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Abstract- Modern Field Programmable Gate Arrays (FPGAs) 
are capable of performing complex discrete signal processing 
algorithms with clock rates well above 100MHz.  This, combined 
with FPGA’s low expense, ease of use, and selected dedicated 
hardware make them an ideal technology for a data acquisition 
system for a positron emission tomography (PET) scanner.  The 
University of Washington is producing a high-resolution, small-
animal PET scanner that utilizes FPGAs as the core of the front-
end electronics. For this scanner, functions that are typically 
performed in dedicated circuits, or offline, are being migrated to 
the FPGA. This will not only simplify the electronics, but the 
features of modern FPGAs can be utilizes to add significant 
signal processing power to produce higher quality images. In this 
paper we report on an all-digital pulse pile-up correction 
algorithm that has been developed for the FPGA.  The pile-up 
mitigation algorithm will allow the scanner to run at higher 
count rates without incurring large data losses due to the 
overlapping of scintillation signals.  This correction technique 
utilizes a reference pulse to extract timing and energy 
information for most pile-up events. Using pulses acquired from 
a Zecotech Photonics MAPD-N with an LFS-3 scintillator, we 
show that good timing and energy information can be achieved 
in the presence of pile-up utilizing a moderate amount of FPGA 
resources. 

I. INTRODUCTION 
e are developing a second-generation data acquisition 
system to support several positron emission 

tomography (PET) designs being developed at the University 
of Washington [1]. It is based on our experience with the 
original MiCES electronics concepts [2].  Along with the 
development of the hardware, we are also developing 
algorithms for the field programmable gate array (FPGA) that 
will make up the core of the front-end electronics.  In previous 
work, we have developed algorithms for statistical event 
location [3], digital timing [4], and automated pulse parameter 
discovery [5]. 

The main goal of this and previous work is to develop an 
all-digital FPGA-based signal processing suite for a small 
animal PET scanner.  The addition of a pulse pile-up   
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correction routine will allow us to investigate experimentswith 
higher count rates.  This will be especially important for 
experiments that use a continuous scintillator crystal [6] or 
readout electronics with row-column summing.  We are 
currently experimenting with scanner architectures that have 
both of these features. In [7] we show how a common anode 
timing channel for an MAPD-N array can be built.  While this 
will lower the number of timing channels in the system, a 
common anode will increase the likelihood of pile-up.  The 
common anode is essentially a summation of all of the 
channels of a detector.  So, if two interactions occur anywhere 
within a detector in the timeframe of a single pulse, pile-up 
will occur on the common anode.   

II.   PREVIOUS WORK 
In order to extract timing and energy information from a 

pile-up event, the multiple pulses need to be separated.  There 
have been previous analog and digital circuits implemented to 
recover from pulse pile-up.  The first analog method uses a 
dynamic integration technique to retrieve the energy 
information from a pile-up event [8].  Dynamic integration 
uses an analog circuit to integrate a pulse until it detects a 
pile-up event, at which point it starts a new integration.  To 
get the total energy value, the remaining tail of the first pulse 
is interpolated.  The interpolated tail of the first pulse is 
subtracted from the second integration to resolve the energy of 
the second pulse. The high yield pile-up event recovery 
(HYPER) method corrects for multiple pulse pile-up events 
by computing a weighted sum of an overlapping pulse and 
subtracting the weighted sum of the previous pulses, 
decreased by a time-decay term [9].  This method requires 
analog components and an integrator that clears when a pile-
up event occurs.  This method has recently been converted 
into a digital implementation in an FPGA [10].  In order to 
achieve good energy resolution in a digital circuit, HYPER 
needs ADC rates of at least 200Msps, as well as an analog 
trigger to signal the beginning of any pulse.  Finally, after our 
technique in this paper was developed and the detailed 
implementation was studied, it was determined that a patent 
[11] exists that proposes a similar idea of pile-up correction.  
This patent is targeted to gamma cameras, so the ability to 
timestamp pulses was not proposed as we do in this work.  
The main concern of the patent was to obtain energy 
information from pile-up events.  So, instead of actually 
separating the pulses (as this work does) only the energy 
contribution of individual pulses is calculated.  As the 
following sections will show, in order to timestamp pulses 
involved in pile-up the pulses need to be separated. 

