
1

Rapid Synchronization Recovery from Single
Event Effects in the Aurora 64b/66b Protocol

Anatoliy Martynyuk, Hongjiang Cai, Scott Hauck, Timon Heim, Shih-Chieh Hsu, and Geoffrey Jones

Abstract—The Aurora 64b/66b line encoding is a Xilinx
communication protocol utilized for high-speed serial
communications. The protocol offers several useful
features but suffers from a relatively slow
resynchronization scheme that can be triggered by
periodic single event effects (SEEs), particularly in high
radiation environments. To reduce data losses using the
Aurora protocol we developed a replacement recovery
scheme for the receiver which drastically improves
resynchronization speeds with reasonable costs in device
resources. Our new resynchronization scheme, HSn, can
help the system recover from an SEE rapidly by
evaluating multiple possible header positions
simultaneously, and then confirming the true header
position. Compared to the existing resynchronization
scheme, the new scheme with HS8 reduces block loss by a
factor of 98x while only using 0.23% LUTs and 0.13%
FFs of the target FPGA [10].

Index Terms—64b/66b Protocol, FPGA, Single Event
Effect, Synchronization Recovery.

Anatoliy Martynyuk was with Department of Electrical and
Computer Engineering, University of Washington, Seattle, WA
98195 USA (e-mail: anatoliym2@gmail.com)
Hongjiang Cai is with Department of Electrical and Computer

Engineering, University of Washington, Seattle, WA 98195 USA (e-
mail: c1003183598@gmail.com)
Scott Hauck is with Department of Electrical and Computer

Engineering, University of Washington, Seattle, WA 98195 USA (e-
mail: hauck@uw.edu)
Timon Heim is with Lawrence Berkeley National Laboratory,

Berkeley, CA 94720 USA (e-mail: theim@lbl.gov)
Shih-Chieh Hsu is with Department of Physics, University of

Washington, Seattle, WA 98195 USA (e-mail: schsu@uw.edu)
Geoffrey Jones is with Department of Electrical and Computer

Engineering, University of Washington, Seattle, WA 98195 USA (e-
mail: geoffhjones@msn.com)

I. INTRODUCTION
ata communications, especially in loss-prone
environments, require special data encoding
protocols to provide high speed, good
reliability, and good physical layer properties.

High reliability can be achieved at a cost in bandwidth,
requiring a careful balancing of these two constraints.
However, any realistic system will simply statistically
reduce the chance of data loss, and systems must still
be in place for recovery when data loss occurs.

At the Large Hadron Collider, we utilize a large
number of Xilinx FPGAs, and high-speed data links,
aggregating the huge data flows generated by this
particle accelerator experiment. This environment
requires efficient protocols to handle the data-rates and
communication errors. Although the radiation
environment within such a high-energy physics
experiment is more extreme than in many other
environments, the issue of error recovery is important
in many such contexts.

Error recovery in traditional systems has tended to
focus on flipped bits. However, radiation can induce
SEEs (Single Event Effects), such as glitches on the
clock line, that can effectively cause bits to be added or
deleted, thus misaligning the subsequent
communications stream [5][6][11]. In this paper, we
consider techniques to quickly adapt to such insertions
and deletions and demonstrate practical techniques to
quickly recover from these effects.

II. AURORA PROTOCOL
The Aurora Protocol is a link layer protocol developed
by Xilinx for high-speed communications. The
protocol is available in two data formats: 8b/10b and
64b/66b. The protocol format determines the bit length
of blocks, and the number of data bits vs. “header” bits
in each block. The 8b/10b variation utilizes 10-bit
blocks with 8 payload bits. The 64b/66b variation

D



2

similarly has 64 payload bits in each 66-bit block. This
corresponds to an overhead of 25% in the 8b/10b
variation and 3.125% in the 64b/66b variation [1][2].

Both variations are designed to provide enough state
changes to allow clock recovery, stream alignment, and
DC balancing during transmission. The payload bits of
each block are scrambled before transmission. The
scrambling generally increases the transition density
and DC balance of the stream. The two “header” bits,
however, are left unscrambled and used for stream
alignment. The high transition density and short length
additionally allow for clock recovery at the receiver
[1][2].

Each protocol variant offers tradeoffs in performance,
with overall throughput depending on the number of
transceivers and the target line rate of selected
transceivers. The 8b/10b protocol supports throughputs
up to 84.48 Gb/s, while the 64b/66b variant supports
throughputs up to 400 Gb/s. Latencies of the 8b/10b
variation generally hovers around 40 cycles of latency,
whereas the 64b/66b has a latency of around 55 cycles
[3][4].

