
FPGA-Based Pulse Pile-up Correction
M.D. Haselman1, J. Pasko1, S. Hauck1, Senior Member IEEE, T.K. Lewellen2, Fellow IEEE,

R.S. Miyaoka2, Member IEEE,
1 University of Washington Department of Electrical Engineering, Seattle, WA

2 University of Washington Department of Radiology, Seattle, WA.

Abstract- Modern Field Programmable Gate Arrays (FPGAs)
are capable of performing complex discrete signal processing
algorithms with clock rates well above 100MHz. This, combined
with FPGA’s low expense, ease of use, and selected dedicated
hardware make them an ideal technology for a data acquisition
system for a positron emission tomography (PET) scanner. The
University of Washington is producing a high-resolution, small-
animal PET scanner that utilizes FPGAs as the core of the front-
end electronics. For this scanner, functions that are typically
performed in dedicated circuits, or offline, are being migrated to
the FPGA. This will not only simplify the electronics, but the
features of modern FPGAs can be utilizes to add significant
signal processing power to produce higher quality images. In this
paper we report on an all-digital pulse pile-up correction
algorithm that has been developed for the FPGA. The pile-up
mitigation algorithm will allow the scanner to run at higher
count rates without incurring large data losses due to the
overlapping of scintillation signals. This correction technique
utilizes a reference pulse to extract timing and energy
information for most pile-up events. Using pulses acquired from
a Zecotech Photonics MAPD-N with an LFS-3 scintillator, we
show that good timing and energy information can be achieved
in the presence of pile-up utilizing a moderate amount of FPGA
resources.

I. INTRODUCTION
e are developing a second-generation data acquisition
system to support several positron emission

tomography (PET) designs being developed at the University
of Washington [1]. It is based on our experience with the
original MiCES electronics concepts [2]. Along with the
development of the hardware, we are also developing
algorithms for the field programmable gate array (FPGA) that
will make up the core of the front-end electronics. In previous
work, we have developed algorithms for statistical event
location [3], digital timing [4], and automated pulse parameter
discovery [5].

The main goal of this and previous work is to develop an
all-digital FPGA-based signal processing suite for a small
animal PET scanner. The addition of a pulse pile-up

Manuscript was received August ??, 2011. This work was supported in part

by DOE grant DE-FG02-05ER15709, Zecotech, Altera, and NIH grant
EB002117.

Michael Haselman is with Sandia National Labratories, Livermore, CA
94550 USA (email: mhaselm@sandia.gov).

James Pasko and Scott Hauck are with the Dept. of Electrical Engineering,
University of Washington, Seattle, WA 98195 USA.
(email:{jpasko,hauck}@ee.washington.edu).

Thomas Lewellen and Robert Miyaoka are with the Dept. of Radiology,
University of Washington, Seattle, WA 98195 USA. (email: {tkldog,
rmiyaoka}@u.washington.edu).

correction routine will allow us to investigate experimentswith
higher count rates. This will be especially important for
experiments that use a continuous scintillator crystal [6] or
readout electronics with row-column summing. We are
currently experimenting with scanner architectures that have
both of these features. In [7] we show how a common anode
timing channel for an MAPD-N array can be built. While this
will lower the number of timing channels in the system, a
common anode will increase the likelihood of pile-up. The
common anode is essentially a summation of all of the
channels of a detector. So, if two interactions occur anywhere
within a detector in the timeframe of a single pulse, pile-up
will occur on the common anode.

II. PREVIOUS WORK
In order to extract timing and energy information from a

pile-up event, the multiple pulses need to be separated. There
have been previous analog and digital circuits implemented to
recover from pulse pile-up. The first analog method uses a
dynamic integration technique to retrieve the energy
information from a pile-up event [8]. Dynamic integration
uses an analog circuit to integrate a pulse until it detects a
pile-up event, at which point it starts a new integration. To
get the total energy value, the remaining tail of the first pulse
is interpolated. The interpolated tail of the first pulse is
subtracted from the second integration to resolve the energy of
the second pulse. The high yield pile-up event recovery
(HYPER) method corrects for multiple pulse pile-up events
by computing a weighted sum of an overlapping pulse and
subtracting the weighted sum of the previous pulses,
decreased by a time-decay term [9]. This method requires
analog components and an integrator that clears when a pile-
up event occurs. This method has recently been converted
into a digital implementation in an FPGA [10]. In order to
achieve good energy resolution in a digital circuit, HYPER
needs ADC rates of at least 200Msps, as well as an analog
trigger to signal the beginning of any pulse. Finally, after our
technique in this paper was developed and the detailed
implementation was studied, it was determined that a patent
[11] exists that proposes a similar idea of pile-up correction.
This patent is targeted to gamma cameras, so the ability to
timestamp pulses was not proposed as we do in this work.
The main concern of the patent was to obtain energy
information from pile-up events. So, instead of actually
separating the pulses (as this work does) only the energy
contribution of individual pulses is calculated. As the
following sections will show, in order to timestamp pulses
involved in pile-up the pulses need to be separated.