W 



III.   ALGORITHM 
The work presented here will build upon our all-digital 

timing algorithm [4].  In this previous work, we utilize a high-
resolution reference pulse that has the same shape as the 
scintillation pulses arriving from the ADC to timestamp each 
pulse.  The reference pulse is used as a look-up table to 
estimate the start time of the pulse based on the voltage of the 
sample(s) on the leading edge of the data pulses from the 
ADC.   

To eliminate time walk, the amplitude of the data pulses 
from the ADC are normalized to the reference pulse. This is 
accomplished by normalizing the area under the two pulses.  
Using the area to normalize the amplitude works well at low 
sampling rates when the peak may not be sampled and it also 
reduces the affects of noise.  The downside, as we will 
illustrate, is that it requires the entire pulse to be summed 
without pileup. 

The next step is to time stamp the pulse.  We accomplish 
this by converting the reference pulse into a look-up table.  
This table is indexed by the voltage of the reference pulse, and 
the data stored at each voltage is how far from the start of the 
pulse in time does it take for the reference pulse to get to that 
voltage.  When this table is used in the timing algorithm, one 
or more on the samples on the leading edge of the data pulse 
are used to address the look-up table and the output is 
combined with a coarse grain timing to get the time stamp. 

In [5], we show how this reference pulse can be built in the 
FPGA out of the same pulses on which it will be used.  The 
timestamp comes from a lookup table that stores the time 
elapsed from the start of the reference pulse based on the 
voltage of a sample.  

Based on this prior work, we aim to develop a pulse pile-
up correction algorithm on an all-digital platform that 
recovers the start time and energy of each individual pulse 
involved in pile-up.  Our proposed method uses a combination 
of pulse shape discrimination and partial dynamic integration 
to detect and remove peak pile-up  (pile-up where two pulses 
start so close together that they can’t be separated) and to 
correct for tail pile-up (pile-up where the second pulse starts 
in the tail of the first pulse).  

Fig. 1 shows the general structure of the algorithm for pile-
up correction.  As a pulse is detected, the time stamp and 
pulse energy are calculated. After this, the processed pulse is 
removed from the data stream, which is sent to a second 
processing engine.  By removing the first pulse, any pile-up 
event present will be separated so that the second engine can 
process it for start time and energy.  If no pile-up is present, 
then the second engine will receive a flat signal. To remove 
the first pulse from the stream, the reference pulse is used to 
interpolate the tail of the first pulse that is hidden under any 
pile-up event.   

The number of stages present in the algorithm is dependent 
on the amount of pile-up events expected.  For example, if the 
probability of having a pile-up event that contains four pulses 
is less than 1%, then it probably isn’t necessary to have more 
than three processing engines.  The probability cutoff is a 
designer choice and is easy to change, as the stages are 
identical.   

 

 
 

Fig. 1.  Block diagram of the overall pulse pile-up correction algorithm.  
 

To determine the start time of the pulse, the timing 
algorithm [4] has to be modified, as the whole pulse can no 
longer be used to normalize its amplitude.  Instead of using 
the whole pulse, only the area under the first portion of the 
pulse is used.  The point that the summing is stopped will be 
designated as the transition from peak to tail pile-up.  This 
means that we will try to mitigate any pile-up after this cutoff, 
and remove any pile-up before.  The lookup table for area to 
amplitude normalization must be modified to reflect this 
change.  In other words, when comparing the area of the data 
pulse to the reference pulse, the same number of samples is 
used in both summations.  The time lookup does not have to 
be modified. 

To eliminate pulses involved in peak pile-up, the energy is 
checked to determine whether it is below the expected energy 
maximum that was determined in the reference pulse 
discovery routine.  The idea is that if a second pulse starts 
before the cutoff, then it will add energy to the summation.  If 
it is determined that peak pile-up has occurred, both pulses are 
discarded and the system is dead until the incoming data 
stream returns to baseline.   

Once the first pulse is time stamped, it can be removed 
from the data stream.  Because only tail pile-up after the area 
summation cutoff will be corrected, only the samples after the 
cutoff need to be removed from the stream and the 
downstream engine only needs to process data after the cutoff 
for the above engine.  This also means that the system can run 
in real-time, as no past data needs to be sent to the 
downstream engines.  In this algorithm, it is assumed that 
pile-up will occur, so the reference pulse is always used to 
remove the tail of the first pulse from the stream.  The 
timestamp is used to determine what samples from the 
reference pulse to use.  The reference pulse is defined at a 
much finer resolution (every 60ps in this work) than the 
sampling rate of the ADC (16ns-1ns).  The data that is sent to 
the next processing engine is calculated using equation 1. 
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Here, Vinput is the data stream from the ADC, Vref is the 
reference pulse voltage, n is the number of ADC samples 
summed on the leading edge of the pulse for the amplitude 

normalization, 

! 

t
s

t
ADC

" 
# 
$ % 

& 
'  is the ratio of reference pulse 

resolution to ADC resolution, 

! 

