
 1

Automatic Creation of Domain-Specific Reconfigurable CPLDs for SoC

Mark Holland, Scott Hauck

Department of Electrical Engineering

University of Washington, Seattle, WA 98195, USA

mholland@ee.washington.edu, hauck@ee.washington.edu

1. Introduction

Reconfigurable logic fills a useful niche between the

flexibility provided by a processor and the performance

provided by custom hardware. This usefulness extends to

the SoC realm, where reconfigurable logic can provide

cost-free upgradability, conformity to different but similar

protocols, coprocessing hardware, and uncommitted

testing resources. In SoC designs the computational

domain is already known, so an opportunity exists for

creating domain-specific reconfigurable logic tailored to

the specific domain - thereby removing unneeded

flexibility and improving performance. The dilemma then

becomes creating these reconfigurable fabrics in a short

enough time that they can be useful to SoC designers.

This work presents the creation of domain-specific CPLD

architectures, a project termed Totem-CPLD (part of the

larger Totem project at UW). For the scope of this work, a

CPLD is a collection of PLAs connected by a full

crossbar, and they are made “domain-specific” by altering

the input, product term, and output capacities of the PLAs

in the architecture.

2. Background

As a precursor to Totem-CPLD, we performed work in

which we explored the feasibility of making domain-

specific reconfigurable PLAs and PALs [1]. By

intelligently removing 60%-70% of the programmable

connections in the PLA/PAL arrays we were able to

provide delay gains of 15%-30%. Depopulating the arrays

in a PLA is very restrictive to future mappings, however,

so we chose not to use PLA depopulation in Totem-

CPLD.

We will be using a tool called PLAmap to perform our

tech-mapping, as it is currently the best academic tech-

mapping algorithm for CPLDs [2]. PLAmap is a

performance driven mapping algorithm whose goal is to

minimize the delay/depth of the mapped circuit. It is run

by providing a PLA size (inputs, product terms, outputs)

and a circuit (in .blif format) to be mapped, and it returns

the mapping, which includes the number of PLAs

required and the depth of the mapping.

3. Approach – Tool Flow

The tool flow for Totem-CPLD is as follows. To begin,

the SoC designer provides us with a domain specification

that contains the circuits that need to be supported. These

circuits are fed into an Architecture Generator, which

finds a CPLD architecture that provides good results for

the selected domain, outputting the architecture

description. The architecture description is then sent to a

Layout Generator which creates a full VLSI layout of the

specified CPLD architecture. The full VLSI layout is then

returned to the designer as “IP” to be incorporated into the

SoC device.

The Architecture Generator is responsible for reading in

multiple circuits and finding a CPLD architecture that

supports the circuits efficiently. Search algorithms are

used to make calls to PLAmap, after which the results are

analyzed according to area and delay models that we have

developed. We developed four Architecture Generation

algorithms for this work: Hill Descent, Successive

Refinement, Choose N Regions, and Run M Points. All of

the algorithms break the search into three sequential steps

by searching for good input, output, and product term

sizes, in that order. The searching done in the input step

always uses PLAs with a 1x-2x-.5x IN-PT-OUT ratio

(found through experimentation), while the output and

product term steps always alter ONLY the output and

product term values from data point to data point.

The Hill Descent algorithm searches each 1-D space by

testing different PLA architectures and following the

slope of the results down until a valley is reached, where

it stops. The Successive Refinement algorithm sweeps

each 1-D space for results and trims sub-optimal regions

from the edges of the 1-D space, refining until it searches

at maximum granularity. The Choose N Regions

algorithm sweeps each 1-D space for results and chooses

N regions to explore further, continually doing this until

maximum granularity is reached (akin to breadth first

search, N=2 used for results). The Run M Points

algorithm sweeps each 1-D space for results and then

repeatedly explores architectures next to the current best

architecture, running until M points have been explored

(akin to depth first search, M=15 used for results).

 2

Table 1. Architecture results for domain-specific algorithms and fixed architectures

4. Methodology

We are using five sets or “domains” of benchmarks to

evaluate our algorithms – the domains are: combinational,

sequential, arithmetic, floating point, and encryption. The

domain specific architectures that we create are compared

to results obtained by implementing all the designs in

fixed CPLD architectures. We use fixed architectures that

are composed of 10-12-4 PLAs (as suggested by [3]), 10-

20-5 PLAs (as suggested by our preliminary work), and

36-48-16 PLAs (used to model a commercial-like CPLD

architecture)

5. Results

For each domain, a PLA architecture was found by using

each of our four algorithms. Additionally, we mapped the

circuits of each domain to the fixed architectures that we

described earlier. These results are shown in Table 1. All

results are normalized to the values obtained for the

Choose N Regions algorithm.

From Table 1 it is apparent that creating domain-specific

CPLD architectures is a win over using fixed

architectures. All four algorithms found architectures that

outperform the fixed architectures for each domain.

Considering the mean performance, the fixed

architectures perform 4.1x to 9.5x worse than the Choose

N Regions algorithm, which performs the best.

An interesting aside is that the architectures found by our

search algorithms are likely to be more efficient than the

fixed architectures that we compare our results to in Table

1. But the best architectures found by our algorithms,

when used across all domains, still perform 2.0x to 7.0x

worse than the domain-specific results. This shows that

even if you manage to pick the best possible domain-

generic fixed architecture, there is a bound as to how

close you can come to domain-specific results – in this

case, domain-specific beats fixed architectures by 2x.

6. Conclusion

Our work presents a complete tool flow for creating

domain-specific CPLDs for System-on-a-Chip devices.

When compared to realistic fixed CPLD architectures, the

domain-specific architectures perform 4.1x to 9.5x better

in terms of area-delay product. Of the base results, the

Choose N Regions algorithm provided the best results in

terms of performance, with a runtime that was beaten only

by the simple Hill Descent algorithm.

Although not described in depth here, this work also

includes a Layout Generator which takes pre-made layout

units and tiles them to make full VLSI CPLD layouts in

the TSMC .18-micron process.

7. Future Work

Future analysis will need to incorporate power values in

order to robustly evaluate our architectures. Additional

routing architectures should also be explored, as crossbars

are prohibitively large for moderately sized designs. Also,

different metrics should be incorporated into the cost

function, as area-delay product is just one of many ways

to analyze an architecture. Finally, work should be

undertaken that explores the resource mix that should be

added to these architectures in order to most effectively

add flexibility to them.

Acknowledgments

Thanks to Mike Hutton and Swati Pathak at Altera, Steve

Wilton, Deming Chen, and Kenneth Eguro. Mark Holland

was supported in part by an NSF Fellowship, and Scott

Hauck by a Sloan Fellowship.

References

[1] M. Holland, S. Hauck, “Automatic Creation of

Reconfigurable PALs/PLAs for SoC”, 14th International

Conference on Field-Programmable Logic and Applications,

2004, pp. 536-545.

[2] D. Chen, J. Cong, M. Ercegovac, Z. Huang, “Performance-

Driven Mapping for CPLD Architectures”, ACM/SIGDA 9th

International Symposium on Field-Programmable Gate Arrays,

2001, pp. 39-47.

[3] J. Kouloheris, A. El Gamal, “FPGA Performance vs. Cell

Granularity”, IEEE Proceedings of the Custom Integrated

Circuits Conference, 1991, pp. 6.2/1-6.2/4.

