
Copyright 2005

Mark Holland

Automatic Creation of Product-Term-Based Reconfigurable Architectures for

System-on-a-Chip

Mark Holland

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

University of Washington

2005

Program Authorized to Offer Degree:

Department of Electrical Engineering

University of Washington

Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Mark Holland

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Chair of Supervisory Committee:

__

Scott Hauck

Reading Committee:

__

Carl Ebeling

__

Scott Hauck

__

Larry McMurchie

Date:_______________________________

In presenting this dissertation in partial fulfillment of the requirements for the doctoral

degree at the University of Washington, I agree that the Library shall make its copies

freely available for inspection. I further agree that extensive copying of the dissertation

is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the

U.S. Copyright Law. Requests for copying or reproduction of this dissertation may be

referred to Proquest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI

48106-1346, to whom the author has granted “the right to reproduce and sell (a) copies of

the manuscript in microform and/or (b) printed copies of the manuscript made from

microform.”

Signature______________________________________

Date__

University of Washington

Abstract

Automatic Creation of Product-Term-Based Reconfigurable Architectures for

System-on-a-Chip

Mark Holland

Chair of the Supervisory Committee:

Professor Scott Hauck

Department of Electrical Engineering

Technology scaling has brought the IC industry to the point where several distinct

components can be integrated onto a single chip. Many of these System-on-a-Chip (SoC) devices

would benefit from the inclusion of reprogrammable logic on the silicon die, as it can add general

computing ability, provide run-time reconfigurability, or be used for post-fabrication

modifications. Also, by tailoring the reconfigurable fabric to the SoC domain, additional

area/delay/power gains can be achieved over current, more general fabrics. Developing a

domain-specific reconfigurable fabric has traditionally taken too much time and effort to be

worthwhile. We are alleviating these design costs by automating the process of creating domain-

specific reconfigurable fabrics: a project we call Totem.

This dissertation details our work in creating tools that will automate the creation of domain-

specific PLAs, PALs, and CPLDs for use in SoC devices. The input to the toolset is a group of

circuits that need to be supported on the reconfigurable fabric. The tools then create a PLA, PAL,

or CPLD that is tailored to the specific test circuits, with an option for strategically providing

additional resources in order to support future, unknown circuits. The output of the toolset is a

fully optimized VLSI layout of the reconfigurable fabric. This VLSI layout can be provided to a

designer for direct integration into an SoC design.

Our domain-specific CPLD architectures based on full crossbars outperform

representative fixed architectures by 5.6x to 11.9x in terms of area-delay product. Our

toolset has also been used to find several more efficient fixed architectures, but our

domain-specific architectures still outperform these new fixed architectures by 1.8x to

2.5x. Sparse-crossbar-based CPLDs have also been created, and require only 37% of the

area and 30% of the propagation delay of the full-crossbar-based CPLDs. Lastly, an

analysis of our sparse-crossbar-based CPLD architectures suggests that, in order to

support future circuits, the crossbar switch density should be augmented by 5% over the

base density, and additional PLAs of the base PLA-size should be provided for additional

logic utilization.

 i

Table of Contents

List of Figures .. iv

List of Tables ... ix

1 Introduction... 1

2 Programmable Logic Devices... 5

2.1 Programmable Logic Devices... 5

2.1.1 Complex Programmable Logic Devices (CPLDs)................................ 12

2.1.2 Case Study – Xilinx CoolRunner XPLA3 CPLD................................. 13

3 CAD for Programmable Logic.. 17

4 Reconfigurable Hardware in SoC ... 23

4.1 System-on-a-Chip Design Methodology .. 23

4.2 Reconfigurable Hardware in SoC ... 24

4.2.1 Using HDLs .. 24

4.2.2 Using Reconfigurable IP... 27

4.2.3 Reconfigurable Chips as the SoC ... 32

4.3 Motivating Reconfigurable Hardware in SoC .. 33

5 Research Framework .. 36

5.1 Totem-PLA ... 36

5.1.1 Circuits.. 36

5.1.2 Delay Model.. 38

5.2 Totem-CPLD... 43

5.2.1 Circuits.. 43

5.2.2 Delay Model.. 46

5.2.3 Area Model ... 48

6 Domain-Specific PLAs and PALs .. 49

6.1 Tool Flow.. 49

6.2 Architecture Generator.. 51

 ii

6.3 Layout Generator .. 57

6.4 Methodology... 59

6.5 Results... 60

6.5.1 Architecture Generator.. 60

6.5.2 Layout Generator .. 69

6.6 Conclusions... 69

7 Logic in Domain-Specific CPLDs .. 72

7.1 Tool Flow.. 73

7.2 Architecture Generator.. 73

7.2.1 Search Algorithms .. 78

7.2.2 Algorithm Add-Ons .. 98

7.3 Layout Generator .. 101

7.4 Methodology... 103

7.4.1 Failed PLAmap Runs.. 104

7.5 Results... 105

7.5.1 Benefits of Domain-Specific Devices... 111

7.5.2 Using Other Evaluation Metrics ... 114

7.6 Conclusions... 115

8 Routing in Domain-Specific CPLDs .. 116

8.1 Crossbars... 117

8.2 Sparse-Crossbar Generation.. 119

8.2.1 Initial Switch Placement ... 122

8.2.2 Moving Switches .. 125

8.2.3 Algorithm Termination ... 128

8.2.4 Switch Smoothing... 129

8.3 Routing for CPLDs with Sparse Crossbars... 134

8.4 Determining Switch Density of Sparse Crossbars 136

8.5 Results... 136

8.5.1 Using Other Evaluation Metrics ... 139

 iii

8.6 Conclusions... 140

9 Adding Capacity to Domain-Specific CPLDs .. 142

9.1 Adding Capacity to CPLDs .. 143

9.2 Methodology... 144

9.2.1 Routing Failures.. 146

9.3 Results... 148

9.4 Conclusions... 156

10 Conclusions and Future Work .. 158

10.1 Contributions... 158

10.2 Conclusions and Future Work .. 160

References... 168

Appendix A: Kuhn/Munkres Algorithm... 173

Appendix B: Layout Units .. 178

 iv

List of Figures

Figure 1. An SRAM cell. ... 6

Figure 2. Wiring using an SRAM controlled transistor... 7

Figure 3. Using wires and switches to create a full crossbar ... 7

Figure 4. Conceptual diagram of a PLA .. 8

Figure 5. Representing array switches with dots ... 9

Figure 6. Representing gates in a PLA .. 10

Figure 7. PLA representation we will use throughout this work 10

Figure 8. A pseudo-nMOS (sense-amplifying) PLA ... 11

Figure 9. Complete Network PLA implementation... 12

Figure 10. Full, depopulated, and sparse crossbars ... 13

Figure 11. The Xilinx CoolRunner XPLA3 CPLD Architecture 14

Figure 12. The Xilinx CoolRunner XPLA3 CPLD Functional Block............................. 15

Figure 13. The Xilinx CoolRunner XPLA3 CPLD Macrocell .. 16

Figure 14. CAD flow for programming reconfigurable hardware................................... 17

Figure 15. Representing a circuit with a DAG .. 18

Figure 16. Sample circuit after PLAmap's labeling stage.. 20

Figure 17. Sample circuit after PLAmap's mapping stage... 21

Figure 18. Sample circuit after PLAmap's packing stage. ... 22

Figure 19. Directional (left) and gradual (right) Wilton architectures............................. 25

Figure 20. Product-term-based synthesizable architectures... 27

Figure 21. Glacier PLA (GPLA).. 28

Figure 22. A tile in the RaPiD array .. 31

Figure 23. The Totem-RaPiD tool flow... 32

Figure 24. The RC model for an inverter... 38

Figure 25. Path propagation through a PLA .. 40

Figure 26. Transforming circuits to BLIF format.. 44

 v

Figure 27. Delay path in a CPLD... 47

Figure 28. PLA/PAL Generation Tool Flow ... 50

Figure 29. Mapping circuits in PLAs/PALs .. 52

Figure 30. Options for using the Kuhn/Munkres algorithm .. 53

Figure 31. Suboptimality introduced by the Kuhn/Munkres algorithm........................... 54

Figure 32. Cost function nuances... 55

Figure 33. Allowable annealing moves ... 56

Figure 34. Tiling pre-made layout cells to create PLAs .. 58

Figure 35. A PLA created using pseudo-nMOS .. 59

Figure 36. Possible cost reductions using our metric .. 61

Figure 37. A representative portion of the shift circuit .. 63

Figure 38. Bit reduction vs. percent array utilization .. 67

Figure 39. Bit reduction vs. connection count agreement ... 67

Figure 40. Failure of the compactor to reduce area ... 70

Figure 41. Totem-CPLD Tool Flow .. 73

Figure 42. CPLD Architecture Generator .. 74

Figure 43. A 1-D search through the PLA space, input step ... 77

Figure 44. A 1-D search through the PLA space, output step ... 77

Figure 45. A 1-D search through the PLA space, product term step 78

Figure 46. General pseudocode for the search algorithms... 79

Figure 47. Hill Descent Algorithm .. 80

Figure 48. Pseudocode for the input step of the Hill Descent algorithm......................... 81

Figure 49. Pseudocode for the output step of the Hill Descent algorithm....................... 82

Figure 50. Pseudocode for the product-term step of the Hill Descent algorithm 83

Figure 51. Input optimization step of the Successive Refinement algorithm.................. 84

Figure 52. Successive refinement trimming .. 85

Figure 53. Pseudocode for the input step of the Successive Refinement algorithm........ 86

Figure 54. Pseudocode for trimming ... 87

Figure 55. Pseudocode for the output step of the Successive Refinement algorithm...... 88

 vi

Figure 56. Pseudocode for the product-term step of Successive Refinement................. 89

Figure 57. Choose N Regions Algorithm .. 90

Figure 58. Pseudocode for the input step of the Choose N Regions algorithm............... 91

Figure 59. Pseudocode for the output step of the Choose N Regions algorithm............. 92

Figure 60. Pseudocode for the product-term step of the Choose N Regions algorithm .. 93

Figure 61. Run M Points Algorithm .. 94

Figure 62. Pseudocode for the input step of the Run M Points algorithm....................... 95

Figure 63. Pseudocode for the output step of the Run M Points algorithm..................... 96

Figure 64. Pseudocode for the product-term step of the Run M Points algorithm 97

Figure 65. Pseudocode for the radial search add-on .. 99

Figure 66. Top-level pseudocode when using a second algorithm iteration.................. 100

Figure 67. Top-level pseudocode when using the small PLA inflexibility add-on 101

Figure 68. CPLD floorplan and layout .. 102

Figure 69. Determination of N in Choose N Regions algorithm 106

Figure 70. Determination of M in Run M Points algorithm .. 107

Figure 71. Our use of full and sparse crossbars ... 117

Figure 72. Full crossbar connectivity... 117

Figure 73. Minimal full crossbar ... 118

Figure 74. Maximizing connectivity in crossbars.. 120

Figure 75. Representing crossbar input lines as vectors of 1s and 0s............................ 120

Figure 76. Crossbars, their vector representations, and their hamming distances 121

Figure 77. Top level pseudocode for the switch placement algorithm.......................... 122

Figure 78. Pseudocode for initial switch placement algorithm...................................... 123

Figure 79. Sample initial switch placement ... 124

Figure 80. Allowable switch moves... 126

Figure 81. Pseudocode for the switch movement algorithm.. 127

Figure 82. Routability results from several different switch patterns............................ 128

Figure 83. Routing full crossbars... 130

Figure 84. Routing sparse crossbars .. 130

 vii

Figure 85. Ideal switch placement for layout... 131

Figure 86. Pseudocode for the switch smoothing algorithm.. 132

Figure 87. Switch smoothing example... 133

Figure 88. Representative layouts of unsmoothed and smoothed crossbars.................. 133

Figure 89. A simple CPLD and its routing graph .. 135

Figure 90. Binary Search pseudocode ... 137

Figure 91. Evaluating CPLD augmentation strategies... 145

Figure 92. Pseudocode for spreading out CPLD mappings... 147

Figure 93. Results of adding switches to our crossbars ... 150

Figure 94. Results of adding specific logic resources.. 151

Figure 95. Results of adding specific logic resources, best case 153

Figure 96. Results of augmenting PLA size .. 154

Figure 97. Results of using hybrid augmentation strategy .. 156

Figure 98. Difficulties of automatic 2-D FPGA generation .. 165

Figure 99. Setting up the Kuhn/Munkres algorithm .. 173

Figure 100. Calculating product term costs for Kuhn/Munkres 174

Figure 101. Turning our product term problem into maximal perfect matching........... 174

Figure 102. Initial valuse for f in Kuhn/Munkres .. 175

Figure 103. The graph G, the values of f, and the spanning subgraph Gf 175

Figure 104. Pseudocode for the Kuhn/Munkres algorithm... 176

Figure 105. Units in our CPLDs .. 180

Figure 106. Programmable switch from the CPLD crossbar ... 181

Figure 107. Inverter and buffer that feed the PLA's AND-plane................................... 182

Figure 108. AND-plane connection... 183

Figure 109. Pullup transistor for the AND-plane... 184

Figure 110. Buffer between the AND-plane and OR-plane .. 185

Figure 111. OR-plane connection .. 186

Figure 112. Pullup transistor for the OR-plane.. 187

Figure 113. Inverter appearing after the OR-plane.. 188

 viii

Figure 114. D-Flip-Flop used for optional registering of the PLA outputs 189

Figure 115. 2-to-1 multiplexor for choosing the registered/unregistered PLA output .. 190

Figure 116. SRAM bit used for controlling the 2-to-1 multiplexor............................... 191

 ix

List of Tables

Table 1. The circuits used for Totem-PLA .. 37

Table 2. The sample domains used for preliminary testing ... 44

Table 3. The main domains used in our work.. 45

Table 4. Additional domains used for Chapter 9 results.. 46

Table 5. The circuits, with their information and groupings ... 60

Table 6. Running the PLA/PAL algorithms on multiple occurrences of acircuit............ 62

Table 7. Results of PLA-Fixed and PLA-Variable algorithms vs circuit count 65

Table 8. Reductions in programmable bits and delay for PLA/PAL algorithms............. 68

Table 9. Results for different PLA parameters in our test circuits 75

Table 10. Results for different PLA parameters in our test circuits, refined 76

Table 11. Architecture results for our domain-specific algorithms 107

Table 12. Base algorithm results compared to using a second iteration........................ 108

Table 13. Search algorithms run with a second iteration... 109

Table 14. Search algorithms run with a second iteration, using old models 110

Table 15. Domain-specific architecture performance vs fixed architectures 111

Table 16. Mapping results for the three largest circuits in the floating-point domain.... 112

Table 17. Mapping results for the four largest circuits in the arithmetic domain.......... 112

Table 18. Running each domain on the best domain-specific architectures.................. 113

Table 19. Running each domain on the consensus architecture 113

Table 20. Results for area-delay driven, area driven, and delay driven modes 114

Table 21. Area of routing resources in CPLDs.. 116

Table 22. Switch smoothing algorithm results .. 134

Table 23. Full-crossbar results vs sparse-crossbar results ... 138

Table 24. Switch densities of sparse crossbars .. 138

Table 25. Best results found for full and sparse-crossbar-based CPLDs....................... 138

Table 26. Results of area-delay driven, area driven, and delay driven modes 139

 x

Table 27. Strategies for adding capacity to our CPLD architectures............................. 144

Table 28. Results of adding switches to our crossbars .. 150

Table 29. Results of adding specific logic resources.. 151

Table 30. Results of adding specific logic resources, best case..................................... 152

Table 31. Results of augmenting the PLA size.. 153

Table 32. Results of using hybrid augmentation strategy.. 155

1

1 Introduction

As the semiconductor industry continues to follow Moore’s Law, a switch in design

paradigm is occurring. The former “System-on-a-Board” style, which had several

discrete components individually fabricated and then integrated together on a board, is

becoming obsolete. Because of the constant increase in gate count (currently chips can

hold hundreds of millions of wirable gates), we are at a point where distinct VLSI

components can now be incorporated onto a single silicon chip. This “System-on-a-

Chip” (SoC) methodology is becoming very popular, as its benefits include improved

area/delay/power characteristics as well as increased inter-device communication

bandwidth.

A drawback of the SoC methodology is that chip designs are much larger and more

complicated than in previous design methods. Designs tend to be more involved and

time consuming due to the need to tightly integrate multiple components onto a single

substrate. A result of this is that design decisions tend to be cemented earlier in the

design process, as any design modification will likely affect the integration of the entire

system. This leaves little room for any sort of modifiability late in the design cycle,

regardless of how useful such modifications might be.

An elegant solution to this problem is to include reconfigurable logic on SoC

devices. Reconfigurable logic is composed of a mixture of routing and logic resources

that are controlled by SRAM bits, such that programming the SRAM bits allows

designers to implement designs directly in hardware. Designing in hardware provides the

benefits of high speed and low power, while the reprogrammability of these devices gives

them much of the flexibility of a general-purpose processor. Including reconfigurable

logic on an SoC would allow designers to make design decisions late in the design cycle,

as they could implement these aspects on the reconfigurable fabric. Additionally, the

2

reconfigurable logic can be leveraged for general computing ability, can provide run-time

reconfigurability, or could even be used as a means for providing upgradeability for a

device that is already being used in its target environment.

Traditional reconfigurable logic devices can provide good performance, but they do

not approach the performance provided by an application specific integrated circuit

(ASIC). In order to retain generality, and to be able to support a large number of

disparate designs, reconfigurable devices need to have a large amount of flexibility. The

programming overhead required by this flexibility, however, is exactly what prevents

reconfigurable devices from performing as well as ASICs. As such, it would be useful to

remove unnecessary flexibility from a reconfigurable device in order to reduce the area,

delay, and power penalties that are incurred.

One way to remove flexibility from a reconfigurable device is to tailor it to a

particular domain. A “domain-specific” reconfigurable architecture is one that is

designed to efficiently support a specific application domain, but which does not need to

support any sort of design outside of this domain. By specifying the applications that the

reconfigurable logic must support, the flexibility of the architecture can be greatly

reduced, resulting in greater performance.

Many examples of domain-specific reconfigurable architectures exist. Within

academia, RaPiD [1, 2] and Pleiades [3] have been created to target the DSP domain,

while PipeRench [4] has been created for use within the multimedia domain. Domain-

specific commercial architectures have also started to appear, as Xilinx’s Virtex-4

devices come in three different flavors: “Ultra-high-performance signal processing”,

“Embedded processing and high-speed serial connectivity”, and “High-performance

logic” [5].

All of these domain-specific architectures took a great amount of time and effort to

design, however. An SoC designer might not be willing to wait several months for a

domain-specific reconfigurable architecture to be created for their chip, as it would likely

delay the completion of the device. The dilemma thus becomes creating these domain-

3

specific reconfigurable fabrics in a short enough time that they can be useful to SoC

designers.

The Totem project is our attempt to reduce the amount of effort and time that goes

into the process of designing domain-specific reconfigurable logic. By automating the

generation process, we will be able to accept a domain description and quickly return a

reconfigurable architecture that targets the specific application domain, allowing SoC

designers to get an efficient architecture with no adverse effects on their design schedule.

Early work in Totem [6-25] has leveraged RaPiD, a one-dimensional word-wide

architecture that uses coarse-grained units (ALUs, Multipliers, RAMs, etc.) to target

applications within the DSP domain.

This work deals with the creation of domain-specific CPLD architectures for use in

SoC, a project termed Totem-CPLD. CPLDs are relatively small reconfigurable

architectures that typically use PLAs or PALs as their functional units, and which connect

the units using a single, central interconnect structure. In commercial architectures, the

functional units tend to be relatively coarse-grained in order to provide shallow

mappings, leading to low, predictable delays.

• Chapter 2: Programmable Logic Devices introduces the concept of

reconfigurable hardware, providing technical background for the reconfigurable

devices that are applicable to the work described in this dissertation.

• Chapter 3: CAD for Programmable Logic introduces the basic CAD design flow

for reconfigurable devices and provides details for some of the algorithms that

we will be using.

• Chapter 4: Reconfigurable Hardware in SoC provides an introduction to the

System-on-a-Chip methodology, and provides examples of reconfigurable

architectures that have been created with the SoC device in mind.

• Chapter 5: Research Framework provides the experimental foundation of the

work presented here, including information on the benchmark sets used and the

methods employed in evaluating our results.

4

• Chapter 6: Domain-Specific PLAs and PALs takes a look at the logic units

typically used in CPLDs and examines the ways in which they can be tailored to

an application domain.

• Chapter 7: Logic in Domain-Specific CPLDs introduces the algorithms used to

tailor the logic in a full-crossbar-based CPLD to a specific application domain.

• Chapter 8: Routing in Domain-Specific CPLDs introduces the use of sparse

switch matrices in the CPLD crossbar structures, and discusses how to tailor

these routing structures to a specific application domain.

• Chapter 9: Adding Capacity to Domain-Specific CPLDs provides an analysis of

which CPLD characteristics are most essential for providing support for future

untested designs, ensuring that they will fit onto the CPLD architecture.

• Chapter 10: Conclusions and Future Work provides a summary of the

contributions of this work, as well as suggestions for future work that can be

performed.

5

2 Programmable Logic Devices

Programmable logic devices (PLDs) are a popular solution for systems where fast

turn-around-time and/or low cost are high priorities. PLDs achieve these features

through post-fabrication modifiability, as they are capable of changing the circuits that

they implement in response to user-supplied specifications. This chapter provides the

technical background necessary for understanding PLD architectures, with particular

emphasis on the Complex Programmable Logic Device (CPLD), as this is the primary

architecture that we consider in this dissertation. In order to familiarize the reader with

typical device specifications, we also provide a close examination of a popular

commercial CPLD, the Xilinx CoolRunner XPLA3.

2.1 Programmable Logic Devices

PLDs are devices that are capable of being dynamically reconfigured at any time to

implement new designs. They achieve this by containing routing and logic resources that

are controlled by modifiable memories: adjust the memory contents and you adjust the

routing structure and/or the functions being implemented by the logic resources.

Different styles of memory have been employed in the creation of PLDs, from basic

EEPROM (electrically erasable programmable read-only memory), to flash memory, to

SRAM (static random access memory). EEPROM and flash seem to be the preferred

memory style for CPLDs [26-29], as they have the attractive characteristic of retaining

their contents when powered off, allowing instant logic availability at boot-up. EEPROM

and flash memories retain their contents because they use floating-gate transistors:

application of extra high or low voltage differentials across a floating gate causes

tunneling to deposit or remove electrons from the floating gate, changing the threshold of

the EEPROM or flash transistor. Regular operating voltages have negligent effects upon

6

these floating gates, just as the absence of power does not effect them, so they are able to

retain their programmed states even when powered off.

One constraint on our designs is that we must implement our reconfigurable

architecture in the same process technology that the rest of the SoC is going to be using,

since everything will be implemented on a single piece of silicon. While floating gates

are useful in creating certain memories, they are not particularly useful in the design of

processors, DSPs, or custom logic, and it is these other blocks that will dictate the process

technology of the SoC. EEPROM and flash memories are therefore not reasonable

memory choices for us, because the SoC fabrication process won’t have the ability to

create the necessary floating gates.

SRAM memory cells, on the other hand, are created without the need for floating

gates. They can be fabricated using the same technology that most SoC devices will use,

and are therefore an attractive memory solution for our reconfigurable architectures. We

will be using SRAM as the configuration memory in our work, and it will be laid out as

individual SRAM cells as shown in Figure 1.

bit_bbit

word

bit_out

Figure 1. A simple 6-transistor SRAM cell. The cell is programmed by setting word=1 and applying

the proper values to bit and bit_b. bit_out represents the value of the cell

Figure 2 shows how a single SRAM cell can be used to configure routing resources.

In the figure, two wires are connected by a transistor, with the gate of the transistor being

controlled by an SRAM cell (the circled P will be used to denote a single SRAM bit from

here forward). By setting the bit to 1, signals can be driven across the transistor. By

setting the bit to 0, the horizontal and vertical wires are isolated.

7

Wire1

Wire2

P

Figure 2. An SRAM controlled transistor can isolate or connect wire1 and wire2

Wires and configurable switches like the one shown in Figure 2 can easily be used to

create a full crossbar, as shown in Figure 3. We now have several horizontal wires that

can each be connected to any of several vertical wires. In the normal operation of a

crossbar, each output wire is connected to exactly one input wire, with the numbers of

output wires less than or equal to the number of input wires. Figure 3 also shows the

simplified drawing of this crossbar, representing the configurable switches with dots.

This is how we will draw the crossbar in future diagrams.

P P P

P P P

P P P

P P P

inputs

outputs

Figure 3. Using wires and switches to create a full crossbar. Right, the configurable switches are

represented by dots

One method of performing logic in PLDs is through the use of a programmable logic

array, or PLA. PLAs are devices that directly implement two level sum-of-products style

logic functions. They do this with the use of a programmable AND-plane that leads to a

8

programmable OR-plane, as shown in Figure 4. Input signals come into the array in both

true and negated form, and the appropriate signals are fed as inputs to the AND gates as

determined by configurable switches. The outputs of these AND gates are then

selectively fed to OR gates, again controlled by configurable switches. The outputs of

the OR gates can then be registered or used as combinational signals, as determined by

the bit controlling the output multiplexer. Note that the actual hardware implementation

of a PLA, discussed later in this chapter, is actually much more efficient than what is

shown in the figure.

In1In0

CLK

P

CLK

P

CLK

P

CLK

P

Out0 Out1

PP PP PP PP

PP PP PP PP

PP PP PP PP

PP PP PP PP

PP PP PP PP

PP PP PP PP

PP PP PP PP

PP PP PP PP

PP PP PP PP

PP PP PP PP

PP PP PP PP

PP PP PP PP

PP PP PP PP PP PP

PP PP PP PP PP PP

PP PP PP PP PP PP

Figure 4. Conceptual diagram of a PLA, with a programmable AND-plane (left) and a

programmable OR-plane (right), including optional registering of the outputs

9

When drawing a PLA, it is common to omit the switches that connect orthogonal

wires in the arrays and to simply put dots in locations where the switches are configured

to connect wires. Figure 5 displays this transition, as the left half shows a configuration

with the programmable bits set to 1 (conducting) or 0 (not conducting), and the right half

shows the same function in the simplified representation. In future diagrams we will also

not be drawing the optional registering at the output of the PLA, despite the fact that it

always exists. This is done to make the diagram less cluttered.

=

00 11 00 00

00 00 00 11

00 00 11 00

11 00 00 00

Figure 5. Switches that are turned on in PLA arrays will be represented by dots. This is shown for

the AND-plane, and is also true for the OR-plane

Another convention is to omit the AND and OR gates in the drawing, and to merge

their respective input wires into one wire. Using this representation, the horizontal wires

that leave the AND-plane represent the outputs of AND gates, and the vertical wires that

leave the OR-plane represent the outputs of OR gates. Figure 6 displays this transition,

as the left half depicts the individual wires that feed the gates, and the right half shows

the same function being implemented in simplified form.

 To give a specific example of this new simplified representation, Figure 7 displays

a small PLA. The functions being implemented by the array are also listed in the figure.

Notice that PLA arrays are defined by how many inputs, product terms, and outputs they

can represent. The PLA in the figure has four inputs, three product terms, and two

outputs, which will be written in shorthand as a 4-3-2 PLA.

Most PLAs are not actually implemented with AND and OR-planes, but instead with

two NOR-planes. As Equation 1 shows, equations in sum-of-products (or AND-OR)

form can easily be represented in NOR-NOR form by applying De Morgan’s law. In

10

order to ensure that the same equation is being implemented, we must simply negate all

the input values and then negate the subsequent output. Since we already have true and

negated forms of each input, this will be easy to do.

=

Figure 6. The gates will be represented by individual wires, and all inputs to the gates will be

connected by dots to the line. This is shown for the AND gates, and is also true for the OR gates

F0 F1

X0 X1 X3X2

3 Product Terms

4 Inputs

2 Outputs

F0 = X0X2 + X0X1

F1 = X0X1 + X3

AND-Plane OR-Plane

Figure 7. The representation of a PLA that we will use throughout this work. PLAs are specified by

the number of inputs, product terms, and outputs that they can represent

DADCBADADCBADADCAB +++++=+++++=++ (1)

The method in which configurability is implemented in a PLA depends upon the

implementation style of the array, but NOR-NOR PLAs are particularly well suited to

11

pseudo-nMOS (also called sense amplifying) implementations, as shown in Figure 8.

Using this style, the array connections need only consist of two small series pull-down

transistors: the first transistor’s gate is controlled by the input line, and the second

transistor is controlled by a user-specified SRAM bit, controlling whether the output line

can actually be discharged by making the first transistor conduct. An additional

advantage to this style is that only pull-up transistors are needed at the edges of the

arrays. It can be seen that each plane implements the NOR function, as plane-outputs are

initially charged to high through the pull-up transistors, and any array input that is a 1

will pull the output to low. Pseudo-nMOS PLAs have very compact layouts and very

reasonable delay characteristics, so this is the implementation style that we use.

f0 f1X0

VDD

VDD

GND GND

GND

GND

GND

GND

PPPP

PPPP

PP

PP

PP

PP

Figure 8. A PLA implemented in pseudo-nMOS (also called "sense-amplifying") style

There is another type of array that directly performs sum-of-products style logic, and

it is called a PAL. A PAL differs from a PLA in only one way: rather than having a fully

programmable OR-plane, a PAL has fixed OR gates. Because of this, PALs tend to be

12

slightly smaller than PLAs, but they are not as flexible as PLAs due to the fixed nature of

their OR implementation.

2.1.1 Complex Programmable Logic Devices (CPLDs)

All of the components that we’ve just introduced can be combined to form a popular

style of PLD, the Complex Programmable Logic Device (CPLD). CPLDs use either

PLAs or PALs as their functional units, and typically connect the functional units

together using a crossbar. Because they use crossbars as their interconnect structures,

and crossbars grow quickly in size, CPLDs have historically been limited to

implementing small to medium sized designs.

Routing in a CPLD is typically done through the use of a “complete network”.

Using this method, every device input (from I/O) and every PLA/PAL output directly

drives a wire that traverses the length of the device, as shown in Figure 9. Connections to

the PLA/PAL inputs are then made using crossbars. If full crossbars are used, then the

problem of routing signals in a CPLD is trivial because the crossbar delivers “full

capacity”.

Inputs

Outputs

I/Os

Figure 9. A "Complete Network" in which all outputs and I/Os are available as inputs to all units

A crossbar delivers full capacity if any subset of inputs wires (obeying

numOutputsnSubsetnumInputsI ≤) can reach output wires. If depopulated crossbars are

13

used, such that not all of the crosspoints in the crossbars have switches, then routing

algorithms will need to be employed if full capacity is not still guaranteed. We will call

crossbars that do not provide full capacity “sparse” crossbars. Figure 10 displays a full

crossbar, a depopulated crossbar that still provides full capacity (choose any set of four or

fewer inputs and they can be connected to outputs), and a sparse crossbar that does not

provide full connectivity.

(B) (C)(A)

Figure 10. A full crossbar (A), a depopulated crossbar that still provides full capacity (B), and a

sparse crossbar that does not provide full capacity (C)

2.1.2 Case Study – Xilinx CoolRunner XPLA3 CPLD

The CPLD description given above is very basic, and commercial devices tend to

add many bells and whistles to the basic CPLD in order to increase performance and

flexibility. In order to further familiarize the reader with CPLD architectures, this section

gives a discussion of the Xilinx CoolRunner XPLA3 CPLD [26].

Figure 11 shows the Xilinx XPLA3 CPLD Architecture. A Function Block and 16

Macrocells (MC) combine to form each PLA, and the Zero-power Interconnect Array

(ZIA) is a virtual crosspoint switch, providing full connectivity between the PLAs. All

I/Os and PLA outputs feed the ZIA, and PLA inputs are pulled from the ZIA. The basic

PLA has 40 inputs, 48 product terms, and 16 outputs. These devices come in varying

sizes, ranging from 32 Macrocells (2 PLAs) to 512 Macrocells (32 PLAs). A 128

Macrocell device is shown. I/O capacities range from 36 I/Os for a 32 Macrocell device,

to 260 I/Os for a 512 Macrocell device.

14

Figure 11. The Xilinx CoolRunner XPLA3 CPLD Architecture [26]

Figure 12 shows the functional block in more detail. The basic PLA can be seen in

this diagram, as 40 inputs from the ZIA feed the Product-Term Array, creating 48 product

terms that get ORed (along the bottom) to create 16 different outputs, with one output

going to each Macrocell. Xilinx has also added functionality to this basic PLA. Wider

logic equations can be synthesized using the eight Foldback NAND product terms at the

top of the diagram. Eight other product terms (PT0 – PT7) can be used as control signals

for the register that exists in the Macrocell. Additionally, 16 product terms (PT32-PT47)

are available for timing critical signals, and can be fed directly to the Macrocell rather

than feeding the ORed product terms to the Macrocell. The Variable Function

Multiplexers (VFM), which choose between the high-speed wires and the ORed product

term outputs, can also increase logic density by implementing some two input logic

functions.

15

Figure 12. The Xilinx CoolRunner XPLA3 CPLD Functional Block [26]

The Macrocell is shown in Figure 13. The output of the VFM is fed to a register that

can be configured as a D-, T-, or Latch-type flip-flop, and which can be controlled by

many sources. There are then two muxed paths leading to the ZIA. The first mux selects

between the combinational or registered output of the VFM. The second mux selects

between the output of the register or the I/O pad of the Macrocell. If the I/O pad is being

used as an input, this is how the signal is driven onto the ZIA.