"t  is the result of the time 
stamp lookup table (i.e. how far the first sample was from the 



start of the pulse) and 

! 

Ap

Ar

" 

# 
$ 

% 

& 
'  is the normalization factor to 

normalize the reference pulse amplitude to the first incoming 
pulse amplitude. 

Partial dynamic integration is used to determine the energy 
of the pulse.  Two summations are generated for each pulse, 
one to the cutoff point and one for the full pulse.  If the 
downstream engine indicates that pile-up did occur, then the 
cutoff summation energy is calculated by using the partial 
summation, with the remaining pulse energy calculated from 
the reference pulse as indicated above.  If no pulse is detected 
in the downstream engine, then the whole pulse summation is 
used.  This scheme requires a termination processing engine 
that simply indicates whether it has detected a pulse, but does 
not process it.  This engine would be in addition to the max 
number of expected consecutive pile-ups.   

IV.   TESTS AND RESULTS 

A.   Determining peak pile-up cutoff 
The first step in developing this algorithm is to determine 

where to set the cutoff between peak and tail pile-up.  We 
started by investigating how much of the leading edge of the 
pulse is needed to accurately calculate the area to amplitude 
normalization and interpret the tail of the pulse.  In our 
original timing routine, all of the samples of the pulse are 
summed.  The ratio of this sum and the equivalent sum of the 
reference pulse is then used to normalize the amplitude of the 
data pulse to the reference pulse to reduce time walk.  In the 
event of tail pile-up, all of the samples are not available, so 
the question is how many samples free from pile-up are 
needed to perform this normalization step. The accuracy may 
degrade as less of the pulse is used, but using less of the pulse 
reduces the dead time, so the tradeoff between dead time and 
energy/timing resolution has to be balanced.  To perform this, 
a simulation was performed in Matlab using 1000 unfiltered 
pulses from different pixels on a Zecotech MAPD-N with a 
LFS-3 scintillator.  

To determine the effect on timing resolution, two streams 
were created with the pulses in each stream in coincidence.  
The normal timing algorithm was run, except only a portion of 
the pulse was summed and that area was used to normalized 
the amplitude.  The amount that was summed was swept from 
100% to about 5%.  Fig. 2 shows the results of this study.  A 
sample pulse is included to provide a reference of what part of 
the pulse is being summed.  The x-axis indicates how much of 
the pulse (in samples) is being summed up for amplitude 
normalization.  For this sampling rate (65MHz) and pulse 
length, 32 samples constitutes summing up 100% of the pulse, 
while 2 samples corresponds to about 5% of the pulse (it 
doesn’t make sense to use just one sample).  Notice that the 
timing resolution remains fairly flat until the cutoff point 
approaches the peak.  If the summing is stopped before the 
peak, the timing resolution is substantially degraded, as would 
be expected. 

 
Fig. 2.  Graph of timing resolution for different amount of pulse used for 

amplitude normalization for a 65MHz sampled pulse. 

The next step is to determine how well the tail of the pulse 
can be interpolated based on summing up only a portion of the 
pulse.  For this test, only one stream is needed.  Again, for 
each percentage of pulse summed one thousand pulses were 
summed to the specified number of samples, while the rest of 
the pulse was interpolated with the reference pulse.  In this 
case, the reference pulse was normalized to the data pulse.  
The resulting composite summation is compared to the 
summation of the total pulse.  The percent standard deviation 
of the error for all 1000 pulse is plotted in Fig. 3, along with 
an example pulse.  The percent standard deviation 
demonstrates how much overall error is associated with 
interpolating the tail.  The area error increases as less of the 
pulse is summed and more is interpolated.  Again, there is a 
dramatic increase in error at about the peak of the pulse.   

 
Fig. 3.  Graph of area error as compared to how much of the pulse is 

interpolated for a 65MHz sampled pulse. 

