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Abstract: The Global Event Processor (GEP) FPGA is an area-constrained, performance-critical11

element of the Large Hadron Collider’s (LHC) ATLAS experiment. It needs to very quickly12

determine which small fraction of detected events should be retained for further processing, and13

which other events will be discarded. This system involves a large number of individual processing14

tasks, brought together within the overall Algorithm Processing Platform (APP), to make filtering15

decisions at an overall latency of no more than 8ms. Currently, such filtering tasks are hand-coded16

implementations of standard deterministic signal processing tasks.17

In this paper we present methods to automatically create machine learning based algorithms18

for use within the APP framework, and demonstrate several successful such deployments. We19

leverage existing machine learning to FPGA flows such as HLS4ML and fwX to significantly20

reduce the complexity of algorithm design. These have resulted in implementations of various21

machine learning algorithms with latencies of 1.2𝜇𝑠 and less than 5% resource utilization on an22

Xilinx XCVU9P FPGA. Finally, we implement these algorithms into the GEP system and present23

their actual performance.24

Our work shows the potential of using machine learning in the GEP for high-energy physics25

applications. This can significantly improve the performance of the trigger system and enable the26

ATLAS experiment to collect more data and make more discoveries. The architecture and approach27

presented in this paper can also be applied to other applications that require real-time processing of28

large volumes of data.29
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1 Introduction45

The ATLAS experiment at the Large Hadron Collider (LHC) [1] at CERN is undergoing continuous46

upgrades as part of the High-Luminosity LHC Upgrade [2] because of the need to handle an47

increased data output rate and refine data capture accuracy for the future High-Luminosity LHC48

(HL-LHC) upgrade [3]. The upgrades include a new decision-making module, Global Trigger49

subsystem, in the L0 Trigger [4], where L0 trigger is the first-level hardware-based decision system50

selecting relevant collision events for further analysis, which will require new and improved hardware51

and algorithms to increase its performance.52

The upcoming Global Trigger subsystem is designed to run advanced algorithms, similar to53

those typically used for offline data analysis, on detailed data collected from various sub-detectors54

and processing units in real time. This approach will enhance the quality of detected events and55

observables, serving as inputs for the advanced decision-making processes handled by the Global56

Event Processor (GEP) [5]. As the GEP performs many tasks on the same FPGA, the feasible57

latency for typical individual algorithms is less than 1.2𝜇𝑠, derived from the 25𝑛𝑠 time for each58

bunch crossing (the time between collisions in the detector) and the number of parallel GEP units59

receiving data in a round-robin fashion (i.e., 25 ns x 48 GEP units). The FPGA resource utilization60

also must be small enough to incorporate many algorithms, placing practical constraints at the level61

of a few percent per resource type (LUT, FF, BRAM, DSP).62

The GEP, which serves as an FPGA-based framework for an interconnected network of Algo-63

rithm Processing Units (APUs), orchestrates the data flow and the processing chain across multiple64

clock domains to execute the trigger algorithm. Data is pipelined through different APUs within the65
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GEP, with each APU handling individual sub-tasks of the overall trigger. Specialized algorithms66

are implemented in each APU for data analysis in a pipeline workflow.67

The APU emerges as a paradigm of innovation within the ATLAS experiment’s data processing68

systems, demonstrating superior performance over general-purpose processors. Its distinctive69

advantage lies in utilizing a single FPGA platform to host various algorithms, which streamlines70

efficiency by obviating the need for cross-platform conversion. With a specialized protocol, the APU71

facilitates ease of use for designers, enabling seamless integration of multiple APUs where each72

focuses on a distinct computational challenge. This modular approach, where individual APUs73

are dedicated to specific tasks and then unified, significantly amplifies the processing capacity74

of the Global Event Processor (GEP). Optimized for high-speed processing, the APU surpasses75

the latency limitations commonly associated with general-purpose processors. Its architecture is76

intricately designed to manage the complex data flow and algorithmic demands of particle physics77

experiments, ensuring the delivery of real-time analytics essential for prompt decision-making and78

dynamic experiment adaptation.79

This work is significant because it marks the first time that machine learning tools such as80

hls4ml and fwX have been used for the ATLAS trigger system. Our paper describes how we81

deployed these tools into the APU development process, thus simplifying algorithm design and82

improving APU performance. With the integration of machine learning algorithms into the APU,83

we have striven towards the theoretical maximum latency of 1.2 microseconds.84

The organization of this paper is as follows: Section 2 provides an introduction to the APU85

architecture and the communication protocols employed between the APUs. In Section 3, we present86

the APU development process using hls4ml and fwXmachina, and explain the implementation of87

machine learning algorithms into the APU. In Section 4, we present the results of our experiments88

and evaluate the performance of the GEP-defined algorithms implemented in the APU. We conclude89

our work in Section 5.90

2 Infrastructure and Methods91

The APU is a crucial component in the Global Event Processor (GEP) system, and the primary92

responsibility of the APU is to swiftly process and analyze the data generated by the particle93

detectors in real-time. Each APU performs a specific part of the overall computation. Given94

the high-speed data transmission from the detectors, the APU must match this pace, necessitating95

additional components within the GEP system. These components, which manage data transmission96

and synchronization, are critical to ensuring efficient, accurate, and rapid processing, minimizing97

data loss or corruption.98

In the following subsections, we delve deeper into these aspects, discussing data transmission99

and synchronization and exploring how machine learning tools, specifically hls4ml and fwX-100

machina, integrate into the APU, enhancing its performance and data handling capabilities.101

