG ',' REG ',' VALUE_32
 {
 fprintf(yyout," li32 $t7,0b%s\n", $6); output_line_number++;
 fprintf(yyout," nor $t7,%s,$t7\n", $4); output_line_number++;
 fprintf(yyout," nor %s,$t7,$t7\n", $2); output_line_number++;
 }

 | XOR REG ',' REG ',' REG
 {
 fprintf(yyout," nor $t3,%s,%s\n", $4, $4); output_line_number++;
 fprintf(yyout," nor $t4,%s,%s\n", $6, $6); output_line_number++;
 fprintf(yyout," nor $t3,$t3,$t4\n"); output_line_number++;
 fprintf(yyout," nor $t4,%s,%s\n", $4, $6); output_line_number++;
 fprintf(yyout," nor %s,$t3,$t4\n", $2); output_line_number++;
 }

 | XORI REG ',' REG ',' VALUE_16
 {
 fprintf(yyout," li32 $t5,0b0000000000000000%s\n", $6); output_line_number++;
 fprintf(yyout," nor $t3,%s,%s\n", $4, $4); output_line_number++;
 fprintf(yyout," nor $t4,$t5,$t5\n"); output_line_number++;
 fprintf(yyout," nor $t3,$t3,$t4\n"); output_line_number++;
 fprintf(yyout," nor $t4,%s,$t5\n", $4); output_line_number++;
 fprintf(yyout," nor %s,$t3,$t4\n", $2); output_line_number++;
 }

 | XORI REG ',' REG ',' VALUE_32
 {
 fprintf(yyout," li32 $t5,0b%s\n", $6); output_line_number++;
 fprintf(yyout," nor $t3,%s,%s\n", $4, $4); output_line_number++;
 fprintf(yyout," nor $t4,$t5,$t5\n"); output_line_number++;
 fprintf(yyout," nor $t3,$t3,$t4\n"); output_line_number++;
 fprintf(yyout," nor $t4,%s,$t5\n", $4); output_line_number++;
 fprintf(yyout," nor %s,$t3,$t4\n", $2); output_line_number++;
 }

 | NOR REG ',' REG ',' REG
 {
 if(compiler_pass != 9) {
 fprintf(yyout," nor %s,%s,%s\n", $2, $4, $6); output_line_number++;
 }
 else {
 fprintf(yyout,"000000%s%s%s00000100111\n", $4, $6, $2); output_line_number++;
 }
 }

 | ADDI REG ',' REG ',' VALUE_16
 {
 if(fill_int == 0) {
 fprintf(yyout," li32 $s5,0b0000000000000000%s\n", $6); output_line_number++;
 }
 else {
 fprintf(yyout," li32 $s5,0b1111111111111111%s\n", $6); output_line_number++;
 }
 fprintf(yyout," add %s,%s,$s5\n", $2, $4); output_line_number++;
 }

 | ADDI REG ',' REG ',' VALUE_32
 {
 fprintf(yyout," li32 $s5,0b%s\n", $6); output_line_number++;
 fprintf(yyout," add %s,%s,$s5\n", $2, $4); output_line_number++;
 }

 | ADDI REG ',' REG ',' BLTZAL

153

 {
 fprintf(yyout," li $s5,bltzal\n"); output_line_number++;
 fprintf(yyout," add %s,%s,$s5\n", $2, $4); output_line_number++;
 }

 | ADDI REG ',' REG ',' BGEZAL
 {
 fprintf(yyout," li $s5,bgezal\n"); output_line_number++;
 fprintf(yyout," add %s,%s,$s5\n", $2, $4); output_line_number++;
 }

 | ADDIU REG ',' REG ',' VALUE_16
 {
 if(fill_int == 0) {
 fprintf(yyout," li32 $s5,0b0000000000000000%s\n", $6); output_line_number++;
 }
 else {
 fprintf(yyout," li32 $s5,0b1111111111111111%s\n", $6); output_line_number++;
 }
 fprintf(yyout," addu %s,%s,$s5\n", $2, $4); output_line_number++;
 }

 | ADDIU REG ',' REG ',' VALUE_32
 {
 fprintf(yyout," li32 $s5,0b%s\n", $6); output_line_number++;
 fprintf(yyout," addu %s,%s,$s5\n", $2, $4); output_line_number++;
 }

 | ADD REG ',' REG ',' REG
 {
 fprintf(yyout," bgez %s,POS1#%d\n", $4, label_num); output_line_number++;
 fprintf(yyout," bgez %s,OPP2#%d\n", $6, label_num); output_line_number++;
 fprintf(yyout," subu $at,$zero,%s\n", $6); output_line_number++;
 fprintf(yyout," subu $at,%s,$at\n", $4); output_line_number++;
 fprintf(yyout," bgez $at,*TRAP*\n"); output_line_number++;
 fprintf(yyout," bgez $zero,FINISH#%d\n", label_num); output_line_number++;
 fprintf(yyout,"POS1#%d: bgez %s,POSIT#%d\n", label_num, $6, label_num);
output_line_number++;
 fprintf(yyout," subu $at,$zero,%s\n", $4); output_line_number++;
 fprintf(yyout," bgez $zero,OPP1#%d\n", label_num); output_line_number++;
 fprintf(yyout,"OPP2#%d: subu $at,$zero,%s\n", label_num, $6); output_line_number++;
 fprintf(yyout,"OPP1#%d: subu %s,%s,$at\n", label_num, $2, $4); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"POSIT#%d: subu $at,$zero,%s\n", label_num, $6); output_line_number++;
 fprintf(yyout," subu $at,%s,$at\n", $4); output_line_number++;
 fprintf(yyout," bgez $at,FINISH#%d\n", label_num); output_line_number++;
 fprintf(yyout," bgez $zero,*TRAP*\n"); output_line_number++;
 fprintf(yyout,"FINISH#%d: subu %s,$at,$zero\n", label_num, $2); output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | ADDU REG ',' REG ',' REG
 {
 fprintf(yyout," subu $at,$zero,%s\n", $6); output_line_number++;
 fprintf(yyout," subu %s,%s,$at\n", $2, $4); output_line_number++;
 }