16

Figure 13. The Xilinx CoolRunner XPLA3 CPLD Macrocell [26]

The Xilinx CoolRunner XPLA3 CPLD provides all of the basic CPLD functionality

described earlier, and also provides hardware that increases logic density and allows for

high-speed signal paths. We will not be concerned with creating these optimizations in

our own CPLD architectures, but will instead be attempting to tailor the basic PLA/PAL

devices in order to optimize them to application domains.

 This introduction to programmable logic devices provides sufficient background for

understanding the architectural issues present throughout the remainder of this

dissertation. If desired, additional details can be obtained by closer examination of the

device introduced in this section [26].

17

3 CAD for Programmable Logic

In the previous chapter we introduced some reconfigurable architectures, and showed

how they can be made to represent different designs by configuring the SRAM bits in the

architecture. The task of figuring out exactly how to program each SRAM bit is done by

Computer-Aided-Design (CAD) tools. A typical CAD design flow is shown in Figure

14. The designer describes their design either in a high-level hardware description

language (HDL) or in schematic form, and feeds this to the CAD tools. The design is

first synthesized into a gate-level description (if necessary), and then technology mapped

in order to use the actual functional units that the PLD architecture contains. The CAD

tools then place and route the circuit onto the target device architecture, and output the

configuration bitstream that is used to program the actual SRAM bits that reside on the

device. Feedback in the design cycle can occur if constraints (i.e. timing or area) are not

met.

Synthesis

Placement

Routing

Technology Mapping

Design Entry

Bitstream

Figure 14. Typical CAD flow for programming reconfigurable hardware

18

This dissertation is aimed at creating domain-specific CPLDs, so we need to examine

how this affects the basic CAD tool flow shown in Figure 14. Our CPLDs will use

complete networks, so all of the signals will traverse the length of the architecture by

default. This removes our need for a placement algorithm. We will initially use full

crossbars to connect the routing and logic resources, so this removes the need for a

routing algorithm in our early work. In Chapter 8 we will create architectures that do not

use full crossbars, but we will use well-established techniques for the task of routing

these architectures. Synthesis for our CPLDs will also be done using standard

techniques. This leaves us with the task of technology mapping, which will actually have

a direct affect on our methodology and results.

In general, the technology-mapping problem for CPLDs has been most successfully

handled by graph-based algorithms, which are created from simple Boolean networks. A

Boolean network can be represented as a directed acyclic graph (DAG) where each node

is a logic gate and a directed edge (j, k) exists if the output of gate j is an input of gate k.

A primary input (PI) node has no input edges and a primary output (PO) node has no

output edges. Figure 15 shows the DAG representation of a simple circuit.

A

B 1

2

3

1

C

D

2

Z

3

Z

D

C

B

A

Figure 15. A simple circuit and its DAG representation

Currently, the best technology-mapping algorithm for CPLDs is a tool called

PLAmap [30] which was developed at UCLA in 2001. PLAmap is a performance driven

mapping algorithm whose primary goal is to minimize the delay/depth of the mapped

circuit. Heuristics are applied to reduce the area of a mapping, but area optimization is

19

secondary to delay optimization in this algorithm. This is the technology-mapper that we

will employ in this work.

Some background terminology is required to understand the basic PLAmap

algorithm. A (k, m, p)–PLA implies a PLA with k inputs, m product terms, and p

outputs. A cluster is a subgraph of the network graph with the property that any path

connecting two arbitrary nodes in the cluster lies entirely within the cluster. So if

PLAmap is mapping to an architecture with (k, m, p)-PLAs, then the goal of the

algorithm is to cover the entire Boolean network with (k, m, p)-feasible clusters, which

are then converted into PLAs. The clusters need not be disjoint, as nodes can be

duplicated as long as the final network is equivalent to the original. The main objective

of the algorithm is to minimize circuit delay, which occurs by minimizing the depth of

the mapping. This is an NP-hard problem, so PLAmap uses heuristics to tackle it.

The input to PLAmap is a 2-bounded circuit, meaning that it consists of gates with

no more than two inputs. A pre-processing step transforms this gate representation into a

DAG. The main PLAmap algorithm then works in three steps. In the “labeling” step,

each node is given a level (corresponding to circuit depth) that provides clustering

information for future steps. Next is the “mapping” step, in which nodes are mapped into

specific (k, m, p)-PLAs. Last is a “packing” step, in which PLAmap tries to pack PLAs

into each other in order to reduce area.

In the labeling phase, we start by labeling each PI as 0. The nodes are then

considered in topological order. For a node v, let l be the maximum label of all its fanin

nodes. If node v grouped with the predecessors of v that have label l form a (k, m, 1)-

feasible cluster, then we give v the label l. Otherwise we label v with (l + 1). This label

represents the logic depth of all the nodes in the network, and the maximum label from

this phase will be the depth of the final mapping. Figure 16 gives an example of the

labels applied to each node in a sample network that is mapping to 3-3-2 PLAs.

In the second stage, termed “mapping”, the algorithm transforms the (k, m, 1)-

feasible clusters into (k, m, p)-feasible clusters based on the labeling information from

stage 1. The nodes are considered individually, working backwards from POs to PIs (in

20

label-decreasing, slack-increasing order, and reordered before each node is considered).

If the node currently under consideration has not been put into a cluster yet, then a single-

output cluster is formed to include the node and all of its predecessors that have the same

label. If this cluster attempts to cover a node that has already been mapped into some

other cluster, then one of three things can occur. First, the algorithm attempts to merge

the clusters that share the shared node. If this doesn’t work, the algorithm attempts to

form a reduced cluster that does not include the shared node. This requires “slack” in the

system, and if the depth of the mapping is affected by forming this reduced cluster, then

the reduced cluster is rejected. This leads to the final (and worst) case, in which the node

is simply duplicated.

a b c d e f g

zy

1

1 1 1 1

1
2

2 2

3

Figure 16. Sample circuit after PLAmap's labeling stage. The labels are listed in the gates

If a node considered in the mapping stage has already been put into a cluster, a

problem may arise if the output of this node feeds out of the cluster it is in. First, the

algorithm attempts to introduce this output as a new output to the cluster. If it cannot

introduce a new output to the cluster, then the node must be duplicated, and the

duplicated node forms its own cluster. Figure 17 shows the circuit from Figure 16 after

mapping has occurred.

21

Last, the packing stage occurs, in which the algorithm attempts to reduce the total

number of PLAs. The first operation it performs is PLA collapsing, where the algorithm

attempts to collapse a PLA into all of its fanout PLAs so that the original PLA can be

eliminated. Since collapsing some PLAs into their fanout PLAs might preclude the

possibility of collapsing other PLAs, they used the empirical results shown in [31] that

suggest that smaller PLAs should be collapsed first (smaller in terms of inputs * product

terms). The second packing operation attempts to merge PLAs that share a large number

of inputs. So for each PLA, a list is formed containing the other PLAs that it shares

inputs with (in decreasing order of inputs shared), and the algorithm attempts to merge

them. Applying packing to the circuit from Figure 17 results in a reduction from 9

clusters to 5 clusters, and gives us our final network for 3-3-2 PLAs, shown in Figure 18.

PLAmap showed good mapping results when compared to preexisting technology

mapping algorithms. TEMPLA was the best academic technology-mapper for CPLDs

before PLAmap was created, but PLAmap was able to reduce the mapping depth (and

therefore the delay) of TEMPLA by 50% at a mere 10% cost in area. PLAmap was also

compared to Altera’s MAX+PLUS II tool, which uses 12% less area than PLAmap but

incurs 58% more delay. These results help justify our use of PLAmap as our technology-

mapper.

a b c d e f g

zy

Figure 17. Sample circuit after PLAmap's mapping stage. Dashed boxes depict the clusters

22

a b c d e f g

zy

Figure 18. Sample circuit after PLAmap's packing stage. Dashed boxes depict the clusters, and

ultimately the PLAs

23

4 Reconfigurable Hardware in SoC

This chapter provides information about the System-on-a-Chip design methodology,

and presents ways in which reconfigurable hardware can be introduced into the SoC

environment, citing examples of existing work. The chapter then concludes with some

design examples that motivate the incorporation of reconfigurable hardware in SoC

devices.

4.1 System-on-a-Chip Design Methodology

The System-on-a-Chip (SoC) design methodology has only recently become viable,

due to the ever-increasing device densities realizable in VLSI systems. This

methodology has many benefits, including reduced area, reduced delay, reduced power,

and increased inter-device communication bandwidth. These advantages come at the cost

of design complexity, however. Instead of dealing with just a few million transistors, a

design team might now have to lay out hundreds of millions of transistors in order to

form a complete SoC design. This difficult task would lead to very expensive devices, in

terms of both time and money, if everything on the chip needed to be painstakingly laid

out by hand.

One way that designers get around this complexity is by using hardware description

languages (HDLs) and synthesis tools. In this process, a designer would write HDL code

to describe his design, and would then use a synthesis tool to map that design to a gate-

level description. This gate-level description would then be implemented in standard

cells and laid out on the chip. This design methodology provides fast turn-around time,

but the implementations suffer area, power, and delay penalties due to the intrinsic

overheads of standard cells. In many cases these penalties are acceptable, but sometimes

24

they are not. An emerging process that can remedy some of these performance issues is

the concept of intellectual property (IP) reuse.

The basic idea of IP reuse is that once a subcircuit is carefully designed, tested, and

verified, that the next user who wishes to use the subcircuit won’t have to go through

those steps again. Thus an SoC designer could grab the layouts of components that have

already been made (processors, DSPs, memories, etc.) and use custom logic or standard

cell logic to integrate them together onto a single die. This would dramatically reduce the

design time, not to mention that the verification of each component has already been

done. The functionality of the integrated SoC system will still need to be verified, but

this is true of any design.

4.2 Reconfigurable Hardware in SoC

Reconfigurable hardware can be integrated into an SoC device using either of the

above methods: by describing the reconfigurable fabric in a HDL and using standard

cells, or by integrating reconfigurable IP into the chip. HDL entry is typically easier to

incorporate into the design flow since other aspects of the SoC will probably be described

by HDLs as well, but using IP will provide better performance characteristics since the IP

core has already been meticulously laid out. Clearly, a trade-off exists between ease-of-

use and performance.

A third way to get reconfigurability onto an SoC is to simply use a large

reconfigurable device as your SoC device. As we’ll illustrate, there are chips currently

being marketed with this exact goal in mind, and they are very capable of handling many

SoC designs by themselves.

4.2.1 Using HDLs

Two examples of using HDLs to create reconfigurable hardware for SoC devices

have come from the University of British Columbia. In [32] and [33], Wilton et. al.

propose both LUT based and product-term-based reconfigurable architectures to be used

in SoC applications.

25

In [32], they outline the details of the process that a chip designer would go through

when using their logic. First, the SoC designer partitions the chip design into functions

that will use fixed logic (which he describes in a hardware description language or HDL)

vs. functions that will use programmable logic. He then acquires an HDL description of

the behavior of the programmable logic core, provided by the UBC tools. The designer

can then merge the HDL descriptions of the fixed and programmable logic and go

through ASIC synthesis, place, and route tools in order to implement the HDL

description. The chip is then fabricated, after which the programmable logic can be

configured to behave however the designer chooses.

The proposed reconfigurable architectures in [32] and [33] are all directional,

meaning that there are no feedback loops: this is a byproduct of the fact that they are

creating their cores using HDLs. The need for directionality comes from the fact that

many synthesis tools have problems with combinational loops. In [32], their directional

requirement led them to create two types of implementations, a standard island-style

architecture with directional routing and a gradual architecture, both of which used 3-

LUTs (look-up tables) as their logic elements. An n-LUT is a user-configurable memory

element that accepts n inputs and creates one output. These architectures are shown in

Figure 19.

Figure 19. Directional (left) and gradual (right) architectures from [32]

26

Results from [32] showed that the gradual architecture performed better than the

island-style architecture by 15% to 20%, and they also found that the gradual architecture

works better if it is not rectangular, but rather it tapers to a slightly smaller (triangular)

structure as you move along the datapath. These ideas helped guide the work in [33] in

which they develop directional architectures that use PLAs as logic elements instead of 3-

LUTs. For their PLAs, they used only the gradual architecture but again considered

rectangular and triangular designs (shown in Figure 20). Their exploration of PLA-size

showed that HDL cores with 9-input, 3-output, 9 or 18 product-term PLAs showed 35%

area improvements and 72% speed improvements over their LUT-based architectures

from [32]. They also showed that a triangular gradual architecture performs better than a

rectangular architecture for PLAs.

UBC’s deliverable is an HDL description, or “soft core”, of the reconfigurable logic.

Supplying a soft core would most likely make integration easier for the SoC designer, as

the same synthesis tools can be used to create the reconfigurable logic as are used to

synthesize the fixed portions of the chip. The synthesis of the reconfigurable logic would

most likely be done using standard cells, however, which are very inefficient at creating

reconfigurable architectures. Simple switches (which are often just single transistors),

SRAM cells, and PLA arrays (if they choose a product-term style) don’t exist in standard

cell libraries, but they are very prevalent in reconfigurable architectures, and instantiating

them in standard cells would create very drastic area, delay, and power penalties. The

group admits to this problem, and suggests that the area, delay, and power penalties

imposed by their soft cores would most likely only be acceptable for small amounts of

programmable logic.

27

Figure 20. Product-term-based synthesizable architectures [33]

4.2.2 Using Reconfigurable IP

One example of reconfigurable IP comes from Mo and Brayton, who propose a

highly regular “Glacier” PLA (GPLA) structure [34] for use in SoC devices. Their

28

proposal is to stack multiple configurable PLAs in a uni-directional structure using fixed

river routing to connect them together. Optional registering can be implemented in the

silicon below the river routing in order to support sequential designs. The result is a

structure that benefits from both high circuit regularity and predictable area and delay

formulation. This structure is shown in Figure 21.

GPLAs are very regular, and their authors site this as an advantage when

transforming layouts to masks, as fewer layout patterns need to be examined. Fixed

routing resources make the job of the CAD tools a bit more difficult by adding more

restrictions, but this is partially alleviated by the fact that most input and output tracks in

their PLAs are interchangeable – the only differences are that some input columns feed

directly through to input columns on the next PLA. In their results, they display that

GPLAs and Xilinx XC4000XL FPGAs with similar programmable bit counts can support

roughly the same number of designs, showing that their densities in terms of gate-count

per programmable bit are similar.

Figure 21. Glacier PLA (GPLA) with configurable PLAs and fixed river routing [34]

29

Another work presents a high-performance programmable logic core for SoC

applications [35]. In this paper, a new architecture is developed which uses a high-

performance dynamic circuit design style called OPL. OPL is a precharged-high logic

family, so only discharging is necessary upon function evaluation. Due to this, they show

that OPL designs provide 5x speedups over conventional circuit design styles when

implementing circuits that map well to wide NOR gates. The work also introduces a

novel product-term-based logic structure that utilizes OPL-friendly NOR gates. While

most product-term-based reconfigurable logic provides a fixed input, product term, and

output capacity, the logic structures proposed in this paper provide further gains by

allowing these amounts to be variable. This avoids the area losses caused by unutilized

logic resources in most product-term-based designs, because most PLAs are only

partially utilized.

One important consideration for this OPL-based design is clock distribution, as the

logic family requires successive clock phases to be present with very short separation

times. This requires considerable clock-generation overhead, which takes up area that

could otherwise be utilized for logic. Power consumption is also increased due to the

need for a large number of minimally spaced clocks. The goal of this device, though,

was increased speed. A test chip was produced and timing values extracted, and results

showed that this new architecture provided an average speedup of 3.7x over a Xilinx

Virtex-E FPGA.

The previous examples were academic in nature, but commercial reconfigurable IP

cores exist as well. Actel, for example, has an embedded FPGA core that can be tiled

into SoC devices to provide anywhere from 5000 to 40,000 equivalent ASIC gates [36].

They also have tile configurations that provide cascadable RAM modules for applications

that require more memory. Elixent, another company creating reconfigurable IP cores,

has developed what they call a D-Fabrix Processing Array [37]. A D-Fabrix tile contains

two 4-bit ALUs, two registers, and two switchboxes. By tiling these units in the

hundreds or thousands, the array is capable of efficiently supporting algorithms that

30

require high arithmetic throughput. Their reconfigurable IP is so useful that it is already

being licensed by companies for use in SoC applications [38].

4.2.2.1 Totem

The D-Fabrix Processing Array is an example of a reconfigurable fabric that is

tailored to a particular application domain: in this case, arithmetic designs. D-Fabrix

already exists, so it can easily be integrated into new SoC design starts. If an SoC

designer wanted a reconfigurable fabric that was tailored to some other domain, however,

the time required to design the domain-specific reconfigurable fabric would probably be

too time-prohibitive for the designer to accept. Quick turn-around time is an important

constraint for almost all designs, and should be considered when trying to create new

reconfigurable fabrics. The Totem project at the University of Washington is an attempt

to create these domain-specific reconfigurable architectures quickly and automatically,

such that there is no negative impact on the SoC’s design cycle.

Previous work in Totem [6-25] leveraged the RaPiD [1, 2] architecture, which was

developed by Carl Ebeling et. al. at the University of Washington. RaPiD is an

architecture that targets the digital-signal-processing (DSP) domain. It is a one-

dimensional word-wide architecture that uses coarse-grained units (ALUs, Multipliers,

RAMs, etc.) to perform computations. A picture of this is shown in Figure 22.

Data flows horizontally in the array, switching onto vertical wires to reach functional

units and then returning to horizontal wires. The routing structure is composed of three

types of tracks: feedback tracks which route a unit’s output back to its inputs, short tracks

that span a small number of functional units, and long tracks that span a large number of

functional units. Bus connectors exist on the long tracks in order to allow even longer

tracks to be formed, and also to provide registering in the interconnect. The datapath is

16-bits wide, leveraging the fact that DSP computations such as multiplication and

addition tend to operate on word-wide data rather than bit-wide data.

31

Figure 22. A tile in the RaPiD array [1, 2]

The RaPiD architecture is tailored to be domain specific by adjusting the blend of

resources that it contains. Many modifications can be made, including varying the

amount and mixture of functional units, the bit-width of the datapath, the number of data

lines, the mix of long/short wire segments, and the number of registers in the datapath.

New functional units can even be created in order to target RaPiD-style architectures to

non-DSP applications, as was demonstrated by RaPiD-AES [12], which created a new set

of private-key encryption based functional units for targeting the algorithms from the

Advanced Encryption Standard competition [49]. Different algorithms will clearly

require different resource mixes, and Totem is able to provide this by modifying the

RaPiD architecture to meet the algorithm’s needs.

The basic flow of Totem-RaPiD is shown in Figure 23. The SoC designer supplies

the Architecture Generator with a domain description, including netlists and constraints.

The Architecture Generator uses this information to create an architecture description in a

hardware description language (HDL) that is sent to the VLSI Layout Generator and the

Place & Route Tool Generator. The VLSI Layout Generator creates an actual layout

mask for the described architecture and gives this layout to the designer. This layout is

what will physically be put onto the chip. The Place & Route Tool Generator creates the

32

physical design tools for the specified reconfigurable architecture. The tools created here

are responsible for mapping user designs to the architecture.

Architecture
Generator

Domain
description Constraints

architecture
description

VLSI
Layout
Generator

P & R
Tool

Generator

Layout

Masks

Layout

Masks

+

*

LUT+

*

LUT+

*

LUT

Place

Route

01101100…

Circuit

Place

Route

01101100…

Circuit

Figure 23. The Totem-RaPiD tool flow

Work in Totem-RaPiD demonstrates that domain-specific reconfigurable

architectures can be developed quickly and automatically in response to the input of a

domain specification. It is hoped that SoC designers will be more likely to utilize

reconfigurable hardware if it can be developed quickly and tailored to the specific

domain of the SoC. Totem provides these attributes.

4.2.3 Reconfigurable Chips as the SoC

A third option, and one that is becoming more and more viable, is the use of an

FPGA as a configurable-system-on-a-chip (CSoC). Instead of putting reconfigurable

hardware onto an SoC device, we are now implementing the SoC device totally in

reconfigurable hardware.

The XILINX Virtex-II Pro series of FPGAs are a good example of this configurable-

SoC idea. The Virtex-II Pro (XC2VPX70) [39] has over 74000 LUTs, two IBM

PowerPC processor blocks, over 300 18 x 18 bit multiplier blocks, over 5 megabytes of

33

block RAM, and 20 multi-gigabit transceiver blocks. Such a large, dynamic device is

capable of handling many SoC designs by itself.

Xilinx has further targeted the CSoC market with the recent introduction of their

Virtex-IV devices. Each of these devices comes tailored to a specific application domain,

including signal processing, embedded processing/high-speed connectivity, and high-

performance logic. Among the three domains there are seventeen available devices,

allowing the SoC designer to choose the product that best matches the size and resource

requirements of their design. As an example of how these devices are tailored to a

domain, the signal processing devices contain extra memory and DSP specific slices that

“support over 40 dynamically controlled operating modes including; multiplier,

multiplier-accumulator, multiplier-adder/subtractor, three input adder, barrel shifter, wide

bus multiplexers, or wide counters.” [40]

4.3 Motivating Reconfigurable Hardware in SoC

Reconfigurable hardware has many uses in the field of Systems-on-a-Chip. The

reconfigurable fabric can be used as a coprocessor to speed up computation, whether by

exploiting parallelism in code or targeting frequently executed loops. Reconfigurable

resources can also be used for supporting different standards/protocols, or for providing

easy upgradeability. The reconfigurable resources can even be used to test other parts of

the SoC device.

A coprocessor design that is targeted for SoC is described in [41]. The work targets

motion estimation, which is a complex computation that is found in video compression

algorithms such as MPEG-4. Their system is a chip that consists of a Digital Signal

Processor (DSP) and a number of reconfigurable arrays, with a bus providing

communication between them, and a controller integrating the elements together. During

runtime, the controller identifies algorithms that can be efficiently executed in hardware

and it dynamically programs the reconfigurable blocks to implement these algorithms.

The use of a coprocessor provides speed and power gains over a lone DSP, and their

34

results show that the mating of DSP and reconfigurable logic provide 4x power gains and

2x area gains over an FPGA implementation using a Xilinx Virtex-E.

Another use of reconfigurable logic in SoC is to allow conformity to different

standards. This could be especially useful in a domain like wireless communication,

where several different communication protocols are in use. Cell phones can operate

using either analog or digital service, and in the digital realm there are different

transmission technologies that a phone can use (TDMA/GSM or CDMA for example).

Because of these different technologies, a phone that works in the United States won’t

necessarily work in Europe, but a cell phone that contained a chip with reconfigurable

logic could use this logic to adjust its transmission protocols according to what is

required in the specific region. A phone could then conform to all wireless networks

without requiring hardware that is specifically dedicated to each protocol.

Along a similar line, reprogrammability allows upgrades to be made very easily. If a

chip uses a protocol that is likely to be upgraded or improved upon soon, it can be

implemented in programmable logic. As long as there is enough programmable logic

available to accommodate the new upgraded protocol, the chip will be able to

accommodate the change and continue functioning in its environment. This will save the

cost of having to fabricate a whole new device simply in order to support a change in

protocol or procedure.

Reconfigurable logic can also be included in an SoC in order to facilitate testing. As

described in [42], having an embedded FPGA on an SoC allows for built-in-self-test

(BIST) to occur without any overhead. They cite that logic BIST for an ASIC can

require a 20% area overhead and discernable performance degradation. But by

implementing the BIST logic on the FPGA during testing one can eliminate these

overheads, and once the testing is done the BIST logic can be completely removed and

replace by functions that will be useful during normal operation. The work describes

both how to test the embedded FPGA and how to then use the embedded FPGA to test

the other cores on the chip.

35

A second work also considers using reconfigurable logic to test an SoC device [43].

In this work a flexible network is integrated on the SoC, and is used to select internal

signals that are of interest for specified debug tasks. These signals are then provided to a

programmable logic core (PLC), which is used to implement debugging circuitry. Tests

can be controlled using an on-chip processor if one is present; otherwise they are

controlled using an external JTAG interface. While the testing methods proposed in this

work use the reconfigurable logic solely for debug purposes, they predict that this debug

hardware will require less than 10% of the area of the SoC device. Considering the

improved observability and controllability that this process will provide, these area costs

seem quite reasonable.

These are just a few of the possible uses of reconfigurable hardware in SoC devices.

The work described in this paper is an effort to create reconfigurable hardware

specifically for SoC by tailoring the fabric to the SoC’s specific domain, and by

automating the hardware generation process so that SoC designers don’t have to worry

about adverse effects on their design cycle.

36

5 Research Framework

This dissertation presents tools that automate the creation of domain-specific CPLDs

for System-on-a-Chip. In order to develop and evaluate these tools, we first needed to

acquire the circuits that would be used in our test domains. We also had to create the

area and delay models that would be used for evaluating our architectures. This chapter

presents these items in more detail.

5.1 Totem-PLA

In Chapter 6 we will begin our exploration of the domain-specific CPLD space by

first considering domain-specific PLAs and PALs, a project termed Totem-PLA. In order

to create these structures, we first had to acquire appropriate circuits and group them into

domains. For each of these domains, we could then create domain-specific PLAs and

PALs. Additionally, these PLA and PAL architectures had to be evaluated for

performance, which required the creation of accurate delay models.

5.1.1 Circuits

Individual PLAs and PALs are logic devices that are capable of picking up registers

only at their outputs, not internally. As such, sequential circuits cannot be mapped to

individual devices unless some sort of feedback is implemented and the arrays are

utilized for multiple passes of logic. This is not typically done, as it is much easier to

connect multiple PLAs/PALs into a CPLD structure that provides the desired behavior

with better performance. Because of this characteristic of PLAs and PALs, only

combinational circuits are used in Totem-PLA.

The first source of circuits for Totem-PLA was the ESPRESSO suite [44].

ESPRESSO is the standard two-level logic minimization algorithm in use today, and the

circuits in the suite are the same ones that the ESPRESSO algorithm used for testing. A

37

second set of circuits came from the benchmark suite compiled by the 1993 Logic

Synthesis Workshop, also called LGSynth93 (the well known MCNC benchmark circuits

also come from this suite) [45]. As a whole, these circuits are commonly used in research

on programmable logic arrays. The circuits are already in PLA format, so they need no

manipulation before being sent through the tool flow presented in Chapter 6.

Table 1 gives information on the circuits used in Totem-PLA. The function of many

of these circuits is unknown, so we were unable to group them into domains according to

their target applications. For the purposes of this work, it was sufficient to group them

into domains according to relative size, as this will be a factor in how well our

subsequent algorithms perform.

Table 1. The circuits used for Totem-PLA

Domain Circuit IN OUT PT Prog. Conn.

ti 47 72 213 2573

xparc 41 73 254 7466

b2 16 17 106 1941

shift 19 16 100 493

b10 15 11 100 1000

table5.pla 17 15 158 2501

misex3c.pla 14 14 197 1561

table3.pla 14 14 175 2644

newcpla1 9 16 38 264

tms 8 16 30 465

m2 8 16 47 641

exp 8 18 59 558

seq 41 35 336 6245

apex1 45 45 206 2842

apex3 54 50 280 3292

1

2

3

4

The table shows the input, output, product term, and programmable connection count

of each circuit used, as well as the domain groupings of the circuits. In sum-of-products

notation, each occurrence of a variable is called a literal. For a PAL, the number of

literals is equal to the number of programmable connections that are used in the array.

For a PLA, since the OR-plane is programmable, the number of programmable

connections in the array equals the number of literals plus the number of product terms.

The table lists the number of programmable connections used in a PLA implementation.

The number of programmable connections is similar to circuit size in that it will have an

38

effect on how well our algorithms perform, and it is therefore a consideration when

grouping circuits into domains.

5.1.2 Delay Model

We developed a delay model in order to evaluate the performance of the PLA and

PAL arrays: the model represents the propagation delay of a signal through the entire

array. We define the propagation delay as the time between the input reaching 50% of

VDD and the corresponding output reaching 50% of VDD: this is a common way to

measure propagation delay.

In CMOS design, a simple RC model is often used to obtain first-order estimates of

propagation delays. Using this model, a cutoff transistor is represented by an open

circuit, and an active transistor is represented by a closed switch in series with a resistor.

The delay is then based on the charging or discharging of some output capacitance in

response to a change in input voltage. Figure 24 shows this for an inverter circuit.

Rp

Rn

Cout Vout

Vin

SWp

SWn

VDD

Figure 24. The RC model for an inverter [46]

Using this RC model, the propagation delay through a transistor can be estimated by

Equation 2 (derivation found in [46]). In this equation, X is a constant, R is the resistance

of the transistor, and Cout is the output capacitance. Since we will not be changing the

sizes of any of the transistors in our arrays, the value of the resistance R is constant for a

given transistor and can be absorbed into the constant X, giving us Equation 3. As this

39

equation states, the delay through any transistor in our PLA/PAL array is estimated to be

linearly proportional to the output capacitance.

outprop CRXt **= (2)

outprop CXt *= (3)

Figure 25 highlights the worst-case propagation path in one of our pseudo-nMOS

PLAs. Notice that this figure differs from the previous pseudo-nMOS diagram, as there

are now buffers inserted to help drive the AND-plane and OR-plane. All AND-plane

array locations are laid out the same, and will contribute the same capacitance to the

corresponding signal path. This is also true of the locations in the OR-plane. We are

neglecting some very small capacitive variations that will be caused by differences in

location within the AND-plane or OR-plane, but these are small enough to be

insignificant. In Figure 25, the devices responsible for driving the signal path are

numbered so that we can examine them each individually. By summing the propagation

delays through each of these numbered items, we will obtain the propagation delay

through the PLA. There will be two propagation delays of interest, one for a rising

output and one for a falling output, and the analysis will be similar for each.

The PLA shown in Figure 25 has IN inputs, PT product terms, and OUT outputs.

The propagation delay through the input buffer, labeled 1 in the figure, is shown in

Equation 4. This buffer must drive the capacitance of one inverter (Cinv1), and PT array

locations (each Cloc). The inverter, labeled 2 in the diagram, must similarly drive PT

array locations (Equation 5). Next, either a pull-up or pull-down transistor (3a or 3b

respectively) must charge/discharge IN array locations of Cloc, plus Cbuf (Equation 6).

The buffer, labeled 4, must drive OUT array locations of Cloc (Equation 7). For the OR-

plane, again either a pull-up or pull-down transistor (5a or 5b respectively) must

charge/discharge PT array locations, plus the output inverter Cinv2 (Equation 8). The

output inverter, labeled 6, must then drive some Cout that we have fixed to a constant

value (Equation 9).

40

out0 out1

in0

VDD

VDD

GND GND

GND

GND
PP

GND

PPPP

PPPP

PP

PPPP

GND

IN Inputs OUT Outputs

P
T

 P
ro

d
u

ct
-T

er
m

s

1

2

3a 3b 4

5a

5b

6

Figure 25. The worst-case propagation path through a PLA is highlighted, and the devices driving

the path are number

locinvprop CPTXCXt *** 2111 += (4)

locprop CPTXt **32 = (5)

locbufprop CINXCXt *** 543 += (6)

locprop COUTXt **64 = (7)

locinvprop CPTXCXt *** 8275 += (8)

outprop CXt *96 = (9)

Equations 4-9 represent the propagation delays through elements in the PLA array,

and can be summed to get the propagation delay through the entire PLA. We can do

some simplification by recognizing that Cinv1, Cbuf, Cinv2, and Cout are all independent of

PLA size, and are therefore constants. Summing the equations thus gives us Equation 10.

Cloc will also be a constant value, and this allows us to rewrite Equation 10 as Equation

11. Equation 11 displays that the delay through a PLA is linearly related to the number

41

of IN, PT, and OUT values in the device. We must now simply determine the constants

in Equation 11 for the respective cases of a rising and falling output value.

locprop COUTXINXPTXXXXt *)***)((6583210 +++++= (10)

OUTXINXPTXXt prop *** 14131211 +++= (11)

In order to acquire the constants in Equation 11, we used Cadence’s layoutPlus to

create 39 PLAs with IN, PT, and OUT values that varied from 1 to 80. These PLAs were

then netlisted and simulated using hSpice, and the worst-case rise and fall times of the

arrays were acquired. Using this data, we then performed a linear fit and acquired the

constants in Equation 11. The models for the final rise- and fall-time propagation delays

for the PLAs are shown in Equations 12 and 13.

sec10*)*0.7*0.15*3.15305(12

_

−+++= OUTPTINt PLArise (12)

sec10*)*1.4*2.15*0.16345(12

_

−+++= OUTPTINt PLAfall (13)

We next compared the predicted results to the actual results we obtained in order to

obtain the “error” imposed by these models. For the rise-time model, the worst-case error

was 12.8%, the average magnitude of the error was 2.1%, and the standard deviation of

the error was 3.0%. For the fall-time model, the worst-case error was 10.2%, the average

magnitude of the error was 2.6%, and the standard deviation of the error was 3.5%. As

can be seen, these models very accurately predict the timing through our PLA arrays.

Note that these equations are only valid because we are using constant device sizes

in our PLAs. This allows us to keep our design complexity at a reasonable level, at a cost

to the performance of our architectures. A production quality flow would use logical

effort to size the devices in order to maximize performance, which would have a

complicating effect on the area and delay models, and would also require a much more

significant design effort in terms of the creation of VLSI layouts.