III. RESYNCHRONIZATION AT THE LARGE
HADRON COLLIDER

Electronics development for upgrades to the ATLAS
experiment at the Large Hadron Collider (LHC)
demonstrates how SEEs disrupt communication in a
high radiation environment; similar effects can happen
in space applications (though at significantly lower
rates), and increasingly in terrestrial systems as chip
feature sizes shrink. The LHC ATLAS experiment
contains a pixel detector made up of sensing
instrumentation. At its innermost layer will be an array
of custom silicon pixel readout chips called the
ITkPix[12]. ITkPix collects charge data from
subatomic collisions within the experiment. This
information is organized into frames and forwarded to
an FPGA-based data acquisition device (DAQ) called
YARR [7].

Communication between the pixel array and the DAQ
uses 64b/66b line encoding. This protocol was chosen
because it has lower bandwidth overheads than the
8b/10b protocol, and we are willing to tolerate the
corresponding occasional data loss.

The 64b/66b protocol has a built-in synchronization
scheme. Synchronization is achieved by determining
the packet boundary in the receiver’s incoming stream.

This boundary is indicated by the header bits, which
are differentiated from the remaining data by always
containing a 0 to 1 or 1 to 0 transition. The receiver
monitors the stream to verify that this transition occurs
exactly every 66 bits. If such transitions appear
consistently the boundary is considered to be found, the
sender and receiver are synchronized, and the receiver
will correctly distinguish blocks within the stream.
However, if the bits checked in some blocks do not
contain a transition (i.e., they are from the data field
rather than the header) then the DAQ needs to change
which position it is assuming is the header. This is
accomplished by “slipping” the stream, effectively
dropping a bit from the stream to change the checked
indices. With enough slips, the receiver can scan
through all 66 possible bit indices. Since header bits are
guaranteed to always have a transition, and other bits
are scrambled to ensure essentially a 50%/50% chance
of transition or not, observing the stream for multiple
cycles can reliably find the correct header position in a
well-formed stream. The synchronization process is
defined by the block sync FSM in IEEE 802.3ae [10].

The DAQ has to resolve data corruption and loss of
synchronization as a result of SEEs under high
radiation environments. As the LHC moves to a higher
intensity mode, it is anticipated to see an increase in the
number of SEEs. As a result, we developed a more
efficient resynchronization scheme to detect and
recover from SEEs more quickly [9].

IV. YARR’S INTRINSIC RECOVERY SCHEME
The existing YARR DAQ has its own recovery scheme
built in the Aurora-style single RX lane. It leverages
the “bitslip module” in ISERDESE2, one of Xilinx
primitives used to build the deserializer in YARR, to
effectively recover from bit drops and bit adds caused
by SEEs [10].

DEVICE COMPONENT SEU RATE ESTIMATION

IN HL-LHC
PIXEL UNPROTECTED LATCH

MEMORY

4.6 bit flips per second per
FE chip

PIXEL TMR LATCH (WITHOUT

CORRECTION)
7 bit flips per minute per

FE chip
PIXEL TMR LATCH (WITH

CORRECTION)
0.2 bit flips per hour per

FE chip
CLOCK & DATA RECOVERY 4 SEEs per minute per

chip (RD53CDR proto)
Table1: SEU Rate Estimates for Future High Luminosity LHC[8]



3

The diagram (Fig. 1) above illustrates the mechanism
of YARR’s intrinsic recovery scheme, based on the
Xilinx Aurora protocol. Serial data sent from ITkPix is
first passed to the deserializer and built into a 32-bit
chunk. This 32-bit chunk is then passed into the 128-bit
buffer in the gearbox. The gearbox will then send the
66-bit data, including the 2-bit header and 64-bit
scrambled data, from the 128-bit buffer.

Assume for the moment that the system was
synchronized and locked on a certain position of the
66-bit range. When a SEE occurs, the synchronizing
position might change, so the transmission of 66-bit
blocks is no longer synchronized. The system can
detect this desynchronization by checking the header of
each 66-bit block. When a wrong header appears at the
previously locked position, the system will reset
HeaderValidCount to zero, flag the transmitting data as
invalid, and turn on slip mode to find a new lock
position.