 | SUB REG ',' REG ',' REG
 {
 fprintf(yyout," subu $t3,$zero,%s\n", $6); output_line_number++;
 fprintf(yyout," add %s,%s,$t3\n", $2, $4); output_line_number++;
 }

 | SUBU REG ',' REG ',' REG
 {
 if(compiler_pass != 9) {
 fprintf(yyout," subu %s,%s,%s\n", $2, $4, $6); output_line_number++;
 }
 else {
 fprintf(yyout,"000000%s%s%s00000100011\n", $4, $6, $2); output_line_number++;
 }
 }

 | MULT REG ',' REG

154

 {
 fprintf(yyout," subu $t5,%s,$zero\n", $4); output_line_number++;
 fprintf(yyout," subu $t4,$zero,$zero\n"); output_line_number++;
 fprintf(yyout," bgez %s,NOCMAX#%d\n", $2, label_num); output_line_number++;
 fprintf(yyout," subu $t3,$zero,%s\n", $2); output_line_number++;
 fprintf(yyout," bgez $t3,NOCMAX#%d\n", label_num); output_line_number++;
 fprintf(yyout," bgez $t5,MAXMPOS#%d\n", label_num); output_line_number++;
 fprintf(yyout," subu $t5,$zero,$t5\n"); output_line_number++;
 fprintf(yyout," addi32 $t4,$t4,0x00000001\n"); output_line_number++;
 fprintf(yyout,"MAXMPOS#%d: addi32 $t4,$t4,0xFFFFFFFF\n", label_num);
output_line_number++;
 fprintf(yyout," bgez $zero,COUNTER#%d\n", label_num); output_line_number++;
 fprintf(yyout,"NOCMAX#%d: subu $t3,%s,$zero\n", label_num, $2); output_line_number++;
 fprintf(yyout," bgez $t5,NOMAXMPOS#%d\n", label_num); output_line_number++;
 fprintf(yyout," subu $t5,$zero,$t5\n"); output_line_number++;
 fprintf(yyout," subu $t3,$zero,$t3\n"); output_line_number++;
 fprintf(yyout,"NOMAXMPOS#%d: bgez $t3,COUNTER#%d\n", label_num, label_num);
output_line_number++;
 fprintf(yyout," addi32 $t4,$zero,0xFFFFFFFF\n"); output_line_number++;
 fprintf(yyout,"COUNTER#%d: subu $s6,$zero,$zero\n", label_num);
output_line_number++;
 fprintf(yyout," subu $s7,$zero,$zero\n"); output_line_number++;
 fprintf(yyout," addi32 $t6,$zero,0xFFFFFFE0\n"); output_line_number++;
 fprintf(yyout,"LOOP#%d: bgez $t5,ZERO#%d\n", label_num, label_num);
output_line_number++;
 fprintf(yyout," bgez $s6,CHKCARRY#%d\n", label_num); output_line_number++;
 fprintf(yyout," bgez $t3,ERCARRY#%d\n", label_num); output_line_number++;
 fprintf(yyout," addu $s6,$s6,$t3\n"); output_line_number++;
 fprintf(yyout,"CARRYOUT#%d: addi32 $s7,$s7,0x00000001\n", label_num);
output_line_number++;
 fprintf(yyout," bgez $zero,PHIMULT#%d\n", label_num); output_line_number++;
 fprintf(yyout,"CHKCARRY#%d: bgez $t3,PNOCARRY#%d\n", label_num, label_num);
output_line_number++;
 fprintf(yyout,"ERCARRY#%d: addu $s6,$s6,$t3\n", label_num);
output_line_number++;
 fprintf(yyout," bgez $s6,CARRYOUT#%d\n", label_num); output_line_number++;
 fprintf(yyout," bgez $zero,PHIMULT#%d\n", label_num); output_line_number++;
 fprintf(yyout,"PNOCARRY#%d: addu $s6,$s6,$t3\n", label_num);
output_line_number++;
 fprintf(yyout,"PHIMULT#%d: addu $s7,$s7,$t4\n", label_num);
output_line_number++;
 fprintf(yyout,"ZERO#%d: addi32 $t6,$t6,0x00000001\n", label_num);
output_line_number++;
 fprintf(yyout," bgez $t6,END#%d\n", label_num); output_line_number++;
 fprintf(yyout," addu $s7,$s7,$s7\n"); output_line_number++;
 fprintf(yyout," bgez $s6,PHIZERO#%d\n", label_num); output_line_number++;
 fprintf(yyout," addiu32 $s7,$s7,0x00000001\n"); output_line_number++;
 fprintf(yyout,"PHIZERO#%d: addu $s6,$s6,$s6\n", label_num);
output_line_number++;
 fprintf(yyout," addu $t5,$t5,$t5\n"); output_line_number++;
 fprintf(yyout," bgez $zero,LOOP#%d\n", label_num); output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | MULTU REG ',' REG
 {
 fprintf(yyout," subu $t5,%s,$zero\n", $4); output_line_number++;
 fprintf(yyout," subu $t3,%s,$zero\n", $2); output_line_number++;
 fprintf(yyout," subu $t4,$zero,$zero\n"); output_line_number++;
 fprintf(yyout," subu $s6,$zero,$zero\n"); output_line_number++;
 fprintf(yyout," subu $s7,$zero,$zero\n"); output_line_number++;
 fprintf(yyout," addi32 $t6,$zero,0xFFFFFFE0\n"); output_line_number++;
 fprintf(yyout,"LOOP#%d: bgez $t5,ZERO#%d\n", label_num, label_num);
output_line_number++;
 fprintf(yyout," bgez $s6,CHKCARRY#%d\n", label_num); output_line_number++;
 fprintf(yyout," bgez $t3,ERCARRY#%d\n", label_num); output_line_number++;
 fprintf(yyout," addu $s6,$s6,$t3\n"); output_line_number++;
 fprintf(yyout,"CARRYOUT#%d: addi32 $s7,$s7,0x00000001\n", label_num);
output_line_number++;
 fprintf(yyout," bgez $zero,PHIMULT#%d\n", label_num); output_line_number++;
 fprintf(yyout,"CHKCARRY#%d: bgez $t3,PNOCARRY#%d\n", label_num, label_num);
output_line_number++;
 fprintf(yyout,"ERCARRY#%d: addu $s6,$s6,$t3\n", label_num); output_line_number++;
 fprintf(yyout," bgez $s6,CARRYOUT#%d\n", label_num); output_line_number++;