W

III. ALGORITHM
The work presented here will build upon our all-digital

timing algorithm [4]. In this previous work, we utilize a high-
resolution reference pulse that has the same shape as the
scintillation pulses arriving from the ADC to timestamp each
pulse. The reference pulse is used as a look-up table to
estimate the start time of the pulse based on the voltage of the
sample(s) on the leading edge of the data pulses from the
ADC.

To eliminate time walk, the amplitude of the data pulses
from the ADC are normalized to the reference pulse. This is
accomplished by normalizing the area under the two pulses.
Using the area to normalize the amplitude works well at low
sampling rates when the peak may not be sampled and it also
reduces the affects of noise. The downside, as we will
illustrate, is that it requires the entire pulse to be summed
without pileup.

The next step is to time stamp the pulse. We accomplish
this by converting the reference pulse into a look-up table.
This table is indexed by the voltage of the reference pulse, and
the data stored at each voltage is how far from the start of the
pulse in time does it take for the reference pulse to get to that
voltage. When this table is used in the timing algorithm, one
or more on the samples on the leading edge of the data pulse
are used to address the look-up table and the output is
combined with a coarse grain timing to get the time stamp.

In [5], we show how this reference pulse can be built in the
FPGA out of the same pulses on which it will be used. The
timestamp comes from a lookup table that stores the time
elapsed from the start of the reference pulse based on the
voltage of a sample.

Based on this prior work, we aim to develop a pulse pile-
up correction algorithm on an all-digital platform that
recovers the start time and energy of each individual pulse
involved in pile-up. Our proposed method uses a combination
of pulse shape discrimination and partial dynamic integration
to detect and remove peak pile-up (pile-up where two pulses
start so close together that they can’t be separated) and to
correct for tail pile-up (pile-up where the second pulse starts
in the tail of the first pulse).

Fig. 1 shows the general structure of the algorithm for pile-
up correction. As a pulse is detected, the time stamp and
pulse energy are calculated. After this, the processed pulse is
removed from the data stream, which is sent to a second
processing engine. By removing the first pulse, any pile-up
event present will be separated so that the second engine can
process it for start time and energy. If no pile-up is present,
then the second engine will receive a flat signal. To remove
the first pulse from the stream, the reference pulse is used to
interpolate the tail of the first pulse that is hidden under any
pile-up event.

The number of stages present in the algorithm is dependent
on the amount of pile-up events expected. For example, if the
probability of having a pile-up event that contains four pulses
is less than 1%, then it probably isn’t necessary to have more
than three processing engines. The probability cutoff is a
designer choice and is easy to change, as the stages are
identical.

Fig. 1. Block diagram of the overall pulse pile-up correction algorithm.

To determine the start time of the pulse, the timing
algorithm [4] has to be modified, as the whole pulse can no
longer be used to normalize its amplitude. Instead of using
the whole pulse, only the area under the first portion of the
pulse is used. The point that the summing is stopped will be
designated as the transition from peak to tail pile-up. This
means that we will try to mitigate any pile-up after this cutoff,
and remove any pile-up before. The lookup table for area to
amplitude normalization must be modified to reflect this
change. In other words, when comparing the area of the data
pulse to the reference pulse, the same number of samples is
used in both summations. The time lookup does not have to
be modified.

To eliminate pulses involved in peak pile-up, the energy is
checked to determine whether it is below the expected energy
maximum that was determined in the reference pulse
discovery routine. The idea is that if a second pulse starts
before the cutoff, then it will add energy to the summation. If
it is determined that peak pile-up has occurred, both pulses are
discarded and the system is dead until the incoming data
stream returns to baseline.

Once the first pulse is time stamped, it can be removed
from the data stream. Because only tail pile-up after the area
summation cutoff will be corrected, only the samples after the
cutoff need to be removed from the stream and the
downstream engine only needs to process data after the cutoff
for the above engine. This also means that the system can run
in real-time, as no past data needs to be sent to the
downstream engines. In this algorithm, it is assumed that
pile-up will occur, so the reference pulse is always used to
remove the tail of the first pulse from the stream. The
timestamp is used to determine what samples from the
reference pulse to use. The reference pulse is defined at a
much finer resolution (every 60ps in this work) than the
sampling rate of the ADC (16ns-1ns). The data that is sent to
the next processing engine is calculated using equation 1.

