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1. Introduction 

Reconfigurable logic fills a useful niche between the 

flexibility provided by a processor and the performance 

provided by custom hardware. This usefulness extends to 

the SoC realm, where reconfigurable logic can provide 

cost-free upgradability, conformity to different but similar 

protocols, coprocessing hardware, and uncommitted 

testing resources. In SoC designs the computational 

domain is already known, so an opportunity exists for 

creating domain-specific reconfigurable logic tailored to 

the specific domain - thereby removing unneeded 

flexibility and improving performance. The dilemma then 

becomes creating these reconfigurable fabrics in a short 

enough time that they can be useful to SoC designers. 

This work presents the creation of domain-specific CPLD 

architectures, a project termed Totem-CPLD (part of the 

larger Totem project at UW). For the scope of this work, a 

CPLD is a collection of PLAs connected by a full 

crossbar, and they are made “domain-specific” by altering 

the input, product term, and output capacities of the PLAs 

in the architecture. 

2. Background 

As a precursor to Totem-CPLD, we performed work in 

which we explored the feasibility of making domain-

specific reconfigurable PLAs and PALs [1]. By 

intelligently removing 60%-70% of the programmable 

connections in the PLA/PAL arrays we were able to 

provide delay gains of 15%-30%. Depopulating the arrays 

in a PLA is very restrictive to future mappings, however, 

so we chose not to use PLA depopulation in Totem-

CPLD. 

We will be using a tool called PLAmap to perform our 

tech-mapping, as it is currently the best academic tech-

mapping algorithm for CPLDs [2]. PLAmap is a 

performance driven mapping algorithm whose goal is to 

minimize the delay/depth of the mapped circuit. It is run 

by providing a PLA size (inputs, product terms, outputs) 

and a circuit (in .blif format) to be mapped, and it returns 

the mapping, which includes the number of PLAs 

required and the depth of the mapping. 

3. Approach – Tool Flow 

The tool flow for Totem-CPLD is as follows. To begin, 

the SoC designer provides us with a domain specification 

that contains the circuits that need to be supported. These 

circuits are fed into an Architecture Generator, which 

finds a CPLD architecture that provides good results for 

the selected domain, outputting the architecture 

description. The architecture description is then sent to a 

Layout Generator which creates a full VLSI layout of the 

specified CPLD architecture. The full VLSI layout is then 

returned to the designer as “IP” to be incorporated into the 

SoC device. 

The Architecture Generator is responsible for reading in 

multiple circuits and finding a CPLD architecture that 

supports the circuits efficiently. Search algorithms are 

used to make calls to PLAmap, after which the results are 

analyzed according to area and delay models that we have 

developed. We developed four Architecture Generation 

algorithms for this work: Hill Descent, Successive 

Refinement, Choose N Regions, and Run M Points. All of 

the algorithms break the search into three sequential steps 

by searching for good input, output, and product term 

sizes, in that order. The searching done in the input step 

always uses PLAs with a 1x-2x-.5x IN-PT-OUT ratio 

(found through experimentation), while the output and 

product term steps always alter ONLY the output and 

product term values from data point to data point. 

The Hill Descent algorithm searches each 1-D space by 

testing different PLA architectures and following the 

slope of the results down until a valley is reached, where 

it stops. The Successive Refinement algorithm sweeps 

each 1-D space for results and trims sub-optimal regions 

from the edges of the 1-D space, refining until it searches 

at maximum granularity. The Choose N Regions 

algorithm sweeps each 1-D space for results and chooses 

N regions to explore further, continually doing this until 

maximum granularity is reached (akin to breadth first 

search, N=2 used for results). The Run M Points 

algorithm sweeps each 1-D space for results and then 

repeatedly explores architectures next to the current best 

architecture, running until M points have been explored 

(akin to depth first search, M=15 used for results). 
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Table 1. Architecture results for domain-specific algorithms and fixed architectures 
 

 
 

4. Methodology 

We are using five sets or “domains” of benchmarks to 

evaluate our algorithms – the domains are: combinational, 

sequential, arithmetic, floating point, and encryption. The 

domain specific architectures that we create are compared 

to results obtained by implementing all the designs in 

fixed CPLD architectures. We use fixed architectures that 

are composed of 10-12-4 PLAs (as suggested by [3]), 10-

20-5 PLAs (as suggested by our preliminary work), and 

36-48-16 PLAs (used to model a commercial-like CPLD 

architecture)  

5. Results 

For each domain, a PLA architecture was found by using 

each of our four algorithms. Additionally, we mapped the 

circuits of each domain to the fixed architectures that we 

described earlier. These results are shown in Table 1. All 

results are normalized to the values obtained for the 

Choose N Regions algorithm. 

From Table 1 it is apparent that creating domain-specific 

CPLD architectures is a win over using fixed 

architectures. All four algorithms found architectures that 

outperform the fixed architectures for each domain. 

Considering the mean performance, the fixed 

architectures perform 4.1x to 9.5x worse than the Choose 

N Regions algorithm, which performs the best.  

An interesting aside is that the architectures found by our 

search algorithms are likely to be more efficient than the 

fixed architectures that we compare our results to in Table 

1. But the best architectures found by our algorithms, 

when used across all domains, still perform 2.0x to 7.0x 

worse than the domain-specific results. This shows that 

even if you manage to pick the best possible domain-

generic fixed architecture, there is a bound as to how 

close you can come to domain-specific results – in this 

case, domain-specific beats fixed architectures by 2x. 

6. Conclusion 

Our work presents a complete tool flow for creating 

domain-specific CPLDs for System-on-a-Chip devices. 

When compared to realistic fixed CPLD architectures, the 

domain-specific architectures perform 4.1x to 9.5x better 

in terms of area-delay product. Of the base results, the 

Choose N Regions algorithm provided the best results in 

terms of performance, with a runtime that was beaten only 

by the simple Hill Descent algorithm. 

Although not described in depth here, this work also 

includes a Layout Generator which takes pre-made layout 

units and tiles them to make full VLSI CPLD layouts in 

the TSMC .18-micron process. 

7. Future Work 

Future analysis will need to incorporate power values in 

order to robustly evaluate our architectures. Additional 

routing architectures should also be explored, as crossbars 

are prohibitively large for moderately sized designs. Also, 

different metrics should be incorporated into the cost 

function, as area-delay product is just one of many ways 

to analyze an architecture. Finally, work should be 

undertaken that explores the resource mix that should be 

added to these architectures in order to most effectively 

add flexibility to them. 
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