The simplification of fixed device sizing is valid for our work because we are

interested in comparing the performance of domain-specific architectures versus domain-

generic architectures rather than obtaining the highest performance possible. Since our

fixed device sizing will affect the domain-specific and domain-generic architectures

42

similarly, our performance comparisons will still be accurate, despite the fact that the

overall performance may be an order of magnitude away from optimal for larger

architectures. The PLAs, PALs, and CPLDs that we create all use the same fixed device

sizings.

Determination of the propagation delays for PALs was very similar to that for PLAs.

The only difference is that PALs use fixed gates for the OR-plane (they actually use

NOR-gates since we do NOR-NOR style), so we needed to remove the variable

corresponding to output count and replace it with a variable that would take into account

the largest NOR-gate used in the PAL.

We allow our PALs to use NOR-gates of any size since we implement them in

pseudo-nMOS style, and this prevents us from having long charge/discharge paths. In

the worst case, a NOR-gate has a single transistor charging or discharging the output

node. Using the RC model, the output capacitance seen by the NOR-gate is roughly

linear in the size of the gate, because the number of transistors attached to the output

node is one more than the size of the NOR-gate (and any fanout and line capacitance will

be constant for our case).

We determined the constants for our PAL devices in the same method as for our

PLA devices. We created and simulated a total of 96 PALs, varying the IN and PT

values from 1 to 80, and varying the NOR-gate size from 3 to 7. We then performed a

linear fit to this data to acquire our constants. Equations 14 and 15 model the

propagation delay for our PAL devices.

sec10*)__*0.21*3.6*1.1771(12

_

−+++= SIZENORMAXPTINt PALrise (14)

sec10*)__*9.4*1.8*8.20196(12

_

−+++= SIZENORMAXPTINt PALfall (15)

For the rise-time model, the worst-case error was 16.7%, the average magnitude of

the error was 5.1%, and the standard deviation of the error was 6.4%. For the fall-time

model, the worst-case error was 10.6%, the average error was 2.7%, and the standard

deviation of the error was 3.6%. One interesting thing to note about these equations is

43

that the rise time is heavily related to the size of the largest NOR-gate, since a wide

pseudo-nMOS NOR-gate will have a difficult time pulling up.

5.2 Totem-CPLD

In Chapter 7 we progress from domain-specific PLAs and PALs to domain-specific

CPLDs. Just as with PLAs and PALs, we first had to acquire circuits and group them

into domains. Using these domains, we created CPLD architectures that were evaluated

for performance, which required the creation of both area and delay models.

5.2.1 Circuits

We use PLAmap as the technology-mapper in our flow for creating domain-specific

CPLDs. While PLAmap’s algorithms will work on any circuit whose largest gate fits

within the specified PLA size, the program has been written such that it requires the input

circuits to be 2-bounded. We are thus restricted to the use of 2-bounded BLIF format

circuits (2-bounded means that no gates have more than 2 inputs).

Very few interesting circuits are available in BLIF format, so this necessitated some

pre-processing steps. Circuits are most easily obtained in HDL (Verilog or VHDL)

formats, so we developed a process that could take HDL files and transform them into 2-

bounded BLIF files. This process is shown in Figure 26.

The HDL files are first loaded into Altera’s Quartus 2 program. Quartus 2 performs

synthesis on the files, and dumps the designs into BLIF format (developers at Altera were

very helpful in providing this hidden functionality to us). SIS is then used to transform

the BLIF file into a 2-bounded network using the tech_decomp –a 1000 –o 1000 and

dmig –k 2 commands, followed by the sweep command.

Before the complete flow in Figure 26 was put together, we were performing

preliminary tests using some small circuits from the LGSynth93 suite. The functions of

these circuits are unknown, so we simply grouped them according to size into small,

medium, and large domains. These circuits, along with their input, output, and 2-

bounded gate count, are shown in Table 2.

44

HDL Circuit

Quartus 2

BLIF Circuit

SIS

2-bounded BLIF

Figure 26. Flow for transforming circuits to BLIF format

Once the flow shown in Figure 26 was finalized, we used it to create five domains of

circuits. Two of them, the combinational and sequential domains, consist of files

gathered from the LGSynth93 Benchmark Suite. These circuits were acquired in BLIF

format, and simply needed to be 2-bounded by SIS.

Table 2. The sample domains used for preliminary testing

small IN OUT GATES medium IN OUT GATES large IN OUT GATES

misex1.blif 8 7 60 i4.blif 192 6 246 alu4.blif 14 8 2907

ldd.blif 9 19 106 rd73.blif 7 3 457 C7552.blif 207 107 2246

i1.blif 25 13 43 apex7.blif 49 37 253 x1.blif 51 35 1888

decod.blif 5 16 50 alu2.blif 10 6 455 cordic.blif 23 2 2814

pm1.blif 16 3 73 9sym.blif 9 1 395 i10.blif 257 224 2286

rd53.blif 5 3 101 C880.blif 60 26 352 pair.blif 173 137 1525

The remaining three domains consist of floating-point, arithmetic, and encryption

files respectively. These files were accumulated from a variety of sources, including

OpenCores.org [47], from Altera software developers, as Quartus 2 megafunctions, and

from open source floating-point libraries [48]. All of these files were provided in HDL

format, and went through the entire flow shown in Figure 26 in order to be used in our

work.

The floating-point domain consists of several different units, including floating-point

multipliers, adders, and dividers. Also included is an LNS divider, an LNS multiplier,

45

LNS and floating-point square root calculators, and a floating-point to fixed-point format

converter.

The arithmetic domain consists of several different implementations of multipliers

and dividers, as well as a square root calculator and an adder/subtractor. The encryption

domain consists of the Cast, Crypton05, Magenta, Mars, Rijndael, and Twofish

encryption algorithms (all sans memories), all of which were recent competitors to

become the advanced encryption standard [49]. The domains are all summarized in

Table 3.

Table 3. The main domains used in our work

Comb IN OUT GATES REGs Seq IN OUT GATES REGs

C1355 41 32 542 0 s1196 15 14 481 18

C17 5 2 8 0 s1238 15 14 552 18

C1908 33 25 460 0 s208.1 11 1 77 8

C3540 50 22 1045 0 s344 10 11 122 15

C432 36 7 175 0 s349 10 11 125 15

C499 41 32 406 0 s382 4 6 150 21

C5315 178 123 1978 0 s400 4 6 160 21

C6288 32 32 2350 0 s420.1 19 1 165 16

C7552 207 107 2246 0 s444 4 6 173 21

C880 60 26 352 0 s526 4 6 241 21

c8 28 18 219 0 s526n 4 6 272 21

cm138a 6 8 26 0 s838.1 35 1 341 32

cm150a 21 1 46 0 s953 17 23 369 29

cm151a 12 2 23 0

cm152a 11 1 31 0

cm162a 14 5 42 0 Arith IN OUT GATES REGs

cm163a 16 5 42 0 MultAddShift 32 32 4392 0

cm42a 4 10 22 0 MultBooth2 34 33 759 37

cm82a 5 3 22 0 MultBooth3 34 33 2238 36

cm85a 11 3 44 0 MultSeq 34 33 529 53

cmb 16 4 47 0 serial_divide_uu 28 17 645 53

Adder 32 17 379 0

FP IN OUT GATES REGs AddSub 33 16 370 0

FPMult 65 35 9895 698 Mult 32 32 4361 0

fpadd 44 22 2213 0 Div 32 32 3283 0

fpmul 44 22 3687 0 AbsValue 32 32 302 0

fpdiv 44 22 5505 0

fpsqrt 22 22 2675 0

lnsdiv 44 22 340 0 Enc IN OUT GATES REGs

lnsmul 44 22 331 0 cast 298 166 12934 301

lnssqrt 21 22 24 0 crypton05 388 260 6980 261

float2fix 36 34 704 142 magenta 452 387 4876 713

fp_mul 67 57 8500 174 mars 389 172 23637 1071

fp_sub 67 35 1786 199 rijndael 388 132 11618 261

fp_add 67 35 1786 199 twofish 261 196 14784 517

In chapter 9, we will consider the question of how to intelligently add resources to

our CPLD architectures in order to support future circuits. The five main domains did

46

not provide as many data points as we desired, so we created an additional reduced

domain from each of the originals. These reduced domains are shown in Table 4.

Table 4. Additional domains used for Chapter 9 results

CombA IN OUT GATES REGs FPA IN OUT GATES REGs

cm138a 6 8 26 0 fpadd 44 22 2213 0

cm150a 21 1 46 0 fpmul 44 22 3687 0

cm151a 12 2 23 0 fpdiv 44 22 5505 0

cm152a 11 1 31 0 lnsdiv 44 22 340 0

cm162a 14 5 42 0 lnsmul 44 22 331 0

cm163a 16 5 42 0

cm42a 4 10 22 0 ArithA IN OUT GATES REGs

cm82a 5 3 22 0 MultBooth2 34 33 759 37

cm85a 11 3 44 0 MultSeq 34 33 529 53

cmb 16 4 47 0 serial_divide_uu 28 17 645 53

Adder 32 17 379 0

SeqA IN OUT GATES REGs AddSub 33 16 370 0

s344 10 11 122 15 AbsValue 32 32 302 0

s349 10 11 125 15

s382 4 6 150 21 EncA IN OUT GATES REGs

s400 4 6 160 21 cast 298 166 12934 301

s420.1 19 1 165 16 rijndael 388 132 11618 261

s444 4 6 173 21 twofish 261 196 14784 517

5.2.2 Delay Model

Figure 27 represents the style of CPLD that our Chapter 7 tool flow creates, and the

figure highlights the critical path in terms of propagation delay. The same analysis that

was used to develop the delay model for the PLAs and PALs can be used to develop the

delay model for our CPLDs. The main difference is that we now need to consider the

interconnect network, as our path through the PLA must start and end in the CPLD

interconnect, as shown in the figure.

The signal starts by being switched from the interconnect fabric into a PLA input

track. This PLA input track is connected to each horizontal track in the interconnect. In

the interconnect, there is one horizontal track for each primary input from I/O, and one

track for each PLA output (of which there are PLA_COUNT * PLA_OUT). The signal

then propagates through the PLA, as our earlier analysis showed. After this, the PLA

must drive its output signal onto a vertical output track, which sees the same capacitive

elements as the PLA input track. Finally, the signal must be driven onto the proper

47

horizontal track in the interconnect. This horizontal track is connected to every PLA

input, of which there are PLA_IN*PLA_COUNT .

PLA PLA PLA PLA

PLA PLA PLA PLA

Interconnect

Figure 27. The delay through a PLA in our CPLD structure must start and end in the interconnect

The delay model for our CPLDs needs to account for these new terms. We

developed the models in the same fashion as for the PLA and PAL arrays. We created 23

realistic CPLD architectures, varying IN from 2 to 12, PT from 2 to 36, OUT from 2 to 9,

PLA_COUNT (CT) from 2 to 9, PRIMARY_INPUT_COUNT (PI) from 2 to 18, then

performed linear fits to the results. The linear fit equations are shown in Equations 16

and 17, describing the propagation delay of a signal that starts in the interconnect,

traverses through a PLA, and returns to the interconnect.

sec10*)*)*5.32*63.8(*2.18*4.13*7.3*6.47928(12

_

−++++++= CTINOUTPIOUTPTINt CPLDrise
 (16)

sec10*)*)*8.23*5(.*4.5*7.8*5.26*0.46867(12

_

−++++++= CTINOUTPIOUTPTINt CPLDfall
 (17)

For our rise-time model, the worst-case error was 7.4%, the average magnitude of

the error was 2.0%, and the standard deviation of the error was 2.7%. For the fall-time

model, the worst-case error was 8.5%, the average magnitude of the error was 2.1%, and

the standard deviation of the error was 3.1%.

48

5.2.3 Area Model

Since we create the actual VLSI layout of the CPLDs that we specify, we can

determine the exact area required for the device. The area that we report for the CPLDs

is the area of the smallest rectangle that completely encompasses the CPLD architecture

along with any additional logic required for programming the memory elements in the

architecture.

49

6 Domain-Specific PLAs and PALs

The goal of our work is to automate the creation of domain-specific CPLD

architectures, where we define a CPLD as a collection of PLAs or PALs that are

interconnected by a crossbar. Using this simple definition, we can pinpoint two obvious

ways in which we can tailor a CPLD to a domain: by creating domain-specific

PLAs/PALs, and by creating domain-specific crossbar structures. This chapter addresses

the first of these two options, detailing our work involving the automatic creation of

domain-specific PLAs and PALs.

We are ultimately examining these PLAs and PALs in order to determine how they

can be best utilized in a domain-specific CPLD that is designed for SoC applications. To

achieve this, we decided to examine the usefulness of single PLA and PAL devices

within the same framework – by trying to tailor the arrays to a specific domain for use in

SoC. By examining the ways in which we can tailor individual PLAs/PALs to a domain,

we are providing a building block for our domain-specific CPLD explorations as well as

determining the feasibility of using PLAs and PALs as stand-alone reconfigurable

structures in SoC designs.

6.1 Tool Flow

The domain-specific PLAs/PALs are created using the flow shown in Figure 28.

The input from the customer is a specification of the target domain, containing a set of

circuits (in .pla format) that the target architecture must support. In addition to the

circuits, there may be a combination of delay or area requirements that the architecture

will need to meet.

The circuits are first processed by ESPRESSO in order to minimize the number of

product terms and literals that they contain. This allows us to implement the circuits

50

using less silicon. The resulting minimized circuits are then fed into the Architecture

Generator, which attempts to create the smallest single PLA or PAL array that is capable

of supporting every circuit. Only one circuit must be supported at any given time. The

Architecture Generator outputs information specifying the chosen PLA or PAL array, and

also provides configuration files for configuring each circuit on the specified PLA or

PAL. Additionally, any delay or area requirements provided by the customer can be

checked after the Architecture Generator creates the array, as we have accurate models

for calculating array delay and area.

Circuits

ESPRESSO

Minimized

Sum-of-Products

Circuits

Architecture

Generator

PLA/PAL

Description

Layout

Generator

Layout for

Reconfigurable

PLA/PAL

Configuration

Files

Figure 28. PLA/PAL Generation Tool Flow

After the Architecture Generator creates an array specification, the specification is

fed to the Layout Generator, which creates a full layout of the array in the native TSMC

.18µ process. This layout includes the PAL/PLA array as well as the hardware necessary

for programming the array.

51

6.2 Architecture Generator

The Architecture Generator must read in multiple circuits and create a PLA/PAL

array capable of supporting all of the circuits. The tool is written in C++.

The goal of the Architecture Generator is to map all the circuits into an array that is

of minimum size and which has as few programmable connections as are necessary. For

a PLA, minimizing the number of inputs, outputs, and product terms in the array is

actually trivial, as each of them is simply the maximum occurrence seen across the set of

circuits. For a PAL we minimize the number of inputs and outputs the same way as for a

PLA, and we minimize the number of product terms in the array by making each output

OR gate as small as is possible.

Having minimized the number of inputs, outputs, and product terms in the array, the

next goal is to minimize the number of programmable connections that are necessary in

order to support each circuit. This is where we need an intelligent algorithm.

Figure 29 displays the problem that we face when trying to minimize the number of

programmable connections that are necessary in the array. In this example we are trying

to map two circuits to the same array (for the sake of this example the circuits, grey and

black, implement the same function). A random mapping of the product terms (Figure

29, left) is shown to require 23 programmable connections, while an intelligent mapping

(Figure 29, right) is shown to require only 12 programmable connections - a 48%

reduction.

In this simple example the circuits happen to be the same, so we were able to obtain

a perfect mapping. Circuits that are not identical will also have optimal mappings, which

will result in a reduced number of programmable connections. Having fewer connections

will allow us to compact the array in order to save area, and it will lower the capacitance,

which will make our array faster.

The optimal mapping of product terms for two circuits can be found fairly

efficiently. We first apply a cost of 1 to locations where we require a programmable

connection, and a cost of 0 to locations where we do not require programmable

connections. This accurately represents our problem because more programmable

52

connections will yield a higher cost – which directly represents the higher area and delay

values that the array will produce.

F0 F1

X0 X1 X3X2

F0 F1

X0 X1 X3X2

Figure 29. The left PLA shows two circuits mapped randomly, requiring 23 programmable

connections. On the right they are mapped intelligently, requiring only 12 connections

Using this 0/1 cost model, the cost of each possible product-term matching between

circuit A and B equals the number of programmable connections required by the pairing.

We must now simply pair each of the m product terms from circuit A with a product term

in circuit B such that we minimize the overall cost. This will give a mapping that uses as

few programmable connections as possible: an optimal mapping.

This problem is equivalent to the “Optimal Assignment Problem”, and an algorithm

developed by Kuhn and Munkres can be used to find the optimal assignment in O(m
4
),

where m is the number of product terms [50] (see Appendix A for treatment). This

algorithm works for two circuits, but our problem is to map n circuits onto the array, and

n is likely to be greater than two. Our literature searches have found no algorithms that

can efficiently find the optimal matching given more than two circuits.

One possibility, however, is to perform the Kuhn/Munkres algorithm on two circuits

at a time, and to use a tree structure to combine the mappings. This can be done a couple

ways, as shown in Figure 30. In this example we show two different ways of mapping

four circuits (N0 – N3) together. The greedy nature of this formulation, however, is

likely to provide poor mappings. An example of this is shown in Figure 31, which

53

displays a poor result that is obtained by using the Kuhn/Munkres algorithm in a tree

fashion for three circuits that each have two product terms.

N0 N1

N3

N2N’

N’’

N’’’

N0 N1 N2 N3

N’ N’’

N’’’

Figure 30. Tree options for using the Kuhn/Munkres algorithm

We have chosen not to implement the Kuhn/Munkres algorithm for mapping circuits

to an array, largely because simulated annealing has proven to be very successful this

application. The algorithm’s goal is to minimize the number of programmable

connections required in the array. We define a basic “move” as being the swapping of

two product-term rows within a circuit (we will introduce more complicated moves later),

and the “cost” of a mapping is the number of programmable bits that it requires. The

traditional annealing concept of a bounding box has no notion here, as our metric is not

distance dependent, so any product term can swap with any other product term from the

same circuit in a given move. For our annealing we use the temperature schedules

published in [51].

The development of a cost function requires serious consideration, as it will be the

only way in which the annealer can measure circuit placements. The previously

mentioned cost function, in which we applied a cost of 1 to locations requiring a

programmable bit and a cost of 0 to locations not requiring a bit, initially seems

reasonable for our annealer. But looking deeper, the use of a simple 0/1 cost function

would actually hide a lot of useful information from the annealer. The degree to which a

programmable bit is required (how many circuits are using the array location) is also

useful information, as it can tell the annealer how close we are to removing a

programmable connection.

54

Circuit Product Terms

N0

N1

N2

N’

N’’

Best

Cost

6

6

8

9

13

10

N0 N1

N2N’

N’’

Figure 31. Suboptimality introduced by greedily combining the product terms in N0, N1, and N2 as

shown. The greedy use of Kuhn/Munkres requires 13 programmable locations (N’’), while the

optimal solution (Best) uses only 10

Figure 32 displays this notion. In this example, we have one programmable

connection used by two circuits and another connection used by five circuits. Both

locations require a programmable bit, but it would be much wiser to move to situation A

than to situation B, because situation A brings us closer to freeing up a connection.

The cost function that we developed captures this subtlety by adding diminishing

costs to each circuit that uses a programmable connection. If only one circuit is using a

connection the cost is 1; if two circuits use a connection it costs 1.5; three circuits is 1.75,

then 1.875, 1.9375, and so on. Referring again to Figure 32 and using this cost function,

moving to A is now a cost of -.45 (a good move) while moving to B is a cost of .19,

which is a bad move. The cost function is shown in Equation 18, where x is the number

of circuits that are using a position. As seen, each additional circuit that loads a position

55

incurs a decreasing cost, such that going from 7 to 8 is much cheaper than going from 1

to 2, for example.

2 5

1 6 3 4

A) B)

Figure 32. Moving to situation A puts us closer to removing a programmable connection

Because PALs and PLAs are structurally different, we need an annealing algorithm

that can work on both types of arrays. Additionally, we don’t know what hardware might

exist on the SoC at the periphery of our arrays. The existence of crossbars at the inputs

and outputs to our arrays would allow us to permute the input and output locations

between circuit mappings. For example, circuit1 might want the leftmost array input to

be in0 while circuit2 wants it to be in3. An external crossbar would allow us to

accommodate both circuits and decrease the area and delay of the required array, giving

the user further benefits.

)1(5.2 −−= x
COST (18)

Thus we are presented with a need for four annealing scenarios: using a PLA with

fixed I/O positions, using a PLA with variable I/O positions, using a PAL with fixed I/O

positions, and using a PAL with variable I/O positions.

The differences between the annealing scenarios are shown in Figure 33. Given a

PLA with fixed I/O positions, the only moves that we can make are swaps of product

terms within a circuit (A). Given variable I/O positions (B), however, we can also make

swaps between the inputs of a circuit or between the outputs of a circuit, which will likely

provide us with further reduction of the programmable connection cost.

56

The outputs in a PAL put restrictions on where the product terms can be located, so

the PAL with fixed I/O positions only allows product terms to be swapped within a given

output OR gate (C). In the PAL where we can vary the I/O positions, we actually order

the outputs by size (number of product terms) for each circuit such that the larger output

gates appear at the bottom. This minimizes the overall sizes of the output OR gates. We

are then permitted to make three types of moves: swapping input positions, swapping

product-term positions, and swapping output positions of equal size, as shown in (D).

f0 f1

X0 X1 X3X2 B

f0 f1

X0 X1 X3X2 A

X0 X1 X3X2

f0

f1

D

 X0 X1 X3X2

f0

f1

C

Figure 33. Allowable annealing moves for the four scenarios

For the PLA with variable I/O positions, 50% of the moves are product-term swaps

and 50% are I/O swaps, with the ratio of input to output swaps equal to the ratio of inputs

to outputs. For the PAL with variable I/O positions, 50% of the moves are product terms

and 50% are input moves, with the output moves not currently considered because early

results showed no gain from including them. The choice of performing 50% product-

term and 50% I/O moves was somewhat arbitrary: we wanted to ensure that both of these

57

dimensions were adequately explored, especially since moves in one of these dimensions

can allow new explorations in the other dimension, but providing exactly half the moves

to each space was an arbitrary decision. The results that will be presented later,

particularly in Table 6, show that our choice provides quality results.

When the Architecture Generator is done annealing, it creates a file that completely

describes the array. This file is then read by the Layout Generator so that a layout of the

array can be created. The Architecture Generator also outputs a configuration file for

each circuit so that the circuit can be implemented on the created array.

6.3 Layout Generator

The Layout Generator is responsible for taking the array description created by the

Architecture Generator and turning it into a full layout. It does this by combining

instances of pre-made layout cells in order to make a larger design. After the cells are

laid down, a compaction tool is optionally run on the design in order to create a more

compact layout. The Layout Generator runs in Cadence’s LayoutPlus environment, and

uses a SKILL routine that was written by Shawn Phillips [19]. Designs are made in the

native TSMC .18µ process.

Figure 34 shows two PLAs that our Layout Generator created: the first PLA displays

the compactness of our layouts, while the second array gives an example of the array

depopulation that our algorithm achieves. Very small arrays have been shown for clarity,

but the arrays we create are often orders of magnitude larger. Pre-made cells exist for

every part of a PLA or PAL array, including the decoder logic needed to program the

arrays. The Layout Generator simply puts together these pre-made layout pieces as

specified by the Architecture Generator, thereby creating a full layout. The input file

created by the Architecture Generator contains cell names and layout positions, and the

SKILL routine must simply iteratively place the units as it is instructed.

58

Figure 34. PLAs are created by tiling pre-made, optimized layout cells. The top PLA displays a full

array, while the bottom PLA displays the effect of array depopulation

59

Currently, the PLAs and PALs are implemented using a pseudo-nMOS logic style

(see Figure 35). PALs and PLAs are well suited to pseudo-nMOS logic because the array

locations need only consist of small pull-down transistors controlled by a programmable

bit, and only pull-up transistors are needed at the edges of the arrays. The programmable

bits (not shown) are in series with the pull-down transistors in the arrays. The pseudo-

nMOS PLAs and PALs will have small layouts, and we have found that the increased

delay that comes from using this logic style is quite acceptable.

f0 f1X0 X1X0 X1

VDD

VDD

GND GND GND

GND

GND

GND

Figure 35. A PLA created using pseudo-nMOS

6.4 Methodology

The use of PALs and PLAs restricts us to the use of .pla format circuits. The first

source of circuits is the ESPRESSO suite (the same circuits on which the ESPRESSO

algorithm was tested). A second set of circuits comes from the benchmark suite

compiled by the Logic Synthesis Workshop of 1993 (LGSynth93). As a whole, these

circuits are commonly used in research on programmable logic arrays. The circuits are

generally fairly small, but this suits our needs as we are currently only using single arrays

to support them.

Table 5 gives information on the main circuits that we used for gathering results,

including the number of inputs, outputs, product terms, and programmable connections.

In sum-of-products notation, each occurrence of a variable is called a literal. For a PAL,

the number of literals is equal to the number of programmable connections that are

60

needed in the array. For a PLA one must add the number of literals to the number of

product terms in the equations in order to obtain the total number of programmable

connections in the array. The connection counts in Table 5 are for PLA representations.

The circuits are grouped according to size, as this will be a factor in how well our

algorithms perform.

Table 5. The circuits used, with their information and groupings

Group Circuit Inputs Outputs P.Terms Connections

ti 47 72 213 2573

xparc 41 73 254 7466

b2 16 17 106 1941

shift 19 16 100 493

b10 15 11 100 1000

table5.pla 17 15 158 2501

misex3c.pla 14 14 197 1561

table3.pla 14 14 175 2644

newcpla1 9 16 38 264

tms 8 16 30 465

m2 8 16 47 641

exp 8 18 59 558

seq 41 35 336 6245

apex1 45 45 206 2842

apex3 54 50 280 3292

1

2

3

4

6.5 Results

6.5.1 Architecture Generator

The Architecture Generator uses simulated annealing to reduce the total number of

programmable bits that the resultant array will require. While tools like VPR can have

annealing results where costs are reduced by orders of magnitude, such large cost

improvements are not possible for our annealer because our cost function is very

different.

In actuality, the best cost improvement that our annealer can obtain is bounded, as

shown by Figure 36. In part A we have the worst possible placement of the two circuits,

and in part B we have the best possible placement. Notice that our cost only goes from

20 to 15, while the total number of actual bits we require goes from 20 to 10. These are

61

actually the bounds of a two circuit anneal: the cost function can never improve more

than 25% and the number of programming bits required can never improve more than

50%. Similarly, with three circuits the best improvement in cost function occurs when

three circuits are initially mapped to unique locations, but are all mapped onto the same

locations in the final placement. For this case the maximum cost function improvement

is 41.7%, while the optimal reduction in the number of programming bits is 66.7%.

Similar analysis can be performed on groups of four or more circuits. Since reducing the

number of bits is our final objective, the results that we present will show the number of

bits required for a mapping rather than the annealing cost.

The problem of determining the minimum possible programming bit cost of a circuit

mapping is very difficult. As previously mentioned, there is an O(n
4
) exact algorithm for

determining the minimum cost of a two circuit mapping, but we have chosen not

implement the exact algorithm because we will often be dealing with more than two

circuits.

A

B

Cost = 20

Bits = 20

Cost = 15

Bits = 10

Figure 36. The best possible cost reduction for two circuits is 25%, which is 50% fewer

programmable connections

Because of this, however, we do not have a method for determining the optimal bit

cost of an arbitrary mapping. But we can know the optimal mapping of a circuit mapped

with itself: it is simply the number of connections in the circuit, as all the connections

from the first circuit should map to the same locations as the connections from the second

62

circuit. This can be done with any quantity of the same circuit, and the optimal solution

will always remain the same. By doing this we can see how close our annealing

algorithms come to an optimal mapping.Table 6 shows the results obtained from applying

this self-mapping test to several circuits using each of the four algorithms: PLA-fixed,

PLA-variable, PAL-fixed, and PAL-variable. The table shows that when two circuits are

mapped with themselves using the PLA-fixed algorithm that the final mapping is always

optimal. The PLA-variable algorithm had difficulty with only one circuit, shift, which

was 15.21% from optimal. Note that for this example the random placement (not shown)

was 92.49% worse than optimal, so our algorithm still showed major gains.

Table 6. Running the algorithms on multiple occurrences of the same circuit. The "Error" column

denotes deviation from the optimal result

Alg. Circuit # Circuits Optimal Achieved Error

shift 2 493 493 0.00%

table5.pla 2 2501 2501 0.00%

newcpla1 2 264 264 0.00%

m2 2 641 641 0.00%

tms 2 465 465 0.00%

shift 2 493 568 15.21%

table5.pla 2 2501 2501 0.00%

newcpla1 2 264 264 0.00%

m2 2 641 641 0.00%

tms 2 465 465 0.00%

shift 2 399 399 0.00%

table5.pla 2 7257 7257 0.00%

newcpla1 2 325 325 0.00%

m2 2 2215 2215 0.00%

tms 2 1804 1804 0.00%

shift 2 399 452 13.28%

table5.pla 2 7257 7257 0.00%

newcpla1 2 325 325 0.00%

m2 2 2215 2215 0.00%

tms 2 1804 1804 0.00%

P
L

A
-F

ix
e

d
P

L
A

-V
a

r.
P

A
L

-F
ix

e
d

P
A

L
-V

a
r.

For the PAL-fixed algorithm, all of the tests returned an optimal result. The PAL-

variable algorithm had a similar result to the PLA-variable algorithm, as the shift circuit

was only able to get 13.28% from optimal (vs. 92.23% from optimal for a random

placement). The near optimal results shown in Table 6 give us confidence that our

63

annealing algorithms should return high quality mappings for arbitrary circuit mappings

as well.

 Shift was the only circuit in Table 6 that displayed suboptimal performance, so we

took a closer look to see what was causing this behavior. The shift circuit has 19 inputs,

16 outputs, and 100 product terms, and all of product terms follow a very regular pattern

(Figure 37 shows a representative portion of the circuit). The leftmost 3 input lines of the

circuit are heavily populated (between 42 to 48 connections per input), while the

remaining 16 input lines are all very sparsely populated, containing at most 8 connections

on a single input line. The output lines are also sparsely populated, as no output line

contains more than 8 connections (and most of them contain exactly 8 connections).

Additionally, 98 of the 100 product terms have between 2 and 4 connections on them.

Inputs Outputs

Figure 37. A representative portion of the shift circuit. The leftmost three input lines are heavily

populated, but all other lines are very sparsely populated

For the variable algorithms, the annealer begins with circuits whose product-term,

input, and output lines have been randomly permuted. In our test runs with the shift

64

circuit, the random initial state makes it nearly impossible to determine which product-

term, input, or output lines from circuit1 match which product-term, input, or output lines

from circuit2, because so many of these lines have an equivalent number of connections

on them. The only lines that are decipherable are the first three input lines, as they have

an increased number of connections on them.

I believe that the reason the shift algorithm performed suboptimally is that most of

the product-term, input, and output lines look alike. In both of the suboptimal cases in

Table 6, the second and third input lines were swapped for one of the circuits in the final

mappings. Considering that the remaining input and output lines were probably quite

randomly permuted and largely indecipherable from each other when this move took

place, it is really no surprise that reversing the second and third input lines could have

resulted in a sustainable move. Once these lines were reversed, the annealer then

optimized the rest of the product-term, input, and output lines according. The resulting

mapping displayed many product-term lines that were perfectly matched between the two

circuits, despite the fact that the specific product-term, input, and output lines were not

mapped to their perfect partners from the other circuit. I believe that the main concept to

take away from this result is that, if two circuits are so similar that many of their product-

term, input, or output lines look alike, then the resulting mapping may be slightly less

optimal than if the perfect matchings between these lines were more clear.

Another thing to notice in Table 6 is that the PAL-fixed and PAL-variable algorithms

often require many more programmable connections than the PLA algorithms on the

same circuits (see the tms and table5.pla circuits). This is because, in its default state,

ESPRESSO attempts to assign product terms to as many outputs as possible in order to

reduce the final PLA size. This results in bad behavior for a PAL, as PALs use fixed

output gates and any output sharing must be unrolled. This can cause the number of

product terms in a PAL to be many times worse than in a PLA for the same circuits.

A solution to this problem would be to run ESPRESSO on each output individually

and concatenate the results in order to come up with an efficient PAL representation. We

did not implement this in practice, however, because we knew that we were going to be

65

using PLAs (rather than PALs) in our CPLD implementations, and we chose to put our

efforts elsewhere. Any future work considering the elimination of programming points in

a PAL should perform this step, however, to obtain the best possible PAL

implementations.

Table 7 shows the results of running the PLA-fixed and PLA-variable algorithms on

the different circuit groups from Table 5. The reduction in bit cost is the difference in the

number of programmable connections needed between a random mapping of the circuits

and a mapping performed by the specified algorithm. In the table, all possible 2-circuit

mappings were run for each specific group and the results were then averaged. The same

was done for all possible 3-circuit mappings, 4-circuit, etc., up to the number of circuits

in the group.

Table 7. Average improvement in programming bits for PLA-Fixed and PLA-Variable algorithms

over random placement as a function of circuit count

Group # Circuits PLA-Fixed PLA-Var.