The results in Fig. 2 and Fig. 3 indicate that about 20% (7 
samples for a 65MHz ADC) of the pulse is needed before the 
interpolation error becomes too great.  In fact, for timing, the 
best results are obtained at about 30% of the pulse, and 20% is 
roughly equivalent to summing up the whole pulse.  This is 
because the tail of the pulse contains a substantial amount of 
noise that corrupts the area normalization step.  Given these 
results, the boundry that distinguished peak pile-up and tail 
pile-up is set to 20% of the pulse.  That is, if pile-up occurs 
before 20% of the pulse, it should be detected and discarded.  
If it occurs afterwards, it can be separated with our algorithm.  
These results also indicate that there is not enough benefit to 
the complexity of truly dynamic integration.  That is, integrate 
until a pile-up event is detected as is done in [11].   



B.   Area correction 
Even though the timing does improve as less and less of the 
pulse tail is summed for energy, there are some issues.  One 
issue is the dependence of a pulse’s calculated energy on the 
voltage of the first sample (Fig. 4).  Since the number of 
samples summed is always the same, a sampling where the 
first sample is well above the threshold (Fig. 4a) will have a 
greater area than if the first sample was just above the trigger 
(Fig. 4b) for the same pulse.   
 

 
(a) 

 
(b) 

Fig. 4.  Illustration of how the calculated area of the same pulse can differ 
based on the voltage of the first sample. 

The range of possible voltages for the first sample of a pulse 
range from the voltage of the first trigger, to some greater 
value based on the slope of the leading edge and the sampling 
interval.  A greater range and more variance in calculate areas 
of identical pulses will be seen with a longer sampling period 
and a steeper leading edge. 

Fig. 5 shows the extent of this error.  Each graph shows the 
difference between the average area of a pulse and the area 
calculated for the same pulse for a given first sample voltage, 
as indicated on the x-axis.  The error is reported as a percent 
of the average pulse area for the amount of pulse summed.  
For example, Fig. 4a indicates that for a 65MHz ADC, the 
area summation is almost 8% under estimated when the first 
sample is just above the threshold (-.015V).  There are no 
voltages below -.015V because that is the voltage level of the 
trigger, so no samples will be below this value.  Fig. 4a 
demonstrates how the error is worse as less of the pulse is 
summed for the area to amplitude normalization.  Notice how 
percent error for summing up all of the pulse is nearly flat and 
centers around zero, while the error for summing up only 20% 
of the pulse has large errors when the first sample is at either 
end of the range. Fig. 4b shows how this error trends for 
different sampling rates.  A higher sampling rate ADC means 
that there are more samples in the first 20% of the pulse, and 
the range of the first sample is less.  This results in less error 
than a lower sampling rate.  However, the improvement from 
65MHz to 300MHz is not large because the slope of the 
leading edge of the 300MHz-sampled pulse is greater because 
the frequency cutoff for the low-pass filter is higher.  This is 
evident by the fact that the possible ranges of the first sample 
(x-axis) for both samplings is almost the same, though the 
range in time for the 300MHz sampling is ~1/5 that of the 
65MHz sampling.   

           
       (a) 

                 
               (b) 

Fig. 5.  Graphs indicating the area summation error based on the voltage 
of the first sample.  (a)  For a pulse sampled at 65MHz while sampling 20% 
of the pulse or the whole pulse. (b)  For a pulse sampled at 65MHz and 
300MHz summing up 20% of the pulse. 

To correct for this, the error shown in Fig. 5 is calculated 
using the reference pulse, and the correction is stored in a 
lookup table. The lookup table stores the difference between 
the average area of the reference pulse and the area obtained 
for the reference pulse given the voltage of the first sample.  
Recall that the reference pulse is defined at about every 60ps 
so it has to be down sampled to match the ADC sampling 
period in order to accurately compare the reference pulse to 
the ADC data pulse.  Based on the down sampling and the 
threshold, there is a theoretical range where the first sample 
can fall on the reference pulse.  The lowest voltage is from a 
sample just above the threshold, and the largest voltage is 
when the previous sample is just below the threshold.  The 
average area for the reference pulse is based on a sampling 
with the first sample is in the middle of this range. 

Using the area correction value in the normalization step is 
an iterative process.  The first sample that is used as the 
address to the look-up table has to be normalized first.  So 
after the initial area of the first 20% of the pulse is calculated, 
the first sample of the pulse is normalized based on that area.  
The normalized voltage of the first sample is the address into 
the area correction lookup table, and the output is added to the 
initial area.  Note that the normalized voltage of the first 
sample is not correct at this point, but it is close enough to use 
to look up the area correction value.  The corrected area is 
used to normalize the first samples of the pulse again, which 
are used to determine the start time of the pulse.  It is possible 
that this iterative process may need to be repeated more times 
for systems with larger area variances, but for this data set, 
one iteration sufficed.    