155

 fprintf(yyout," bgez $zero,PHIMULT#%d\n", label_num); output_line_number++;
 fprintf(yyout,"PNOCARRY#%d: addu $s6,$s6,$t3\n", label_num);
output_line_number++;
 fprintf(yyout,"PHIMULT#%d: addu $s7,$s7,$t4\n", label_num); output_line_number++;
 fprintf(yyout,"ZERO#%d: addi32 $t6,$t6,0x00000001\n", label_num);
output_line_number++;
 fprintf(yyout," bgez $t6,END#%d\n", label_num); output_line_number++;
 fprintf(yyout," addu $s7,$s7,$s7\n"); output_line_number++;
 fprintf(yyout," bgez $s6,PHIZERO#%d\n", label_num); output_line_number++;
 fprintf(yyout," addiu32 $s7,$s7,0x00000001\n"); output_line_number++;
 fprintf(yyout,"PHIZERO#%d: addu $s6,$s6,$s6\n", label_num); output_line_number++;
 fprintf(yyout," addu $t5,$t5,$t5\n"); output_line_number++;
 fprintf(yyout," bgez $zero,LOOP#%d\n", label_num); output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | DIV REG ',' REG
 {
 fprintf(yyout," subu $s7,$zero,$zero\n"); output_line_number++;
 fprintf(yyout," subu $t3,%s,$zero\n", $2); output_line_number++;
 fprintf(yyout," subu $t8,%s,$zero\n", $4); output_line_number++;
 fprintf(yyout," subu $s6,$zero,$zero\n"); output_line_number++;
 fprintf(yyout," subu $t4,$zero,$zero\n"); output_line_number++;
 fprintf(yyout," subu $t5,$zero,$zero\n"); output_line_number++;
 fprintf(yyout," subu $t6,$t3,$zero\n"); output_line_number++;
 fprintf(yyout," addi32 $t7,$zero,0xFFFFFFDF\n"); output_line_number++;
 fprintf(yyout," bgez $t3,TEST1#%d\n", label_num); output_line_number++;
 fprintf(yyout," subu $t4,$zero,$t8\n"); output_line_number++;
 fprintf(yyout," bgez $t4,NEGS#%d\n", label_num); output_line_number++;
 fprintf(yyout," addi32 $t5,$zero,0xFFFFFFFF\n"); output_line_number++;
 fprintf(yyout," subu $t3,$zero,$t3\n"); output_line_number++;
 fprintf(yyout," bgez $zero,LOOP#%d\n", label_num); output_line_number++;
 fprintf(yyout,"TEST1#%d: bgez $t8,LOOP#%d\n", label_num, label_num);
output_line_number++;
 fprintf(yyout," addi32 $t5,$zero,0xFFFFFFFF\n"); output_line_number++;
 fprintf(yyout," subu $t8,$zero,$t8\n"); output_line_number++;
 fprintf(yyout," bgez $zero,LOOP#%d\n", label_num); output_line_number++;
 fprintf(yyout,"NEGS#%d: subu $t3,$zero,$t3\n", label_num); output_line_number++;
 fprintf(yyout," subu $t8,$zero,$t8\n"); output_line_number++;
 fprintf(yyout," subu $t4,$zero,$zero\n"); output_line_number++;
 fprintf(yyout,"LOOP#%d: addu $s6,$s6,$s6\n", label_num); output_line_number++;
 fprintf(yyout," subu $t9,$s7,$t8\n"); output_line_number++;
 fprintf(yyout," bgez $t9,SUBTRACT#%d\n", label_num); output_line_number++;
 fprintf(yyout," bgez $zero,FINAL#%d\n", label_num); output_line_number++;
 fprintf(yyout,"SUBTRACT#%d: subu $s7,$t9,$zero\n", label_num);
output_line_number++;
 fprintf(yyout," addiu32 $s6,$s6,0x00000001\n"); output_line_number++;
 fprintf(yyout,"FINAL#%d: addi32 $t7,$t7,0x00000001\n", label_num);
output_line_number++;
 fprintf(yyout," bgez $t7,LAST#%d\n", label_num); output_line_number++;
 fprintf(yyout," addu $s7,$s7,$s7\n"); output_line_number++;
 fprintf(yyout," bgez $t3,SHIFT#%d\n", label_num); output_line_number++;
 fprintf(yyout," addiu32 $s7,$s7,0x00000001\n"); output_line_number++;
 fprintf(yyout,"SHIFT#%d: addu $t3,$t3,$t3\n", label_num); output_line_number++;
 fprintf(yyout," bgez $zero,LOOP#%d\n", label_num); output_line_number++;
 fprintf(yyout,"LAST#%d: bgez $t5,DENDNEG#%d\n", label_num, label_num);
output_line_number++;
 fprintf(yyout," subu $s6,$zero,$s6\n"); output_line_number++;
 fprintf(yyout,"DENDNEG#%d: bgez $s1,END#%d\n", label_num, label_num);
output_line_number++;
 fprintf(yyout," subu $s7,$zero,$s7\n"); output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | DIVU REG ',' REG
 {
 fprintf(yyout," subu $s6,$zero,$zero\n"); output_line_number++;
 fprintf(yyout," sltu $t4,%s,%s\n", $2, $4); output_line_number++;
 fprintf(yyout," subu $t4,$zero,$t4\n"); output_line_number++;
 fprintf(yyout," bgez $t4,DODIV#%d\n", label_num); output_line_number++;
 fprintf(yyout," subu $s7,%s,$zero\n", $2); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;