1 2 3.62% 14.27%

2 10.19% 14.52%

3 16.26% 22.97%

4 20.20% 28.52%

5 23.15% 20.07%

6 25.64% 35.46%

2 9.41% 16.44%

3 14.33% 25.12%

4 17.79% 29.81%

2 3.41% 19.02%

3 6.01% 28.83%

2

3

4

There are some interesting things to note from the results in Table 7. Firstly, the

PLA-variable algorithm always finds a better final mapping than the PLA-fixed

algorithm. This is to be expected, as the permuting of inputs and outputs in the PLA-

variable algorithm gives the annealer more freedom. The resulting solution space is

much larger for the variable algorithm than the fixed algorithm, and it is intuitive that the

annealer would find a better mapping given a larger search space. The practical

implications of this are that an SoC designer will acquire better area and delay results

from our reconfigurable arrays by supplying external hardware to support input and

66

output permutations – although the area and delay overhead of the crossbar would need to

be considered to see if the overall area and delay performance is still improved.

Another thing to notice is that the reduction always increases as the number of

circuits being mapped increases. This, too, is as we would expect, as adding more

circuits to a mapping would increase the amount of initial disorder, while the final

mapping is always close to optimally ordered. Note that this does not say that we end up

with fewer connections if we have more circuits, it only says that we reduce a greater

number of connections from a random mapping. The trends shown in Table 7 for the

PLA algorithms hold for the PAL algorithms as well.

Another important concept is how well circuits match each other, as higher

reductions will be possible when the circuits being mapped have similar sizes or a similar

number of connections. With regards to array size, any circuits that are far larger than

another circuit will dominate the resulting size of the PLA or PAL array, and we will be

left with a large amount of space that is used by only one or few circuits, resulting in poor

reduction. If the size of the resulting array is close to the sizes of each circuit being

mapped to it then we would expect the array to be well utilized by all circuits. This is

shown in Figure 38, which shows the bit reduction vs. array utilization. The array

utilization is defined as the percentage of the final PLA’s area that is being utilized by

both circuits. The PLA-variable algorithm was used for these results, and the circuit pairs

were chosen at random from the entire ESPRESSO and LGSynth93 benchmark suites.

Mapping circuits with a similar number of connections also results in better

reductions. If circuit A has far more connections than circuit B then the total number of

connections needed will be dominated by circuit A: even if we map all of the connections

from circuit B onto locations used by circuit A we will see a small reduction percentage

because B contained so few of the overall connections. It is intuitive that having a

similar number of connections in the circuits being mapped will allow a higher

percentage of the overall programmable connections to be removed. This is shown in

Figure 39, where we used the PLA-variable algorithm on random circuit pairs from the

67

benchmark suites. A connection count of 80% means that the smaller circuit has 80% of

the number of connections that the larger circuit has.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Array Utilization

B
it

 R
e
d

u
c
ti

o
n

Figure 38. The bit reduction obtained vs. percent array utilization for random circuit pairs

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Connection Count Agreement

B
it

 R
e
d

u
c
ti

o
n

Figure 39. The bit reduction obtained vs. connection count agreement for random circuit pairs

68

One reason that we’re trying hard to reduce the number of programmable bits is that

it will allow us to use less silicon, and this will allow us to have a smaller array. The

reduced array we create will be the same size but with empty space where programmable

bits are not needed, and running a compactor on the layout will allow us to obtain more

area savings. Additionally, the removed silicon will result in delay gains.

We used hspice to develop delay models of both the PLA and PAL arrays that we

create. Table 8 shows the delay and programmable bit results obtained for several runs of

the algorithms, along with average improvements over the full arrays and the random

arrays (circuits randomly placed and unneeded connections removed).

All algorithms show improvements in delay over the full and random placements.

Additionally, as more circuits are mapped to the array, the delay gains tend to increase.

The PLA-Variable algorithm does somewhat better than the PLA-Fixed algorithm

with respect to programmable connections, but this does not scale to delay, as the PLA-V

and PLA-F algorithms perform very similarly. This is because the algorithms have no

concept of path criticality, and the connections that they are able to remove are often

from non-critical paths. Thus, further reduction in connections does not directly lead to

further reduction in delay.

Table 8. Reductions obtained in number of programmable bits and delay for PLA/PAL algorithms

Circuits Full Rand. PLA-F PLA-V Full Rand. PLA-F PLA-V Full Rand. PAL-F PAL-V Full Rand. PAL-F PAL-V

misex3c.pla, table3.pla 8274 3675 3165 2998 3620 3089 2901 2905 19936 8611 8155 7739 8505 7218 6846 6760

alu2, f51m 2156 683 557 538 1708 1081 916 908 2220 593 544 486 1627 969 914 866

ti, xparc 42418 9796 9452 8207 5343 4578 4561 4512 269686 55957 55548 51610 33696 25908 25715 25409

b2, shift, b10 5830 2890 2510 2270 2329 2065 1999 1937 37620 10150 9627 9098 10557 6798 6581 6544

newcpla1, tms, m2 1598 1000 862 779 1268 1236 1216 1208 6984 3437 2998 2527 3993 3906 3831 3278

gary, b10, in2, dist 6664 3458 2658 2026 2760 2658 2610 2569 15010 5710 4852 3298 4800 3715 3392 3190

newcpla1, tms, m2, exp 2124 1319 1072 956 1459 1420 1323 1372 7218 3954 3276 2679 4095 4005 3940 3406

gary, shift, in2, b2, dist 7480 4410 3516 2960 2785 2727 2646 2615 39216 12941 11437 9751 10887 7794 7289 6741

Programmable Bits Delay (ps)

b2, shift, b10, table5.pla,

misex3c.pla, table3.pla
18321 6600 4914 4521 4015 3718 3009 3118

Average Improvement

Over Full
Average Improvement

Over Random

-

-

53.3% 61.4% 65.8% - 10.6%

- - 6.4% 6.5% - 5.1% 11.4%

PLA Algorithms PAL Algorithms

16.0% 16.1%

- 16.7% 25.9%

68.9% 73.5% 31.3%

Programmable Bits Delay (ps)

92796 21081 16987 13453 15692 10847 9514 8513

-

- 22.3% 26.0%- 65.0%

- 10.6% 23.1% -

The PAL-Variable algorithm performs better than the PAL-Fixed algorithm in terms

of both programmable connections and delay. This is largely because the PAL-V

algorithm is able to permute the outputs (and therefore the output OR-gates), resulting in

smaller OR-gates in many circumstances.

69

On average, the PLA-Fixed and PLA-Variable algorithms improved upon the delay

of a full PLA array by 16.0% and 16.1% respectively. The PAL-Fixed and PAL-Variable

algorithms improved upon the delay of a full PAL array by 26.0% and 31.3%

respectively. Overall, delay improvements of 5.0% to 11.4% were achieved vs. a random

placement.

6.5.2 Layout Generator

In the Architecture Generator, unneeded programmable connections are removed

from the PLA and PAL arrays that we create. This leaves the arrays full of randomly

distributed empty space that a compaction tool should be able to leverage in order to

make a smaller, more compact layout.

We took several PLA and PAL layouts and applied Cadence’s compactor to them,

but found that the compactor was unable to reduce the area of any of the arrays (and in

fact resulted in a larger area implementation in all cases). Applying the compactor to the

depopulated PLA from Figure 34 resulted in the layout shown in Figure 40.

The failure of the compactor is due to the high regularity of PLA and PAL arrays.

The compactor iteratively attempts to compact in the vertical and horizontal directions,

but PLAs and PALs have strong vertical and horizontal relationships between array

elements which prevent the compactor from making any headway.

 One interesting note is that the compacted image in Figure 40 actually does not

conform to all of the design rules for the layout process. We were unable to get

Cadence’s compactor to fully adhere to the design rules while compacting, so the

resulting compacted PLAs are probably a lower bound for what a legal compaction could

have achieved.

6.6 Conclusions

This chapter presented our work in automating the creation of domain-specific PLAs

and PALs, including an Architecture Generator that that efficiently maps circuits to a

PLA or PAL array and a Layout Generator which tiles pre-made layouts in order to create

70

a full VLSI layout of the PLA or PAL array. Delay improvements of 16% to 31% were

achieved over full arrays, but compaction was unable to provide us with any area

improvements. The largest improvements were obtained when the PLA/PAL inputs and

outputs were permutable, but an SoC designer would need to examine the overhead of

input and output crossbars to and from the arrays in order to decide whether an area or

delay gain would actually be achieved.

Figure 40. The result of applying a compactor to the depopulated PLA from Figure 34. This layout

is actually 5% larger than the uncompacted layout in Figure 34

 If the PLA or PAL array being created will only be used to implement the circuits

that were used to design the array, then depopulating the arrays is a good idea, as it will

provide delay gains over a fully populated array. If other designs are going to be

implemented on the array, however, the removal of programmable connections will make

71

it unlikely that a future circuit would successfully map to the array. Thus the removal of

programmable connections from a PLA or PAL is not suggested if unknown circuits are

going to be mapped to the array in the future.

Generally speaking, realistic PLA and PAL arrays are limited in size due to area and

delay considerations, and cannot support very large circuits. When performing large

amounts of computation, better performance can be achieved through the use of

architectures that utilize a large number of smaller functional units. These considerations

make standalone PLA or PAL arrays unattractive as reconfigurable solutions for SoC

devices.

72

7 Logic in Domain-Specific CPLDs

In the previous chapter we examined the methods in which a stand-alone PLA or

PAL can be tailored to an application domain. This chapter will build upon that work by

combining multiple of these units into a CPLD structure. The focus of this chapter is on

the CPLD logic elements, so in order to isolate the logic from routing

considerations/restrictions we will be connecting the elements through a full crossbar. In

the next chapter we will then focus on ways to modify the CPLD’s interconnect structure.

When progressing to CPLDs, we chose to make a decision between using either

PLAs or PALs as the logic element for the architectures. The majority of the tech-

mapping algorithms available for product-term architectures map to PLA arrays rather

than PAL arrays. This includes an algorithm called PLAmap (see chapter 2), which is

currently the best academic tech-mapping algorithm for PLA-based CPLDs. While it

would be possible to modify one of these PLA-based algorithms to map to PAL arrays, it

is unclear whether such an undertaking would result in architectures that are better than

what we can get using PLAs, so we determined that our time would be better spent

exploring PLA-based CPLD architectures using existing tech-mapping tools. The

decision to use PLAs has some useful side effects as well, including a smaller design

space to explore (because PALs must have their output OR-gate sizings specified), and

greater flexibility due to fully programmable OR-planes. For the rest of this dissertation

we will only be considering PLAs as the logic units in CPLDs.

In the previous chapter, the majority of our effort was put into removing unneeded

programmable connections in the arrays – a process which we ultimately concluded to be

too detrimental to the flexibility of the stand-alone devices. This is also true when we try

to combine multiple PLAs into a CPLD: reducing the connectivity in the logic elements

will make it difficult or impossible to map future designs to the architecture. Because of

73

this, removing programmable connections from the PLA arrays is no longer considered.

This chapter details the algorithms used to tailor a CPLD to an application domain by

varying the input capacity, product-term capacity, and output capacity of the PLAs within

the CPLD architecture. This represents a complete flow (from SoC designer through our

automated tools and back to the designer) for full-crossbar-based CPLDs.

7.1 Tool Flow

Figure 41 shows the tool flow used for tailoring CPLD logic to a particular

application domain. The input from the SoC designer is a specification of the target

domain, containing a set of circuits that the architecture must support. These circuits are

fed into an Architecture Generator, which will find a CPLD architecture that provides

good performance for the selected domain. The architecture description outputted by the

Architecture Generator is then sent to a Layout Generator, which creates a full VLSI

layout of the specified CPLD architecture in the TSMC .18µ process.

Circuits

Architecture Generator

Architecture

Layout Generator

Layout

Figure 41. Totem-CPLD Tool Flow

7.2 Architecture Generator

The Architecture Generator is responsible for reading in multiple circuits and finding

a CPLD architecture that supports the circuits efficiently. Search algorithms are used to

74

make calls to PLAmap, after which the results are analyzed according to area and delay

models that we have developed. The algorithms then make a decision to either make

further calls to PLAmap, or to exit and use the best CPLD architecture that has been

found. This is shown graphically in Figure 42. PLAmap assumes full connectivity

between the PLAs, and the Architecture Generator accommodates this by connecting all

the PLAs through a full crossbar.

Circuits

Search Algorithm

CPLD Specs

PLAmap

Architecture

Architecture, Stats

Figure 42. Architecture Generator

The Architecture Generator is responsible for finding a PLA size that leads to an

efficient CPLD architecture for the given domain. PLAs are specified by their number of

inputs (IN), product terms (PT), and outputs (OUT), so the search space for the

Architecture Generator is three-dimensional. Searching the entire 3-D space is not

viable, as calls to PLAmap can take on the order of hours for larger circuits, and our

ultimate goal is to find a suitable CPLD architecture in a matter of hours or days. Also,

for each PLA architecture on which we test a domain, PLAmap must be called once for

each circuit in the domain. Clearly, minimizing the number of PLAmap calls is

important to our runtime. Effective algorithms such as simulated annealing and particle

swarm require too much time for our scenario, and smart algorithms will be required if

we wish to acquire good results in the 3-D space using relatively few data points.

75

In order to gain some intuition about the search space, we ran five random

LGSynth93 circuits through PLAmap and acquired a coarse representation of the 3-D

space for each circuit. We tested PLAs with input (IN) values of 4, 8, 12, 16, 20, 24, and

28, product term (PT) values of .5*IN, 1*IN, 2*IN, 3*IN, and 4*IN, and output (OUT)

values of .25*IN, .5*IN, .75*IN, and 1*IN. All possible permutations of these values

were tested, so a total of 140 PLA sizes were tested for each circuit. The area-delay

product for each test case was acquired, and the geometric mean was calculated for each

PLA size across the five test circuits.

We chose to determine the ranges of PLA variables that perform well, rather than

simply find the best single architecture across the five test circuits. This is because we

did not want to rely too heavily on the test circuits we were using, as they might not be

very representative of the overall set of circuits that we would eventually use. In order to

do this, we took the geometric mean of all of the architectures with IN=4, for all

architectures with IN=8, and so on for each of the three PLA variables. The results of

this are shown in Table 9.

Table 9. Area-Delay results for different PLA parameters in our test circuits

IN Geo. Mean PT Geo. Mean OUT Geo. Mean

4 23.63 .5*IN 17.91 .25*IN 3.83

8 3.85 1*IN 5.10 .5*IN 4.47

12 2.58 2*IN 3.49 .75*IN 6.40

16 3.97 3*IN 3.69 1*IN 8.42

20 4.13 4*IN 4.32

24 5.62

28 7.15

As Table 9 displays, the best results were obtained for IN values of 8 to 16, for PT

values of 2*IN to 4*IN, and for OUT values of .25*IN to .75*IN. In order to hone in on

these regions, we next discounted all of the PLA architectures that used variables outside

of these ranges: so we were now only considering PLAs with IN values of 8, 12, or 16,

PT values of 2*IN, 3*IN, or 4*IN, and OUT values of .25*IN, .50*IN, or .75*IN. The

results for these ranges are shown in Table 10.

As shown in Table 10, the best two IN values for our test circuits are 12 and 8, the

best two PT values are 3*IN and 2*IN, and the best two OUT values are .5*IN and

76

.25*IN. This has provided us with a region of PLA sizes that are effective, as well as a

relationship between the IN, PT, and OUT variables that tends to provide quality results.

To generalize, a ratio of 1x to 2x to .5x for the IN, PT, and OUT variables respectively

was found to consistently provide good results. Within the scope of these ratios, CPLDs

with roughly 10-20-5 PLAs were very effective. These results will be leveraged in the

formulation of our architecture generation algorithms.

Table 10. Area-Delay results for different PLA parameters in our test circuits. Data includes only

PLAs with the PLA parameters shown in the table

IN Geo. Mean PT Geo. Mean OUT Geo. Mean

8 2.30 2*IN 1.88 .25*IN 1.84

12 1.35 3*IN 1.78 .5*IN 1.74

16 2.35 4*IN 2.18 .75*IN 2.29

Another thing that we observed from these preliminary results is that results tend to

get better as you approach the optimal point, and worse as you move away from it. This

observation led us to the concept of breaking the 3-D space into three 1-D spaces, which

can be searched sequentially and in much less time. Specifically, our algorithms will start

by searching for a good input size (while keeping a 1x-2x-.5x IN-PT-OUT relationship),

next search for a good output size, and finish by searching for a good product-term size.

Displaying the behavior of the 3-D space in a direct fashion would require four

dimensions, so we will do it by displaying the slices of the 3-D space that we see in our

algorithms. For our “large” sample domain, Figure 43 displays the 1-D space explored

by an input step, Figure 44 displays the 1-D space explored by an output step, and Figure

45 displays the 1-D space explored by a product-term step. Notice that all three of the

graphs are relatively concave, and that results do tend to get better as you approach the

optimal point in a 1-D slice of the 3-D space. But these 1-D slices (and therefore the 3-D

space) are far from being perfectly behaved, as there are many small perturbations in the

smoothness that lead to local optima. Using our method of sequential 1-D searches will

provide quality results despite the presence of these local optima, but we need to ensure

that our algorithms are robust enough that they can avoid getting trapped in the

suboptimal regions in these graphs.

77

5.00E-12

1.00E-11

1.50E-11

2.00E-11

2.50E-11

3.00E-11

3.50E-11

4.00E-11

3 8 13 18 23 28

PLA Inputs (IN - 2*IN - IN/2)

A
re

a
 *

 D
e
la

y

Figure 43. Results of a 1-D search through the PLA space for the “large” sample domain, using a

fixed ratio of 1x-2x-.5x for the IN-PT-OUT values

0.00E+00

1.00E-11

2.00E-11

3.00E-11

4.00E-11

5.00E-11

6.00E-11

7.00E-11

8.00E-11

9.00E-11

1.00E-10

0 5 10 15 20 25

PLA Outputs

A
re

a
 *

 D
e

la
y

Figure 44. Results of a 1-D search through the PLA space for the “large” sample domain, starting

from the best point in Figure 43 (18-36-9) and varying only the output value

78

5.00E-12

5.50E-12

6.00E-12

6.50E-12

7.00E-12

7.50E-12

8.00E-12

8.50E-12

9.00E-12

9.50E-12

1.00E-11

18 28 38 48 58 68 78

PLA Product Terms

A
re

a
 *

 D
e
la

y

Figure 45. Results of a 1-D search through the PLA space for the "large" sample domain, starting

from the best point in Figure 44 (18-36-7) and varying only the product term value

Our architectures are evaluated using the metric of area-delay product. When

reported for a domain, the area-delay product consists of the worst-case area

implementation in the domain (since the reconfigurable CPLD must be large enough to

hold each of the circuits), multiplied by the average case delay of the domain. The area

model for this calculation is derived from the actual sizings of the VLSI layout

components that we created, and the delay model was acquired by creating circuits in

layoutPlus and simulating them with hspice in order to acquire their worst-case delay

characteristics. This is described in more detail in Chapter 5.

7.2.1 Search Algorithms

We developed four different search algorithms with the aim of finding good CPLD

architectures: Hill Descent, Successive Refinement, Choose N Regions, and Run M

Points. All algorithms break the 3-D search space into 1-D steps by searching for good

input, output, and product-term sizes, in that order. Additionally, the input step always

uses PLAs with a 1x-2x-.5x IN-PT-OUT ratio, while the output and product-term steps

79

always alter ONLY the output and product-term values (respectively) from data point to

data point. At a high level, each of the basic search algorithms looks the same: the

pseudocode for the general search algorithm is shown in Figure 46. Note that we will

discuss some algorithm add-ons later in this section that will add some complexity to the

basic description discussed here.

Figure 46. General pseudocode for the search algorithms

7.2.1.1 Hill Descent

The Hill Descent algorithm is the first algorithm that we developed, and the most

basic. Like all of our algorithms, the 3-dimensional search space is broken into three

sequential 1-dimensional searches. The input search step starts by running PLAmap on

architectures with 10-20-5 and 12-24-6 PLAs. Whichever result is better, we continue to

take results in that direction (i.e. smaller or larger PLAs), keeping the 1x-2x-.5x ratio

intact and performing steps of IN = +/-2. We continue until a local optimum is reached,

as determined by the first result that does not improve upon the last result. At this point

we explore the PLAs with IN = +/-1 of the current local optimum. The best result is

noted, and the input value is permanently locked at this value, thus ending the input step.

This is shown graphically in Figure 47, and the pseudocode for it is shown in Figure 48.

generalSearchAlgorithm()

{

input circuits; //circuits in the domain

output in, pt, out; //the PLA values for the preferred CPLD arch.

 {in, pt, out} = runInputSearchGeneral(circuits);

{in, pt, out} = runOutputSearchGeneral(circuits, in, pt, out);

{in, pt, out} = runPTermSearchGeneral(circuits, in, pt, out);

 return {in, pt, out};

}

80

C
o

st

1612

Input Size

181410

local optimum

+/-1 of optimum

Figure 47. Hill Descent Algorithm

The output optimization step occurs next. The first data point in this step is the local

optimum from the input step, and the second data point is acquired by running PLAmap

on a PLA with one more output than the current optimum (IN and PT do not change).

Again, we descend the hill by altering OUT by +/-1 until the first result that does not

improve upon the previous result. At this point we lock the output value and proceed to

the product-term optimization step. The product-term optimization step repeats the

process from the previous two steps, varying the PT value by +/-2 until the descent stops.

At this point, the PT values +/-1 of the optimum are taken, and the best overall result seen

is the output of the algorithm. The output and product-term steps are shown in

pseudocode in Figure 49 and Figure 50 respectively.

The Hill Descent algorithm is decidedly greedy, as it always moves in the direction

of initial improvement. It also has no method for avoiding local minima, as any

minimum will stop the current step. Therefore it is somewhat difficult for this algorithm

to find architectures that vary much in size from the 10-20-5 PLA starting point, but

decent results are still obtained due to the fact that the 10-20-5 starting point is a

relatively good point in the 3-D search space.

81

Figure 48. Pseudocode for the input step of the Hill Descent algorithm

runInputSearchHD(circuits)

{

output in, pt, out; //variables for the PLA-size

 result1, result2; //objects hold the results of running PLAmap

 gettingBigger; //whether our PLAs are getting bigger or smaller

result1 = runPLAmap(circuits, 10, 20, 5);

 result2 = runPLAmap(circuits, 12, 24, 6);

 //Determine whether to search larger or smaller PLA sizes

if(result2 < result1) {

 gettingBigger = true;

 in = 14; pt = 28; out = 7;

} else {

 gettingBigger = false;

 in = 8; pt = 16; out = 4;

 result2 = result1; //keep best result in result2

}

//Continue to go until we stop improving

 while((result1 = runPLAmap(circuits, in, pt, out)) < result2) {

 result2 = result1;

 if(gettingBigger) {

 in += 2;

 } else {

 in -= 2;

 }

 pt = 2*in; out = .5*in;

 }

 //We stopped improving, so go back to the best data point

 if(gettingBigger) {

 in -= 2;

} else {

 in += 2;

}

//Run the points next to our best point

 if(result1=runPLAmap(circuits, in+1, 2*(in+1), .5*(in+1)) < result2)

 result2 = result1;

if(result1=runPLAmap(circuits, in-1, 2*(in-1), .5*(in-1)) < result2)

 result2 = result1;

//return the PLA variables of the best result

 return {result2.in(), result2.pt(), result2.out()};

}

82

Figure 49. Pseudocode for the output step of the Hill Descent algorithm

7.2.1.2 Successive Refinement

The successive refinement algorithm is intended to slowly disregard the most

unsuitable PLA architectures, thereby ultimately deciding upon a good architecture by

process of elimination. In the input optimization step (Figure 51), data points are initially

taken for PLAs with input counts ranging from 4 (lower bound) to 28 (upper bound) with

a step size of 8. So initially, 4-8-2, 12-24-6, 20-40-10, and 28-56-14 PLAs are run (part a

in Figure 51). The left and right edges are then examined, and regions that are unlikely to

runOutputSearchHD(circuits, in, pt, out)

{

 result1, result2; //objects hold the results of running PLAmap

 gettingBigger; //whether our PLAs are getting bigger or smaller

result1 = runPLAmap(circuits, in, pt, out);

 result2 = runPLAmap(circuits, in, pt, (out+1));

 //Determine whether to search larger or smaller PLA sizes

if(result2 < result1) {

 gettingBigger = true;

 out +=2;

} else {

 gettingBigger = false;

 out -= 1;

 result2 = result1; //keep best result in result2

}

//Continue to go until we stop improving

 while((result1 = runPLAmap(circuits, in, pt, out)) < result2) {

 result2 = result1;

 if(gettingBigger) {

 out += 1;

 } else {

 out -= 1;

 }

 }

 //We stopped improving, so return PLA variables of best result

 return {result2.in(), result2.pt(), result2.out()};

}

83

Figure 50. Pseudocode for the product-term step of the Hill Descent algorithm

runPTermSearchHD(circuits, in, pt, out)

{

 result1, result2; //objects hold the results of running PLAmap

 gettingBigger; //whether our PLAs are getting bigger or smaller

result1 = runPLAmap(circuits, in, pt, out);

 result2 = runPLAmap(circuits, in, pt+2, out);

 //Determine whether to search larger or smaller PLA sizes

if(result2 < result1) {

 gettingBigger = true;

 pt += 4;

} else {

 gettingBigger = false;

 pt -= 2;

 result2 = result1; //keep best result in result2

}

//Continue to go until we stop improving

 while((result1 = runPLAmap(circuits, in, pt, out)) < result2) {

 result2 = result1;

 if(gettingBigger) {

 pt += 2;

 } else {

 pt -= 2;

 }

 }

 //We stopped improving, so go back to the best data point

 if(gettingBigger) {

 pt -= 2;

} else {

 pt += 2;

}

//Run the points next to our best point

 if(result1=runPLAmap(circuits, in, pt+1, out) < result2)

 result2 = result1;

if(result1=runPLAmap(circuits, in, pt-1, out) < result2)

 result2 = result1;

//return the PLA variables of the best result

 return {result2.in(), result2.pt(), result2.out()};

}

84

provide good results are trimmed (shaded regions in part a). The step size is then halved,

and the above process is repeated (part b). This occurs until we have performed an

exploration with a step size of 1 (part d). The pseudocode for this input step is shown in

Figure 53.

C
o

st
2012

Input Size
284

C
o

st

2016
Input Size

2812 24

C
o

st

2018
Input Size

2416 22

C
o

st

2018
Input Size

2416 22

Progress

Figure 51. Input optimization step of the Successive Refinement algorithm. At each iteration,

shaded regions are trimmed (not including the point at their edge) and the step size halved

The trimming algorithm deserves some additional consideration before we introduce

the pseudocode. Because our 3-D PLA search space is generally well behaved, we

expect our 1-D searches to come up with graphs that have only one minimum, with data

progressively getting worse as we move away from the minimum. The left half of the

graph in Figure 52 displays points that are well behaved. For well behaved 1-D sections,

the trimming algorithm simply trims away points until it reaches three points that form a

85

valley, representing a minimum. These three points are not trimmed. This is shown in

the Figure 52.

Because our space isn’t always well behaved, however, we expect some regions of

the 1-D space to have local minima. We always try to keep minima away from the edges

of our current intervals by trimming only up to any three points that create a valley,

ensuring that the edge is not a local minimum. Thus, if a local minimum appears at the

very edge of our current interval of consideration, it is because a new data point has been

explored causes the edge point to be a minimum. An example of this is shown on the

right edge of Figure 52, where the second point from the right has just been explored. In

these instances, the local optimum at the interval edge gets trimmed, as shown. The only

exception to this is if the point at the interval edge is the current global minimum, in

which case we do not trim it. The pseudocode for the trimming algorithm is shown in

Figure 54, including how to deal with special cases such as ties.

C
o

st

PLA Variable

small large

trim trim

Figure 52. Trimming occurs from the edges until reaching three points that make a valley. Local

optima that appear at interval edges are trimmed unless they are the current global minimum

For the output optimization step, the IN and PT values are locked at the best result

we found in the input step. The output values are now varied according to the above

refinement algorithm, using an initial lower bound of 1, upper bound of 25, and step size

of 8. The recursion again continues until the results for a step size of 1 have been taken,

at which point we lock the IN and OUT values. The product-term optimization step next

repeats this process for PT values between 2 and 90, after which the best result is

86

returned as the best architecture found. The pseudocode for the output and product-

termssteps is shown in Figure 55 and Figure 56 respectively.

Figure 53. Pseudocode for the input step of the Successive Refinement algorithm

runInputSearchSR(circuits)

{

output in, pt, out; //variables for the PLA-size

leftEdge = 4; //variables holding the in value of the left

rightEdge = 28; //and right edges of our search window

stepSize = 8; //current stepSize for taking data

results[]; //holds my result objects

bestResult; //holds the best result at the end

 //While we haven’t completed taking data at a step size of 1

 while(stepSize > 0) {

 //For the interval and step size, add the results we don’t have

 for(i=leftEdge; i<=rightEdge; i+= stepSize) {

 results = {results, runPLAmap(circuits, i, 2*i, .5*i)};

 }

 //Trim regions of poor results from the left and right edges

 leftEdge = trimFromLeftIN(leftEdge, rightEdge, stepSize, results);

 rightEdge = trimFromRightIN(leftEdge, rightEdge, stepSize, results);

 //halve the step size

 stepSize = floor(stepSize/2);

}

//get the best result within the interval

bestResult = getBestResultInInterval(leftEdge, rightEdge, results);

//return the PLA variables of the best result

return {bestResult.in(), bestResult.pt(), bestResult.out()};

}

87

Figure 54. Pseudocode for trimming the left edges of an interval in the input step of the Successive

Refinement algorithm. The "trim from right" case is symmetrical to this. For the output and

product-term steps, simply replace all “.in()” with “.out()” or “.pt()” respectively

trimFromLeftIN(leftEdge, rightEdge, stepSize, results)

{

 newLeftEdge = leftEdge; //the new left edge we return

 bestResult = results.getBestResult(); //the best result we’ve seen

 //sort the results such that the smallest PLA is result[0]

 //we are assuming here that result[0] is the point at leftEdge

 results.sortBySize();

 i = 0; //used for walking through results

 //continue trimming until a point resists trimming, then break

 while(1) {

 //if the left point is better than the second point (rare case),

 //we trim it unless it is our best current point

 if(result[i] < result[i+1]) {

 if(result[i] == bestResult) {

 break;

 } else {

 newLeftEdge = result[i+1].in();

 }

 }

 //if the left point is worse than the second point (typical case),

 //trim it unless the three points create a valley

 else {

 if(result[i+1] < result[i+2]) {

 break;

 } else {

 newLeftEdge = result[i+1].in();

 }

 }

 i++; //increment i to consider next point for trimming

}

return newLeftEdge; //return the new left edge

}

88

Figure 55. Pseudocode for the output step of the Successive Refinement algorithm

The Successive Refinement algorithm is greedy in the way it trims sub-optimal

PLAs from the edges of its consideration. It does not trim sub-optimal regions from the

middle, however, and can therefore require more PLAmap runs than is necessary.

Typically, several local minima get explored at maximum granularity, providing a good

survey of the areas around the minima at a small cost to runtime.

7.2.1.3 Choose N Regions

The Choose N Regions algorithm basically makes a wide sweep of each 1-D space,

and then uses the results to iteratively choose N regions to explore at a finer granularity.

A region consists of the space between two data points.

runOutputSearchSR(circuits, in, pt, out)

{

leftEdge = 1; //variables holding the in value of the left

rightEdge = 25; //and right edges of our search window

stepSize = 8; //current stepSize for taking data

results[]; //holds my result objects

bestResult; //holds the best result at the end

 //While we haven’t completed taking data at a step size of 1

 while(stepSize > 0) {

 //For the interval and step size, add the results we don’t have

 for(i=leftEdge; i<=rightEdge; i+= stepSize) {

 results = {results, runPLAmap(circuits, in, pt, i)};

 }

 //Trim regions of poor results from the left and right edges

 leftEdge = trimFromLeftOUT(leftEdge, rightEdge, stepSize, results);

 rightEdge = trimFromRightOUT(leftEdge,rightEdge, stepSize, results);

 //halve the step size

 stepSize = floor(stepSize/2);

}

//get the best result within the interval

bestResult = getBestResultInInterval(leftEdge, rightEdge, results);

//return the PLA variables of the best result

return {bestResult.in(), bestResult.pt(), bestResult.out()};

}

89

Figure 56. Pseudocode for the product-term step of the Successive Refinement algorithm

Like the Successive Refinement algorithm, the input optimization step of the Choose

N Regions algorithm is initiated by taking data points for PLAs with inputs ranging from

4 to 28, but now with a step size of 4. This initially separates the 1-D space into 6

regions, where a region consists of a data point on the left side, a data point on the right

side, and the unexplored space between them (see Figure 57). The N best regions are

then chosen for further exploration (N=2 was experimentally found to be a good value).

The best regions is the region with the best primary result: min(leftResult, rightResult).