This recovery scheme evaluates headers at different
positions by bit slip. In slip mode, the DDR SERDES
will perform slipping behavior that shifts the data
stream back-and-forth within a range of 8 bits, but
mostly in a single direction. After 8 slips, the SERDES
snaps back to the original position. Then, the slip
control block will disable SERDES slip and enable

gearbox slip. The gearbox slip is achieved by freezing
the shifter. Since the gearbox combinational shifter
shifts 2 positions every output cycle, freezing the
shifter by one output cycle is equivalent to moving the
header position by 2 bits. After one gearbox slip, the
next 8 slips are handled by the deserializer before
another gearbox slip.

When a valid header is found, the system stops slipping
and starts counting valid headers. When
HeaderValidCount saturates at 32, the system will flag
the transmitted data as valid and send out the
descrambled data. However, once an invalid header
position is found, the system will slip at most once for
every 17x66b blocks, presumably to allow the
incoming data to stabilize.

V. YARR HEADER SEEKERS (HSN)
The YARR Header Seekers are our newly developed
synchronization recovery scheme, which improves
recovery speed from bit drops and bit adds within the
64b/66b line encoding. The HSn recovery schemes aim
to leverage parallelism and rapid evaluation to increase
the number of indices (referred to here as positions)
evaluated per 66-bit block.

Figure 1: Block diagram of YARR’s 64b/66b intrinsic recovery scheme.



4

Fig. 2 illustrates the mechanism of the HSn recovery
scheme, with N parallel seekers, each handling roughly
1/Nth of the possible header positions. Similar to the
original scheme, the system detects desynchronization
by checking the header of 66-bit blocks. If the header
at the examined position violates the protocol, the
seeker switches to the next assigned position and resets
the valid header counter to 0. Otherwise, the seeker
will increment the valid header counter by 1 for each
block with a valid header. For this HSn scheme there
are three major innovations compared to the original
scheme: fail-fast, fast search, and parallelism.

A. Fail-fast
When the original scheme searches for a new lock
position, for each position it includes a 16-header
“dead time” where it ignores invalid headers. This
means that as it scans candidate positions, it takes at
least 17 blocks before it can recognize an incorrect
position. Instead of waiting for 16x66b blocks, the HSn
scheme updates the search position immediately when
the seeker finds an invalid header.

B. Fast search
In addition to fail-fast, the HSn scheme further
improves search efficiency by evaluating headers at a
higher rate. The original scheme checks the validity of
one header for every valid 66b block, which arrives

roughly every 8 internal clock cycles. This is necessary
because the header checker looks at the header on the
output of the gearbox, which can only “slip” roughly
every 8 clock cycles.

Our HSn system instead “sniffs” the data inside the
gearbox, allowing each seeker to check a potential
header position every clock cycle. On an incorrect
header, it can move quickly to a new candidate position.
Note that for a position that has a legal header (either
because it is the correct position, or the 50% of the time
that scrambled data will happen to have a transition), it
must wait for a new 66b block, which appears at the
next 8 clock boundary.

When 16 consecutive 66b blocks with valid headers are
detected, the seeker will send out the current position
offset and a signal indicating that that offset is valid.
We choose 16 because statistically, the chance of
randomly getting 16 consecutive headers at a non-
header position is 2^(-16), or about 1 in 65k, which is
sufficiently unlikely [10].

Fig. 3 is the flowchart of the seeker in the HSn scheme
with n = 1 (only one seeker).

Figure 2: Block diagram of HSn recovery scheme.



5

With just the two new mechanisms mentioned above,
our new scheme (n = 1) can reduce the block loss by a
factor of 44x, while increasing the size of the Aurora
receiver to 1.89x.

Fig. 4 shows the stark difference between the
performance of the existing recovery system and our
unit seeker variant (n=1). The orange plot demonstrates
the near-linear response of the existing recovery system
to the misalignment distance. Recall that the 64b/66b
recovery system operates on individual “slips” which
drop one bit at a time from the stream until the packet
boundary is found. It naturally follows that the greater

the misalignment, the longer it would take the recovery
system to realign. The exception is at the far right end;
because the Xilinx bitslip mechanism in the DDR
SERDES sometimes uses slips in the opposite direction,
we sometimes get lucky for cases with only a few bits

inserted.

Figure 3:Flowchart of the unit seeker (HS1).

Figure 4: Resynchronization performance of the 64b/66b intrinsic scheme compared to the variant with n = 1 (unit seeker).