!

V i[] =Vinput[j]" (Vref [(n + i) # ts
tADC

$
%
&

'
(
)

$

%
&

'

(
) + *t]) #

Ap

Ar

$

%
&

'

(
) (1)

Here, Vinput is the data stream from the ADC, Vref is the
reference pulse voltage, n is the number of ADC samples
summed on the leading edge of the pulse for the amplitude

normalization,

!

t
s

t
ADC

"

$ %

&
' is the ratio of reference pulse

resolution to ADC resolution,

!

"t is the result of the time
stamp lookup table (i.e. how far the first sample was from the

start of the pulse) and

!

Ap

Ar

"

$

%

&
' is the normalization factor to

normalize the reference pulse amplitude to the first incoming
pulse amplitude.

Partial dynamic integration is used to determine the energy
of the pulse. Two summations are generated for each pulse,
one to the cutoff point and one for the full pulse. If the
downstream engine indicates that pile-up did occur, then the
cutoff summation energy is calculated by using the partial
summation, with the remaining pulse energy calculated from
the reference pulse as indicated above. If no pulse is detected
in the downstream engine, then the whole pulse summation is
used. This scheme requires a termination processing engine
that simply indicates whether it has detected a pulse, but does
not process it. This engine would be in addition to the max
number of expected consecutive pile-ups.

IV. TESTS AND RESULTS

A. Determining peak pile-up cutoff
The first step in developing this algorithm is to determine

where to set the cutoff between peak and tail pile-up. We
started by investigating how much of the leading edge of the
pulse is needed to accurately calculate the area to amplitude
normalization and interpret the tail of the pulse. In our
original timing routine, all of the samples of the pulse are
summed. The ratio of this sum and the equivalent sum of the
reference pulse is then used to normalize the amplitude of the
data pulse to the reference pulse to reduce time walk. In the
event of tail pile-up, all of the samples are not available, so
the question is how many samples free from pile-up are
needed to perform this normalization step. The accuracy may
degrade as less of the pulse is used, but using less of the pulse
reduces the dead time, so the tradeoff between dead time and
energy/timing resolution has to be balanced. To perform this,
a simulation was performed in Matlab using 1000 unfiltered
pulses from different pixels on a Zecotech MAPD-N with a
LFS-3 scintillator.

To determine the effect on timing resolution, two streams
were created with the pulses in each stream in coincidence.
The normal timing algorithm was run, except only a portion of
the pulse was summed and that area was used to normalized
the amplitude. The amount that was summed was swept from
100% to about 5%. Fig. 2 shows the results of this study. A
sample pulse is included to provide a reference of what part of
the pulse is being summed. The x-axis indicates how much of
the pulse (in samples) is being summed up for amplitude
normalization. For this sampling rate (65MHz) and pulse
length, 32 samples constitutes summing up 100% of the pulse,
while 2 samples corresponds to about 5% of the pulse (it
doesn’t make sense to use just one sample). Notice that the
timing resolution remains fairly flat until the cutoff point
approaches the peak. If the summing is stopped before the
peak, the timing resolution is substantially degraded, as would
be expected.

Fig. 2. Graph of timing resolution for different amount of pulse used for

amplitude normalization for a 65MHz sampled pulse.

The next step is to determine how well the tail of the pulse
can be interpolated based on summing up only a portion of the
pulse. For this test, only one stream is needed. Again, for
each percentage of pulse summed one thousand pulses were
summed to the specified number of samples, while the rest of
the pulse was interpolated with the reference pulse. In this
case, the reference pulse was normalized to the data pulse.
The resulting composite summation is compared to the
summation of the total pulse. The percent standard deviation
of the error for all 1000 pulse is plotted in Fig. 3, along with
an example pulse. The percent standard deviation
demonstrates how much overall error is associated with
interpolating the tail. The area error increases as less of the
pulse is summed and more is interpolated. Again, there is a
dramatic increase in error at about the peak of the pulse.

Fig. 3. Graph of area error as compared to how much of the pulse is

interpolated for a 65MHz sampled pulse.

The results in Fig. 2 and Fig. 3 indicate that about 20% (7
samples for a 65MHz ADC) of the pulse is needed before the
interpolation error becomes too great. In fact, for timing, the
best results are obtained at about 30% of the pulse, and 20% is
roughly equivalent to summing up the whole pulse. This is
because the tail of the pulse contains a substantial amount of
noise that corrupts the area normalization step. Given these
results, the boundry that distinguished peak pile-up and tail
pile-up is set to 20% of the pulse. That is, if pile-up occurs
before 20% of the pulse, it should be detected and discarded.
If it occurs afterwards, it can be separated with our algorithm.
These results also indicate that there is not enough benefit to
the complexity of truly dynamic integration. That is, integrate
until a pile-up event is detected as is done in [11].