156

 fprintf(yyout,"DODIV#%d: bgez %s,POS#%d\n", label_num, $4, label_num);
output_line_number++;
 fprintf(yyout," addiu32 $t3,%s,0x80000000\n", $2); output_line_number++;
 fprintf(yyout," addiu32 $t8,%s,0x80000000\n", $4); output_line_number++;
 fprintf(yyout," bgez $zero,NEG#%d\n", label_num); output_line_number++;
 fprintf(yyout,"POS#%d: subu $t3,%s,$zero\n", label_num, $2); output_line_number++;
 fprintf(yyout," subu $t8,%s,$zero\n", $4); output_line_number++;
 fprintf(yyout,"NEG#%d: subu $s7,$zero,$zero\n", label_num); output_line_number++;
 fprintf(yyout," subu $t4,$zero,$zero\n"); output_line_number++;
 fprintf(yyout," subu $t5,$zero,$zero\n"); output_line_number++;
 fprintf(yyout," subu $t6,$t3,$zero\n"); output_line_number++;
 fprintf(yyout," addi32 $t7,$zero,0xFFFFFFDF\n"); output_line_number++;
 fprintf(yyout,"LOOP#%d: addu $s6,$s6,$s6\n", label_num); output_line_number++;
 fprintf(yyout," subu $t9,$s7,$t8\n"); output_line_number++;
 fprintf(yyout," bgez $t9,SUBTRACT#%d\n", label_num); output_line_number++;
 fprintf(yyout," bgez $zero,FINAL#%d\n", label_num); output_line_number++;
 fprintf(yyout,"SUBTRACT#%d: subu $s7,$t9,$zero\n", label_num);
output_line_number++;
 fprintf(yyout," addiu32 $s6,$s6,0x00000001\n"); output_line_number++;
 fprintf(yyout,"FINAL#%d: addi32 $t7,$t7,0x00000001\n", label_num);
output_line_number++;
 fprintf(yyout," bgez $t7,END#%d\n", label_num); output_line_number++;
 fprintf(yyout," addu $s7,$s7,$s7\n"); output_line_number++;
 fprintf(yyout," bgez $t3,SHIFT#%d\n", label_num); output_line_number++;
 fprintf(yyout," addiu32 $s7,$s7,0x00000001\n"); output_line_number++;
 fprintf(yyout,"SHIFT#%d: addu $t3,$t3,$t3\n", label_num); output_line_number++;
 fprintf(yyout," bgez $zero,LOOP#%d\n", label_num); output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | SLTI REG ',' REG ',' VALUE_16
 {
 if(fill_int == 0) {
 fprintf(yyout," li32 $t4,0b0000000000000000%s\n", $6); output_line_number++;
 }
 else {
 fprintf(yyout," li32 $t4,0b1111111111111111%s\n", $6); output_line_number++;
 }
 fprintf(yyout," bgez %s,5\n", $4); output_line_number++;
 fprintf(yyout," bgez $t4,2\n"); output_line_number++;
 fprintf(yyout," subu $t3,%s,$t4\n", label_num, $4); output_line_number++;
 fprintf(yyout," bgez $t3,3\n"); output_line_number++;
 fprintf(yyout," li32 %s,0x00000001\n", label_num, $2); output_line_number++;
 fprintf(yyout," bgez $zero,2\n"); output_line_number++;
 fprintf(yyout," bgez $t4,-5\n", label_num); output_line_number++;
 fprintf(yyout," subu %s,$zero,$zero\n", label_num, $2); output_line_number++;
 label_num++;
 }

 | SLTI REG ',' REG ',' VALUE_32
 {
 fprintf(yyout," li32 $t4,0b%s\n", $6); output_line_number++;
 fprintf(yyout," bgez %s,S1POS#%d\n", $4, label_num); output_line_number++;
 fprintf(yyout," bgez $t4,SET1#%d\n", label_num); output_line_number++;
 fprintf(yyout,"T1POS#%d: subu $t3,%s,$t4\n", label_num, $4); output_line_number++;
 fprintf(yyout," bgez $t3,SET0#%d\n", label_num); output_line_number++;
 fprintf(yyout,"SET1#%d: li32 %s,0x00000001\n", label_num, $2); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"S1POS#%d: bgez $t4,T1POS#%d\n", label_num, label_num);
output_line_number++;
 fprintf(yyout,"SET0#%d: subu %s,$zero,$zero\n", label_num, $2);
output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | SLTIU REG ',' REG ',' VALUE_16
 {
 if(fill_int == 0) {
 fprintf(yyout," li32 $t3,0b0000000000000000%s\n", $6); output_line_number++;
 }
 else {
 fprintf(yyout," li32 $t3,0b1111111111111111%s\n", $6); output_line_number++;
 }