The previous results, after correcting for the voltage of 
the first sample, are shown in Fig. 6 and Fig. 7.  For both 
timing and area, there are no improvements when most of the 



pulse is summed, which is logical considering how flat the 
100% summation line is in Fig. 5a.  The important difference 
in timing resolution and area error is when the summation 
limit approaches the peak of the pulse.  For timing resolution 
in Fig. 6, correcting the area improves the timing at 20% 
summation by 6% and the standard deviation of the area 
interpretation reduces by 53%. 
 

 
Fig. 6.  Graph of timing resolution vs. amount of pulse summed with and 

without the area corrected for the amplitude of the first sample for a 65MHz 
sampled pulse. 

 

 
Fig. 7. Graph of area error with and without area correction as compared 

to how much of the pulse is interpolated for a 65MHz sampled pulse. 
 

C.    Peak pile-up filter 
Determining whether a pile-up event has occurred before 

or after the 20% cutoff is calculated with the peak pile-up 
filter.  Our implementation is composed of a two-part filter.  
The first part relies only on the energy of the first 20% of the 
pulse.  If the signal in this region was too large, it is deduced 
that pile-up occurred before the cutoff and that the two pulses 
should be discarded as peak pile-up.  This half of the solution 
is only as good as the energy resolution of the system though.  
This is because if the first pulse is on the lower end of the 
energy spectrum, then more energy from a pile-up event (i.e. 
greater overlap) is required to trigger the filter.  Therefore, if 
only this method was used many peak pile-up events would 
make it through the filter.  The second part of the filter detects 
peak pile-up that occurs closer to the 20% cutoff.  This is 
accomplished by looking for a second rising edge before the 
peak pile-up cutoff.  This scheme relies on the fact that the 
location of the peak is fairly consistent.  So, once the peak of a 
pulse is encountered (stored as a certain number of ADC 

samples) the filter looks for a number of samples that are 
greater than the peak value (but not necessarily increasing).  
The number of sample observed (for the second leading edge) 
is dependent on the ADC sampling rate.  For a 65MHz ADC, 
two samples are enough, but for a 1GHz sampling, eight 
samples need to be compared so that small noise spikes don’t 
trigger the filter incorrectly.  The effectiveness of this two-
part filter is shown in Fig. 8. 
 

 
Fig. 8.  Plot of the peak filters ability to detect peak pile-up and 

percentage of peak pile-up filtered be each part of the filter. 
 

Fig. 8 shows the results from a simulation to test this peak 
pile-up filter.  The simulation was generated where 200 
different pulses from the same pixel were put into a stream so 
that 100 2-pulse pile-up events were generated.  The degree of 
pile-up for all 100 events was the same for each test.  The 
pile-up started at 1% of the first pulse (essentially two pulses 
directly overlapping) and was swept to 25%.  In other words, 
25 tests were run with all of the 100 pile-up events having the 
same amount of pile-up.  For each test, the peak pile-up 
detection scheme was run and the number of pulses that made 
it through the filter (did not detect peak pile-up) was noted, as 
well as how many pulses each part of the filter detected as 
peak pile-up.  Ideally, the percentage of pulses processed as 
no peak pile-up would be 0% until pile-up at 20%, and then 
go immediately to 100% detected.  Notice that the part that 
uses the energy in the first 20% of the pulse stops detecting 
peak pile-up when the second pulse is at about 13% of the 
first pulse.  The reason for this is because some margin has to 
built in for the inaccuracy of calculating the energy of piled-
up pulses.  Fortunately, where the energy filters cuts off, the 
filter that looks for a second peak starts to detect peak pile-up.  
Before this point, the two peaks are close enough that the 
filter doesn’t find a second rising edge.  Notice that there is a 
slight bump in the number of pulses processed as tail pile-up 
around 10% because of the crossover between the two parts of 
the filter.  Reducing the maximum energy value, at the cost of 
possibly filtering out some “good” pulses, can eliminate this 
bump.   