B. Area correction
Even though the timing does improve as less and less of the
pulse tail is summed for energy, there are some issues. One
issue is the dependence of a pulse’s calculated energy on the
voltage of the first sample (Fig. 4). Since the number of
samples summed is always the same, a sampling where the
first sample is well above the threshold (Fig. 4a) will have a
greater area than if the first sample was just above the trigger
(Fig. 4b) for the same pulse.

(a)

(b)

Fig. 4. Illustration of how the calculated area of the same pulse can differ
based on the voltage of the first sample.

The range of possible voltages for the first sample of a pulse
range from the voltage of the first trigger, to some greater
value based on the slope of the leading edge and the sampling
interval. A greater range and more variance in calculate areas
of identical pulses will be seen with a longer sampling period
and a steeper leading edge.

Fig. 5 shows the extent of this error. Each graph shows the
difference between the average area of a pulse and the area
calculated for the same pulse for a given first sample voltage,
as indicated on the x-axis. The error is reported as a percent
of the average pulse area for the amount of pulse summed.
For example, Fig. 4a indicates that for a 65MHz ADC, the
area summation is almost 8% under estimated when the first
sample is just above the threshold (-.015V). There are no
voltages below -.015V because that is the voltage level of the
trigger, so no samples will be below this value. Fig. 4a
demonstrates how the error is worse as less of the pulse is
summed for the area to amplitude normalization. Notice how
percent error for summing up all of the pulse is nearly flat and
centers around zero, while the error for summing up only 20%
of the pulse has large errors when the first sample is at either
end of the range. Fig. 4b shows how this error trends for
different sampling rates. A higher sampling rate ADC means
that there are more samples in the first 20% of the pulse, and
the range of the first sample is less. This results in less error
than a lower sampling rate. However, the improvement from
65MHz to 300MHz is not large because the slope of the
leading edge of the 300MHz-sampled pulse is greater because
the frequency cutoff for the low-pass filter is higher. This is
evident by the fact that the possible ranges of the first sample
(x-axis) for both samplings is almost the same, though the
range in time for the 300MHz sampling is ~1/5 that of the
65MHz sampling.

 (a)

 (b)

Fig. 5. Graphs indicating the area summation error based on the voltage
of the first sample. (a) For a pulse sampled at 65MHz while sampling 20%
of the pulse or the whole pulse. (b) For a pulse sampled at 65MHz and
300MHz summing up 20% of the pulse.

To correct for this, the error shown in Fig. 5 is calculated
using the reference pulse, and the correction is stored in a
lookup table. The lookup table stores the difference between
the average area of the reference pulse and the area obtained
for the reference pulse given the voltage of the first sample.
Recall that the reference pulse is defined at about every 60ps
so it has to be down sampled to match the ADC sampling
period in order to accurately compare the reference pulse to
the ADC data pulse. Based on the down sampling and the
threshold, there is a theoretical range where the first sample
can fall on the reference pulse. The lowest voltage is from a
sample just above the threshold, and the largest voltage is
when the previous sample is just below the threshold. The
average area for the reference pulse is based on a sampling
with the first sample is in the middle of this range.

Using the area correction value in the normalization step is
an iterative process. The first sample that is used as the
address to the look-up table has to be normalized first. So
after the initial area of the first 20% of the pulse is calculated,
the first sample of the pulse is normalized based on that area.
The normalized voltage of the first sample is the address into
the area correction lookup table, and the output is added to the
initial area. Note that the normalized voltage of the first
sample is not correct at this point, but it is close enough to use
to look up the area correction value. The corrected area is
used to normalize the first samples of the pulse again, which
are used to determine the start time of the pulse. It is possible
that this iterative process may need to be repeated more times
for systems with larger area variances, but for this data set,
one iteration sufficed.

The previous results, after correcting for the voltage of
the first sample, are shown in Fig. 6 and Fig. 7. For both
timing and area, there are no improvements when most of the

pulse is summed, which is logical considering how flat the
100% summation line is in Fig. 5a. The important difference
in timing resolution and area error is when the summation
limit approaches the peak of the pulse. For timing resolution
in Fig. 6, correcting the area improves the timing at 20%
summation by 6% and the standard deviation of the area
interpretation reduces by 53%.

Fig. 6. Graph of timing resolution vs. amount of pulse summed with and

without the area corrected for the amplitude of the first sample for a 65MHz
sampled pulse.