For ties, the region with the best secondary result is taken, as shown in the figure. For the

N regions we retain, we halve the step size and acquire data in the center of the chosen

runPTermSearchSR(circuits, in, pt, out)

{

leftEdge = 10; //variables holding the in value of the left

rightEdge = 90; //and right edges of our search window

stepSize = 8; //current stepSize for taking data

results[]; //holds my result objects

bestResult; //holds the best result at the end

 //While we haven’t completed taking data at a step size of 1

 while(stepSize > 0) {

 //For the interval and step size, add the results we don’t have

 for(i=leftEdge; i<=rightEdge; i+= stepSize) {

 results = {results, runPLAmap(circuits, in, i, out)};

 }

 //Trim regions of poor results from the left and right edges

 leftEdge = trimFromLeftPT(leftEdge, rightEdge, stepSize, results);

 rightEdge = trimFromRightPT(leftEdge, rightEdge, stepSize, results);

 //halve the step size

 stepSize = floor(stepSize/2);

}

//get the best result within the interval

bestResult = getBestResultInInterval(leftEdge, rightEdge, results);

//return the PLA variables of the best result

return {bestResult.in(), bestResult.pt(), bestResult.out()};

}

90

regions: this gives us 2N regions (of half the width as before), from which we will again

choose the best N regions. The whole process is iterated until N regions have been

explored with a step size of 1. The pseudocode for this input step is shown in Figure 58.

C
o

st

4 282012

Input Size

24168

A

B

C

Figure 57. Choose N Regions Algorithm. Region B is the best because it has the best primary point

(along with region A) and the best secondary point. Region A is 2nd best, region C is 3rd best

For the output optimization step, we lock the input and product-term values from the

best result found in the input step. The output value ranges from 1 to 25, with a step size

of 4, and the Choose N process is repeated. For the product-term optimization step, the

input and output values from the best result are locked, and the PT values are ranged

from 10 to 90 with a step size of 8. After the product-term step has completed its step

size of 1, the best overall result is returned. The pseudocode for the output and product-

term steps is in Figure 59 and Figure 60 respectively.

The Choose N Regions algorithm has the advantage of retaining, at all steps, N

regions of consideration. This allows the algorithm to hone into multiple local minima,

as well as throw out old minima that get replaced by new, better results.

91

Figure 58. Pseudocode for the input step of the Choose N Regions algorithm

runInputSearchCN(circuits, N)

{

results[]; //holds my result objects

tempResult; //holds a temporary result object

 region[]; //holds the region objects

 newRegion[]; //holds the newly made region objects

 //Acquire the initial data points

 for(i=4; i<=28; i+=4) {

 results = {results, runPLAmap(circuits, i, 2*i, .5*i)};

 }

 //Build up our list of initial regions

 for(i=0; i<6; i++) {

 region[i] = makeRegion(result[i], result[i+1]);

}

//Iteratively find the best N regions, until we hit granularity

while(1) {

 //Get the best N regions

 newRegion[] = getBestRegions(region, N);

 if(newRegion[0].getSpan() == 1) {

 break; //break when we’ve hit granularity

 }

 region.empty(); //empty the old list of regions

 //Build the new 2N regions from the N best regions

 for(i=0; i<N; i++) {

 tempResult = runPLAmap(circuits, newRegion[i].middle());

 region[2*i] = makeRegion(newRegion[i].leftResult(), tempResult);

 region[2*i+1] =makeRegion(tempResult, newRegion[i].rightResult());

 }

}

//Get the best result, and return the PLA variables

tempResult = getBestResult(newRegion);

return {tempResult.in(), tempResult.pt(), tempResult.out()};

}

92

Figure 59. Pseudocode for the output step of the Choose N Regions algorithm

runOutputSearchCN(circuits, in, pt, out, N)

{

results[]; //holds my result objects

tempResult; //holds a temporary result object

 region[]; //holds the region objects

 newRegion[]; //holds the newly made region objects

 //Acquire the initial data points

 for(i=1; i<=25; i+=4) {

 results = {results, runPLAmap(circuits, in, pt, i)};

 }

 //Build up our list of initial regions

 for(i=0; i<6; i++) {

 region[i] = makeRegion(result[i], result[i+1]);

}

//Iteratively find the best N regions, until we hit granularity

while(1) {

 //Get the best N regions

 newRegion[] = getBestRegions(region, N);

 if(newRegion[0].getSpan() == 1) {

 break; //break when we’ve hit granularity

 }

 region.empty(); //empty the old list of regions

 //Build the new 2N regions from the N best regions

 for(i=0; i<N; i++) {

 tempResult = runPLAmap(circuits, newRegion[i].middle());

 region[2*i] = makeRegion(newRegion[i].leftResult(), tempResult);

 region[2*i+1] =makeRegion(tempResult, newRegion[i].rightResult());

 }

}

//Get the best result, and return the PLA variables

tempResult = getBestResult(newRegion);

return {tempResult.in(), tempResult.pt(), tempResult.out()};

}

93

Figure 60. Pseudocode for the product-term step of the Choose N Regions algorithm

runPTermSearchCN(circuits, in, pt, out, N)

{

results[]; //holds my result objects

tempResult; //holds a temporary result object

 region[]; //holds the region objects

 newRegion[]; //holds the newly made region objects

 //Acquire the initial data points

 for(i=10; i<=90; i+=8) {

 results = {results, runPLAmap(circuits, in, i, out)};

 }

 //Build up our list of initial regions

 for(i=0; i<10; i++) {

 region[i] = makeRegion(result[i], result[i+1]);

}

//Iteratively find the best N regions, until we hit granularity

while(1) {

 //Get the best N regions

 newRegion[] = getBestRegions(region, N);

 if(newRegion[0].getSpan() == 1) {

 break; //break when we’ve hit granularity

 }

 region.empty(); //empty the old list of regions

 //Build the new 2N regions from the N best regions

 for(i=0; i<N; i++) {

 tempResult = runPLAmap(circuits, newRegion[i].middle());

 region[2*i] = makeRegion(newRegion[i].leftResult(), tempResult);

 region[2*i+1] =makeRegion(tempResult, newRegion[i].rightResult());

 }

}

//Get the best result, and return the PLA variables

tempResult = getBestResult(newRegion);

return {tempResult.in(), tempResult.pt(), tempResult.out()};

}

94

7.2.1.4 Run M Points

The Run M Points algorithm initiates each step by making a wide sweep of the 1-D

space, and then iteratively explores points near the best current point. For each 1-D

space, the algorithm collects data for M total points before progressing to the next step.

Experimentally, a value of M=15 was found to provide good results.

Again, the input optimization step starts by taking data points for PLAs with inputs

ranging from 4 to 28, with a step size of 4. Next, the best data point is found, and results

are taken on either side of it with the largest step size that results in unexplored data

points (options are 4, 2, and 1). This is shown in Figure 61. The process is repeated on

the best current data point, which is constantly updated, until M data points have been

explored for the input step. Once the direct neighbors of a point have been computed, it

is eliminated from further explorations; this allows other promising candidates to be

explored as well. The pseudocode for the input step is shown in Figure 62.

C
o

st

2012

Input Size

24168

best point

new exploration

4 28

Figure 61. Run M Points Algorithm. The best point is always chosen, and the regions to its left and

right are explored

For the output step, we lock the input and product-term values of the best result

found in the input step. We then range the output values from 1 to 25, with a step size of

4, and repeat the Run M Points algorithm mentioned above. The product-term step

repeats this process, with product-term values ranging from 10 to 90 and a step size of 8

(so possible step sizes are 8, 4, 2, and 1 now). These steps are shown in Figure 63 and

Figure 64.

95

Figure 62. Pseudocode for the input step of the Run M Points algorithm

Because we are exploring to either side of the best result, the range of 10 to 90 is not

strictly enforced for the product-term step, as exploration around 10 or 90 would take

data points on both sides of the given point. This concept is true for all steps in the Run

M Points algorithm. Also note that the input and output steps have the same interval size

and step size, while the product-term step has a larger interval and larger step size. The

initial sweep of the input and output spaces requires 7 data points, while the initial sweep

runInputSearchRM(circuits, M)

{

results[]; //holds my result objects

tempResult; //holds a temporary result

pointsTaken = 0; //how many points we’ve taken so far

 //Acquire the initial data points

 for(i=4; i<=28; i+=4) {

 results = {results, runPLAmap(circuits, i, 2*i, .5*i)};

 pointsTaken++;

 }

//Iteratively get the best available point, and run the points

//next to it. We will only grab results whose search

//neighborhood has not been exhausted.

while(pointsTaken <= M) {

 tempResult = getBestResultNotExhausted(results);

 if(tempResult.canRunToLeft()) {

 results = {results, runPLAmap(circuits, tempResult.runToLeft())};

 pointsTaken++;

 }

 if(tempResult.canRunToRight()) {

 results = {results, runPLAmap(circuits, tempResult.runToRight())};

 pointsTaken++;

 }

}

//Get the best result, and return the PLA variables

tempResult = getBestResult(results);

return {tempResult.in(), tempResult.pt(), tempResult.out()};

}

96

of the product-term space requires 11 data points. The product-term sweep is also

performed with a step size of 8, whereas the input and output steps use a step size of 4.

Figure 63. Pseudocode for the output step of the Run M Points algorithm

In order to account for the differences in 1-D search space, the product-term step is

allowed to explore (M+6) total data points. Of the six additional allowed data points,

four of them are to account for the larger initial sweep, and the other two are used to

runOutputSearchRM(circuits, in, pt, out, M)

{

results[]; //holds my result objects

tempResult; //holds a temporary result

pointsTaken = 0; //how many points we’ve taken so far

 //Acquire the initial data points

 for(i=1; i<=25; i+=4) {

 results = {results, runPLAmap(circuits, in, pt, i)};

 pointsTaken++;

 }

//Iteratively get the best available point, and run the points

//next to it. We will only grab results whose search

//neighborhood has not been exhausted.

while(pointsTaken <= M) {

 tempResult = getBestResultNotExhausted(results);

 if(tempResult.canRunToLeft()) {

 results = {results, runPLAmap(circuits, tempResult.runToLeft())};

 pointsTaken++;

 }

 if(tempResult.canRunToRight()) {

 results = {results, runPLAmap(circuits, tempResult.runToRight())};

 pointsTaken++;

 }

}

//Get the best result, and return the PLA variables

tempResult = getBestResult(results);

return {tempResult.in(), tempResult.pt(), tempResult.out()};

}

97

allow the algorithm to search roughly the same number of regions to the same depth as

the input and output steps.

Figure 64. Pseudocode for the product-term step of the Run M Points algorithm

While the Choose N Regions algorithm explores N possible optima in parallel, the

Run M Points algorithm can be seen as exploring the optima one at a time. It will

explore the best optimum until it runs out of granularity, then will turn to the second best

runPTermSearchRM(circuits, in, pt, out, M)

{

results[]; //holds my result objects

tempResult; //holds a temporary result

pointsTaken = 0; //how many points we’ve taken so far

 //Acquire the initial data points

 for(i=10; i<=90; i+=8) {

 results = {results, runPLAmap(circuits, in, i, out)};

 pointsTaken++;

 }

//Iteratively get the best available point, and run the points

//next to it. We will only grab results whose search

//neighborhood has not been exhausted.

//Allow it to run 6 more points than the input and output steps

//since it is searching a larger 1-D space

while(pointsTaken <= (M + 6)) {

 tempResult = getBestResultNotExhausted(results);

 if(tempResult.canRunToLeft()) {

 results = {results, runPLAmap(circuits, tempResult.runToLeft())};

 pointsTaken++;

 }

 if(tempResult.canRunToRight()) {

 results = {results, runPLAmap(circuits, tempResult.runToRight())};

 pointsTaken++;

 }

}

//Get the best result, and return the PLA variables

tempResult = getBestResult(results);

return {tempResult.in(), tempResult.pt(), tempResult.out()};

}

98

optimum, and so on. In this way it also considers multiple possible optima, as

determined by the value chosen for M.

7.2.2 Algorithm Add-Ons

The four algorithms mentioned above comprise the bulk of the Architecture

Generator, but some additional routines have been deemed necessary in order to obtain

either better or more robust results.

7.2.2.1 Radial Search

As mentioned before, the 3-D search space for this problem is relatively well shaped,

but not perfectly so. There are many local optima that might prevent the above

algorithms from finding the global optimum. One way to look outside of these local

optima is to search the 3-D space within some radius of the current optimum. So for a

radius R search around an X-Y-Z architecture, we would vary IN from X-R to X+R, PT

from Y-R to Y+R, and OUT from Z-R to Z+R, testing all architectures in this 3-D

subspace. Figure 65 shows the pseudocode for this.

We have a strict time constraint on the runtime of the Architecture Generator, so

performing the (2R+1)^3 extra PLAmap runs necessary for a radius = R search is not

feasible as part of our finalized tool flow. Given looser time constraints and moderately

sized circuits, however, small radial searches are not out of the question. Another reason

to run radial searches is that it can search a small (but good) part of the 3-D search space

exhaustively, and provide an idea of how well the basic algorithms are performing. For

this reason, we have performed radial searches of R = 3 at the conclusions of the basic

algorithms listed above.

99

Figure 65. Pseudocode for the radial search add-on

7.2.2.2 Algorithm Iteration

The Architecture Generator algorithms all assume that the PLAs should be in a 1x-

2x-.5x relationship in terms of inputs, product terms, and outputs. This is just a rough

guideline, however, and is very rarely the optimal ratio for a given domain. Thus, an

interesting idea is to run the basic algorithms and then look at the resulting PLA to obtain

a new IN-PT-OUT relationship. A second iteration of the algorithm can be run with this

new IN-PT-OUT relationship, exploring the 3-D search space using a relationship that

the domain has already been shown to prefer. For example, if the first iteration chose a

10-30-8 architecture, then the IN-PT-OUT relationship for the next iteration would be 1x-

3x-.8x. A second iteration has been carried out for all of the algorithms on each domain.

Figure 66 shows the general top level pseudocode when a second iteration is used.

runRadius(circuit, in, pt, out, R)

{

 result[]; //the result objects we obtain

 tempResult; //for returning the best result

 //Run the radial search

 for(i=(in-R); i<=(in+R); i++) {

 for(j=(pt-R); j<=(pt+R); j++) {

 for(k=(out-R); k<=(out+R); k++) {

 result = {result, runPLAmap(circuits, i, j, k)};

 }

 }

 }

 //get the best result and return it

 tempResult = getBestResult(result);

 return {tempResult.in(), tempResult.pt(), tempResult.out()};

}

100

Figure 66. Pseudocode for the top level when using a second algorithm iteration

7.2.2.3 Small PLA Inflexibility

The initial step of each algorithm locks the input value at a value that it deems to be

appropriate by testing a wide range of PLA sizes. During the course of algorithms

development, we found that domains that migrate to small input values during the input

step (i.e. a 4-8-2 PLA) are left with very little flexibility for the corresponding output and

product-term steps. The PLAs become strictly input limited, and very few ranges of

outputs or product terms will result in reasonable results. When this occurs, the final

result of the algorithm tends to be very poor.

To alleviate this, we have added a modification to all of the algorithms. Now, if the

input step chooses a PLA with 6 or fewer inputs, the output step will be run both with the

PLA found in the input step (6-12-3 or smaller) and with a 10-20-5 PLA. Both of these

branches are propagated to the product-term step, and the best overall result of the two

branches is taken. We found that this process alleviated the problem of being trapped in

small PLA sizes, and it provided better results in all applicable cases. Figure 67 shows

the general top level pseudocode that includes this add-on.

generalSearchAlgorithmWithIteration()

{

input circuits; //circuits in the domain

output in, pt, out; //the PLA values for the preferred CPLD arch.

ptRatio = 2; //The initial in-pt-out ratio is 1x-2x-.5x

outRatio = .5;

for(i=0; i<2; i++) {

 {in, pt, out} = runInputSearchGeneral(circuits, ptRatio, outRatio);

 {in, pt, out} = runOutputSearchGeneral(circuits, in, pt, out);

 {in, pt, out} = runPTermSearchGeneral(circuits, in, pt, out);

 ptRatio = (pt/in); //get the new ratios for iteration #2

 outRatio = (out/in);

 }

 return {in, pt, out};

}

101

Figure 67. Pseudocode for the top level when using the small PLA inflexibility add-on

7.3 Layout Generator

The Layout Generator is responsible for taking the CPLD architecture description

from the Architecture Generator and turning it into a full VLSI layout. It does this by

intelligently tiling pre-made, highly optimized layout cells into a full CPLD layout. The

Layout Generator runs in Cadence’s layoutPlus environment, and uses a SKILL routine

that was written by Shawn Phillips [19]. The layouts are designed in the TSMC .18µ

process.

Figure 68 displays a small CPLD that was created using the Layout Generator, along

with a floorplan that describes the different sections of the layout. For clarity’s sake, the

encoding logic required for programming the RAM bits is not shown, but would appear

along the left and bottom of the laid out CPLD. Pre-made cells exist for every part of the

CPLD: the Layout Generator simply puts together the pre-made pieces as specified by the

generalSearchAlgorithmWithSmallPLAInflexibility()

{

input circuits; //circuits in the domain

in, pt, out; //the PLA values for the preferred CPLD arch.

in2, pt2, out2; //temp PLA vars for the alternate path

 {in, pt, out} = runInputSearchGeneral(circuits);

 //run the parallel path if necessary

 if(in <= 6) {

 {in2, pt2, out2} = runOutputSearchGeneral(circuits, 10, 20, 5);

 {in2, pt2, out2} = runPTermSearchGeneral(circuits,in2, pt2, out2);

 }

{in, pt, out} = runOutputSearchGeneral(circuits, in, pt, out);

{in, pt, out} = runPTermSearchGeneral(circuits, in, pt, out);

 if(getResult(in, pt, out) < getResult(in2, pt2, out2)) {

 return {in, pt, out};

 } else {

 return {in2, pt2, out2};

}

}

102

architecture description that the Architecture Generator provides. The PLAs are

implemented in pseudo-nMOS in order to provide a compact layout.

Crossbar

Xbar2Drive Wire

Driver

AND-Plane

B
u

f

OR-

Plane

Reg

R
e

g2
X

b
a

r W
ire

Crossbar

Xbar2Drive Wire

Driver

AND-Plane

B
u

f

OR-

Plane

Reg

R
e

g2
X

b
a

r W
ire

Crossbar

Xbar2Drive Wire

Driver

AND-Plane

B
u

f

OR-

Plane

Reg

R
e

g2
X

b
a

r W
ire

Crossbar

Xbar2Drive Wire

Driver

AND-Plane

B
u

f

OR-

Plane

Reg

R
e

g2
X

b
a

r W
ire

Xbar2Drive Wire

Driver

AND-Plane

B
u

f

OR-

Plane

Reg
Xbar2Drive Wire

Driver

AND-Plane

B
u

f

OR-

Plane

Reg
Xbar2Drive Wire

Driver

AND-Plane

B
u

f

OR-

Plane

Reg
Xbar2Drive Wire

Driver

AND-Plane

B
u

f

OR-

Plane

Reg

Figure 68. The floorplan of the generated CPLD (top) [25] and the resulting layout (bottom)

103

7.4 Methodology

We will be creating CPLD architectures that are tailored to specific application

domains, but how will we know whether our architectures are actually better than more

general architectures? In order to examine this question, we will compare our domain-

specific architecture results to some general fixed architectures that we believe to be

efficient. All results will be calculated using the same delay and area models that we use

for our domain-specific architectures.

We will compare our domain-specific architectures to three different fixed

architectures, all of which will use a full crossbar to connect the PLA units in order to

conform to our area and delay models. A 1991 analysis of PLA sizing in

reprogrammable architectures by Kouloheris and El Gamal [52] showed that PLAs with

8-10 inputs, 12-13 product terms, and 3-4 outputs provide the best area performance for

island-style CPLD architectures. While we are not creating island-style CPLD

architectures, we would still like to compare our results to the PLA-size proposed in this

paper, as it will allow us to model a CPLD architecture that uses relatively small

functional units. Therefore, to model this work, the first architecture we will compare to

uses 10-12-4 PLAs.

Secondly, our own initial analysis of running several LGSynth93 circuits through

PLAmap showed that CPLDs with roughly 10-20-5 PLAs displayed good performance.

We will us this as our second fixed architecture.

Third, we will compare against a XILINX CoolRunner-like architecture. The

CoolRunner utilizes 36-48-16 PLAs for its functional units [26]: the choice of a large

PLA allows them to provide shallow mappings with predictable and fast timing

characteristics. We will therefore compare our domain-specific results to a fixed

architecture that uses these PLAs.

Note that we are NOT making a direct comparison to XILINX’s CPLDs or any other

existing CPLD architecture. By implementing everything using our own physical

layouts, we intend to remove the layout designer from the cost equation and simply show

104

the advantages obtained by using domain-specific architectures rather than implementing

designs on fixed architectures.

7.4.1 Failed PLAmap Runs

Our tool flow utilizes an executable of the PLAmap algorithm as part of the

architecture generation process. For unknown reasons, PLAmap fails to provide

mappings for some circuits on specific architectures. The failures seem to appear at

random PLA sizes, although they are sometimes grouped such that a small 3-D region

might contain several data points that are unobtainable. The executable we use provides

deterministic results, so we have no method of acquiring data for these cases.

Because our algorithms can run for hours or days, we have designed them to raise a

visual flag when a failed PLAmap run occurs, but to continue running. In this way, the

algorithm continues to accumulate useful data (all PLAmap results are stored on disc to

expedite future runs) until we notice that a failed run has occurred, at which point we can

manually intervene by stopping the algorithm.

In the case of a failed PLAmap run, we first note the circuit and CPLD architecture

of the failure. We then look at the existing PLAmap results for that circuit, and find the

result for the architecture that is closest to the size of the failed architecture, requiring that

it is no larger than the failed architecture in any PLA variable. The results of this

architecture are then substituted for the failed architecture, which allows the algorithm to

be restarted. If multiple existing results look like promising candidates, we look at their

PLA counts and depths and choose the best result in terms of PLAs*depth (to emulate

area*delay).

As an example, say that PLAmap failed to provide a result for circuit FOO on an

architecture that uses 23-45-8 PLAs. When we notice it, we stop the algorithm. We then

look at the existing results for circuit FOO, and find results for 10-20-5, 15-35-20, 20-40-

7, and 25-45-8 architectures. The closest matching result that is not larger than the failed

architecture is the 20-40-7 result, so we substitute this result for the failed 23-45-8 result.

We then restart the algorithm. In the very rare cases where we feel that there is no

105

reasonable existing result to substitute for the failed result, we run PLAmap offline in

order to obtain such a result.

While we haven’t collected data on it, we would estimate that PLAmap fails less

than 1% of the time. While this might seem insignificant, consider that a domain with 20

circuits that tests 50 architectures will result in 10 failed PLAmap runs if it fails only 1%

of the time. In hindsight, it would have been desirable to implement an automatic failure

recovery strategy for failed PLAmap runs, as the manual substitution of missing data

required significant time.

The process could have been automated by searching for all points within some

reasonable radius of the missing data point. The missing data could then be replaced by

the best existing data in this radius. Failure to find a reasonable replacement result would

cause the algorithm to start running PLAmap on architectures near the missing point, and

it would continue until a replacement result is successfully acquired.

7.5 Results

Of the four Architecture Generator algorithms, two of them, the Choose N Regions

and Run M Points algorithms, have a user-supplied variable. In the Choose N Regions

algorithm we must choose how many regions get explored each iteration, while in the

Run M Points algorithm we need to determine how many overall PLAmap runs get

executed in each of the three steps.

For the choose N Regions algorithm, the input step and output step both break the 1-

D search space into 6 regions, meaning that N can be no larger than 6. We decided to

vary N from 1 to 4 when evaluating the algorithm, as this would result in a reasonable

number of PLAmap runs. Results for running the Choose N Regions algorithm on the

small, medium, and large LGSynth93 domains are shown in Figure 69. The figure shows

that gains are achieved by increasing N from 1 to 2, but that further gains are not

achieved when setting N to 3 or 4. From this, we determined that N = 2 is a good value

to use.

106

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

N

N
o

rm
a

li
ze

d
 A

re
a

 *
 D

el
a

y

1 2 3 4 1 2 3 4 1 2 3 4

SMALL MEDIUM LARGE

Figure 69. Determination of N in Choose N Regions algorithm

For the Run M Points algorithm, we must determine how many total PLAmap runs

are performed for each step of the algorithm. Setting M to 25 would exhaustively search

the 1-D input and output spaces, while setting M to 7 would only search the top level

without making any interesting descents. We decided that setting M to 10, 15, and 20

would provide a good span of results in a reasonable number of PLAmap runs. The

results of running this test on the LGSynth93 domains are shown in Figure 70. The graph

shows that M = 15 always outperformed M = 10, and the going up to M = 20 only

provided further gains in the small domain, and those gains were very small. From these

results, we chose to use M = 15 in all future runs of the Run M Points algorithm.

Now that we have chosen the user-defined variables in the Choose N Regions and

Run M Points algorithms, all of the algorithms are fully specified. Next, we took our five

main domains and ran each of the four algorithms on each domain. These results are

shown in Table 11. All results are normalized to the values obtained for the Choose N

Regions algorithm. The columns labeled “Runs” depict how many architectures each

algorithm tested for each domain. The bottom row shows the geometric mean for

area*delay, and the average for runs.

107

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8 9 10 11

M

N
o

rm
a

li
ze

d
 A

re
a

 *
 D

el
a

y

SMALL MEDIUM LARGE

10 15 20 10 15 20 10 15 20

Figure 70. Determination of M in Run M Points algorithm

 As Table 11 shows, the Successive Refinement achieved the best results for each

of the five domains. The Choose N Regions, and Run M Points algorithms also found the

best architecture in most cases, but the simple Hill Descent algorithm only found it for

one of the five domains. With respect to runtime, the Hill Descent algorithm took 3.5x to

5.1x fewer runs than the other algorithms, while the Successive Refinement algorithm

required the most runs.

Table 11. Architecture results for domain-specific algorithms in terms of area*delay. Results are

normalized to the Choose N Regions algorithm, and geometric mean is used for area-delay results

Arch A*D Runs Arch A*D Runs Arch A*D Runs Arch A*D Runs

Combinational 12-25-4 2.16 13 12-71-4 1.00 90 12-71-4 1.00 40 12-70-4 1.01 52

Sequential 14-27-5 1.18 14 14-38-5 1.00 78 14-38-5 1.00 39 14-38-5 1.00 50

Floating Point 9-26-4 4.50 15 10-24-2 1.00 82 10-24-2 1.00 67 10-24-2 1.00 85

Arithmetic 10-22-2 1.00 14 10-22-2 1.00 76 10-22-2 1.00 67 10-22-2 1.00 85

Encryption 10-20-2 1.47 13 16-67-4 1.00 38 10-25-2 1.47 39 10-25-2 1.47 51

Geo. Mean 1.76 13.8 1.00 69.8 1.08 48.7 1.08 62.6

Succ. Refinement Choose N Regions Run M PointsHill DescentDomain

Algorithms

 The Successive Refinement, Choose N Regions, and Run M Points algorithms all

chose 4-8-2 PLAs for the floating-point and arithmetic domains in the first step, causing

them to be stuck in small PLA architectures. The “Small PLA Inflexibility” algorithm

108

add-on was applied to these instances to remove them from their sub optimal areas. This

caused a slight increase in the number of runs that were needed for these algorithms, most

notably in the Choose N Regions and Run M Points results.

 Each base algorithm was also run with the second iteration and radial search add-

ons described above. Table 12 displays the best architectures found by the base

algorithms compared to the best results found using these add-ons. If multiple algorithms

found the same result, the algorithm that used the fewest runs is reported.

Table 12. The best base algorithm results compared to best results after a second iteration, and the

best results after a radius=3 radial search. Results are normalized area*delay

Alg Arch A*D Runs Alg Arch A*D Runs Alg Arch A*D Runs

Combinational CN 12-71-4 1.00 40 CN 12-71-4 1.00 60 CN 9-72-4 0.85 377

Sequential CN 14-38-5 1.00 39 CN 14-38-4 0.99 77 CN 14-37-6 0.96 377

Floating Point CN 10-24-2 1.00 67 CN 8-18-2 0.89 105 CN 8-21-2 0.90 307

Arithmetic HD 10-22-2 1.00 14 CN 10-22-2 1.00 87 HD 7-20-2 0.82 250

Encryption SR 16-67-4 1.00 38 SR 15-68-4 0.92 75 SR 15-68-4 0.92 375

G Mean / Avg 1.00 39.6 0.96 80.8 0.89 337.2

Domain
Best Base Algorithm Best with 2nd Iteration Best with Rad.=3 Search

 As Table 12 shows, running a second iteration of the algorithms was able to

improve the area-delay product by up to .11x, with a mean area*delay gain of .04x and a

mean runtime penalty of 2.0x with respect to the base algorithms. The R=3 radial search

add-on was able to reduce the area-delay product by up to .18x, with a .11x mean

improvement. The runtime cost for the radius=3 add-on is about 8.5x when compared to

the base algorithms. Table 12 shows that running a second iteration can sometimes be as

effective as running a radial search, and it requires much less time. Also note that our

base algorithms are performing reasonably well, as in all cases they are within .18x of the

best results we can easily find.

The radial search add-on found the best architecture for 4 of the 5 domains, but at a

significant penalty to runtime. On average, it reduced the area-delay product of the base

algorithms by only 11%, but required 8.5x the number of runs. We feel that these

performance gains are generally not worth the runtime penalty, and that the radial search

add-on should only be used offline as a method of evaluating the results obtained by our

faster algorithms.

109

Running a second iteration was able to improve our performance by 4% at a 2.0x

cost to the number of runs required. Note that Table 12 shows that the Hill Descent

algorithm was the best base algorithm for the arithmetic domain: if one of the more

robust algorithms is reported for this data point, then the cost of running a second

iteration is at most 1.6x when compared to the base algorithms. This is a reasonable

consideration, as the results in Table 11 display that we would not want to use the Hill

Descent algorithm as our base algorithm.

These results show that running a second iteration can provide gains without a

drastic penalty to runtime. Closer examination is required, however, to determine which

of the algorithms performs best with a second iteration. Table 13 displays the results

obtained by running the different search algorithms with a second iteration.

Table 13 shows that, when run with a second iteration, the Successive Refinement

algorithm provides slightly better results than the Choose N Regions and Run M Points

algorithms. The simpler Hill Descent algorithm is again shown to provide poor results

compared to the other algorithms, although it does find them quickly. If only looking at

Table 12 and Table 13, we would probably choose the Successive Refinement algorithm

with a second iteration as our chosen algorithm. We happen to have data from earlier

experimentation, however, which provides slightly different insights.

Table 13. The search algorithms run with a second iteration. Results are normalized area*delay

Arch A*D Runs Arch A*D Runs Arch A*D Runs Arch A*D Runs

Combinational 12-29-4 1.74 24 12-71-4 1.00 108 12-71-4 1.00 60 12-70-4 1.01 80

Sequential 14-27-5 1.19 21 14-38-4 1.00 151 14-38-4 1.00 77 14-38-4 1.00 99

Floating Point 9-28-5 3.86 25 8-18-2 1.00 116 8-18-2 1.00 105 8-18-2 1.00 135

Arithmetic 10-22-2 1.00 20 10-22-2 1.00 92 10-22-2 1.00 87 10-22-2 1.00 114

Encryption 8-17-2 1.16 25 15-68-4 1.00 75 8-32-2 1.15 78 8-32-2 1.15 101

Geo. Mean 1.56 22.9 1.00 105.5 1.03 80.1 1.03 104.2

Domain

Algorithms Run With Second Iteration

Hill Descent Succ. Refinement Choose N Regions Run M Points

Prior to the finalization of our area and delay models, similar data to that in Table 11,

Table 12, and Table 13 was compiled using slightly less mature models. This earlier data

similarly showed that running a second iteration was a good idea, as it provided 19%

performance improvement with respect to the base algorithms. Table 14 shows the

110

performance of each of the algorithms when run with a second iteration, using these

earlier area and delay models.

Table 14. The search algorithms run with a second iteration, results from old area and delay models.

Results are normalized area*delay

Arch A*D Runs Arch A*D Runs Arch A*D Runs Arch A*D Runs

Combinational 12-29-4 2.37 24 12-71-4 1.27 109 12-71-4 1.27 60 12-70-4 1.00 99

Sequential 14-27-5 1.19 16 14-38-4 1.19 92 14-38-4 1.19 54 14-38-4 1.00 97

Floating Point 9-28-5 2.97 21 8-18-2 1.00 94 8-18-2 1.00 104 8-18-2 1.00 134

Arithmetic 10-22-2 1.10 18 10-22-2 1.10 69 10-22-2 1.10 76 10-22-2 1.00 133

Encryption 8-17-2 1.43 20 15-68-4 1.00 117 8-32-2 1.00 78 8-32-2 1.00 116

Geo. Mean 1.68 19.6 1.11 94.7 1.11 72.5 1.00 114.7

Domain

Algorithms Run With Second Iteration, Old Models

Hill Descent Succ. Refinement Choose N Regions Run M Points

We again see that the Successive Refinement, Choose N Regions, and Run M Points

algorithms all worked well when run with a second iteration. Using this old model,

however, it was the Run M Points algorithm that was clearly better than any of the other

algorithms. In fact, the architectures shown in Table 14 for the Run M Points algorithm

were the best architectures we found for each domain: even running radial searches was

unable to improve upon these architectures.

When considering the results in both Table 13 and Table 14, the Run M Points

algorithm with a second iteration is shown to be our best algorithm. It provided the best

architectures when considered across both the new and old sets of area/delay models, and

requires only slightly more runs than the Successive Refinement and Choose N Regions

algorithms.