D.  Algorithm  
From the previous tests, the algorithm for each engine is as 

follows: 
1) remove baseline from incoming ADC stream (first 

engine only). 
2) detect pulse based on triggers as discussed in [4]. 
3) sum up the first 20% and the whole pulse. 
4) check for peak pile-up with peak filter. 

a. if peak pile-up occurs disregard both pulses. 



b. otherwise continue. 
5) normalize first sample of pulse based on area under 

first 20% of pulse. 
6) calculate the area correction factor and adjust initial 

area. 
7) normalize first samples (based on number of samples 

used in timing algorithm) of pulse to reference pulse 
using corrected area. 

8) timestamp pulse as discussed in [4]. 
9) normalize reference pulse to data pulse using 

corrected area. 
10) using timestamp, lookup the correct samples from the 

normalized reference pulse to interpolate remaining 
80% of pulse tail. 

11) subtract interpolated pulse from ADC stream and 
send resulting stream to second pile-up correction 
engine. 

12) if downstream engine detects a pulse it repeats steps 
2-11 on the pulse and the first engine uses the energy 
based on 20% summed plus 80% interpolated. 

13) if no pulse is detected in the time it takes the first 
pulse to return to baseline, then the first engine uses 
the 100% summation for the pulse energy. 

To simulate the algorithm, 1000 pulses from four different 
pixels on a Zecotech MAPD-N array with a LFS-3 scintillator 
were captured using a 25GHz oscilloscope.  These pulses 
were then imported into Matlab to perform simulations.  The 
pulses were captured as singles, and different percentages of 
pile-up and coincidence count rate were generated in Matlab 
before the above algorithm could be simulated.  To facilitate 
this, two streams of pulses were created, with each stream 
composed of pulses from a single pixel.  All pulses were 
randomly placed in the stream with a 50% coincidence rate.  
That is, when a pulse was randomly placed in stream one, it 
was randomly chosen with a 50% probability whether it 
would have a coincidental pair in stream two.  In this work we 
investigate 100 kilocount per second (kcps), 200kcps, 
500kcps, and 1Mcps (below 100kcps, pile-up is no longer a 
large issue, and 1Mcps is greater than the count rate we expect 
to handle). The pile-up is generated when a random placement 
of a pulse overlaps an already placed pulse.  In order to 
prevent the addition of two baseline components to a pile-up, 
the baseline was removed from the single pulses and added 
back to the whole stream after all of the pulses were places.  

These streams were created with all possible unique 
pairings of the four pixels (six pairings), for five ADC 
sampling rates (65MHz, 125MHz, 300MHz, 500MHz, 1GHz), 
and with four count rates (100kcsp, 200kcps, 500kcps, 
1Mcps).  The frequency cutoff of the filter was optimized to 
get as steep of leading edge while still maintaining at least 
three samples on it.  The energy resolution and coincidence 
timing resolution was recorded for each test.  The timing 
resolution was averaged over the six pixel pairings.  The 
results for how timing resolution is affected by the count rate 
are shown in Fig. 9.  As expected, the timing resolution 
improves as the ADC rates increase, and it degrades as the 
count rate increases because more pulses are involved in pile-
up.  The timing resolution from 100kcps to 1Mcps degrades 
by about 15% for a 65MHz and 125MHz sampling rate and 
about 40% for the other sampling rates.  Notice that the 

degradation in terms of ns is similar for all sampling rates.  
This indicates that the timing resolution degradation is not 
dependent on the sampling rate.  Fig. 9 also shows that our 
algorithm degrades gracefully as pile-up rates increase. 

 
Fig. 9.  Timing resolution for different count rates at different ADC 

sampling rates. 

To get an understanding of what is contributing to the 
degradation, the timing resolution was calculated for each 
possible coincidence scenario.  That is, coincidental pulses 
when neither pulse were involved in pile-up, when one of the 
two were in a pile-up event, and when both pulses were some 
part of a pile-up event.  These results are presented in Fig. 10 
for a 300MHz ADC sampling rate, along with the overall 
timing resolution.  Note that data for 100kcps and 200kcps for 
both involved in pile-up are missing.  This is because there 
were not enough instances of those events at low count rates 
to make the data statistically sound.   

Not surprisingly, it appears that most of the degradation is 
from the pile-up events, and especially from the case when 
both pulses in coincidence are involved in pile-up.  More 
interestingly, there is still some degradation in the timing 
resolution for pulses not involved in pile-up when count rates 
increase.  The degradation is about 17% from 100kcps to 
1Mcps.  This is probably due to the difficulty of calculating a 
good baseline when pulses are close together but not 
overlapped.     