Fig. 7. Graph of area error with and without area correction as compared

to how much of the pulse is interpolated for a 65MHz sampled pulse.

C. Peak pile-up filter
Determining whether a pile-up event has occurred before

or after the 20% cutoff is calculated with the peak pile-up
filter. Our implementation is composed of a two-part filter.
The first part relies only on the energy of the first 20% of the
pulse. If the signal in this region was too large, it is deduced
that pile-up occurred before the cutoff and that the two pulses
should be discarded as peak pile-up. This half of the solution
is only as good as the energy resolution of the system though.
This is because if the first pulse is on the lower end of the
energy spectrum, then more energy from a pile-up event (i.e.
greater overlap) is required to trigger the filter. Therefore, if
only this method was used many peak pile-up events would
make it through the filter. The second part of the filter detects
peak pile-up that occurs closer to the 20% cutoff. This is
accomplished by looking for a second rising edge before the
peak pile-up cutoff. This scheme relies on the fact that the
location of the peak is fairly consistent. So, once the peak of a
pulse is encountered (stored as a certain number of ADC

samples) the filter looks for a number of samples that are
greater than the peak value (but not necessarily increasing).
The number of sample observed (for the second leading edge)
is dependent on the ADC sampling rate. For a 65MHz ADC,
two samples are enough, but for a 1GHz sampling, eight
samples need to be compared so that small noise spikes don’t
trigger the filter incorrectly. The effectiveness of this two-
part filter is shown in Fig. 8.

Fig. 8. Plot of the peak filters ability to detect peak pile-up and

percentage of peak pile-up filtered be each part of the filter.

Fig. 8 shows the results from a simulation to test this peak
pile-up filter. The simulation was generated where 200
different pulses from the same pixel were put into a stream so
that 100 2-pulse pile-up events were generated. The degree of
pile-up for all 100 events was the same for each test. The
pile-up started at 1% of the first pulse (essentially two pulses
directly overlapping) and was swept to 25%. In other words,
25 tests were run with all of the 100 pile-up events having the
same amount of pile-up. For each test, the peak pile-up
detection scheme was run and the number of pulses that made
it through the filter (did not detect peak pile-up) was noted, as
well as how many pulses each part of the filter detected as
peak pile-up. Ideally, the percentage of pulses processed as
no peak pile-up would be 0% until pile-up at 20%, and then
go immediately to 100% detected. Notice that the part that
uses the energy in the first 20% of the pulse stops detecting
peak pile-up when the second pulse is at about 13% of the
first pulse. The reason for this is because some margin has to
built in for the inaccuracy of calculating the energy of piled-
up pulses. Fortunately, where the energy filters cuts off, the
filter that looks for a second peak starts to detect peak pile-up.
Before this point, the two peaks are close enough that the
filter doesn’t find a second rising edge. Notice that there is a
slight bump in the number of pulses processed as tail pile-up
around 10% because of the crossover between the two parts of
the filter. Reducing the maximum energy value, at the cost of
possibly filtering out some “good” pulses, can eliminate this
bump.

D. Algorithm
From the previous tests, the algorithm for each engine is as

follows:
1) remove baseline from incoming ADC stream (first

engine only).
2) detect pulse based on triggers as discussed in [4].
3) sum up the first 20% and the whole pulse.
4) check for peak pile-up with peak filter.

a. if peak pile-up occurs disregard both pulses.

b. otherwise continue.
5) normalize first sample of pulse based on area under

first 20% of pulse.
6) calculate the area correction factor and adjust initial

area.
7) normalize first samples (based on number of samples

used in timing algorithm) of pulse to reference pulse
using corrected area.

8) timestamp pulse as discussed in [4].
9) normalize reference pulse to data pulse using

corrected area.
10) using timestamp, lookup the correct samples from the

normalized reference pulse to interpolate remaining
80% of pulse tail.

11) subtract interpolated pulse from ADC stream and
send resulting stream to second pile-up correction
engine.

12) if downstream engine detects a pulse it repeats steps
2-11 on the pulse and the first engine uses the energy
based on 20% summed plus 80% interpolated.

13) if no pulse is detected in the time it takes the first
pulse to return to baseline, then the first engine uses
the 100% summation for the pulse energy.