But is it fair to consider results that were obtained from using slightly less mature

area and delay models? We think that it is quite reasonable, and in fact that it is a good

idea. Our work provides guidelines for how to create domain-specific CPLD

architectures, but the methods that we employ are certainly not the only methods

available. For example, if our architectures used a CMOS design style rather than a

pseudo-nMOS style, it would result in very different area and delay models. We would

want our chosen search algorithm to work well on these new models as well as the

current models. As such, it makes sense that we would consider multiple sets of

area/delay models when choosing the best search algorithm. We have determined that

111

the Run M Points algorithm with a second iteration is our best algorithm, so all future

results will show architectures that were obtained using this algorithm.

7.5.1 Benefits of Domain-Specific Devices

For a given domain, our tool flow provides us with an architecture that efficiently

supports the circuits in the domain. This has provided us with architectures for five

different domains, but how do these domain-specific architectures compare to some

representative fixed architectures? Table 15 compares the performance of our domain-

specific architectures with the three representative fixed architectures mentioned above.

Table 15. Performance of domain-specific architectures and fixed architectures. Results are

normalized area*delay

Xilinx El Gamal Observed

36-48-16 10-12-4 10-20-5

Arch A*D A*D A*D A*D

Combinational 12-70-4 1.00 9.40 9.46 4.10

Sequential 14-38-4 1.00 2.28 2.67 2.35

Floating Point 8-18-2 1.00 31.60 14.58 9.00

Arithmetic 10-22-2 1.00 46.49 46.71 18.73

Encryption 8-32-2 1.00 7.43 4.28 3.22

Geo. Mean 1.00 11.85 9.41 5.55

Domain
Domain Specific

From Table 15 it is apparent that creating domain-specific CPLD architectures is a

win over using fixed architectures. For each of the five domains that we considered, the

algorithms that we developed always came up with a better CPLD architecture than any

of the fixed architectures. Considering the mean performance, the fixed architectures

perform 5.6x to 11.9x worse than our domain-specific architectures.

The results shown in Table 15 for implementing the floating point and arithmetic

domains on fixed architectures are surprisingly bad, and require some explanation. The

mappings of the three largest circuits from the floating-point domain are shown in Table

16. On the Xilinx architecture, the mappings are slightly better than the domain-specific

mappings in terms of depth and number of PLAs, but the performance degradation comes

from the fact that the Xilinx architecture uses so many PLA outputs, as the size of a

CPLD scales quadratically with respect to PLA outputs. The El Gamal and Observed

architectures also suffer from the area required by larger PLA output counts, and they

112

require more PLAs than the domain-specific mapping: CPLDs also scale quadratically

with respect to the number of PLAs in an architecture.

Table 16. Mapping results for the three largest circuits in the floating-point domain

Circuit PLAs Depth PLAs Depth PLAs Depth PLAs Depth

FPMult 672 39 464 18 1088 25 762 20

fp_mul 571 50 456 26 1194 32 954 27

fpdiv 423 102 197 53 503 80 440 72

Xilinx El Gamal Observed

8-18-2 36-48-16 10-12-4 10-20-5

Domain-Specific

Table 17 displays the mappings of the four largest circuits in the arithmetic domain.

The poor results achieved by the Xilinx architecture are again due to the large number of

PLA outputs in this architecture, as the Xilinx mappings are similar enough to the

domain-specific mappings that they do not overcome this area penalty. The El Gamal

and Observed architectures again suffer penalties from both increased PLA output counts,

and from an increased number of PLAs in the architecture.

Table 17. Mapping results for the four largest circuits in the arithmetic domain

Circuit PLAs Depth PLAs Depth PLAs Depth PLAs Depth

Div 149 136 174 64 394 84 383 70

MultAddShift 196 29 247 26 854 29 590 29

Mult 276 34 235 19 598 23 540 19

MultBooth3 235 11 93 7 208 10 186 8

Xilinx El Gamal Observed

10-22-2 36-48-16 10-12-4 10-20-5

Domain-Specific

Examining these results, it is likely that the fixed architectures in Table 15 are not

the best possible fixed architectures for our set of domains. In fact, we have already

found the architectures that each domain prefers, so it makes sense that these

architectures might work well as fixed architectures. Table 18 shows how these new

fixed architectures compare to the architectures obtained using our chosen algorithm.

Our domain-specific architecture outperforms the new fixed architectures by 1.8x to 2.5x,

even though we have hand selected the fixed architectures to go well with our domains.

This shows that even if you manage to pick the best possible domain-generic fixed

architecture, there is a bound as to how close you can come to domain-specific results –

in this case, domain-specific beats fixed architectures by 1.8x.

113

Table 18. Results of running each domain on the best domain-specific architectures found. Results

are normalized area*delay

Domain Best 12-70-4 14-38-4 8-18-2 10-22-2 8-32-2

Combinational 1.00 1.00 2.74 3.61 4.38 2.83

Sequential 1.00 2.22 1.00 3.61 2.85 4.13

Floating Point 1.00 3.90 4.24 1.00 1.14 1.02

Arithmetic 1.00 6.21 6.80 1.82 1.00 1.80

Encryption 1.00 1.20 1.28 1.01 1.39 1.00

Geo. Mean 1.00 2.30 2.52 1.89 1.82 1.85

As a final test, we combined the circuits from our five domains into one domain, and

ran the architecture generation flow on this new “consensus” domain. While the domain-

generic architectures found in Table 18 were found to be effective at supporting specific

domains, the architecture that we find for this consensus domain should be effective at

supporting all of our domains. Table 19 shows the results of implementing each of our

five domains on the architecture found for the consensus domain, which uses 13-79-4

PLAs, and compares these results to the domain-specific results.

Table 19. Results of running each domain on the architecture found for the "consensus" domain.

Results are normalized area*delay

Domain Best Alg 13-79-4

Combinational 1.00 1.09

Sequential 1.00 2.04

Floating Point 1.00 5.18

Arithmetic 1.00 3.49

Encryption 1.00 0.96

Geo. Mean 1.00 2.07

As Table 19 displays, using this new consensus architecture as a fixed architecture is

actually less effective than some of the architectures we used in Table 18. The circuits in

the encryption domain dominate the size of this new consensus domain, and this has

caused the consensus architecture to support the encryption domain very effectively

(actually better than our domain-specific architecture), while sacrificing performance on

the sequential, floating-point, and arithmetic domains. This data is again showing that,

even when the best domain-generic architectures are chosen, they will still perform about

2x worse than domain-specific architectures in terms of area-delay product.

114

7.5.2 Using Other Evaluation Metrics

We have been running our algorithms with the goal of finding a domain-specific

architecture with a minimal area-delay product. While this is a reasonable metric, it is

also reasonable to believe that many SoC designers will want to optimize for only area, or

only delay. In order to address this issue, we have run our chosen algorithm in both area

driven and delay driven modes. Table 20 displays the results of running our chosen

algorithm on each of our five domains for area-delay driven, area driven, and delay

driven modes. All results are normalized to the area-delay driven results.

Table 20. Results of running our chosen algorithm in area-delay driven, area driven, and delay

driven modes for full-crossbar based CPLDs. Results are normalized to area-delay driven values

Full

XBAR Area Delay A*D Area Delay A*D Area Delay A*D

comb 1.00 1.00 1.00 0.97 1.01 0.97 1.12 0.94 1.05

seq 1.00 1.00 1.00 1.06 0.95 1.01 1.18 0.92 1.09

fp 1.00 1.00 1.00 1.00 1.01 1.00 1.55 0.97 1.50

arith 1.00 1.00 1.00 0.99 1.04 1.03 3.52 0.91 3.18

enc 1.00 1.00 1.00 0.99 1.01 1.00 3.41 0.58 1.98

GeoMean 1.00 1.00 1.00 1.00 1.00 1.00 1.90 0.85 1.61

Area*Delay Driven Area Driven Delay Driven

As Table 20 displays, running our algorithm in area driven mode does not have a

very large effect on our results, while using delay driven mode gives us noticeably better

delay characteristics at a severe cost to area. PLAmap primarily attempts to minimize

mapping depth (delay), and then applies heuristics that are used to minimize the area of

the mapping. Because of this, PLAmap always does a relatively good job of minimizing

delay, but often fails to minimize the area effectively. This is shown most clearly in the

delay driven results, where the delay characteristics of the architecture have been

optimized so effectively that the heuristics applied for area improvements were largely

ineffective. Both the area-delay driven and area driven results are sensitive to the area of

the architecture, and so they both tend toward architectures that are slightly less delay

optimized but which are successfully able to apply the area minimization heuristics. This

leads the area-delay and area driven results to be similar, as they are both largely driven

by the success of the area minimization heuristics.

Table 20 shows that, for full-crossbar based CPLD architectures, using a delay

driven metric can provide architectures that use .85x the delay and 1.90x the area of

115

results obtained using area-delay product as the metric. The table also shows that

architectures obtained using an area driven metric are basically equivalent to the

architectures obtained using area-delay product.

7.6 Conclusions

This chapter presented a tool flow aimed at tailoring the PLAs in a CPLD to specific

application domains. This included an Architecture Generator that could use any of four

search algorithms to find a good PLA-size for the architecture, as well as a Layout

Generator which tiles pre-made layouts into a full layout.

When compared to realistic fixed CPLD architectures, the domain-specific

architectures perform 5.6x to 11.9x better in terms of area-delay product. Even when we

hand picked the fixed architectures to be those that were found by our algorithms, our

domain-specific architectures still performed at least 1.8x better than fixed architectures.

Additionally, iterating the algorithms and performing radial searches around the chosen

architectural points show that our algorithms are finding architectures that are within .18x

of the best architectures that we can easily find.

We also examined using either area or delay as the evaluation metric, instead of area-

delay product. Using an area driven mode provided near equivalent results to using area-

delay product, but using a delay driven mode we were able to reduce the delay by 15%

when compared to area-delay driven results. This is because we were able to find

architectures that PLAmap successfully optimized for depth, at a slight cost to area.

Running the Run M Points algorithm with a second iteration provided the best results

in terms of performance, at only a small increase to runtime over other algorithms. The

Run M Points algorithm has thus been chosen as the preferred method for tailoring CPLD

logic to an application domain, and will be used exclusively for future explorations.

116

8 Routing in Domain-Specific CPLDs

In the previous chapter we presented a tool flow that creates crossbar-based CPLDs

that are tailored to specific application domains. Those CPLDs are interconnected using

a crossbar interconnect that is fully populated with switches. Full crossbars require a

large amount of area, since their size scales quadratically with respect to PLA count.

This area inflation is one reason that commercial CPLDs don’t come in very large sizes.

The area effects of using crossbar-based CPLDs can be seen in Table 21. Table 21

lists the areas of the domain-specific architectures that we found in chapter 7 normalized

to the sequential domain, along with the percentage of area devoted to the CPLD’s

routing resources. As the table shows, the routing area is reasonable for quite small

architectures (only 61.5% for the sequential domain), but as architectures get larger the

percentage of the area that is used for routing becomes prohibitively large. For the

encryption domain, the routing resources utilize 75x more area than the logic resources.

Table 21. Area required by routing resources for crossbar-based CPLDs from the previous chapter

Domain Normalized Area Routing Area

Sequential 1.00 61.5%

Arithmetic 21.03 93.0%

Combinational 22.12 84.5%

Floating Point 97.26 96.8%

Encryption 1006.85 98.7%

This chapter presents a method for reducing the size of the CPLD’s routing structure

by reducing the number of switches in the crossbars. For the remainder of this section,

we will define a crossbar as the connection matrix that provides connectivity between the

general interconnect wires and the input wires of a PLA. Figure 71 displays this

definition, showing a full crossbar on the left and a sparse crossbar on the right. Note

that this crossbar is repeated for each PLA in the CPLD architecture. In this section we

will be creating sparse crossbars for our CPLDs, which will provide area and delay gains

117

over full crossbars, but will also require the development of techniques to ensure

routability.

PLA1 PLA2 PLA3PLA1 PLA2 PLA3

Full Crossbar Sparse Crossbar

Figure 71. A full crossbar (left) and a sparse crossbar (right). Note that the crossbar gets repeated

for each PLA in the CPLD architecture

8.1 Crossbars

The advantage of using a full crossbar is that it provides full connectivity between

input and output wires, which makes the routing of signals through the crossbar trivial.

As Figure 72 shows, each output wire in a full crossbar can be connected to any input

wire, and multiple outputs can connect to the same input.

Inputs

Outputs

Figure 72. In a full crossbar, output lines can be connected to any input line

118

A simple full crossbar with n inputs and m outputs requires n*m switches. The

capacity of a crossbar, c, is the largest number of inputs in a crossbar that are always

routable to outputs. A full crossbar provides the maximum capacity possible, as c=m.

In the CPLD architectures that we create, the outputs of the crossbars are directly

connected to PLA inputs. One characteristic of PLAs is that their inputs are permutable,

so it doesn’t matter which input any given signal arrives on, just that it arrives. This

means that full crossbars provide more flexibility than we need, as our only requirement

is that the crossbars provide full capacity.

Crossbars can provide full capacity without requiring switches in every location.

This can be done with a “minimal full-capacity” (abbreviated minimal from here forward)

crossbar, like that shown in Figure 73. In the figure, the top 4 input wires can only be

switched onto a specific output wire, while the remaining input wires are fully connected

to the outputs. This style can be generalized for a crossbar with n inputs and m outputs

by saying that each of the top m inputs can be switched onto a specific output wire, while

the bottom (n-m) inputs will be fully connected to the outputs.

Inputs

Outputs

Figure 73. A minimal crossbar that provides full capacity

The number of switches required in a minimal crossbar is shown in Equation 19

(REF). As can be seen from the equation, if nm ≈ then p will be relatively small. For

crossbars that are nearly square, therefore, it is efficient to provide full connectivity using

one of these minimal crossbars. In our crossbars, however, we have a situation where

n>>m. Plugging this into Equation 19, it is apparent that the number of switches in a

119

minimal crossbar approaches n*m, and there is very little advantage gained from using

the minimal crossbar.

mmnp *)1(+−= (19)

It is clear that we will not be able to decrease the sizes of our crossbars while

maintaining full capacity. Crossbars that do not provide full capacity are called “sparse”

crossbars.

8.2 Sparse-Crossbar Generation

When creating sparse crossbars, the objective is to maximize the routability of the

crossbar for a given switch count, where routability is defined as the likelihood that an

arbitrarily chosen subset of inputs can be connected to outputs. While switch placement

is deterministic for crossbars that provide full capacity, it is not obvious how the switches

should be placed in a sparse crossbar in order to maximize routability. This problem,

though, has been effectively addressed by a sparse-crossbar-generation tool created by

Lemieux and Lewis [53].

The switch placement problem can be generalized by saying that subsets of input

wires should span as many output wires as possible in order to provide maximum

routability. So for a given set of input wires, we want to maximize the number of output

wires that can be reached by those input wires. This makes intuitive sense, as providing a

larger set of reachable outputs should make it more likely that each input can be assigned

to a unique output. Figure 74 gives an example of this. In the left crossbar, every subset

of four input wires spans all four output wires, and it turns out that this crossbar provides

a capacity of 4. In the crossbar on the right, the subset {a, b, e, f} spans only three output

wires, and therefore cannot be routed. This crossbar only has a capacity of 3.

Equation 20 displays how many input wire subsets exist for a crossbar with n inputs.

Clearly, we cannot maximize the span of this many subsets if n is even marginally large.

Because of this, we will simplify the problem to only considering input wire pairs. This

is a reasonable simplification to make, because we can find the span of large input groups

simply by unioning the spans of smaller input groups. An example of this is shown in

120

Equation 21. By spreading out the switches between every pair of input wires we will

maximize our routability, while only having to consider O(n
2
) subsets.

a

b

c

d

e

f

a

b

c

d

e

f

Figure 74. The crossbar on the left provides c=4, while the crossbar on the right only provides c=3.

Only one switch is in a different location on the right (on wire f), but it reduces the number of

outputs that are reachable by the input subset {a, b, e, f}

∑
=

n

l

l

n
C

2

 (20)

},{},{},,,{ dcoutputSpanbaoutputSpandcbaoutputSpan ∪= (21)

Spreading out the switches between every pair of input wires is very similar to the

strategy used for creating communication codes. In fact, our problem can be mapped into

the communication code problem very easily. The locations where switches are placed

on an input wire can be represented by a vector of 1s (where switches are present) and 0s

(not present). Each vector is of length m, and there are n such vectors. An example of

this is shown in Figure 75.

6 Inputs

4 Outputs

1000

0100

0010

0001

1111

1111

Figure 75. Representing the input lines as vectors of 1s and 0s

121

When represented in this fashion, spreading out the switches between two input

wires is the same as maximizing the Hamming distance between the wires. The

Hamming distance between two vectors is the sum of the bitwise XOR of the vectors.

Figure 76 gives some examples of switch placements, their vector representations, and

the resulting hamming distances. It is clear from the figure that the hamming distance

increases as the switches are spread out among the output wires.

1001

0110
4

1010

0110
2

0110

0110
0

1010

0111
3

Crossbar Vectors
Hamming

Distance

Figure 76. Some crossbars, their vector representations, and their hamming distances

Maximizing the minimum Hamming distance between vectors is a common code

design technique, and the cost function in Equation 22 is one that has been used in

practice [54]. In the equation, bvx and bvy represent the bit vectors for input rows x and y

respectively. An efficient switch placement can be found by minimizing this cost

function across all the vectors representing the crossbar input lines.

∑
≠∀

=
yxyx yx bvbvtanceHammingDis

ementCostSwitchPlac
|,

2),(

1
 (22)

One thing to note about Equation 22 is that, if the hamming distance of two vectors

is 0, then the cost is undefined. This works fine for communication codes, as it is illegal

to have two vectors with a hamming distance of 0 because the codes would be

122

indistinguishable from each other. In our application, however, two input lines can have

the same switch patterns and still be useful, so we must define a cost for this situation.

Moving from a hamming distance of 2 to 1 causes the cost to change by a factor of 4

(from ¼ to 1), so we decided that it would be reasonable for a move from 1 to 0 to change

the cost function by the same factor. Vectors with a hamming distance of 0 therefore

incur a cost of 4.

This rest of this subsection will introduce our implementation of the sparse-crossbar-

generation algorithm from [53]. The goal of the algorithm is to create a sparse crossbar

of maximum routability given the values n (inputs), m (outputs), and p (switches). The

top level pseudocode for this process is shown in Figure 77.

Figure 77. Top level pseudocode for the switch placement algorithm

8.2.1 Initial Switch Placement

To initiate the algorithm, p switches must be placed such that they are evenly

distributed both on the input and output lines. We define the number of switches

connected to an input wire is its fanout, and the number of switches connected to an

output wire is its fanin. To be evenly distributed, we require that the fanout of any input

line differ from any other input line by no more than 1. Similarly, we require that the

fanin of any output line differ from any other output line by no more than 1. Requiring a

switchPlacementAlgorithm()

{

input n, m, p; //crossbar has n inputs, m outputs, p switches

 output sw[n][m]; //switch placement matrix

 initialSwitchPlacement(n, m, p, sw);

 makeSwitchMoves(n, m, sw);

 smoothSwitches(n, m, p, sw)

 return sw

}

123

smooth switch distribution will help us obtain good routability, as each line will be

roughly as connected as any other line. The initial switch placement is performed

deterministically, using the algorithm in Figure 78.

Figure 78. Pseudocode for initial switch placement algorithm

initialSwitchPlacement(n, m, p, sw) // n inputs, m outputs, p switches

{

fanin = ceil(p/m);

switches_left = p;

switches_placed_on_output = 0;

current_in = 0;

current_out = 0;

 //initialize switch matrix to 0

 for(i=0; i<n; i++) {

 for(j=0; j<m; j++) {

 sw[i][j] = 0;

 }

 }

 //place switches in matrix such that they are balanced

 //across inputs and outputs respectively

 while(switches_left > 0) {

 sw[current_in][current_out] = 1;

 switches_left--;

//cycle through inputs, top to bottom

 if(++current_in == n) {

 current_in = 0;

 }

 //cycle through outputs, left to right, obeying fanin

 if(++switches_placed_on_output == fanin) {

 current_out++;

 switches_placed_on_output = 0;

 fanin = ceil(p/m);

 }

 }

}

124

An example of an initial switch placement is shown in Figure 79, which displays a

crossbar with 12 inputs, 8 outputs, and 53 switches. One thing to note about the initial

placement is that output lines on the left will receive more switches than those on the

right if 0% ≠mp . This will not have any negative impact on our routing, however, since

the crossbar outputs directly feed the PLA inputs, which are freely permutable. For

example, nothing is lost by making PLA0_Input1 slightly easier to route to than

PLA0_Input15.

The initial placement algorithm also works such that input lines near the top will

receive more switches than those on the bottom if 0% ≠np . If the crossbar remained

like this, the PLAs that feed their outputs to the upper interconnect wires (and thus the

upper crossbar wires) would have a routing advantage over PLAs that feed their outputs

to lower interconnect wires. This potential problem is alleviated by the switch smoothing

algorithm described in section 1.2.4, which redistributes the crossbar such that crossbar

input lines with higher fanout are not grouped together.

Figure 79. The initial switch placement for a 12-input, 8-output, 53-switch crossbar

125

There is a negative impact from this uneven switch fanout, however. Different

horizontal routing tracks will see different numbers of switches in their signal paths, and

will thus have slightly different delay characteristics. Since we repeat the same sparse

crossbar at each PLA within the CPLD architecture, this difference in switch fanout is

multiplied by the number of PLAs in the architecture. Thus, across the span of the

CPLD, some horizontal routing tracks can have PLA_Count more switches on them than

other tracks.

8.2.2 Moving Switches

The switches are initially placed in a very regular manner, so in order to obtain good

routability from our sparse crossbar we must be able to move the switches around. We

must be careful, however, to move the switches in such a way that they are still evenly

distributed among the input and output lines. In order to obtain this behavior, we ensure

that switch movements do not change the number of switches that exist on an input or

output line.

Figure 80 displays the two switch movements that we allow. At the intersection of

two input lines and two output lines, if switches exist on one of the diagonals but not on

the other diagonal then the switches can be moved as shown. This ensures that each of

the input and output lines retains the same number of switches.

Figure 81 shows the switch movement algorithm as implemented. When a switch

move is proposed, the cost function is updated by recalculating the hamming costs

involving only the vectors being altered. Lemieux and Lewis initially used simulated

annealing to conditionally accept moves based on cost and temperature criteria, but they

found that negative cost moves were nearly always found again and undone, and that a

greedy scheme worked just as well. We therefore reproduce this, and use a purely greedy

strategy for accepting moves.

126

Figure 80. Allowable switch moves. Switches must occur on one diagonal of the intersecting lines,

but not on the other diagonal

Figure 82 provides evidence that the algorithm developed by Lemieux and Lewis is

in fact providing highly routable sparse crossbars. The graph shows the routability of

various 80-input, 12-output, 160-switch sparse crossbars. The x-axis shows the test

vector size (number of inputs), and the y-axis shows the percentage of vectors that were

successfully routed at each size.

127

Figure 81. Pseudocode for the switch movement algorithm

makeSwitchMoves(n, m, sw)

{

possible_outs[]; //output lines with legal moves – initially empty

for(i=0; i<(n*m); i++) { //try n*m moves

 n1 = chooseRandomInputLine(sw); //get first input line

 while(possible_outs.isEmpty()) {

 n2 = chooseRandomInputLines(sw); //get second input line

 possible_outs = identifyPossibleOutputMoves(n1, n2); //legal moves

 }

 //get output lines

 m1 = chooseRandomOutputLine(n1, n2, sw, possible_outs);

 m2 = chooseRandomOutputLine(n1, n2, sw, possible_outs);

 //while they don’t make a legal move, change m2

 while(!isLegalMove(n1, n2, m1, m2)) {

 m2 = chooseRandomOutputLine(n1, n2, sw, possible_outs);

 }

 preCost = cost(n1, n2, sw); //initial cost

 //move the chosen switches

 moveSwitches(n1, n2, m1, m2);

 postCost = cost(n1, n2, sw); //new cost

 //undo the move if it was bad

 if(postCost > preCost) {

 moveSwitches(n1, n2, m1, m2);

 }

 possible_outs.makeEmpty(); //reset our possible moves to empty

 }

}

128

Figure 82. Routability results from several different switch patterns [53]

The most successful crossbar was created by the algorithm described herein, beating

out a manual switch pattern sparse crossbar that was meticulously hand-generated by a

PLD designer. Also included on the graph are lines for the best random switch pattern

generated (out of a large set), the average across several random switch patterns, and a

partial-crossbar pattern akin to that used in the HP Plasma architecture. These results

give us confidence that we are getting efficient crossbars out of our sparse crossbar

generation tool.

8.2.3 Algorithm Termination

The algorithm in [53] allows the user to specify how many switch movements are

attempted. Our process is automated, however, so we needed to determine how many

switch moves should be attempted as a function of n, m, and p in order to obtain a good

sparse crossbar. Experiments showed that attempting n*m switch moves provided good

results with a reasonable runtime: beyond this number of moves, the tool was never able

129

to improve the cost function by more than an additional 1% regardless of how many

moves were attempted.

8.2.4 Switch Smoothing

The resulting sparse crossbar has a switch distribution that is going to look fairly

random. Because of this, there are likely to be regions in the crossbar that have relatively

high switch densities, as well as regions that have relatively low switch densities. The

preceding algorithm has ensured that our crossbar is highly routable, but it has not

ensured that the switches are spread out in such a manner that they will lead to an

efficient layout. This issue of switch smoothing was not considered in the work done by

Lemieux and Lewis [53].

When considering the layout of a crossbar, it is clear that the switches and their

corresponding SRAM bits determine the area required by the crossbar, as the input and

output wires can simply be brought in on metal layers above these devices. In order to

achieve a compact layout, therefore, it is desirable to pack the switches as closely as

possible.

When creating full crossbars, it is easy to route the input lines to the switches

because there is a switch at the intersection of every input and output wire. Figure 83

shows this in cartoon fashion. When we remove switches from the crossbar, however,

there are additional considerations. First of all, the input wires will need to be closer

together since the overall height of the crossbar will decrease (due to fewer switches).

Second, the input wires may now need to connect to switches that are not directly below

the wire: vertical jogs will be required to connect wires to switches that are either north or

south of the input wire’s horizontal track. Figure 84 displays this detail.

In order to keep the switches packed tightly, we must limit the number of vertical

jogs that are required in our sparse crossbars. Otherwise, the pitch required by the

vertical jogs would start to dominate the east-west dimension of the crossbar layout. If

the layout contains N input wire pitches per vertical switch pitch, then we can minimize

the number of vertical jogs by requiring that each output line be attached to exactly one

130

switch for every N input lines. This will ensure that each input line attaches to a switch

that is underneath it. An example of this is shown in Figure 85.

Inputs

Outputs

P

Programmable Switch

Connection Points

Figure 83. Routing full crossbars is easy because there is a programmable switch at the intersection

of every input and output line

Inputs

Outputs

Jogs

Figure 84. Routing sparse crossbars requires us to pack the input lines closer together and to add

wire jogs in order to connect input lines to the proper switches

131

Inputs

Outputs

Figure 85. If each output line is attached to exactly one switch per every N input lines, then every

input line will connect to a switch directly below it, and only one pitch of jogs is required

Since we are creating an effectively random switch placement in our sparse

crossbars, it is unlikely that they will align such that each output has one switch per every

N input lines. The input lines in our sparse crossbar can be permuted, however, so we

can move them around in order to enforce this property. The pseudocode for

accomplishing this is shown in Figure 86.

The basic principle of the algorithm in Figure 86 is to order the input lines from

north to south such that, after placing input line P, there have been P/N switches placed

on each output line (for N input lines per switch pitch). This is achieved by minimizing

the cost function shown in Equation 23 as each input line is placed. In this equation for

an n input, m output sparse crossbar, x is the current output line, Sx is the number of

switches that have been placed in output line x, P is the current input line, and N is the

number of input lines per switch pitch in the layout. Figure 87 shows an example of

running the switch smoothing algorithm on a sample crossbar, resulting in a smoothed

crossbar. Figure 88 shows the layouts derived from the unsmoothed and smoothed

crossbars from Figure 87, displaying the improvement in the lengths and pitches of the

required wire jogs.

132

Figure 86. Pseudocode for the switch smoothing algorithm

smoothSwitches(n, m, p, sw)

{

 //matrix to hold the smoothed switch matrix

ordered_sw[n][m];

 //how many switches have been placed on each output line

 swCount[m];

 for(i=0;i<m;i++) { swCount[i]=0; }

//whether we’ve place an input line yet

 inPlaced[n];

 for(i=0;i<n;i++) { inPlaced[i]=0; }

 //switch density

 swDens = p/(n*m);

tempCost;

for(i=0;i<n;i++) { //must place n smoothed input lines

 tempInput = -1;

 bestCost = infinity;

 for(j=0;j<n;j++) { //check which of n lines is next

 //Calculate the cost of inserting input line j next

 tempCost = smoothCost(sw[j], I, swCount, swDens);

 if(tempCost < bestCost) {

 if(!inPlaced[j])

 tempInput = j;

 bestCost = tempCost;

 }

 }

 ordered_sw[i] = sw[tempInput]; //set proper line

 for(k=0;k<m;,++) {

 swCount[k] += ordered_sw[i][k];

 }

 inPlaced[tempInput] = 1;

 }

 //set the switch matrix to the smoothed result

sw = ordered_sw;

}

133

∑
∀

−
x

x
N

P
S 2)((23)

Input
Line (P) Cost Progress

0 0 0 1 1 0 0 0 1 0 0 0 1 .84

0 0 1 1

0 1 0 1 2 0 1 1 0 0 1 1 1 .76

1 0 0 1

0 0 1 0 3 1 0 0 0 1 1 1 1 .64

0 1 1 0

1 0 1 0 4 0 0 1 1 1 1 2 2 1.04

0 1 0 0

1 1 0 0 5 1 1 0 0 2 2 2 2 .00

1 0 0 0

6 0 0 1 0 2 2 3 2 .84

7 0 1 0 1 2 3 3 3 .76

8 1 0 0 1 3 3 3 4 .76

9 1 0 1 0 4 3 4 4 .84

10 0 1 0 0 4 4 4 4 .00

16 Switches

2.5 wires per

vertical switch

pitch (N)

S x

Matrix

10 Inputs

4 Outputs

Unsmoothed

Crossbar

Smoothed

Crossbar

Figure 87. Each step in the switch smoothing algorithm is displayed for the smoothing of the

crossbar on the left

Figure 88. Representative layouts of the unsmoothed (left) and smoothed (right) crossbars from

Figure 87. Notice that the switch smoothing algorithm has reduced the jog pitch to near minimum,

and has reduced the jog congestion significantly

We have chosen a layout style that restricts us to 8 or fewer jog pitches per crossbar

output. This means that any crossbar requiring more than 8 jog pitches would force us to

spread out our switches in the east-west direction, wasting area in our final layout. Table

134

22 displays the pre-smoothing and post-smoothing jog pitches required of the sparse

crossbars that we created for our five domains (the performance of these architectures

appears later in this section). As the table shows, four of the five crossbars would have

resulted in area penalties in the final layouts if the crossbar-smoothing algorithm had not

been applied. Also note that the final smoothed crossbars easily meet our requirement of

8 or fewer jog pitches.

Table 22. Results of running the switch smoothing algorithm on crossbars acquired for each domain

Inputs Outputs Switches Pre-Smoothing Post-Smoothing

Sequential 155 14 293 6 2

Arithmetic 613 21 1216 12 3

Combinational 735 14 2647 19 2

Floating Point 1574 18 4627 17 3

Encryption 5002 23 32099 48 3

Crossbar Required Jog Pitches
Domain

8.3 Routing for CPLDs with Sparse Crossbars

Our sparse crossbars do not provide full capacity, so we will have to use a routing

algorithm in order to ensure that signals can reach their destinations. PLAmap provides

the necessary mapping information, which includes the inputs and outputs of each PLA in

the CPLD mapping. The inputs and outputs of a PLA are completely permutable, and we

are using a complete network implementation, so this results in a very simple routing

graph. Only two types of routing decisions need to be made: which horizontal routing

track a PLA output will connect to, and which PLA input track a horizontal routing track

will connect to. Figure 89 shows a simple CPLD with sparse crossbars, and the

corresponding routing graph for the architecture.

We decided to use the Pathfinder [55] routing algorithm for our CPLD architectures.

All of our resources are of similar delay, so we can use their negotiated congestion router,

which does not account for delay. The corresponding cost function for using a resource

is shown in Equation 24, where bn is the base cost, hn is the history cost, and pn is the

sharing cost. We set bn to 0 so that the cost function simply considers nn ph * , and we

allow the algorithm to run for 1000 iterations before judging a mapping to be unroutable

135

with a given sparse crossbar. We can use an extremely large number of iterations

because of how simple our routing graphs are: a single iteration of the pathfinder

algorithm on our largest architecture takes only a couple seconds.

PLA1 PLA2 PLA3

PLA1 PLA2 PLA3P.I.

Primary

Inputs

PLA1 PLA2 PLA3

Figure 89. A simple CPLD and its routing graph

nnnn phbcost *)(+= (24)

136

8.4 Determining Switch Density of Sparse Crossbars

In order to determine how many switches our crossbars need, we perform a binary

search on the crossbar switch count. This is shown in pseudocode in Figure 90. For an n

input, m output crossbar, the minimum switch count is n and the maximum switch count

is n*m. Starting with a crossbar with .5(n*m) switches, we iteratively create a sparse

crossbar and route on the specified CPLD architecture, adjusting the switch count

according to whether our route fails or succeeds. We do this to maximum granularity,

which requires only log (n*m) iterations of the router.