 
Fig. 10. Plot of timing resolution for a 300MHz ADC sampling for 

different count rates.  The timing resolution is shown for coincidental pulses 
where neither of the pulse is in a pile-up event, where one of the pulses is 
piled up and where both of the pulses were in a pile-up event. 

In addition to timing resolution, energy resolution is an 
important factor of a PET pulse processing system.  For the 



pile-up correction algorithm, the energy resolution will give 
an indication of whether the energy of the pulses involved in 
pile-up can be accurately estimated.  To calculate the energy 
resolution, the energy of all pulses in the stream (except those 
with too much pile-up) was recorded and a histogram was 
generated.  The data set used in these experiments was for a 
point source in air.  To determine the FWHM, a Gaussian 
function was fit to the data and the energy resolution was 
calculated.  The results are reported in Fig. 11.  Notice that the 
energy resolution is fairly constant over different count rates.  
In fact, the worst degradation from 100kcps to 1Mcps is less 
than 5%.  The energy resolution is worse for lower sampling 
rates do to the discretization of the pulses.   

  
Fig. 11.  Graph of the energy resolution of our pulse pile-up correction as 

count rates increase for different ADC sampling rates 

E. Pulse detection 
Since the purpose of pulse pile-up correction is to capture 

additional pulses, it is important to investigate pulse detection 
efficiency.  That is, how well does the algorithm detect good 
pulses and reject peak pile-up pulses that have too much pile-
up.  To determine how well our algorithm is detecting pulses, 
statistics of pulse detection were kept as they were discovered 
and processed.  Pulses were classified by the number of pulses 
in a given pile-up event.  For example, 2-pulse pile-ups are 
events where two pulses piled up in a row, and 3-pulse pile-
ups are events with three pulses in one pile-up.  The number 
of pulses without pile-up, as well as pulses with peak pile-up 
was also reduced. 

Analyzing our pile-up correction algorithm to determine 
the expected count rates is difficult because of the nature of 
the dead time.  Recall that if pile-up occurs in the first 20% of 
a pulse, then the system is dead until the incoming ADC 
values return to baseline.  So, if a third pulse arrives before 
the system returns to baseline, then the dead time is extended 
by another pulse length.  So, our system has essentially two 
dead times.  The dead time when the system is live (not 
resolving peak pile-up) is 20% of the length of a pulse.  That 
is, when the system is live, the minimum separation required 
between two pulses is 20% of the pulse length.  When peak 
pile-up does occur, the dead time is then the full pulse length.  
The system is dead for at least one pulse length until the data 
stream returns to baseline.  Given these parameters, the pile-
up rates cannot be calculated with the typical statistical 
models that assume a single dead time, so instead the pile-up 
rates were calculated with a Monte Carlo simulation.  
Specifically, the rates were tabulated from the stream 

generation routine.  After each stream was generated, the start 
times of every pulse were evaluated to determine how many 
pulse “groups” had no pile-up, and how many were a 2-pile-
up, 3-pile-up or 4-pile-up event.  The occurrence of peak pile-
up was also determined.  The results in Table I show the 
percent difference from detected to expected for each 
subcategory.   
Table I.  Percent differences from detected pile-up events to expected pile-up 

events (detected count/expected count). 
count 
rate no pile-up 

2-pulse 
pile-up 

3-pulse 
pile-up 

4-pulse 
pile-up 

peak 
pile-up 

500kcsp (1702/1706) 
-.2%        

(113/107) 
5.3%        

(5/4) 
20%         

(0/0) 
0%           

(32/42)
23.8%     

1Mcps (1442/1455) 
-.9%       

(169/170) 
-.6%       

(17/23) 
-35.3%       

(8/4) 
50%          

(56/69) 
18.8%      

 
Notice that this algorithm does a good job at correctly 

finding pile-up.  The slight difference is mostly due to the way 
the expected pile-up rates were calculated versus the detected 
rates.  The expected rates used the pulse length to determine if 
a pile-up occurred based on the start times of pulses.  The 
pulse length is the same value for all pulses from a single 
pixel for implementation simplicity, even though the pulses do 
vary in length in practice.  Additionally, the stored pulse 
length is slightly less than it takes for the pulse to return to 
baseline for other issues.  The algorithm on the other hand 
looks for a second pulse before the current pulse has decayed 
back to baseline.  So even if the pulse length has expired, a 
pileup may be detected because the stream hadn’t returned to 
baseline yet.  This is why more pile-up events were detected, 
but fewer no pile-up events.   