6

C. Parallelism
Beyond just the improvements of HS1, we also use
parallelism by employing N seekers, each handling
roughly one of the N possible header positions. This
allows us to evaluate multiple stream positions
simultaneously, which can reduce the time to find the
correct header location by up to a factor of n. If n is 66
(the number of bits in each block), the seeker can very
quickly find the correct header position because every
possible position is evaluated simultaneously.
Resynchronization would only be limited by the time it
takes to detect that a SEE occurred and to verify that all
positions but one are incorrect. However, setting n to

66 has the drawback of requiring significant hardware
resources. Instead, by assigning a few seekers to
multiple positions each, and rotating between those
positions quickly, the benefits of parallelism can be
realized without as significant a resource cost [10].

Note that it is possible to have multiple locked
positions (positions with 16 consecutive legal
transitions) at the same time. When we are first trying
to lock onto a position, there is only a ~1/65k chance of
a given head seeker being locked onto an incorrect
position. However, during operation, each head
seeker at a non-header position will believe it has
found a locked position every 65k blocks, or many
times a second. To deal with this, we follow two rules:
(1) when any head seeker is already locked onto a
position, it remains the winner until it sees an invalid

header; (2) if multiple head seekers lock at the same
time, we choose one arbitrarily.

Fig. 5 illustrates the mechanism of the HSn module.

As the number of head seekers increases the speed of
recovery increases, but so do the resource costs.
Therefore, we created a parameterized version of the
synchronization scheme. By setting the parameter n of
the top module, the HSn system generates a binary-tree
structure with n seekers. The i-th head seeker searches
positions i, i+n, i+2n …

VI. RESULTS
The performance of the existing YARR recovery
scheme [13], and our proposed header seeker recovery
schemes, were evaluated on their recovery time and
resource utilization. Recovery time was measured by
the number of blocks lost after a desynchronization and
was evaluated for all possible misalignments. To
evaluate this recovery response, the stream was
systematically misaligned so that the packet boundary
was shifted away from its expected position. The
boundary is expected every 66 bits, and by dropping a
few bits of the preceding block, the subsequent block’s
header bits will be effectively shifted out of position
and into the preceding blocks’ data field. Utilizing the
Modelsim simulation tool, the stream was misaligned

Figure 5:Block Diagram of the HSn recovery scheme.



7

for values of 1 through 65, and each misalignment was
tested 66 times. Taking the average of the 66 tests and
graphing them shows the resynchronization response to
any possible stream misalignment [10]. The recovery
times of typical variants are shown in Fig. 6.

As seen in Fig. 6, the greater the parallelism, the faster
the recovery, though HS11 is nearly as fast as the fully
parallel version. The HS66 variant (referred to as FP
for Fully Parallel) had the least average blocks lost
during recovery, whereas HS1 had the highest average
blocks lost. Also, the average blocks lost for HS1 grow
nearly linearly as offset increases. This is because the
seeker evaluates position starting at offset 0 (the
current locked position), and the evaluated position
shifts 1 bit for each fail. Thus, before reaching offset 65,
the seeker needs to fail 65 evaluations for positions 0 to
64.

The linear behavior caused by the position updating
rule can also be seen in the performance of other HSn
variants. For example, consider the jagged line for HS2.
HS2 has two seekers, one for the odd positions, the
other for the even ones. Thus, if the number of bits
dropped is a multiple of 2, then the same seeker
previously locked at the old correct header position will

be the one needed to find the new position, and thus
lock time is linear in the number of bits removed.
However, if the number of bits dropped is not a
multiple of 2, the other seeker will need to find it. That
seeker was NOT originally locked, and thus has been

freely scanning. Therefore, the number of bits removed
does not affect the time to lock, and the number of
blocks lost is flat. Similar effects can be seen in each of
the performance lines, where the HSn has the delay of
every nth value exhibiting a linear growth in delay, and
all other points are roughly flat.

Resource utilization was measured as the total number
of LUTs and FFs utilized in a Xilinx Series 7 device.
To compare the cost between competing recovery
schemes, we measure the overall FF and LUT
utilizations of an Aurora single RX lane from YARR
with each recovery scheme. The target device for the
hardware was the Xilinx Virtex 7 VC709, which is a
candidate for the YARR DAQ hardware utilized by the
LHC. Note that the Xilinx VC709 includes 433.2K
LUTs and 866.4K FFs, meaning even our most
resource-intensive design (HS33) consumes only
0.44% LUTs and 0.19% FFs on the chip [14].

Figure 6: Resynchronization performance of the YARR header seeker variants developed for the LHC.