157

 fprintf(yyout," bgez %s,S1POS#%d\n", $4, label_num); output_line_number++;
 fprintf(yyout," bgez $t3,SET0#%d\n", label_num); output_line_number++;
 fprintf(yyout,"IMMPOS#%d: subu $t3,%s,$t3\n", label_num, $4); output_line_number++;
 fprintf(yyout," bgez $t3,SET0#%d\n", label_num); output_line_number++;
 fprintf(yyout,"SET1#%d: li32 %s,0x00000001\n", label_num, $2); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"S1POS#%d: bgez $t3,IMMPOS#%d\n", label_num, label_num);
output_line_number++;
 fprintf(yyout," bgez $zero,SET1#%d\n", label_num); output_line_number++;
 fprintf(yyout,"SET0#%d: subu %s,$zero,$zero\n", label_num, $2);
output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | SLTIU REG ',' REG ',' VALUE_32
 {
 fprintf(yyout," li32 $t3,0b%s\n", $6); output_line_number++;
 fprintf(yyout," bgez %s,S1POS#%d\n", $4, label_num); output_line_number++;
 fprintf(yyout," bgez $t3,SET0#%d\n", label_num); output_line_number++;
 fprintf(yyout,"IMMPOS#%d: subu $t3,%s,$t3\n", label_num, $4); output_line_number++;
 fprintf(yyout," bgez $t3,SET0#%d\n", label_num); output_line_number++;
 fprintf(yyout,"SET1#%d: li32 %s,0x00000001\n", label_num, $2); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"S1POS#%d: bgez $t3,IMMPOS#%d\n", label_num, label_num);
output_line_number++;
 fprintf(yyout," bgez $zero,SET1#%d\n", label_num); output_line_number++;
 fprintf(yyout,"SET0#%d: subu %s,$zero,$zero\n", label_num, $2);
output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | SLT REG ',' REG ',' REG
 {
 fprintf(yyout," bgez %s,S1POS#%d\n", $4, label_num); output_line_number++;
 fprintf(yyout," bgez %s,SET1#%d\n", $6, label_num); output_line_number++;
 fprintf(yyout,"S2POS#%d: subu $t3,%s,%s\n", label_num, $4, $6); output_line_number++;
 fprintf(yyout," bgez $t3,SET0#%d\n", label_num); output_line_number++;
 fprintf(yyout,"SET1#%d: li32 %s,0x00000001\n", label_num, $2); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"S1POS#%d: bgez %s,S2POS#%d\n", label_num, $6, label_num);
output_line_number++;
 fprintf(yyout,"SET0#%d: subu %s,$zero,$zero\n", label_num, $2);
output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | SLTU REG ',' REG ',' REG
 {
 fprintf(yyout," bgez %s,S1POS#%d\n", $4, label_num); output_line_number++;
 fprintf(yyout," bgez %s,SET0#%d\n", $6, label_num); output_line_number++;
 fprintf(yyout,"S1POS#%d: subu $at,%s,%s\n", label_num, $4, $6); output_line_number++;
 fprintf(yyout," bgez $at,SET0#%d\n", label_num); output_line_number++;
 fprintf(yyout,"SET1#%d: li32 %s,0x00000001\n", label_num, $2); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"S1POS#%d: bgez %s,S2POS#%d\n", label_num, $6, label_num);
output_line_number++;
 fprintf(yyout," bgez $zero,SET1#%d\n", label_num); output_line_number++;
 fprintf(yyout,"SET0#%d: subu %s,$zero,$zero\n", label_num, $2);
output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | SLL REG ',' REG ',' VALUE_5
 {
 fprintf(yyout," li32 $t3,0b000000000000000000000000000%s\n", $6);
output_line_number++;
 fprintf(yyout," andi32 $t3,$t3,0x0000001F\n"); output_line_number++;
 fprintf(yyout," addi32 $t3,$t3,0xFFFFFFFF\n"); output_line_number++;
 fprintf(yyout," subu %s,%s,$zero\n", $2, $4); output_line_number++;
 fprintf(yyout," bgez $t3,LBL1#%d\n", label_num); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;

158

 fprintf(yyout,"LBL1#%d: addu %s,%s,%s\n", label_num, $2, $2, $2);
output_line_number++;
 fprintf(yyout," addi32 $t3,$t3,0xFFFFFFFF\n"); output_line_number++;
 fprintf(yyout," bgez $zero, LBL1#%d\n", label_num); output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | SRL REG ',' REG ',' VALUE_5
 {
 fprintf(yyout," li32 $t9,0b000000000000000000000000000%s\n", $6);
output_line_number++;
 fprintf(yyout," andi32 $t9,$t9,0x0000001F\n"); output_line_number++;
 fprintf(yyout," addi32 $t9,$t9,0xFFFFFFFF\n"); output_line_number++;
 fprintf(yyout," bgez $t9,NOTZERO#%d\n", label_num); output_line_number++;
 fprintf(yyout," subu %s,%s,$zero\n", $2, $4); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"NOTZERO#%d: addi32 $t9,$t9,0xFFFFFFE2\n", label_num);
output_line_number++;
 fprintf(yyout," subu $t9,$zero,$t9\n"); output_line_number++;
 fprintf(yyout," subu $t8,%s,$zero\n", $4); output_line_number++;
 fprintf(yyout," subu %s,$zero,$zero\n", $2); output_line_number++;
 fprintf(yyout,"LBL1#%d: addi32 $t9,$t9,0xFFFFFFFF\n", label_num);
output_line_number++;
 fprintf(yyout," addu %s,%s,%s\n", $2, $2, $2); output_line_number++;
 fprintf(yyout," bgez $t8,LBL2#%d\n", label_num); output_line_number++;
 fprintf(yyout," addi32 %s,%s,0x00000001\n", $2, $2); output_line_number++;
 fprintf(yyout,"LBL2#%d: addu $t8,$t8,$t8\n", label_num); output_line_number++;
 fprintf(yyout," bgez $zero,LBL1#%d\n", label_num); output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | SRA REG ',' REG ',' VALUE_5
 {
 fprintf(yyout," li32 $t4,0b000000000000000000000000000%s\n", $6);
output_line_number++;
 fprintf(yyout," andi32 $t4,$t3,0x0000001F\n"); output_line_number++;
 fprintf(yyout," addi32 $t4,$t4,0xFFFFFFFF\n"); output_line_number++;
 fprintf(yyout," bgez $t4,NOTZERO#%d\n", label_num); output_line_number++;
 fprintf(yyout," subu %s,%s,$zero\n", $2, $4); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"NOTZERO#%d: addi32 $t4,$t4,0xFFFFFFE2\n", label_num);
output_line_number++;
 fprintf(yyout," subu $t4,$zero,$t4\n"); output_line_number++;
 fprintf(yyout," subu $t3,%s,$zero\n", $4); output_line_number++;
 fprintf(yyout," subu %s,$zero,$zero\n", $2); output_line_number++;
 fprintf(yyout," bgez $t3,LBL1#%d\n", label_num); output_line_number++;
 fprintf(yyout," li32 %s,0xFFFFFFFF\n", $2); output_line_number++;
 fprintf(yyout,"LBL1#%d: addi32 $t4,$t4,0xFFFFFFFF\n", label_num);
output_line_number++;
 fprintf(yyout," addu %s,%s,%s\n", $2, $2, $2); output_line_number++;
 fprintf(yyout," bgez $t3,LBL2#%d\n", label_num); output_line_number++;
 fprintf(yyout," addi32 %s,%s,0x00000001\n", $2, $2); output_line_number++;
 fprintf(yyout,"LBL2#%d: addu $t3,$t3,$t3\n", label_num); output_line_number++;
 fprintf(yyout," bgez $zero,LBL1#%d\n", label_num); output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | SLLV REG ',' REG ',' REG
 {
 fprintf(yyout," andi32 $t8,%s,0x0000001F\n", $6); output_line_number++;
 fprintf(yyout," addi32 $t8,$t8,0xFFFFFFFF\n"); output_line_number++;
 fprintf(yyout," subu %s,%s,$zero\n", $2, $4); output_line_number++;
 fprintf(yyout," bgez $t8,LBL1#%d\n", label_num); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"LBL1#%d: addu %s,%s,%s\n", label_num, $2, $2, $2);
output_line_number++;
 fprintf(yyout," addi32 $t8, $t8,0xFFFFFFFF\n"); output_line_number++;
 fprintf(yyout," bgez $zero,LBL1#%d\n", label_num); output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