8.5 Results

Our goal in using sparse crossbars is to reduce the overall area that our CPLD

architectures require, so we should start by examining how much of a reduction we can

obtain. Table 23 displays the area, delay, and area-delay product results obtained by

using sparse crossbars in the CPLD architectures that were found in the previous chapter.

The table shows that CPLDs with sparse crossbars require only 40% of the area that

CPLDs with full crossbars require, validating our use of sparse crossbars. Removing

connectivity from the crossbars also results in improved delay performance due to

decreased capacitance on our interconnect paths. The table shows that the delay of

sparse-crossbar-based CPLDs is only 40% that of full-crossbar-based CPLDs.

Combining the two terms to form area-delay product, we see that sparse-crossbar-based

CPLDs require only .16x the area-delay product of full-crossbar-based CPLDs.

One surprising result from Table 23 is that the area reductions obtained by using

sparse crossbars seem to be independent of the routing area of the full-crossbar CPLD

architecture. Intuitively, it seems that an architecture whose routing fabric requires more

of the CPLD area would have more to gain from using sparse crossbars, suggesting that

the encryption domain (98.7% routing) should benefit more than the sequential domain

(61.5% routing). The data in Table 23, however, shows little correlation between area

reduction and the sizes of the routing fabrics in the architectures, which we saw in Table

21.

137

Figure 90. Pseudocode for using a binary search to find the smallest sparse crossbar that the CPLD

successfully routes on

The reason that the sparse crossbars are providing similar area improvements is that

the sparseness of the crossbars is varying according to the size of the CPLD. The circuits

in the sequential domain have fewer signals to route, and they can therefore subsist on

very sparse crossbars. The circuits in the encryption domain, however, have a large

number of signals to route, and require more connectivity in their crossbars. Table 24

displays this phenomenon, listing the crossbar switch densities of the different domains

and relating it to the sizes of the respective CPLD architectures using these sparse

crossbars.

findSwitchCount(n, m)

{

 //min and max possible switch counts for binary search

 min = n;

 max = n*m;

 swCount = (max+min)/2; //current switch count we’re attempting

while(swCount != min && swCount != max) {

 sw = switchPlacementAlgorithm(n, m, swCount); //create crossbar

 //attempt to route, adjust swCount according to success/failure

 if(runPathfinder(circuits, sw)) {

 max = swCount;

 swCount = (min+swCount)/2;

 } else {

 min = swCount;

 swCount = (max+swCount)/2;

 }

}

return sw[n][m];

}

138

Table 23. Performance comparison between full-crossbar results and sparse-crossbar results for the

architectures found in the last chapter

Domain Arch Area Delay A*D Arch Area Delay A*D

Sequential 14-38-4 1.00 1.00 1.00 14-38-4 0.48 0.44 0.21

Arithmetic 10-22-2 1.00 1.00 1.00 10-22-2 0.37 0.35 0.13

Combinational 12-70-4 1.00 1.00 1.00 12-70-4 0.33 0.37 0.12

Floating Point 8-18-2 1.00 1.00 1.00 8-18-2 0.40 0.41 0.16

Encryption 8-32-2 1.00 1.00 1.00 8-32-2 0.46 0.47 0.22

Geo. Mean 1.00 1.00 1.00 0.40 0.40 0.16

Full Crossbar Sparse Crossbar

Table 24. Switch densities of sparse crossbars related to the area of the sparse-crossbar-based CPLD

Domain Normalized Area Switch Density

Sequential 1.00 13.6%

Combinational 15.19 20.0%

Arithmetic 16.19 28.8%

Floating Point 81.66 35.5%

Encryption 961.32 41.8%

Now that we are using sparse crossbars, with augmented area and delay models to

account for their effects, we might expect the Architecture Generator to find different

architectures than those it found for CPLDs with full crossbars. This is exactly what

happened, as the new models led the Architecture Generator to find a new architecture

for each of the domains that we are considering. Table 25 displays the architecture

results obtained by our tool flow using the new area and delay models, and compares the

results to those found in the previous chapter. The best sparse-crossbar-based CPLDs are

shown to require .37x the area, .30x the delay, and .11x the area-delay product of our best

full-crossbar-based CPLDs.

Table 25. Best results found for full and sparse-crossbar-based CPLDs

Domain Arch Area Delay A*D Arch Area Delay A*D

Sequential 14-38-4 1.00 1.00 1.00 14-18-4 0.36 0.48 0.17

Arithmetic 10-22-2 1.00 1.00 1.00 3-16-2 0.31 0.25 0.08

Combinational 12-70-4 1.00 1.00 1.00 14-52-3 0.40 0.39 0.15

Floating Point 8-18-2 1.00 1.00 1.00 18-55-3 0.37 0.21 0.08

Encryption 8-32-2 1.00 1.00 1.00 23-79-4 0.41 0.27 0.11

Geo. Mean 1.00 1.00 1.00 0.37 0.30 0.11

Full Crossbar Sparse Crossbar

139

8.5.1 Using Other Evaluation Metrics

As with our full-crossbar based CPLD flow, we also ran our sparse-crossbar based

CPLD flow in both area driven and delay driven modes. The results of this are shown in

Table 26, which displays the results of running our chosen algorithm on each of our five

domains for area-delay driven, area driven, and delay driven metrics. All results are

again normalized to the area-delay driven results.

Table 26. Results of running our chosen algorithm in area-delay driven, area driven, and delay

driven modes for sparse-crossbar based CPLDs

Sparse

XBAR Area Delay A*D Area Delay A*D Area Delay A*D

comb 1.00 1.00 1.00 0.80 0.93 0.75 1.13 0.81 0.91

seq 1.00 1.00 1.00 1.07 1.17 1.25 1.49 0.83 1.24

fp 1.00 1.00 1.00 0.92 1.74 1.60 1.52 0.68 1.04

arith 1.00 1.00 1.00 0.93 1.18 1.10 3.39 0.61 2.08

enc 1.00 1.00 1.00 1.04 1.43 1.50 1.60 0.48 0.77

GeoMean 1.00 1.00 1.00 0.95 1.26 1.20 1.69 0.67 1.13

Area DrivenArea*Delay Driven Delay Driven

Table 26 shows that, when creating sparse-crossbar based CPLD, both area and

delay driven modes are successful at optimizing for their target metric. Using area as our

metric, our domain-specific architectures require only .95x the area of those found with

area-delay as the metric, and using delay as the metric we find architectures that require

only .67x the delay of those found with area-delay as the metric.

The analysis of Table 26 is very similar to that of Table 20, which showed results for

full-crossbar based CPLDs. Using delay as our metric, we are able to find architectures

where PLAmap was very successful at optimizing for delay (.67x of area-delay driven),

but not successful at optimizing for area (1.69x of area-delay driven). The area driven

results are again very close to the area-delay driven results, requiring .95x the area and

1.26x the delay of the architectures found using area-delay as the metric. Basically, when

PLAmap is very successful at optimizing for delay, it causes the area minimizing

heuristics to be less successful. These are the architectures found by delay driven mode.

Conversely, when PLAmap is not as successful at delay optimization, the area

minimizing heuristics are more successful. These are the architectures found by area

driven mode.

140

An interesting side note from Table 26 is that three of our area and delay driven

architectures actually provide better area-delay performance than our area-delay driven

architectures. This is an artifact of the fact that we must route our circuits on these

sparse-crossbar based CPLDs architectures, determining the minimum switch count on

which the circuits will route. The points that display improved area-delay performance

are instances where the router was somewhat lucky and successfully routed all the

circuits on a small sparse crossbar, therefore providing better delay and area performance

than was predicted by our models.

8.6 Conclusions

This chapter introduced the use of sparse crossbars in our CPLD architectures,

including the methods used to create the sparse crossbars for a specific architecture.

Sparse crossbars decrease the area and capacitance of the CPLD interconnect structure,

providing area and delay gains over full crossbars. Sparse crossbars do not provide full

capacity, however, so a routing algorithm was introduced to ensure that the CPLD’s

signals can all be routed.

Incorporating sparse crossbars into the architectures found in the previous chapter

resulted in architectures that required .40x the area and .40x the delay of those with full

crossbars. Running the Architecture Generator with new area and delay models was able

to find even better architectures, requiring .37x the area and .30x the delay of those found

in the previous chapter. The performance gains were evenly spread across the domains,

despite the fact that larger CPLDs seem to have more to gain from reducing the routing

area. This was explained by the fact that domains that require more routing resources are

not able to depopulate their crossbars as much as domains that require fewer routing

resources.

Also, using area and delay driven modes, we were able to find architectures that

were more optimized for their respective metrics. Architectures found in area driven

mode required .95x the area and 1.26x the delay of those found using area-delay, and

141

architectures found in delay driven mode required .67x the delay and 1.69x the area of

those found using area-delay as the metric.

142

9 Adding Capacity to Domain-Specific CPLDs

We envision that many SoC designers who use our flow will know the circuits that

they wish to implement in reconfigurable logic on their device. They can simply provide

us with the circuits, and our automated flow will create an architecture that is guaranteed

to efficiently implement their circuits.

Some designers, however, will not necessarily know the circuits they are going to

implement in reconfigurable logic. Perhaps the design of the whole SoC is still being

finalized, and they are unsure of what portions will be implemented in reconfigurable

logic. Another possibility is that the reconfigurable fabric will be used to implement

some common protocol that is going to be updated or modified shortly, and the fabric

will need to support the new version. Along a similar vein, what happens if a bug is

found in the circuit that is being implemented in reconfigurable logic, and it needs to be

slightly modified?

In these examples, the exact circuits that the reconfigurable logic will implement

cannot be provided in the testing set. The designer will likely know the general domain

of these circuits, however, and could therefore provide us with circuits that are similar to

those that the fabric must support. The question then becomes: given a domain of

circuits, how can we create an architecture that not only supports the sample circuits, but

which is as likely as possible to support an unknown circuit in the same domain.

The general solution to this problem is to take the base architecture created by the

tool flow, and to augment it with resources that are similar to what it already includes.

The base architecture will contain a good sample of the resources that the domain

requires, so adding more of these resources should help it support unknown, future

circuits. But is this actually the correct answer, and what exactly does “more of the same

143

resources” mean? Specifically, what resources should be added, and in exactly what

resource mixture? This is the question that is explored in this chapter.

9.1 Adding Capacity to CPLDs

In order to add “capacity” to our CPLDs, we’ll first need to identify the CPLD

architectural characteristics that can be easily augmented. In terms of routing resources,

the complete network implementation of our CPLDs guarantees that every signal is

available to every PLA in the architecture, so simply adding more routing tracks is

unlikely to be beneficial. We are using sparse crossbars to connect to the PLAs,

however, so the switch density of the crossbars is something that can be modified in order

to support routing rich designs. In terms of logic resources, our CPLDs exclusively use

PLAs. PLAs can be modified in terms of their input, product-term, and output counts,

and we can also modify how many PLAs we have in our architecture. This gives us a

total of five variables to consider when adding capacity: crossbar switch density, PLA

input count, PLA product-term count, PLA output count, and PLA count.

Another thing to note is that the input, product-term, and output counts of PLAs are

related. While it might be beneficial to augment only one of these items in the PLAs in

our architecture, we are more likely to see benefits if we augment all three of the

variables in some intelligent fashion. We have already determined the in-pt-out ratio that

the architectures desire, so our first strategy will be to augment all three variables using

their existing in-pt-out ratio. For a second strategy, we will simultaneously augment each

of the variables by an additive factor.

Lastly, there might be some utility to a strategy that uses larger PLAs AND allows

an increase in PLA count: we will consider this strategy as well, using a fixed

multiplicative factor to make the PLAs larger. Table 27 lists the CPLD augmentation

strategies that we will employ in this section.

For the strategies which have fixed PLA sizes but which allow additional PLAs, we

find our mapping simply by providing PLAmap with the PLA size of the architecture.

PLAmap then provides us with the required PLA count, and the performance

144

characteristics are calculated. For strategies that alter the PLA sizes while keeping the

PLA count fixed, we iteratively call PLAmap with larger and larger PLA sizes (using the

smallest possible increment) until a mapping fits the PLA count constraint. If the PLA

variable(s) in question get increased to three times their initial values without finding a

mapping that fits the PLA count constraint, then it is considered a failure.

Table 27. Strategies for adding capacity to our CPLD architectures

Strategy Notes

Switch Density Augment the switch density of sparse crossbars by x%, allow extra PLAs.

PLA Count Allow extra PLAs of the base size.

PLA Inputs Augment the input count of each PLA, but keep PLA count fixed.

PLA Product Terms Augment the pterm count of each PLA, but keep PLA count fixed.

PLA Outputs Augment the output count of each PLA, but keep PLA count fixed.

PLA Size1 PLA size = (c*in,c*pt,c*out), but keep PLA count fixed.

PLA Size2 PLA size = (d+in,d+pt,d+out), but keep PLA count fixed.

PLA Size1 + PLA Count PLA size = (c*in,c*pt,c*out), and allow extra PLAs of this size.

9.2 Methodology

We want to simulate a situation in which the SoC designer knows the general

domain of circuits that will be implemented in reconfigurable logic, but does not

necessarily know the exact circuits. We accomplish this by taking the domains that we

already have and by removing one or more of the circuits in order to create reduced

domains. These reduced domains are used to create domain-specific architectures

according to our tool flow. If the architecture created for the reduced domain is different

than the architecture for the full domain, then we reintroduce the removed circuit(s) and

determine what additional CPLD resources (if any) are required to implement the new

circuit.

 This process was applied to every circuit in each of our five domains. Each circuit

was individually removed, and the reduced architecture was created. We also created

five new sub-domains by grouping very similarly sized circuits from the main domains,

and we applied this process to each circuit in these sub-domains as well. These ten

domains had a total of 92 circuits in them.

Each of the 92 circuits was removed from its domain, and 35 of the corresponding

reduced architectures were different than their full-domain architectures. Using

145

knowledge of the 35 cases where removing a single circuit resulted in a different

architecture, we then created 14 more such cases by removing multiple circuits from the

domains. In all, we created 49 reduced architectures that were different from the

architectures obtained by the full domains.

With these 49 interesting reduced architectures, we will be intelligently adding

resources to the architectures in order to determine what is required to support the

removed circuits. The basic question we wish to answer is this: given an architecture

augmentation strategy, how much of an area penalty must we tolerate in order to support

the additional circuits? We will analyze this information using graphs of the form shown

in Figure 91. In the figure, the x-axis displays the area requirement of a given strategy,

normalized to the reduced domain. The y-axis displays the number of domains that can

support their additional circuits for the specified area requirement. Results that are

toward the upper left of the graph are good, because many domains can be supported by

the strategy with a small area overhead. Results that are toward the lower right of the

graph are bad, because few domains are supported and the area penalty is high.

Normalized Area

D
o

m
ai

n
s

S
u
p
p
o

rt
ed

Strategy 1

Strategy 2

Figure 91. The basic graph we will use to examine our different CPLD augmentation strategies

We will also compare the different resource strategies according to the geometric

mean of their data points. Each strategy will have data points in the exact same y-

146

locations on the graphs, so their x-values will be normalized to a particular strategy, and

their means calculated and compared: this will give a numerical value that can be used

for comparisons. The graphical data can be difficult to compare at times, and the graphs

often do not include all the data points (in order to increase the visibility of the interesting

areas), so a numerical metric will be helpful.

9.2.1 Routing Failures

When a circuit is mapped such that it fails to route on an architecture, there are two

possible ways to get the circuit to route: we can spread the mapping out among additional

PLAs, or we can make the existing PLAs larger. Both of these strategies will eventually

allow a circuit to route, but they have very different effects on the architecture to which

we are mapping.

Several of our augmentation strategies increase the number of PLAs in our

architecture until the reintroduced circuit(s) fit on the architecture. Under these

strategies, the PLAs are set to a specific size and cannot be augmented. If a circuit fails

to route under this augmentation strategy, therefore, the only option is to spread the

mapping out among more PLAs. We spread out the mapping by running PLAmap on the

circuit, but with smaller PLAs than our actual architecture will use. For example, if a

circuit failed to route on an architecture using 10-20-5 PLAs, we will then run the circuit

through PLAmap with a 9-20-5 architecture, acquire the mapping, and attempt to route it

on the 10-20-5 architecture. If it fails to route again, a mapping using 8-20-5 PLAs will

be acquired, and we will again attempt to route it on the 10-20-5 architecture. The next

attempt would use a 10-20-4 mapping, then a 9-20-4 mapping, then 8-20-4, then 7-20-5,

and so on, until the circuit successfully routes. This algorithm is shown in Figure 92,

including the method for deciding upon the next mapping to attempt.

After compiling the data for this section, we determined that we should have been

using the strategy of spreading out mappings for ALL of the cases where we see a routing

failure. Routing failures occurred in so few cases, however, that we decided not to retake

all the data with this routing-failure strategy implemented. Rather, we will provide

147

graphs that show the best possible performance that could have been achieved from

implementing this routing-failure strategy, and we will display that the conclusions drawn

from the figures are unaffected by this omission. Figure 94 is actually the only graph that

uses augmentation strategies in which the PLA count of the architecture is fixed, so it is

the only figure affected.

Figure 92. Pseudocode for spreading out the mapping of a circuit among additional PLAs in order to

achieve a legal route

routeBySpreadingMapping()

{

 input circuit; //the circuit

input swPerc; //the switch percentage

input in, pt, out; //base PLA size is in-pt-out

 in2, out2; //reduced PLA variables for getting mappings

 ratio = ceil(in/out) //the ratio of inputs to outputs, rounded up

s, t; //integers used in the loop

 //Loops and variables to control what we set the in2 and out2

 //variables to be. We will then get a mapping for a in2-pt-out2

 //architecture and route it on an in-pt-out architecture

 for(i=1; i<in; i++) {

 s = i-1;

 t = -1;

 for(j=0; j<(ratio*i); j++) {

 if(t++ == ratio) {

 s--;

 t = 1;

 }

 in2 = in-j;

 out2 = out-s;

 //if it successfully routes at this mapping, we’re done

 if(runPLAmapAndRoute(circuit, swPerc, in2, pt, out2, in,pt,out)) {

 return {in2, pt, out2};

 }

 }

 }

 throwError(); //should always route at SOME mapping size

}

148

Notice that we are only decreasing the input and output values of the mapping, not

the product-term value. This is because decreasing the input and output values is going

to have a greater effect on the routability of our mapping, allowing us to converge to a

routable solution more quickly. Our routing problem involves routing signals from PLA

outputs to interconnect tracks to PLA inputs, so if our mappings use fewer inputs or

outputs, it will decongest the routing in these regions. Decreasing the number of product

terms in a mapping might spread the mapping out among more PLAs, but it would do

little to decongest the routing resources at the PLA inputs and outputs, and would

therefore be less effective.

For all of the augmentation strategies which allow PLAs to increase in size, no

special intervention is used to facilitate routing. In these cases, if a mapping fits the

constraint of PLA count but fails to route, then it is considered a failure (just as if it had

not met the PLA count constraint). The algorithm will continue to increase the PLA size

until a corresponding mapping routes on the architecture.

9.3 Results

When mapping to reconfigurable architectures, providing sufficient routing resources

is necessary if one wishes to fully utilize the architecture’s logic elements. If

insufficient routing resources are available, mappings either fail to succeed or they get

spread out so that they require more logic elements than inherently necessary. This is

true of our CPLD architectures, as providing insufficient switch density in the crossbars

will either make architectures unroutable or it will force the PLAs to be underutilized,

causing an increase in the number of PLAs required. This suggests that finding a good

crossbar switch density should be the first thing done in our architectures, as providing

sufficient crossbar connectivity will allow any increased logic resources to be utilized

efficiently.

Our architectures are initially given the minimal switch density that allows all the

circuits in a domain to map, but this might be insufficient for future circuits. We

therefore ran an exploration of how switch density affects the amount of area required to

149

map future circuits to our reduced architectures. In this exploration, the reduced

architectures were given additional switches according to a multiplicative factor and

allowed to use as many extra PLAs as necessary in order to map the additional circuits.

The results of this exploration are shown in Table 28 and Figure 93, and the data

represents architectures with the base number of switches, base*1.05 switches, base*1.10

switches, base*1.20 switches, and base*1.50 switches.

The data shows that good results are obtained when either 0% or 5% extra switches

are added to the basic crossbar in the CPLD. Indeed, for any normalized area shown in

the graph, either the c=1.00 or the c=1.05 graph provides the most domains supported.

Also note that the c=1.05 graph always outperforms the c=1.10, c=1.20, and c=1.50

graphs, so there appears to be no benefit from adding more than 5% to the crossbar

switch density.

But which strategy is better, using the base crossbar switch density or adding 5%?

According to Table 28 it is somewhat of a wash. If a new circuit can be mapped using

0% additional switches, then an architecture with 5% additional switches will end up

requiring up to 5% more area than the architecture with no additional switches. If a new

circuit successfully maps to an architecture with 5% more switches but fails on an

architecture with no additional switches, however, then the mapping will have to be

spread out among additional PLAs in order to reduce the routing demands. In this case,

the area cost might be much more than 5%, as it depends on how many additional PLAs

are required when the mapping gets spread out. Adding 5% to the crossbar switch

density therefore provides better worst-case behavior than not adding any switches. This

is one reason why we have concluded that one should add 5% to the crossbar switch

density when trying to support unknown circuits.

150

Table 28. Results of attempting to support future circuits by adding switches to our crossbars and

allowing any number of PLAs in the architecture. Results are geometric mean

Switch Count Mean Result

BASE 1.00

BASE * 1.05 1.01

BASE * 1.10 1.03

BASE * 1.20 1.07

BASE * 1.50 1.18

0

5

10

15

20

25

30

35

40

45

1.00 2.00 3.00

Normalized Area

D
o

m
a
in

s
 S

u
p

p
o

rt
e

d

c=1.00

c=1.05

c=1.10

c=1.20

c=1.50

Switches in Crossbar = c * base_pct.

Circuits use as many PLAs as needed.

Figure 93. Results of attempting to support future circuits by adding switches to our crossbars and

allowing any number of PLAs in the architecture

Another reason is shown in Table 24 from the previous chapter. This table showed

that larger architectures required a higher switch density than smaller architectures, so it

makes sense that we should provide some additional switch density if we are going to be

making our architectures larger. For all future explorations in this section, therefore, we

will be adding 5% to the base switch density in the corresponding architectures.

Having dealt with the routing structure, we must now examine the logic resources.

We can augment the logic in our reduced architectures by adding PLAs, by adding inputs,

product terms, or outputs to our PLAs, or by adding all three of these variables to our

151

PLAs in either a multiplicative manner, c*(in-p-out), or in an additive manner, c+(in-pt-

out). In the strategies in which we increase the sizes of the PLAs, the architecture is not

permitted to use more PLAs than the base architecture. We performed each of these

experiments with our 49 interesting reduced architectures, and acquired the results shown

in Table 29 and Figure 94.

Table 29. Results of attempting to support future circuits by adding the specified logic resources. All

strategies use 5% more switches than the base reduced architecture. Results are geometric mean,

and failure rate details how many domains were not supported by a strategy

Strategy Mean Result Failure Rate

#PLAs 1.00 0%

#PLA inputs 1.05 51%

#PLA pterms 1.02 49%

#PLA outputs 1.02 49%

c*(in-pt-out) 1.16 0%

c+(in-pt-out) 1.24 0%

0

5

10

15

20

25

30

35

40

45

1.00 2.00 3.00

Normalized Area

D
o

m
a
in

s
 S

u
p

p
o

rt
e
d

#PLAs

#PLAinputs

#ProductTerms

#PLAoutputs

c*(in-pt-out)

c+(in-pt-out)

Strategies use larger

PLAs, but cannot use

additional PLAs

Augmentation Strategies

Figure 94. Results of attempting to support future circuits by adding the specified logic resources.

All strategies use 5% more switches than the base reduced architecture

As the data shows, the most efficient strategy for supporting additional circuits is

simply to add more PLAs to the architecture. The multiplicative and additive strategies

152

are also capable of supporting all of the additional circuits, but they do not do it as

efficiently as the strategy of adding more PLAs. Of the multiplicative and additive

strategies, the multiplicative strategy appears to perform slightly better for most of the

points in the graph, and this is also shown in the table. The strategies in which we simply

add inputs, outputs, or product terms to the PLAs are insufficient to even support all the

additional circuits, as the logic resources end up lacking in the variables that don’t get

augmented and they are unable to support many of the circuits.

As discussed above, some of the augmentation strategies shown in Figure 94 do not

use a routing-failure recovery strategy. This includes all but the blue data (#PLAs) in

Figure 94. Table 30 and Figure 95 show the best possible results that could have been

achieved by these strategies had they been using the routing-failure recovery strategy

described above. As can be seen, the differences between Figure 94 and Figure 95 are

practically imperceptible, and the same analysis that we applied to Figure 94 can be

applied to Figure 95. The similarities between Table 29 and Table 30 also back up this

conclusion.

Table 30. The best case performance of the data in Table 29, assuming a routing-failure recovery

strategy had been used

Strategy Mean Result Failure Rate

#PLAs 1.00 0%

#PLA inputs 1.03 51%

#PLA pterms 1.01 47%

#PLA outputs 1.01 49%

c*(in-pt-out) 1.14 0%

c+(in-pt-out) 1.22 0%

153

0

5

10

15

20

25

30

35

40

45

1.00 2.00 3.00

Normalized Area

D
o

m
a

in
s

 S
u

p
p

o
rt

e
d

#PLAs

#PLAinputs

#ProductTerms

#PLAoutputs

c*(in-pt-out)

c+(in-pt-out)

Additional Resources

Strategies use larger

PLAs, but cannot use

additional PLAs

Figure 95. The best case performance of the data in Figure 94, assuming a routing-failure recovery

strategy had been used

The strategies of adding PLAs and adding inputs/outputs/product terms to the PLAs

multiplicatively are both shown to perform reasonably well in Figure 94, so another idea

is to attempt a mixture of these two strategies. The idea here is to make the PLAs some

percent larger, and then to allow the implementation to use as many PLAs as it requires.

Table 31 and Figure 96 show the results of doing this with PLAs that are 0%, 10%, 20%,

50%, and 100% larger than the base size.

Table 31. Results of attempting to support future circuits by augmenting the PLA size and allowing

any number of PLAs. All strategies use 5% more switches than the base reduced architecture

PLA Size Mean Result

BASE 1.00

BASE * 1.10 1.10

BASE * 1.20 1.23

BASE * 1.50 1.79

BASE * 2.00 2.79

154

0

5

10

15

20

25

30

35

40

45

50

1.00 2.00 3.00 4.00 5.00

Normalized Area

D
o

m
a
in

s
 S

u
p

p
o

rt
e
d

c=1.0

c=1.1

c=1.2

c=1.5

c=2.0

Can use any # of

c*(in-pt-out) PLAs.

Figure 96. Results of attempting to support future circuits by augmenting the PLA size and allowing

any number of PLAs. All strategies use 5% more switches than the base reduced architecture

As the data displays, adding PLAs of the base size still appears to be our best

augmentation strategy. Making the PLAs 10% or 20% larger also provided reasonable

results, but adding any more than 20% is shown to be area-prohibitive. These results are

much worse than we expected, as we thought that a hybrid strategy would perform

comparably to the strategy of simply adding more PLAs of the base size. Closer

examination of this particular hybrid strategy showed us that we had approached the

problem in the wrong way.

This hybrid strategies begins by augmenting the PLAs in the architecture by a fixed

percentage, and this has the obvious effect of making the architecture larger. Using

larger PLAs may allow future circuits to require fewer PLAs, but since we are only

adding resources (not removing), we cannot reduce the number of PLAs in the

architecture below the number in the base architecture. Because of this, the minimum

area achievable by this hybrid strategy is going to be larger than the strategy which does

155

not make the PLAs larger. This can be seen in Figure 96, as the lines are no longer

intercepting the x-axis at a normalized area of 1.00. The basic pitfall of this hybrid

strategy is that we are not adding resources incrementally: we are instead providing a

large initial boost to the resources in terms of PLA size, and then allowing incremental

changes from that point on (in terms of additional PLAs).

We thus developed a second hybrid strategy that is capable of adding resources

incrementally. In this new strategy, λ of the additional area resources are provided to

additional PLAs, while (1- λ) of the additional area resources are provided to larger PLAs

(using a multiplicative scaling factor), where 0 ≤ λ ≤ 1. Resources are slowly added, using

these ratios, until the removed circuit is supported by the architecture. Table 32 and

Figure 97 display the results of running this new hybrid strategy with λ values of 1.00,

0.75, 0.50, 0.25, and 0.00.

This new hybrid method is successful at adding resources in an incremental fashion,

as shown by the fact that the lines in Figure 97 are intersecting the x-axis at a normalized

area of 1.00. The strategies of giving 75% and 50% of the additional area resources

toward more PLAs are both shown to be relatively effective, but the data still

demonstrates that the most effective method of supporting future circuits is simply to add

additional PLAs of the base size.

Table 32. Results of using the new hybrid strategy. All strategies use 5% more switches than the

base reduced architecture, and can use as many PLAs as required

λλλλ Mean Result

1.00 1.00

0.75 1.05

0.50 1.05

0.25 1.17

0.00 1.16

156

0

5

10

15

20

25

30

35

40

45

1.00 2.00 3.00 4.00 5.00

Normalized Area

D
o

m
a

in
s

 S
u

p
p

o
rt

e
d

λ=1.00

λ=0.75

λ=0.50

λ=0.25

λ=0.00

#PLAs = base_pla_count + (c * λλλλ * base_pla_count)

Architecture = base_pla_arch + (c * (1-λλλλ) * base_pla_arch)

Increase c until circuit fits.

λ λ λ λ = 1, putting all extra area toward more PLAs

λλλλ = 0, putting all extra area toward PLA-size

Figure 97. Results of using the new hybrid strategy. All strategies use 5% more switches than the

base reduced architecture, and can use as many PLAs as required

9.4 Conclusions

In this chapter we explored the concept of adding capacity to our domain-specific

CPLDs. Some SoC designs will require their reconfigurable logic to support circuits that

have not yet been specified, so we need to examine the best way to add resources to our

architectures such that we maximize the likelihood of future circuits fitting on the

architecture.

Our results showed that, in terms of routing resources, it is good to add 5% to the

switch density of the sparse crossbars used in the CPLD architectures. In terms of logic

resources, the most area-efficient method of supporting future circuits is simply to add

more PLAs of the same size found in the base architecture. This is consistent with the

strategy that is most commonly employed with reconfigurable devices, in which

157

additional capacity is provided by adding more of the resources that already exist in the

architecture.

158

10 Conclusions and Future Work

Reconfigurable logic fills a useful niche between the flexibility provided by a

processor and the performance provided by custom hardware. This usefulness extends to

the SoC realm, where reconfigurable logic can provide cost-free upgradeability,

conformity to different but similar protocols, coprocessing hardware, and uncommitted

testing resources. Additionally, the paradigm of IP reuse makes it easy to incorporate

reconfigurable logic into an SoC device, because it can be provided to the designer as a

pre-made IP core.

General reconfigurable logic suffers performance penalties due to its flexible nature,

as it must be capable of supporting a wide range of designs. A unique opportunity exists

when creating reconfigurable fabrics for SoC, because the designer will already know the

application domain that the device will be targeting. Using this information, a domain-

specific reconfigurable fabric can be designed that will target the exact applications that it

will need to support on the SoC, providing improved performance over more general

fabrics. The dilemma then becomes creating these domain-specific reconfigurable

fabrics in a short enough time that they can be useful to SoC designers. The Totem

project is our attempt to reduce the amount of effort and time that goes into the process of

creating domain-specific reconfigurable fabrics, thereby providing SoC designers with

efficient reconfigurable architectures without adversely affecting their design schedules.

10.1 Contributions

This dissertation presented processes for creating domain-specific product-term-

based reconfigurable architectures for use in SoC devices. This included a complete flow

for creating domain-specific PLAs and PALs: a project that we call Totem-PLA. Also

included was a complete flow for creating both full- and sparse-crossbar based CPLD

159

architectures: a project termed Totem-CPLD. In addition to providing methods for

creating these architectures, we have also provided guidelines as to how to augment our

CPLD architectures with additional resources in order to maximize the likelihood that

they will support future, unknown circuits.

In Chapter 6 we introduced a complete flow that can be used to create domain-

specific PLA and PAL devices for use in SoC applications. By intelligently mapping

circuits to these devices using simulated annealing, up to 73% of the programmable

connections in the AND and OR-planes could be removed while still supporting the

circuits. This led to delay improvements of 16% to 31% in the arrays, although

compaction was unable to improve upon the area of our automatically generated layouts.

Chapter 7 next introduced a complete flow that can be used to create domain-specific

CPLD architectures that are based on full crossbars. We presented several algorithms

that, given a domain of circuits as input, are capable of finding a PLA size that results in

a CPLD architecture that efficiently supports the given circuits. Of the algorithms, the

Run M Points algorithm with a second iteration was shown to provide the best results.

This algorithm was able to create domain-specific architectures that outperform

representative fixed CPLD architectures by 5.6x to 11.9x in terms of area-delay product.

Even the best fixed-architectures that we could identify still performed 1.8x to 2.5x worse

than our domain-specific architectures. This flow also included a Layout Generator that

creates a full VLSI layout of the specified CPLD architecture in the tsmc .18µ process.

One of the main drawbacks of CPLDs is that their interconnect structures grow

quadratically with respect to PLA count. In order to help alleviate these area concerns,

Chapter 8 introduced the concept of using sparse crossbars in our CPLD architectures.