To simulate the algorithm, 1000 pulses from four different
pixels on a Zecotech MAPD-N array with a LFS-3 scintillator
were captured using a 25GHz oscilloscope. These pulses
were then imported into Matlab to perform simulations. The
pulses were captured as singles, and different percentages of
pile-up and coincidence count rate were generated in Matlab
before the above algorithm could be simulated. To facilitate
this, two streams of pulses were created, with each stream
composed of pulses from a single pixel. All pulses were
randomly placed in the stream with a 50% coincidence rate.
That is, when a pulse was randomly placed in stream one, it
was randomly chosen with a 50% probability whether it
would have a coincidental pair in stream two. In this work we
investigate 100 kilocount per second (kcps), 200kcps,
500kcps, and 1Mcps (below 100kcps, pile-up is no longer a
large issue, and 1Mcps is greater than the count rate we expect
to handle). The pile-up is generated when a random placement
of a pulse overlaps an already placed pulse. In order to
prevent the addition of two baseline components to a pile-up,
the baseline was removed from the single pulses and added
back to the whole stream after all of the pulses were places.

These streams were created with all possible unique
pairings of the four pixels (six pairings), for five ADC
sampling rates (65MHz, 125MHz, 300MHz, 500MHz, 1GHz),
and with four count rates (100kcsp, 200kcps, 500kcps,
1Mcps). The frequency cutoff of the filter was optimized to
get as steep of leading edge while still maintaining at least
three samples on it. The energy resolution and coincidence
timing resolution was recorded for each test. The timing
resolution was averaged over the six pixel pairings. The
results for how timing resolution is affected by the count rate
are shown in Fig. 9. As expected, the timing resolution
improves as the ADC rates increase, and it degrades as the
count rate increases because more pulses are involved in pile-
up. The timing resolution from 100kcps to 1Mcps degrades
by about 15% for a 65MHz and 125MHz sampling rate and
about 40% for the other sampling rates. Notice that the

degradation in terms of ns is similar for all sampling rates.
This indicates that the timing resolution degradation is not
dependent on the sampling rate. Fig. 9 also shows that our
algorithm degrades gracefully as pile-up rates increase.

Fig. 9. Timing resolution for different count rates at different ADC

sampling rates.

To get an understanding of what is contributing to the
degradation, the timing resolution was calculated for each
possible coincidence scenario. That is, coincidental pulses
when neither pulse were involved in pile-up, when one of the
two were in a pile-up event, and when both pulses were some
part of a pile-up event. These results are presented in Fig. 10
for a 300MHz ADC sampling rate, along with the overall
timing resolution. Note that data for 100kcps and 200kcps for
both involved in pile-up are missing. This is because there
were not enough instances of those events at low count rates
to make the data statistically sound.

Not surprisingly, it appears that most of the degradation is
from the pile-up events, and especially from the case when
both pulses in coincidence are involved in pile-up. More
interestingly, there is still some degradation in the timing
resolution for pulses not involved in pile-up when count rates
increase. The degradation is about 17% from 100kcps to
1Mcps. This is probably due to the difficulty of calculating a
good baseline when pulses are close together but not
overlapped.

Fig. 10. Plot of timing resolution for a 300MHz ADC sampling for

different count rates. The timing resolution is shown for coincidental pulses
where neither of the pulse is in a pile-up event, where one of the pulses is
piled up and where both of the pulses were in a pile-up event.

In addition to timing resolution, energy resolution is an
important factor of a PET pulse processing system. For the

pile-up correction algorithm, the energy resolution will give
an indication of whether the energy of the pulses involved in
pile-up can be accurately estimated. To calculate the energy
resolution, the energy of all pulses in the stream (except those
with too much pile-up) was recorded and a histogram was
generated. The data set used in these experiments was for a
point source in air. To determine the FWHM, a Gaussian
function was fit to the data and the energy resolution was
calculated. The results are reported in Fig. 11. Notice that the
energy resolution is fairly constant over different count rates.
In fact, the worst degradation from 100kcps to 1Mcps is less
than 5%. The energy resolution is worse for lower sampling
rates do to the discretization of the pulses.

Fig. 11. Graph of the energy resolution of our pulse pile-up correction as

count rates increase for different ADC sampling rates

E. Pulse detection
Since the purpose of pulse pile-up correction is to capture

additional pulses, it is important to investigate pulse detection
efficiency. That is, how well does the algorithm detect good
pulses and reject peak pile-up pulses that have too much pile-
up. To determine how well our algorithm is detecting pulses,
statistics of pulse detection were kept as they were discovered
and processed. Pulses were classified by the number of pulses
in a given pile-up event. For example, 2-pulse pile-ups are
events where two pulses piled up in a row, and 3-pulse pile-
ups are events with three pulses in one pile-up. The number
of pulses without pile-up, as well as pulses with peak pile-up
was also reduced.