159

 | SRLV REG ',' REG ',' REG
 {
 fprintf(yyout," andi32 $t9,%s,0x0000001F\n", $6); output_line_number++;
 fprintf(yyout," addi32 $t9,$t9,0xFFFFFFFF\n"); output_line_number++;
 fprintf(yyout," bgez $t9,NOTZERO#%d\n", label_num); output_line_number++;
 fprintf(yyout," subu %s,%s,$zero\n", $2, $4); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"NOTZERO#%d: addi32 $t9,$t9,0xFFFFFFE2\n", label_num);
output_line_number++;
 fprintf(yyout," subu $t9,$zero,$t9\n"); output_line_number++;
 fprintf(yyout," subu $t8,%s,$zero\n", $4); output_line_number++;
 fprintf(yyout," subu %s,$zero,$zero\n", $2); output_line_number++;
 fprintf(yyout,"LBL1#%d: addi32 $t9,$t9,0xFFFFFFFF\n", label_num);
output_line_number++;
 fprintf(yyout," addu %s,%s,%s\n", $2, $2, $2); output_line_number++;
 fprintf(yyout," bgez $t8,LBL2#%d\n", label_num); output_line_number++;
 fprintf(yyout," addi32 %s,%s,0x00000001\n", $2, $2); output_line_number++;
 fprintf(yyout,"LBL2#%d: addu $t8,$t8,$t8\n", label_num); output_line_number++;
 fprintf(yyout," bgez $zero,LBL1#%d\n", label_num); output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | SRAV REG ',' REG ',' REG
 {
 fprintf(yyout," andi32 $t9,%s,0x0000001F\n", $6); output_line_number++;
 fprintf(yyout," addi32 $t9,$t9,0xFFFFFFFF\n"); output_line_number++;
 fprintf(yyout," bgez $t9,NOTZERO#%d\n", label_num); output_line_number++;
 fprintf(yyout," subu %s,%s,$zero\n", $2, $4); output_line_number++;
 fprintf(yyout," bgez $zero,END#%d\n", label_num); output_line_number++;
 fprintf(yyout,"NOTZERO#%d: addi32 $t9,$t9,0xFFFFFFE2\n", label_num);
output_line_number++;
 fprintf(yyout," subu $t9,$zero,$t9\n"); output_line_number++;
 fprintf(yyout," subu $t8,%s,$zero\n", $4); output_line_number++;
 fprintf(yyout," subu %s,$zero,$zero\n", $2); output_line_number++;
 fprintf(yyout," bgez $t8,LBL1#%d\n", label_num); output_line_number++;
 fprintf(yyout," li32 %s,0xFFFFFFFF\n", $2); output_line_number++;
 fprintf(yyout,"LBL1#%d: addi32 $t9,$t9,0xFFFFFFFF\n", label_num);
output_line_number++;
 fprintf(yyout," addu %s,%s,%s\n", $2, $2, $2); output_line_number++;
 fprintf(yyout," bgez $t8,LBL2#%d\n", label_num); output_line_number++;
 fprintf(yyout," addi32 %s,%s,0x00000001\n", $2, $2); output_line_number++;
 fprintf(yyout,"LBL2#%d: addu $t8,$t8,$t8\n", label_num); output_line_number++;
 fprintf(yyout," bgez $zero,LBL1#%d\n", label_num); output_line_number++;
 fprintf(yyout,"END#%d:", label_num);
 label_num++;
 }

 | NOP
 {
 if(compiler_pass != 9) {
 fprintf(yyout," nop\n"); output_line_number++;
 }
 else {
 fprintf(yyout,"00000000000000000000000000000000\n"); output_line_number++;
 }
 }

 | DATA VALUE_32
 {
 if(compiler_pass != 9) {
 fprintf(yyout," data 0b%s\n", $2); output_line_number++;
 }
 else {
 fprintf(yyout,"%s\n", $2); output_line_number++;
 }
 }

 | SYSCALL
 {
 if(compiler_pass != 9) {
 fprintf(yyout," syscall\n"); output_line_number++;
 }
 else {
 fprintf(yyout,"00000000000000000000000000001100\n"); output_line_number++;