V.  FPGA IMPLEMENTATION 
This algorithm was specifically designed for an efficient 

FPGA implementation, targeted towards our second-
generation hardware [1].  The goals for an efficient 
implementation are low logic and memory utilization and 
real-time computation.  Minimal logic utilization is required 
to reduce power consumption and to accommodate the other 
pulse processing circuits present in the FPGA, as well for 
multiple channel support.  The real-time criteria is important 
because we don’t want to add dead time to the system.   

The FPGA implementation of this algorithm is built on the 
timing algorithm discussed in [4].  The first change required is 
in the area-to-amplitude normalization step.  The contents of 
this lookup table were modified to operate on the first 20% of 
the pulse rather than the entire pulse.  Another addition is the 
area correction factor, which can be implemented as a lookup 
table.   The final addition is the system that interpolates the 
tail and subtracts it from the stream.  The block diagram for 
one pulse pile-up correction engine is shown in Fig. 12.  The 
number of engines is user-selected according to the count rate 
and the desired amount of pile-up correction.   



 
Fig. 12.  Block diagram of one pulse pile-up correction engine.  

Most of these new logic blocks are standard logic 
designs. The primary challenges in this design are related to 
the latency through the engine.  The first issue has to do with 
the control of the overall system.  In the preliminary 
implementation, a master control block listened to each engine 
to determine when the first engine should process the stream, 
or when another engine is processing pile-up.  This was 
important because the first engine should trigger only on the 
first pulse of a pile-up event.  The problem with this control 
scheme is the latency through all of the engines.  In other 
words, if it takes N cycles for a sample from the ADC to get 
through an engine, then the first engine will miss a multiple N 
samples from the ADC (depending on the number of engines). 
To correct this, each engine independently waits for the 
incoming samples to return to baseline after it has processed a 
pulse.  The downstream engine must notify the upstream 
engine of any pulses it detects so that the upstream engine can 
determine whether to use the pulse energy from summing all 
of the samples or the energy from interpolating the tail.  This 
scheme does require a simple termination engine after the 
final engine, to provide this information. 

The other issue around latency is the coarse coincidence 
calculation.  In our system [2], we utilize a coarse coincidence 
controller to lower the data rate to the host computer.  The 
coarse coincidence controller is a separate FPGA that listens 
for events from all detectors and indicates when two events 
occurred in the field-of-view within the three-clock cycle 
coarse coincidence window.  The problem occurs when two 
coincidental pulses are not in the same place of the pile-up 
stream.  For example, if a single pulse was in coincidence 
with the second pulse of a pile-up event, the event signal for 
the single pulse would arrive at the coincidence controller N 
cycles before the other event due to the latency through the 
pulse pile-up correction engines.  This is corrected by 
delaying the pulse signal to the coarse coincidence controller 
from all of the engines except the last.  The second-to-last 
engine has a delay of N, while the next engine upstream has a 
delay of 2N, and so on. 

This algorithm was implemented in Verilog and compiled 
with Quartus for the StratixIII S200 FPGA used in our 
hardware.  Each engine utilizes 217 LUTs (.1%), 337,284 
memory bits (3.2%) and 6 DSP blocks (1%).  The termination 
engine only uses 8 LUTs and 24 memory bits.  Duplicating 
pile-up engines won’t necessarily double the resources used.  
Some of the memories can be shared between two engines by 
utilizing the dual ports on the FPGA block memories.  For a 
system with two pulse pile-up correction engines, the memory 
usage is 552,592 bits.  This represents a savings of 18% over 
simply duplicating the memory.  There is also some possible 
memory savings by reducing the resolution of the reference 
pulse by down sampling it.  This would require further study 
to determine the effect on timing and energy resolution.   

VI.   CONCLUSION 
In this work, we show that an all-digital pulse pile-up 

correction algorithm can reliably recover pulses overlapped up 
to 80%.  This allows systems to process higher count rates 
from higher tracer dosages or from architectures that have 
higher count rates per channel. Simulation for 1Mcps show 
that this algorithm is able to capture and process 30% more 
pulses than if all pile-up was simply discarded.  The timing 
resolution does degrade by 40% when utilizing this algorithm 
however, but the timing resolution degrades by 2X if no 
correction or detection is done at all on the pile-up streams. 
Finally, this algorithm ties in very well with our timing 
algorithm [4] and can easily be implemented in an FPGA with 
a reasonable amount of resources. 
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