Analyzing our pile-up correction algorithm to determine
the expected count rates is difficult because of the nature of
the dead time. Recall that if pile-up occurs in the first 20% of
a pulse, then the system is dead until the incoming ADC
values return to baseline. So, if a third pulse arrives before
the system returns to baseline, then the dead time is extended
by another pulse length. So, our system has essentially two
dead times. The dead time when the system is live (not
resolving peak pile-up) is 20% of the length of a pulse. That
is, when the system is live, the minimum separation required
between two pulses is 20% of the pulse length. When peak
pile-up does occur, the dead time is then the full pulse length.
The system is dead for at least one pulse length until the data
stream returns to baseline. Given these parameters, the pile-
up rates cannot be calculated with the typical statistical
models that assume a single dead time, so instead the pile-up
rates were calculated with a Monte Carlo simulation.
Specifically, the rates were tabulated from the stream

generation routine. After each stream was generated, the start
times of every pulse were evaluated to determine how many
pulse “groups” had no pile-up, and how many were a 2-pile-
up, 3-pile-up or 4-pile-up event. The occurrence of peak pile-
up was also determined. The results in Table I show the
percent difference from detected to expected for each
subcategory.
Table I. Percent differences from detected pile-up events to expected pile-up

events (detected count/expected count).
count
rate no pile-up

2-pulse
pile-up

3-pulse
pile-up

4-pulse
pile-up

peak
pile-up

500kcsp (1702/1706)
-.2%

(113/107)
5.3%

(5/4)
20%

(0/0)
0%

(32/42)
23.8%

1Mcps (1442/1455)
-.9%

(169/170)
-.6%

(17/23)
-35.3%

(8/4)
50%

(56/69)
18.8%

Notice that this algorithm does a good job at correctly

finding pile-up. The slight difference is mostly due to the way
the expected pile-up rates were calculated versus the detected
rates. The expected rates used the pulse length to determine if
a pile-up occurred based on the start times of pulses. The
pulse length is the same value for all pulses from a single
pixel for implementation simplicity, even though the pulses do
vary in length in practice. Additionally, the stored pulse
length is slightly less than it takes for the pulse to return to
baseline for other issues. The algorithm on the other hand
looks for a second pulse before the current pulse has decayed
back to baseline. So even if the pulse length has expired, a
pileup may be detected because the stream hadn’t returned to
baseline yet. This is why more pile-up events were detected,
but fewer no pile-up events.

V. FPGA IMPLEMENTATION
This algorithm was specifically designed for an efficient

FPGA implementation, targeted towards our second-
generation hardware [1]. The goals for an efficient
implementation are low logic and memory utilization and
real-time computation. Minimal logic utilization is required
to reduce power consumption and to accommodate the other
pulse processing circuits present in the FPGA, as well for
multiple channel support. The real-time criteria is important
because we don’t want to add dead time to the system.

The FPGA implementation of this algorithm is built on the
timing algorithm discussed in [4]. The first change required is
in the area-to-amplitude normalization step. The contents of
this lookup table were modified to operate on the first 20% of
the pulse rather than the entire pulse. Another addition is the
area correction factor, which can be implemented as a lookup
table. The final addition is the system that interpolates the
tail and subtracts it from the stream. The block diagram for
one pulse pile-up correction engine is shown in Fig. 12. The
number of engines is user-selected according to the count rate
and the desired amount of pile-up correction.

Fig. 12. Block diagram of one pulse pile-up correction engine.

Most of these new logic blocks are standard logic
designs. The primary challenges in this design are related to
the latency through the engine. The first issue has to do with
the control of the overall system. In the preliminary
implementation, a master control block listened to each engine
to determine when the first engine should process the stream,
or when another engine is processing pile-up. This was
important because the first engine should trigger only on the
first pulse of a pile-up event. The problem with this control
scheme is the latency through all of the engines. In other
words, if it takes N cycles for a sample from the ADC to get
through an engine, then the first engine will miss a multiple N
samples from the ADC (depending on the number of engines).
To correct this, each engine independently waits for the
incoming samples to return to baseline after it has processed a
pulse. The downstream engine must notify the upstream
engine of any pulses it detects so that the upstream engine can
determine whether to use the pulse energy from summing all
of the samples or the energy from interpolating the tail. This
scheme does require a simple termination engine after the
final engine, to provide this information.

The other issue around latency is the coarse coincidence
calculation. In our system [2], we utilize a coarse coincidence
controller to lower the data rate to the host computer. The
coarse coincidence controller is a separate FPGA that listens
for events from all detectors and indicates when two events
occurred in the field-of-view within the three-clock cycle
coarse coincidence window. The problem occurs when two
coincidental pulses are not in the same place of the pile-up
stream. For example, if a single pulse was in coincidence
with the second pulse of a pile-up event, the event signal for
the single pulse would arrive at the coincidence controller N
cycles before the other event due to the latency through the
pulse pile-up correction engines. This is corrected by
delaying the pulse signal to the coarse coincidence controller
from all of the engines except the last. The second-to-last
engine has a delay of N, while the next engine upstream has a
delay of 2N, and so on.