160

 }
 }

 | BREAK
 {
 if(compiler_pass != 9) {
 fprintf(yyout," break\n"); output_line_number++;
 }
 else {
 fprintf(yyout,"00000000000000000000000000001101\n"); output_line_number++;
 }
 }

 ;

label: LABEL_DEST
 {
 fprintf(yyout,"%s", $1);
 }
 ;

%%

#include <unistd.h>

//These variables are used by both the lex
//and the yacc programs.

extern FILE *yyin;
extern FILE *yyout;
extern int line_number;
extern int error_cause;
extern int compiler_pass;
extern int num_instruction;
char *filename;

//Main goes through a total of 9 assembler passes.
//The first 4 passes perform instruction expansion,
//the 5th and 6th passes perform label offset
//computations, the 7th does data insertions for
//LI instructions, the 8th drops the labels and
//allows the data to become binary in form, and the
//9th pass maps to machine code.

//The command line argument is:
// mps infile <outfile>
//where the infile is the input instruction language
//file and the outfile is the file you want the
//machine language outputted to. If outfile is not
//specified, the machine language is written to
//assembler.out.

main(argc, argv)
int argc;
char **argv;
{

//Open the specified input file, if specified
//It will write to "assembler.out" if an input file is specified,
//otherwise it will output to the screen.

 if (argc > 1) {
 FILE *infile;

 infile = fopen(argv[1], "r");
 if (!infile) {
 fprintf(stderr,"not a file: %s\n", argv[1]);
 exit(1);
 }
 yyin = infile;
 yyout = fopen("assembler_temp1", "w");
 filename = argv[1];
 }

161

 else{
 filename = "stderr";
 }

//Parse the input (file) for assembler pass #

 do
 {
 yyparse();
 }
 while(!feof(yyin));

 fprintf(yyout," li32 $t3,0x00040000\n"); output_line_number++;
 fprintf(yyout," jalr $t3\n"); output_line_number++;

//handy debug lines

// fprintf(yyout,"//Number of lines in input file: %d\n", line_number);
// fprintf(yyout,"//Number of lines in temp file: %d\n", output_line_number);
// fprintf(yyout,"//This was compiler pass %d\n", compiler_pass);

 compiler_pass++;
 line_number = 1;
 output_line_number = 0;
 fclose(yyout);

/***
 * *
 * Set up the input file for assembler pass #2 *
 * *
 ***/

 FILE *infile2;

 infile2 = fopen("assembler_temp1", "r");
 if (!infile2) {
 fprintf(stderr,"not a file: %s\n", "assembler_temp1");
 exit(1);
 }
 yyin = infile2;
 yyout = fopen("assembler_temp2", "w");
 filename = "assembler_temp1";

//Parse the input (file) for assembler pass #2
 do
 {
 yyparse();
 }
 while(!feof(yyin));

//handy debug lines

// fprintf(yyout,"//Number of lines in input file: %d\n", line_number);
// fprintf(yyout,"//Number of lines in temp file: %d\n", output_line_number);
// fprintf(yyout,"//This was compiler pass %d\n", compiler_pass);

 compiler_pass++;
 line_number = 1;
 output_line_number = 0;
 fclose(yyout);

/***
 * *
 * Set up the input file for assembler pass #3 *
 * *
 ***/

 FILE *infile3;

 infile3 = fopen("assembler_temp2", "r");
 if (!infile3) {
 fprintf(stderr,"not a file: %s\n", "assembler_temp2");

162

 exit(1);
 }
 yyin = infile3;
 yyout = fopen("assembler_temp3", "w");
 filename = "assembler_temp2";

//Parse the input (file) for the third run through

 do
 {
 yyparse();
 }
 while(!feof(yyin));

//handy debug lines

// fprintf(yyout,"//Number of lines in input file: %d\n", line_number);
// fprintf(yyout,"//Number of lines in temp file: %d\n", output_line_number);
// fprintf(yyout,"//This was compiler pass %d\n", compiler_pass);

 compiler_pass++;
 line_number = 1;
 output_line_number = 0;
 fclose(yyout);

/***
 * *
 * Set up the input file for assembler pass #4 *
 * *
 ***/

 FILE *infile4;

 infile4 = fopen("assembler_temp3", "r");
 if (!infile4) {
 fprintf(stderr,"not a file: %s\n", "assembler_temp3");
 exit(1);
 }
 yyin = infile4;
 yyout = fopen("assembler_temp4", "w");
 filename = "assembler_temp3";

//Parse the input (file) for the fourth run through

 do
 {
 yyparse();
 }
 while(!feof(yyin));

//handy debug lines

// fprintf(yyout,"//Number of lines in input file: %d\n", line_number);
// fprintf(yyout,"//Number of lines in temp file: %d\n", output_line_number);
// fprintf(yyout,"//This was compiler pass %d\n", compiler_pass);

 compiler_pass++;
 line_number = 1;
 num_instructions = output_line_number;
 fprintf(yyout,"//Number of instructions recorded: %d\n", num_instructions);
 output_line_number = 0;
 fclose(yyout);

/***
 * *
 * Set up the input file for assembler pass #5 *
 * *
 ***/

 FILE *infile5;

 infile5 = fopen("assembler_temp4", "r");
 if (!infile5) {
 fprintf(stderr,"not a file: %s\n", "assembler_temp4");
 exit(1);

163

 }
 yyin = infile5;
 yyout = fopen("assembler_temp5", "w");
 filename = "assembler_temp4";