8

VII. CONCLUSION
In this paper we have presented a mechanism to
perform rapid resynchronization of communications
within the 64b/66b protocol. Existing mechanisms,
when confronted with bit addition/deletion due to SEEs
or other causes, can take a long time to resynchronize,
and thus drop a significant amount of data. This is
primarily due to a sequential search for the new
synchronization point, and a conservative but slow
testing of each potential alignment position. To address
these issues, we contribute three new techniques:
multiple head-seekers to search for a new alignment in
parallel, high-speed searching by sniffing the incoming
data, and a fail-fast design approach to rapidly assess
each position. Compared with the original scheme,
the HS1 scheme reduced the average data loss to 2.28%
of the original scheme with 89.95% more LUTs and
15.44% more FFs. Although the best number of head-
seekers depends on the relative importance of resource
usage and expected data loss, a promising datapoint is
the HS8 (parameter n = 8) system. This HS8 system
provides an expected reduction in average data loss to
1.01% of original scheme, while only increasing the
hardware resource costs of the transceiver by 103.42%

LUTs and 26.96% FFs. This cost represents 0.23%
LUTs and 0.13% FFs of the target FPGA.

REFERENCES
[1] A. X. Widmer and P. A. Franaszek, "A DC-balanced,

partitioned-block, 8B/10B transmission code," IBM Journal of
Research and Development, vol. 27, no. 5, pp. 440-451, Sept.
1983, doi: 10.1147/rd.275.0440.

[2] R. Walker and R. Dugan, "64b/66b low-overhead coding
proposal for serial links," IEEE 802.3 High Speed Study Group,
Jan. 2000.

[3] Xilinx. (2022, May. 11). Aurora 8B/10B v11.1 LogiCORE IP
Product Guide. [Online]. Available: https://docs.xilinx.com/r/en-
US/pg046-aurora-8b10b/Aurora-8B/10B-v11.1-LogiCORE-IP-
Product-Guide

[4] Xilinx. (2022, Oct. 19). Aurora 64B/66B v11.1 LogiCORE IP
Product Guide. [Online]. Available: https://docs.xilinx.com/r/en-
US/pg074-aurora-64b66b/Aurora-64B/66B-v12.0-LogiCORE-
IP-Product-Guide.

[5] D. White, “Considerations surrounding single event effects in
FPGAs, ASICs, and processors,” Xilinx White Paper, 2012.
[Online]. Available: https://xilinx.eetrend.com/files-eetrend-
xilinx/download/201110/2144-4013-wp402seeconsiderations.pdf

[6] J. Lalic et al., “Single event effects on the RD53B pixel chip
digital logic and on-chip CDR,” Journal of Instrumentation, vol.
17, no.05, 2022, C05001.

Figure 7: Overall resource utilization of Aurora style single rx lane with HSn variants and original scheme.



9

[7] ATLAS collaboration. “Technical design report for the ATLAS
inner tracker strip detector”, CERN, Rep. CERN-LHCC-2017-
005; ATLAS-TDR-025, Apr. 2017. [Online]. Available:
https://cds.cern.ch/record/2257755?ln=en.

[8] J. Lalic and M. Menouni, “SEE summary,” 2022, [Slide Deck].
Available:
https://indico.cern.ch/event/1145919/contributions/4809744/attac
hments/2437591/4175048/TestSummary.pdf

[9] “High Luminosty LHC Project”, CERN. [Online]. Available:
https://hilumilhc.web.cern.ch

[10] A. Martynyuk, “Rapid synchronization recovery from single
event effects in the large hadron collider,” M.S. thesis, Dept.
Electrical & Computer Eng., Univ. of Washington., Seattle,
WA, USA, 2022.

[11] M. Menouni et al., "Single event effects testing of the RD53B
chip." Journal of Physics: Conference Series, vol. 2374, no. 1,
p. 012084, IOP Publishing, 2022.

[12] M. Garcia-Sciveres, J. Christiansen, and F. Loddo. “RD53B
manual,” CERN, Rep. CERN-RD53-PUB-19-002, 2019.

[13] LS. Kurilenko, “FPGA development of an emulator framework
and a high speed I/O core for the ITk Pixel upgrade,” M.S.
thesis, Dept. Electrical & Computer Eng., Univ. of Washington.,
Seattle, WA, USA, 2018. [Online]. Available:
https://cds.cern.ch/record/2631488

[14] Xilinx, Sep. 8, 2020. “7 Series FPGAs Data Sheet: Overview
(DS180),” Xilinx, [Online]. Available:
https://docs.xilinx.com/v/u/en-US/ds180_7Series_Overview