This algorithm was implemented in Verilog and compiled
with Quartus for the StratixIII S200 FPGA used in our
hardware. Each engine utilizes 217 LUTs (.1%), 337,284
memory bits (3.2%) and 6 DSP blocks (1%). The termination
engine only uses 8 LUTs and 24 memory bits. Duplicating
pile-up engines won’t necessarily double the resources used.
Some of the memories can be shared between two engines by
utilizing the dual ports on the FPGA block memories. For a
system with two pulse pile-up correction engines, the memory
usage is 552,592 bits. This represents a savings of 18% over
simply duplicating the memory. There is also some possible
memory savings by reducing the resolution of the reference
pulse by down sampling it. This would require further study
to determine the effect on timing and energy resolution.

VI. CONCLUSION
In this work, we show that an all-digital pulse pile-up

correction algorithm can reliably recover pulses overlapped up
to 80%. This allows systems to process higher count rates
from higher tracer dosages or from architectures that have
higher count rates per channel. Simulation for 1Mcps show
that this algorithm is able to capture and process 30% more
pulses than if all pile-up was simply discarded. The timing
resolution does degrade by 40% when utilizing this algorithm
however, but the timing resolution degrades by 2X if no
correction or detection is done at all on the pile-up streams.
Finally, this algorithm ties in very well with our timing
algorithm [4] and can easily be implemented in an FPGA with
a reasonable amount of resources.

REFERENCES
[1] T.K. Lewellen et al., “Design of a Second Generation FireWire Based

Data Acquisition System for Small Animal PET Scanners,” IEEE
Nuclear Science Symp. Conf. Record, 2008, pp (NSS/MIC). 5023-5028.

[2] T.K. Lewellen, M. Janes, R.S. Miyaoka, S.B. Gillespie, B. Park, K.S.
Lee, P. Kinahan: "System integration of the MiCES small animal PET
scanner", IEEE Nuclear Science Symp. Conf. Record (NSS/MIC), 2004,
pp. 3316-3320.

[3] DeWitt D, Miyaoka RS, Li X, Lockhart C, Lewellen TK., “Design of a
FPGA Based Algorithm for Real-Time Solutions of Statistics-Based
Positioning,” IEEE Nuclear Science Symp. Conf. Record (NSS/MIC),
2008, pp. 5029-5035.

[4] M.D. Haselman, S. Hauck, T.K. Lewellen, and R.S. Miyaoka,
“Simulation of Algorithms for Pulse Timing in FPGAs,” IEEE Nuclear
Science Symp. Conf. Record (NSS/MIC), 2007, pp. 3161-3165.

[5] M. Haselman, S. Hauck, T.K. Lewellen., R.S. Miyaoka., "FPGA-Based
Pulse Parameter Discovery for Positron Emission
Tomography," IEEE Nuclear Science Symp. Conf. Record (NSS/MIC),
2009, pp. 2956-2961.

[6] R.S. Miyaoka, Xiaoli Li, C. Lockhart, T.K. Lewellen,
"New continuous miniature crystal element (cMiCE) detector
geometries", IEEE Nuclear Science Symp. Conf. Record (NSS/MIC),
2009, pp. 3639-3642.

[7] Y.C. Shih et. al.,"An 8x8 row-column summing readout electronics for
preclinical positron emission tomography scanners," IEEE Nuclear
Science Symp. Conf. Record (NSS/MIC), 2009, pp. 2376-2380.

[8] Lewellen TK, Bice AN, Pollard KR, Zhu JB, Plunkett ME, “Evaluation
of a clinical scintillation camera with pulse tail extrapolation
electronics”, J. Nuclear Medicine, 1989, vol. 30. pp. 1544 –1558.

[9] Wong, W.H., Li, H., “A Scintillation Detector Signal Processing
Technique with Active Pile-up Prevention for Extending Scintillation
Count Rates,” IEEE Trans. Nuclear Medicine, vol. 45, no. 3, pp. 838-
842.

[10] Liu, J. et al., “Real Time Digital Implementation of the High-Yield-Pile-
up-Event-Recovery (HYPER) Method,” 2007 IEEE Nuclear Science
Symposium Conference Record, M26-4, pp. 4230-4232.

[11] R.E. Arseneau, “Method and Apparatus for Unpiling Pulses Generated
by Piled-up Scintillation Events,” U.S. Patent 5 210 423, May 11, 1993.