//Parse the input (file) for the fifth run through

 do
 {
 yyparse();
 }
 while(!feof(yyin));

//handy debug lines

// fprintf(yyout,"//Number of lines in input file: %d\n", line_number);
// fprintf(yyout,"//Number of lines in temp file: %d\n", output_line_number);
// fprintf(yyout,"//This was compiler pass %d\n", compiler_pass);

 compiler_pass++;
 line_number = 1;
 output_line_number = 0;
 fclose(yyout);

/***
 * *
 * Set up the input file for assembler pass #6 *
 * *
 ***/

 FILE *infile6;

 infile6 = fopen("assembler_temp5", "r");
 if (!infile6) {
 fprintf(stderr,"not a file: %s\n", "assembler_temp5");
 exit(1);
 }
 yyin = infile6;
 yyout = fopen("assembler_temp6", "w");
 filename = "assembler_temp5";

//Parse the input (file) for the sixth run through

 do
 {
 yyparse();
 }
 while(!feof(yyin));

//handy debug lines

// fprintf(yyout,"//Number of lines in input file: %d\n", line_number);
// fprintf(yyout,"//Number of lines in temp file: %d\n", output_line_number);
// fprintf(yyout,"//This was compiler pass %d\n", compiler_pass);

 compiler_pass++;
 line_number = 1;
 output_line_number = 0;
 fclose(yyout);

/***
 * *
 * Set up the input file for assembler pass #7 *
 * *
 ***/

 FILE *infile7;

 infile7 = fopen("assembler_temp6", "r");
 if (!infile7) {
 fprintf(stderr,"not a file: %s\n", "assembler_temp6");
 exit(1);
 }
 yyin = infile7;
 yyout = fopen("assembler_temp7", "w");

164

 filename = "assembler_temp6";

//Parse the input (file) for the seventh run through

 do
 {
 yyparse();
 }
 while(!feof(yyin));

 print_values();

//handy debug lines

// fprintf(yyout,"//Number of lines in input file: %d\n", line_number);
// fprintf(yyout,"//Number of lines in temp file: %d\n", output_line_number);
// fprintf(yyout,"//This was compiler pass %d\n", compiler_pass);

 compiler_pass++;
 line_number = 1;
 output_line_number = 0;
 fclose(yyout);

/***
 * *
 * Set up the input file for assembler pass #8 *
 * *
 ***/

 FILE *infile8;

 infile8 = fopen("assembler_temp7", "r");
 if (!infile8) {
 fprintf(stderr,"not a file: %s\n", "assembler_temp7");
 exit(1);
 }
 yyin = infile8;
 yyout = fopen("assembler_temp8", "w");
 filename = "assembler_temp7";

//Parse the input (file) for the eighth run through

 do
 {
 yyparse();
 }
 while(!feof(yyin));

//handy debug lines

// fprintf(yyout,"//Number of lines in input file: %d\n", line_number);
// fprintf(yyout,"//Number of lines in temp file: %d\n", output_line_number);
// fprintf(yyout,"//This was compiler pass %d\n", compiler_pass);

 compiler_pass++;
 line_number = 1;
 output_line_number = 0;
 fclose(yyout);

/***
 * *
 * If an output file is specified, set it up here. This will *
 * be assembler pass #9, the last one. *
 * *
 ***/
 if (argc > 2) {
 FILE *outfile;

 outfile = fopen(argv[2], "w");
 if (!outfile) {
 fprintf(stderr,"opening file failed\n");

165

 exit(1);
 }
 yyout = outfile;
 }
 else {
 yyout = fopen("assembler.out", "w");
 }

 yyin = fopen("assembler_temp8", "r");
 filename = "assembler_temp8";

 do
 {
 yyparse();
 }
 while(!feof(yyin));

//handy debug lines

// fprintf(yyout,"//Number of lines in temp file: %d\n", line_number);
// fprintf(yyout,"//Number of lines in output file: %d\n", output_line_number);
// fprintf(yyout,"//This was compiler pass %d\n", compiler_pass);

 compiler_pass++;
 line_number = 1;
 output_line_number = 0;
 fclose(yyout);

//Remove all the temporary files

 unlink("assembler_temp1");
 unlink("assembler_temp2");
 unlink("assembler_temp3");
 unlink("assembler_temp4");
 unlink("assembler_temp5");
 unlink("assembler_temp6");
 unlink("assembler_temp7");
 unlink("assembler_temp8");

}

//This is the error function. It uses the integer "error_cause"
//to determine which error message to give to the user, and then
//reports the error along with the line number that caused the
//error.

yyerror(s)
char *s;
{
 if(error_cause == 3)
 {
 fprintf(stderr,"\n***ERROR*** on line %d of %s: the label %s was unmatched.\n",
line_number, filename, yylval.sval);
 fprintf(stderr,"Program will terminate.\n\n");
 error_cause = 0;
 exit(1);
 }
 else if(error_cause == 2)
 {
 fprintf(stderr,"\n***ERROR*** on line %d of %s: register %s\n", line_number,
filename, yylval.sval);
 fprintf(stderr,"is reserved for the compiler\n\n");
 fprintf(stderr,"Program will terminate.\n\n");
 error_cause = 0;
 exit(1);
 }
 else if(error_cause == 1)
 {
 fprintf(stderr,"\n***ERROR*** on line %d of %s: string beginning\n", line_number,
filename);
 fprintf(stderr," with %s is unrecognized.\n", yylval.sval);

166

 fprintf(stderr,"Program will terminate.\n\n");
 error_cause = 0;
 exit(1);
 }
 else
 {
 fprintf(stderr,"\n***ERROR*** on line %d of %s: the token %s makes\n", line_number,
filename, yylval.sval);
 fprintf(stderr," this instruction illegal.\n");
 fprintf(stderr,"Program will terminate.\n\n");
 exit(1);
 }
}