By utilizing an existing sparse-crossbar generation tool and implementing a congestion-

based router, we were able to create CPLD architectures based on sparse crossbars that

required only 37% of the area and 30% of the propagation delay of their full-crossbar

based counterparts. A smoothing algorithm was also introduced which allowed us to

distribute switches evenly throughout the sparse crossbars: this allowed us to create

layouts that were as compact as possible.

160

Finally, Chapter 9 addressed the question of how to add additional resources to a

sparse-crossbar based CPLD in order to maximize the likelihood that unknown circuits

will be supported by the architecture. Results showed that the sparse crossbars should be

augmented with 5% more switches than were required in the base architecture, and that

the best way to add logic to the architecture is to add more PLAs of the base size.

Taken as a whole, this work provides a framework for the creation of domain-

specific product-term-based reconfigurable architectures for use in SoC devices. We

have introduced algorithms that effectively create PLA, PAL, and CPLD architectures, as

well as providing tools that create high-performance VLSI layouts from these

architecture specifications. We have also explored the question of adding capacity to

these CPLD architectures, and provided guidelines for which resources should be added

in order to maximize the likelihood of supporting future designs.

While our architecture generation tools have used practical methods and provided

quality results, the tools described in this dissertation are in no way meant to be

production quality. Rather, they are intended to provide a framework for the creation of

domain-specific architectures, particularly those that are based on product-term style

logic. The methods employed in this work can be seen as guidelines for how to undergo

the different processes involved in creating domain-specific architectures.

10.2 Conclusions and Future Work

The work on Totem-PLA was intended to give us insight into how we can tailor

PLAs to a specific application domain. The eventual goal was to apply this knowledge to

the creation of PLA-based CPLDs, allowing us to tailor both the high-level CPLD

architecture and the low-level PLA architecture to the target domain. While we were

able to provide some delay gains by depopulating the AND- and OR-planes of the PLA

and PAL devices, we determined that this would come at too high of a cost to flexibility.

Therefore, when creating domain-specific CPLD architectures, we were only able to

modify the PLAs according to their input, product term, and output sizes.

161

Attempts to compact our depopulated PLAs and PALs provided us with no area

gains. In hindsight, it is apparent that we approached this problem in the wrong manner.

PLAs and PALs are such regular structures that, even if you depopulate their arrays by

more than 50% (which we did), a compaction tool would not be expected to provide any

real benefits. We should have designed the PLAs and PALs with the intent of leveraging

the packing methods that we employed for the sparse crossbars in Chapter 8. The layouts

of the switches in the sparse crossbars are very similar to the layouts of the AND- and

OR-plane cells in the PLAs and PALs, and the exact same methods could have been

employed in order to pack the cells in these planes. The only additional consideration

would be the drivers, pull-up devices, and registers at the peripheries of the AND- and

OR-planes. These cells could have been designed and laid out with multiple possible

aspect ratios such that, after the dimensions of the AND- and OR-planes are determined,

it is just a matter of choosing the periphery cells with the proper aspect ratios. If any

future work on PLA or PAL array depopulation is undertaken, such a strategy should be

implemented.

When sizing the devices in our final layouts, we attempted to choose sizes that would

result in reasonable performance for a wide range of PLA, PAL, and CPLD architectures.

The basic idea was to trade a small amount of architecture performance for lower design

complexity. Unfortunately, the architectures we create can vary in size by more than

three orders of magnitude. Considering the wide variation we see in architecture size, it

is clear that the use of fixed device sizes must be producing significant penalties in our

delay performance. An obvious avenue of future work would be to provide devices with

multiple sizing options, such that the devices in the final layout are sized according to the

characteristics of the final architecture. While we have not performed an analysis of the

performance gains this would provide, our guess is that delay improvements on the order

of 10x may be achievable for larger architectures.

Another concept that we did not consider is power dissipation. The standard metric

that we used to evaluate our architectures was area-delay product, but we also looked at

the architectures that would be chosen when using simple area-driven or delay-driven

162

flows. An obvious avenue of future work would be to create a power model for our

architectures using a tool like Powermill, and to run our tool flow using cost functions

that integrate power into the equation. This would likely lead to architectures that

penalize PLAs for their product terms and outputs, since the number of power hungry

pseudo-nMOS gates in one of our PLAs equals the sum of the product term and output

counts.

It would also be desirable to create architectures that don’t use pseudo-nMOS gates

at all, since gates of this style tend to dissipate a large amount of static power. While

most commercial CPLDs still use pseudo-nMOS PLAs and PALs, Xilinx has developed a

low power CoolRunner CPLD family [26-27] that uses static-CMOS PLAs [56-57]. In

order to provide truly power-friendly CPLD architectures, we would need to develop a

completely new architecture based on static-CMOS gates rather than pseudo-nMOS

gates. This would require a very large design effort, including new layout units, layout

generation code, area models, delay models, and power models. The effort may be

worthwhile, however, as the increasing feasibility of SoC devices is likely to cause an

increase in their deployment in low power devices such as PDAs and cell phones in

upcoming years.

One design decision that had a negative impact was our choice to use an executable

version of PLAmap in our tool flow for creating domain-specific CPLDs. The first

problem was that PLAmap would sometimes fail to provide us with results. This not

only led to slightly suboptimal results for the data points where PLAmap failed, but it

also required a significant amount of user intervention in order to create the missing data.

Another problem with using an executable of PLAmap was that it allowed us very

little control of the algorithm itself. We were not able to obtain fine-grained control of

delay and area tradeoffs for the algorithms, or make any modifications to the mapping

algorithms that might be useful, such as providing heuristics that give us faster results at a

slight penalty to mapping quality. This would have been useful for the circuits that

typically required an hour or more for a single run of PLAmap.

163

The main reason that we are creating domain-specific architectures is that we want to

leverage the similarities that exist between circuits in a domain. While PLAmap is the

best academic technology-mapping algorithm available for our use, it is not particularly

well suited to creating domain-specific architectures. PLAmap’s algorithm simply tries

to obtain a minimum-depth mapping, and then uses heuristics to pack PLAs into each

other to minimize the area of a mapping. The domain-specific gains that we achieved

were likely due to fairly coarse-grained similarities that existed between circuits in a

domain, such as the primary input count, the primary output count, and the number of

levels of logic existing between registers. PLAmap is unable to look closely at the

structure of different circuits in order to find similarities that it can exploit, which is a

distinct drawback of the algorithm.

If any future work is performed on the creation of domain-specific CPLD

architectures, I believe that a new tech-mapping algorithm should be developed for use in

the system. This would allow us to have complete control over the algorithms in the

technology-mapper, as well as allowing us to implement new algorithms that are able to

identify and utilize similarities between different circuits.

The proposed tech-mapper would be able to look at multiple circuits and find regions

of similarities that can be mapped to similar PLA structures. This would allow us to

better leverage the similarities that exist between circuits in a domain. I also propose that

the tech-mapping algorithm should be allowed to use PLAs of varying size within the

CPLD architecture, as different similarities that are extracted from the circuits are likely

to want to map to differently sized PLAs. This might not provide area gains due to the

fact that the CPLD’s bounding box is determined by the largest PLAs in the architecture,

but it would provide performance gains due to reduced capacitance in the architectures.

When put into a tool flow, the proposed tech-mapper would first perform these domain-

specific optimizations in order to extract similarities from the circuits, and would then use

a PLAmap-like algorithm in order to map the remaining logic to PLAs. I believe that

these modifications would result in CPLD architectures that more accurately represent

the domains that they support.

164

In terms of the bigger picture, we now need to determine the next direction in which

to take Totem. One aspect of CPLD architectures is that their interconnect structures

limit them to implementing relatively small circuits. Totem-CPLD can therefore be seen

as a method of creating relatively low capacity domain-specific reconfigurable

architectures, using relatively fine-grained functional units. Earlier work in Totem

leveraged RaPiD, a 1-D architecture targeted at the signal-processing domain. Totem-

RaPiD can provide us with a method for creating reconfigurable architectures for

implementing coarse-grained datapaths, but it is inefficient at supporting any fine-grained

circuits. A gap still exists in the Totem family, as there is currently no method of

creating large and effective reconfigurable fabrics that tailor to small-to-medium-grained

applications.

I believe that the next forays into Totem should address this issue. Since 1-D

architectures seem to be rather limited in their scope (RaPiD) or scalability (CPLDs), this

would suggest the creation of a 2-D reconfigurable architecture, most likely of an island-

style nature. The trend in commercial devices is clearly toward these 2-D reconfigurable

architectures, especially when considering devices with reasonably large capacity.

The difficulties involved with creating a domain-specific 2-D architecture might

outweigh the foreseeable gains, however. Tile-based reconfigurable architectures are

already available for SoC designers, and the companies that provide them have put a

large amount of time and money into creating efficient (though general) architectures and

high-quality layouts. While domain-specific 2-D architectures would hypothetically

provide performance gains over these more general fabrics, it is unclear whether the

performance gained by tailoring to a domain would overcome the performance lost in

terms of architecture and layout quality.

Additionally, domain-specific optimizations will be more difficult to make in 2-D

architectures, because there are more architectural constraints. As an example, consider

the basic island style FPGA diagram shown on the left half of Figure 98. The

architecture has horizontal and vertical patterns that are very regular, such that changing

the size of any single item in the architecture will have an effect on both entire row and

165

column in which the item resides. On the right side of Figure 98 we have made just one

of the logic blocks larger, and it has left us with a large amount unutilized space in the

horizontal and vertical directions (shaded).

Logic

Block

Conn.

Block

Switch

Block

Switch

Block

Switch

Block

Switch

Block

Switch

Block

Switch

Block

Switch

Block

Switch

Block

Conn.

Block

Conn.

Block

Conn.

Block

Logic

Block

Conn.

Block

Switch

Block

Switch

Block

Switch

Block

Switch

Block

Conn.

Block

Conn.

Block

Logic

Block

Conn.

Block

Switch

Block

Switch

Block

Switch

Block

Switch

Block

Conn.

Block

Conn.

Block

Logic

Block

Conn.

Block

Switch

Block

Switch

Block

Conn.

Block

Logic

Block

Conn.

Block

Switch

Block

Switch

Block

Switch

Block

Switch

Block

Switch

Block

Switch

Block

Switch

Block

Switch

Block

Conn.

Block

Conn.

Block

Conn.

Block

Logic

Block

Conn.

Block

Switch

Block

Switch

Block

Switch

Block

Switch

Block

Conn.

Block

Conn.

Block

Logic

Block

Conn.

Block

Switch

Block

Switch

Block

Switch

Block

Switch

Block

Conn.

Block

Conn.

Block

Logic

Block

Conn.

Block

Switch

Block

Switch

Block

Conn.

Block

Figure 98. On the left, a basic diagram of a 2-D island style FPGA. On the right, the effects of

changing a single piece of the architecture. Note the extra unutilized space in the column and row

that the larger logic block resides in (the shaded regions in the diagram)

Clearly, we are limited in the types of optimizations that could be made in such an

architecture. In order to retain compact layouts, the logic blocks would all need to have

footprints of similar size. Another restriction is that routing channels would have to be of

uniform size across the entire width or height of the architecture in order to retain

compact implementations. These layout constraints will make it difficult for the

architecture generation process to make many of the optimizations that a designer might

desire.

Another consideration is that, since we are now competing closely with tile-based

reconfigurable IP solutions, we will require very high-quality layouts for these 2-D

domain-specific architectures. This basically rules out the use of standard cell methods,

as the performance penalties imposed by these methods would almost certainly be too

high. In order to leverage the high regularity of the 2-D structure, I believe that an

additive layout generation process must be developed which tiles efficient layouts of the

logic, switch, and connection blocks. This will require either the creation of very

166

efficient circuit generators, or the pre-designing of highly optimized cells that can be tiled

into a full architecture. In either method, a large amount of design effort will need to go

into the generation of 2-D layouts.

Despite being highly constrained, however, interesting things can definitely be done

within the framework of a domain-specific 2-D architecture. Clustering in the logic

blocks would allow different logic implementation schemes, including different LUT

sizes, small PLA blocks, small ALUs, and any other small units that are deemed

appropriate. Routing channels can contain different numbers of tracks, and switch and

connection blocks can contain different connectivity.

The big question, though, will be whether a domain-specific 2-D architecture would

be able to compete with and beat current tile-based reconfigurable fabrics. Because of

the large amount of effort that Totem-2D will require, I think that a detailed analysis

should first be undertaken in order to determine the feasibility of such an endeavor. If an

analysis shows that Totem-2D can provide gains over other solutions that currently exist,

then I believe that it should be explored.

If Totem-2D turns out to be infeasible, however, another future option for Totem is

to revisit the work that was done with RaPiD-AES. RaPiD-AES was a RaPiD-style

architecture that introduced new logic units that were optimized to private-key encryption

[12]. Work on RaPiD-AES was halted when the domain-specific results provided by

RaPiD-AES were found to be significantly worse than Verilog implementations on a

standard Xilinx FPGA.

In a recent Totem paper [25], RaPiD-AES is hypothesized to have failed largely

because it didn’t follow the strategy of “flexible-first”. The idea is that reconfigurable

architectures should start with a flexible fabric and add fixed functionality only as it

proves beneficial. RaPiD-AES didn’t follow this methodology, as it provided only

coarse-grained functional units, which were often underutilized. In dealing with the

creating of domain-specific PLAs and PALs, this dissertation has basically introduced

PLA and PAL generators that could be used to create flexible units for RaPiD-AES. By

167

introducing these flexible units, we could take another look at the practicality of RaPiD-

AES architectures, as well as investigating the merit of adding “flexible-first”.

168

References

[1] C. Ebeling, D.C. Cronquist, and P. Franklin, “RaPiD – Reconfigurable Pipelined

Datapath.”, Lecture Notes in Computer Science 1142—Field-Programmable Logic:

Smart Applications, New Paradigms and Compilers, R.W. Hartenstein, M. Glesner,

Eds. Springer-Verlag, Berlin, Germany, pp. 126-135, 1996.

[2] D. C. Cronquist, P. Franklin, C. Fisher, M. Figueroa, C. Ebeling, “Architecture

Design of Reconfigurable Pipelined Datapaths”, Twentieth Anniversary Conference

on Advanced Research in VLSI, 1999.

[3] A. Abnous, J. Rabaey, “Ultra-low-power domain-specific multimedia processors.”,

VLSI Signal Processing, IX, IEEE Signal Processing Society, pp. 461-470, 1996.

[4] S. Goldstein, H. Schmidt, M. Budiu, S. Cadambi, M. Moe, R. Taylor, “PipeRench: A

Reconfigurable Architecture and Compiler”, IEEE Computer, 33(4):70-77, April

2000.

[5] Xilinx, Inc, “Xilinx: Products & Services: Silicon Solutions: Virtex-4 Overview”,

<http://www.xilinx.com/products/virtex4/overview.htm> (2005).

[6] K. Compton, S. Hauck, “Totem: Custom Reconfigurable Array Generation”, IEEE

Symposium on FPGAs for Custom Computing Machines, 2001.

[7] K. Compton, A. Sharma, S. Phillips, S. Hauck, “Flexible Routing Architecture

Generation for Domain-Specific Reconfigurable Subsystems”, International

Conference on Field Programmable Logic and Applications, pp. 59-68, 2002.

[8] K. Compton, Architecture Generation of Customized Reconfigurable Hardware,

Ph.D. Thesis, Northwestern University, Dept. of ECE, 2003.

[9] K. Compton, S. Hauck, “Track Placement: Orchestrating Routing Structures to

Maximize Routability”, International Conference on Field Programmable Logic and

Applications, 2003.

[10] K. Compton, S. Hauck, “Flexibility Measurement of Domain-Specific Reconfigurable

Hardware”, ACM/SIGDA Symposium on Field-Programmable Gate Arrays, pp. 155-

161, 2004.

169

[11] K. Compton, S. Hauck, "Automatic Design of Configurable ASICs”, submitted to

IEEE Transactions on VLSI Systems.

[12] K. Eguro, RaPiD-AES: Developing an Encryption-Specific FPGA Architecture,

Master’s Thesis, University of Washington, Dept. of EE, 2002.

[13] K. Eguro, S. Hauck, “Issues and Approaches to Coarse-Grain Reconfigurable

Architecture Development”, IEEE Symposium on Field-Programmable Custom

Computing Machines, pp. 111-120, 2003.

[14] K. Eguro, S. Hauck, “Resource Allocation for Coarse Grain FPGA Development”, to

appear in IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, October, 2005.

[15] M. Holland, S. Hauck, “Automatic Creation of Reconfigurable PALs/PLAs for SoC”,

International Conference on Field Programmable Logic and Applications, pp. 536-

545, 2004.

[16] M. Holland, S. Hauck, “Automatic Creation of Domain-Specific Reconfigurable

CPLDs for SoC”, International Conference on Field Programmable Logic and

Applications, 2005.

[17] S. Phillips, Automatic Layout of Domain-Specific Reconfigurable Subsystems for

System-on-a-Chip, M.S. Thesis, Northwestern University, Dept. of ECE, July 2001.

[18] S. Phillips, S. Hauck, “Automatic Layout of Domain-Specific Reconfigurable

Subsystems for System-on-a-Chip”, ACM/SIGDA Symposium on Field-

Programmable Gate Arrays, pp. 165-173, 2002.

[19] S. Phillips, Automating Layout of Reconfigurable Subsystems for Systems-on-a-Chip,

Ph.D. Thesis, University of Washington, Dept. of EE, 2004.

[20] S. Phillips, A. Sharma, S. Hauck, “Automating the Layout of Reconfigurable

Subsystems Via Template Reduction”, International Conference on Field

Programmable Logic and Applications, pp. 857-861, 2004.

[21] S. Phillips, S. Hauck, “Automating the Layout of Reconfigurable Subsystems Using

Circuit Generators”, IEEE Symposium on Field-Programmable Custom Computing

Machines, 2005.

[22] A. Sharma, Development of a Place and Route Tool for the RaPiD Architecture, M.S.

Thesis, University of Washington, 2001.

[23] A. Sharma, Place and Route Techniques for FPGA Architecture Advancement, Ph.D.

Thesis, University of Washington, Dept. of EE, 2005.

170

[24] A. Sharma, C. Ebeling, S. Hauck, “PipeRoute: A Pipelining-Aware Router for

FPGAs”, ACM/SIGDA Symposium on Field-Programmable Gate Arrays, pp. 68-77,

2003.

[25] S. Hauck, K. Compton, K. Eguro, M. Holland, S. Phillips, A. Sharma, “Totem:

Domain-Specific Reconfigurable Logic”, submitted to IEEE Transactions on VLSI

Systems.

[26] Xilinx, Inc., CoolRunner XPLA3 CPLD: Preliminary Product Specification, January

6, 2003.

[27] Xilinx, Inc., CoolRunner-II CPLD Family: Advance Product Specification, March 12,

2003.

[28] Xilinx, Inc., XC9500XV Family High-Performance CPLD: Preliminary Product

Specification, June 24, 2002.

[29] Altera Corporation, Configuration Elements: Data Sheet, January 1988.

[30] D. Chen, J. Cong, M. Ercegovac, Z. Huang, “Performance-Driven Mapping for

CPLD Architectures”, ACM/SIGDA Symposium on Field-Programmable Gate

Arrays, 2001.

[31] J.H. Anderson, S.D. Brown, “Technology Mapping for Large Complex PLDs”,

Proceedings of the 35
th

 ACM/IEEE Design Automation Conference, pp. 698-703,

1998.

[32] N. Kafafi, K. Bozman, S. Wilton, “Architectures and Algorithms for Synthesizable

Embedded Programmable Logic Cores”, ACM/SIGDA Symposium on Field-

Programmable Gate Arrays, 2003.

[33] A. Yan, S. Wilton, “Product-Term Based Synthesizable Embedded Programmable

Logic Cores”, IEEE International Conference on Field-Programmable Technology,

pp. 162-169, 2003.

[34] F. Mo, R. Brayton, “River PLAs: A Regular Circuit Structure”, Proceedings of the

39
th

 ACM/IEEE Design Automation Conference, 2002.

[35] Y. Han, L. McMurchie, C. Sechen, “A High Performance Programmable Logic Core

for SoC Applications”, 13
th

 ACM International Symposium on Field-Programamable

Gate Arrays, 2005.

[36] Actel Corporation, “Varicore”, <http://www.actel.com/varicore/products/index.html>

(2005).

171

[37] Elixent, “Reconfigurable Compute/Processing Array – the D-Fabrix”,

<http://www.elixent.com/products/array.htm> (2005).

[38] Elixent, “matsushita”,

<http://www.elixent.com/press_area/pressreleases/matsushita.htm> (April 6, 2005).

[39] Xilinx, Inc., Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data

Sheet: Product Specification, June 20, 2005.

[40] Xilinx Inc., “Xilinx: Products & Services: Silicon Solutions: Virtex-4 FPGAs: DSP

Applications”, <http://www.xilinx.com/products/virtex4/overview/dsp.htm> (2005).

[41] S. Khawam, T. Arslan, F. Westall, “Embedded Reconfigurable Array Targeting

Motion Estimation Applications”, 2003.

[42] M. Abramovici, C. Stroud, M. Emmert, “Using Embedded FPGAs for SoC Yield

Improvement”, Proceedings of the 39
th

 ACM/IEEE Design Automation Conference,

2002.

[43] B. Quinton, S. Wilton, “Post-Silicon Debug Using Programmable Logic Cores”,

IEEE International Conference on Field-Programmable Technology, 2005.

[44] R. K. Brayton, G. D. Hachtel, C. T. McMullen, A. L. Sangiovanni-Vincentelli, Logic

Minimization Algorithms for VLSI Synthesis, Boston, Kluwer Academic Publishers,

1984.

[45] “1993 LGSynth Benchmarks”,

<http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.cbl.ncsu.edu/CBL_Docs/lgs93.h

tml> (March 25, 1997).

[46] J. P. Uyemura, CMOS Logic Circuit Design, Boston, Kluwer Academic Publishers,

1999.

[47] OpenCores.org, “OPENCORES.ORG”, <http://www.opencores.org/> (2004).

[48] M. Leeser, “Variable Precision Floating Point Modules”,

<http://www.ece.neu.edu/groups/rpl/projects/floatingpoint/> (May 20, 2004).

[49] National Institute of Standards and Technology, FIPS PUB 197, Advanced

Encryption Standard (AES), November 2001.

[50] Asratian, Denley, Häggkvist, Bipartite Graphs and Their Applications, UK,

Cambridge University Press, 1998.

172

[51] V. Betz, J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA

Research”, International Workshop on Field Programmable Logic and Applications,

1997.

[52] J. Kouloheris, A. El Gamal, “FPGA Performance vs. Cell Granularity”, Proceedings

of the Custom Integrated Circuits Conference, 1991.

[53] G. Lemieux and D. Lewis, Design of Interconnection Networks for Programmable

Logic, Boston, Kluwer Academic Publishers, 2004.

[54] A. El Gamal, L.A. Heinachandra, I. Shperling, V. K. Wei, “Using simulated

annealing to design good codes.”, IEEE Transactions on Information Theory,

33(1):116:123, January 1987.

[55] L. McMurchie, C. Ebeling, "PathFinder: A Negotiation-Based Performance-Driven

Router for FPGAs", Proceedings of the 1995 ACM Third International Symposium on

Field-Programmable Gate Arrays, pp. 111-117, February 1995.

[56] Xilinx, Inc, “Technology Update - CoolRunner”,

<http://www.xilinx.com/xcell/xl36/xl36_10.pdf>.

[57] Xilinx, Inc, “Fast Zero Power (FZP) Technology”,

<http://www.xilinx.com/products/coolpld/wp119.pdf>, 2000.

173

Appendix A: Kuhn/Munkres Algorithm

This Appendix details an algorithm by Kuhn and Munkres that can be used to map

the product terms of two circuits onto PLA and PAL arrays such that they require the

minimal number of programmable connections. This is done by rephrasing the problem

as a problem on a bipartite graph with weighted edges, and finding the best perfect

matching. The algorithm for finding the best perfect matching is taken from [50].

The process begins with the product terms of each circuit. If one of the circuits

contains fewer product terms than the other circuit, then it must be filled with empty

product terms in order to contain the same number of product terms as the second circuit.

This is shown in Figure 99.

010010110

101010010

010110000

100100011

011011101

circuit1

101000000

110010001

011101011

000000000

000000000

circuit2

added terms

Figure 99. If one of the circuits has fewer product terms, then it is filled with empty product terms in

order to contain the same number as the other circuit. In this figure the product terms use their

vector representations, as introduced in Chapter 8

Next, the value of all possible product term matchings must be determined. The

value of a product term matching is the number of array locations that do not need

programmable connections when the two product terms are mapped to the same location.

It is formulated in this fashion so that we have a maximization problem rather than a

minimization problem.

174

a:010010110

b:101010010

c:010110000

d:100100011

e:011011101

circuit1

v:101000000

w:110010001

x:011101011

y:000000000

z:000000000

circuit2

a

b

c

d

e

v w x y z

3 3 1 5 5

5 3 1 5 5

4 4 2 6 6

4 3 2 5 5

2 3 1 3 3

Weight Table

Figure 100. The matching values are calculated for each possible product term matching between

two circuits. The Weight Table displays the values for the matchings

The problem is now recast as a problem on a bipartite graph, G. The product terms

from circuit1 become vertices in the left partition (V1) of G, and the product terms from

circuit2 become vertices in the right partition (V2) of G. For each vertex u in V1, an edge

is created to each vertex v in V2 with a weight w(uv) equaling the value calculated for the

corresponding product-term matching. An example of this is shown in Figure 101. The

problem is now to find the perfect matching between V1 and V2 whose edges sum to a

maximum value.

a:01001

b:10101

c:01011

circuit1

x:01110

y:11000

z:01001

circuit2
a

b

c

x y z

1 2 3

0 1 1

1 1 2

Weight Table
a

b

c

x

y

z

1

2
3

0
1

1

1
1

2

Figure 101. Casting the problem into the problem of finding the maximal perfect matching on a

bipartite graph

175

We define a function f which obeys f(u) + f(v) ≥ w(uv) for each 21 , VvVu ∈∈ , and

instantiate the function as follows:

=)(0 xf
0

)}(:)(max{ xNyxyw ∈

if

if

2

1

Vx

Vx

∈

∈

where N(x) is the neighborhood of x. Basically, for each vertex in V1, f is set to the value

of the maximum edge connected to the vertex. For each vertex in V2, f is set to 0. An

example of this is shown in Figure 102.

a

b

c

x

y

z

1

2
3

0
1

1

1
1

2

f(a)=3

f(b)=1

f(c)=2

f(x)=0

f(y)=0

f(z)=0

Figure 102. Example of initial values for the function f

We next create the spanning subgraph of G, called Gf, which contains the subset of

edges uv for which f(u)+f(v)=w(uv). Gf therefore contains all the vertices from G, but

only some of the edges. An example of this subgraph Gf is shown in Figure 103.

1

2
3

0
1

1

1
1

2

f(a)=3

f(b)=1

f(c)=2

f(x)=0

f(y)=0

f(z)=0

G

3

1

1

2

Gf

Figure 103. On the left, the graph G with the values of f for each vertex. On the right, the spanning

subgraph Gf that is created from G

176

The problem has now been set up, and the Kuhn/Munkres algorithm can be used find

the optimal assignment on the bipartite graph, which will give us the optimal product

term assignment. The pseudocode for the Kuhn/Munkres algorithm is shown in Figure

104.

Figure 104. The Kuhn/Munkres algorithm for finding the optimal matching in a bipartite graph [50]

The algorithm runs by searching for augmenting paths relative to the current

matching. When new augmenting paths are not found, it alters the function f in order to

modify the graph Gf, which allows new augmenting paths to be found. For circuits with

KuhnMunkresAlgorithm()

{

• Begin with the feasible labeling f = f
0
, the equality graph G

f
, and

a maximum matching of G
f
, called M

0
, which is initially empty. Let

i = 0.

• While M
i
 is not a perfect matching of G

f

o Let u be a free vertex in V
1
. Let S = {u} and T = ∅.

o If TSN
fG =)(then

� Compute)}()()({
,

min
xywyfxf

TySx
d f −+

∉∈
=

� Update the function f to

=)(xf

)(

)(

)(

xf

dxf

dxf

f

f

+

−

if

if

if

otherwise,

,

,

Tx

Sx

∈

∈

and calculate the new G
f
.

o Select a vertex TSNy
fG \)(∈ .

o If y is saturated then add y to T, and the neighbor of y in

M
i
 to S. Goto (1).

o Else there is an augmenting path P in G
f
 [S∪ T] joining u to

y. Let M
i+1
 = M

i
∆E(P) and i=i+1.

• End while

• Output M
i
, an optimal matching.

}

(1)

177

n product terms, there can be at most n matchings in Mi. For each matching, the set T can

be increased up to n times, which causes an update to f which can take O(n
2
) steps. The

overall runtime of the algorithm is thus O(n
4
).

178

Appendix B: Layout Units

This Appendix presents the major layout units that are used to build our CPLD

architectures, including their schematic representations. For brevity’s sake, only layout

units that utilize silicon are shown: any layout units that are comprised purely of routing

resources (metal layers) are omitted from this appendix. Additionally, many layout units

come in both a standard and upside-down form: this appendix will only display their

standard forms.

Figure 105 displays the very corner of a CPLD that our tool might create. Included

in this diagram is a very small (2-4-2) PLA, along with a row of programmable switches

that would be part of the crossbar that switches signals into the PLA. The figure also

depicts the individual layout units that are tiled in order to create the CPLD structure.

Each of the individual units displayed in Figure 105 is shown in this Appendix, along

with a schematic representation of the unit.

Signals are switched from the CPLD interconnect to a PLA through a programmable

switch, shown in Figure 106. The programmable switch consists of a transistor whose

gate is controlled by an SRAM bit. The output signal of this programmable switch feeds

an inverter and buffer, shown in Figure 107. This unit provides the true and negated form

of a signal to the AND-plane in the PLA.

Each product term in the PLA AND-plane is a pseudo-nMOS gate. The pulldown

section of the pseudo-nMOS gate is created by the AND-plane cells, which consist of

pulldown transistors that are either connected or disconnected from ground according to

SRAM bits (Figure 108). The pullup transistor for the pseudo-nMOS gate is shown in

Figure 109. This signal is then restored/amplified by a buffer, shown in Figure 110.

The outputs of the PLA are created in the OR-plane, and they are also formed using

pseudo-nMOS gates. The OR-plane cells (Figure 111) contain the pulldown transistors

179

for the pseudo-nMOS gates, and the pullup transistor is shown in Figure 112. This signal

is then inverted and amplified using the cell in Figure 113: inversion is necessary due to

our NOR-NOR PLA implementation.

The output of the PLA then feeds a D-Flip-Flop (Figure 114), which is used to

provide registering for the signal. A 2-to-1 multiplexor (Figure 115) then chooses

between the registered and unregistered PLA output signal, as determined by an SRAM

bit, shown in Figure 116. This signal is then connected to a specific wire in the CPLD

interconnect, as required by our complete network implementation.

180

Prog.

Switch

Prog.

Switch

Prog.

Switch

Prog.

Switch

AND

Cell

AND

Cell

AND

Cell

AND

Cell

AND

Cell

AND

Cell

AND

Cell

AND

Cell

AND

Cell

AND

Cell

AND

Cell

AND

Cell

AND

Cell

AND

Cell

AND

Cell

AND

Cell

Inter-Plane

Buffer

Inter-Plane

Buffer

Inter-Plane

Buffer

Inter-Plane

Buffer

OR

Cell

OR

Cell

OR

Cell

OR

Cell

Pullup

P
u

ll
u

p
P

u
ll

u
p

P
u

ll
u

p

Output

Inverter

RAM

Bit

2 to 1

Mux

OR

Cell

OR

Cell

OR

Cell

OR

Cell

Pullup

Output

Inverter

RAM

Bit

2 to 1

Mux

DFF DFF

Input

Inverter

And

Buffer

Input

Inverter

And

Buffer

P
u

ll
u

p

Figure 105. Top, layout of a PLA and programmable switches (part of the crossbar) from a CPLD

that our tool creates. Bottom, the main cells used in creating this part of the layout

181

Figure 106. Programmable switch from the CPLD crossbar

182

Figure 107. Inverter and buffer that feed the PLA's AND-plane

183

Figure 108. AND-plane connection, a pulldown transistor in serires with an SRAM controlled

transistor

184

Figure 109. Pullup transistor for the AND-plane

185

Figure 110. Buffer between the AND-plane and OR-plane, used for signal restoration

186

Figure 111. OR-plane connection, a pulldown transistor in serires with an SRAM controlled

transistor

187

Figure 112. Pullup transistor for the OR-plane

188

Figure 113. Inverter appearing after the OR-plane, used for needed inversion and signal restoration

189

Figure 114. D-Flip-Flop used for optional registering of the PLA outputs

190

Figure 115. 2-to-1 multiplexor used for chosing the registered or unregistered PLA output

191

Figure 116. SRAM bit used for controlling the 2-to-1 multiplexor

192

Vita

Mark Holland was born in Seattle, Washington in September of 1977, and has called

the city home for all of his life. He earned a Bachelor of Science in Engineering from

Harvey Mudd College in 2000, and a Master of Science in Electrical Engineering from

the University of Washington in 2002. In 2005 he earned a Doctor of Philosophy in

Electrical Engineering from the University of Washington.