2.1 Integration of the Algorithm102

Machine learning has recently been widely used in particle and energy research, as well as in LHC103

data analysis. In the APU, although not all algorithms can be achieved using machine learning,104

some of them can be solved using machine learning approaches, especially those related to particle105
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tagging or identification problems. For example, the B-tagging algorithm distinguishes between106

different jet types, including those originating from b-quarks (B-tagging), can be implemented using107

dense neural networks or convolution neural networks, and the Quark/Gluon jet tagging algorithm108

can be implemented using a CNN model. However, since the APU is a firmware-based FPGA109

design, neural network deployments in GPU code are not supported. Hence, hls4ml and fwX were110

applied to implement the neural networks on the FPGA. In this section, we will introduce how to111

integrate a machine learning model into an APU.112

A key element in this integration is the consistent application of an Algorithmic State Machine113

(ASM), which serves as a bridge between the APU’s firmware-based FPGA architecture and the ML114

models. Notably, both hls4ml and fwX, used for the generation of these ML models, employ Vivado115

HLS for creating Verilog code. This results in a similar structure and protocol across different ML116

models, allowing for a standardized approach in the ASM’s application.117

The ASM’s primary function is to manage the protocol differences between the APU’s FPGA118

design, which typically uses an addressable input memory buffer, and the streaming data model119

inherent to ML models. It ensures seamless data transmission, effectively converting the incoming120

data into a streaming format compatible with the ML models and formatting the output data for the121

APU’s consumption. This process involves the ASM transitioning through various states – from an122

initial idle state to active data transfer, and finally to completion – ensuring efficient and accurate123

data handling.124

The uniformity in the ASM design, dictated by the similar structure of the ML models generated125

by hls4ml and fwX, simplifies the integration process. It allows the APU to handle different types126

of ML algorithms without requiring significant alterations in the ASM structure or its operational127

methodology.128

The detailed experimental results, which will be discussed in subsequent sections, highlight129

the effectiveness of integrating these diverse ML models into the APU. These results include130

comprehensive analyses of resource utilization, latency, and overall performance, demonstrating131

the practicality and efficiency of this integration approach.132

In conclusion, the standardized ASM approach significantly enhances the APU’s capability133

to manage a wide range of computational tasks, thereby bolstering the data processing prowess134

required for LHC experiments. This integration not only represents a technical achievement but135

also a crucial step forward in the field of high-energy physics research.136

2.2 Data Transmission and Synchronization137

In the GEP, raw input events arrive every 1.2𝜇𝑠, with intervening inputs sent to additional GEP138

modules. Individual APUs perform portions of the overall computation, with data streaming in a139

fixed dataflow graph from APP to APP, where an APP is a container of an APU. Parallel paths in this140

dataflow graph represent different portions of the computation, while parallel execution units for a141

given step would be contained within an individual APU, as demonstrate in figure 1. BRAM-based142

buffers are placed in-between communicating APUs to store the input or output information from143

each APU, and allow parallel operation in the producer and the consumer. As illustrated in figure 2,144

BRAMs are stacked together to form a bank that stores data for multiple events. These data sources145

can be raw data from the detector or data from an upstream APU. An APU processes one event at146

a time, receiving data from the upstream BRAMs and storing the resultant data in a downstream147
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Algorithm 1 The ASM for streaming the data input/output to the DNN/BDT
𝑃𝑎𝑟𝑎𝑚_𝐷𝑒𝑙𝑎𝑦 ← 𝑛;
𝑠𝑡𝑎𝑡𝑒 ← 𝐼𝐷𝐿𝐸 ;
while 𝑒𝑣𝑒𝑛𝑡_𝑟𝑒𝑎𝑑𝑦 do

if 𝑟𝑒𝑎𝑑_𝑠𝑡𝑎𝑡𝑒 = 𝐼𝐷𝐿𝐸 then
if ready then

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑑𝑎𝑡𝑎[0] ⊲ the first data contains the index of the last valid data
𝑟𝑒𝑎𝑑_𝑠𝑡𝑎𝑡𝑒 ← 𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅

end if
else if 𝑟𝑒𝑎𝑑_𝑠𝑡𝑎𝑡𝑒 = 𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 then

𝑒𝑛𝑎𝑏𝑙𝑒_𝑁𝑁_𝑖𝑛← 1;
for 𝑖 ← 0 to 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 − 1 do

𝑑𝑎𝑡𝑎 ← 𝑟𝑒𝑎𝑑_𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚_𝐵𝑅𝐴𝑀 (.𝑎𝑑𝑑𝑟 (𝑖));
𝑠𝑒𝑛𝑑_𝑑𝑎𝑡𝑎_𝑡𝑜_𝑁𝑁 (𝑑𝑎𝑡𝑎);

end for
𝑟𝑒𝑎𝑑_𝑠𝑡𝑎𝑡𝑒 ← 𝐼𝐷𝐿𝐸 ;

end if
if 𝑤𝑟𝑖𝑡𝑒_𝑠𝑡𝑎𝑡𝑒 = 𝐼𝐷𝐿𝐸 then

if 𝑁𝑁_𝑜𝑢𝑡𝑝𝑢𝑡_𝑣𝑎𝑙𝑖𝑑 then
𝑤𝑟𝑖𝑡𝑒_𝑠𝑡𝑎𝑡𝑒 ← 𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅;

end if
else if 𝑤𝑟𝑖𝑡𝑒_𝑠𝑡𝑎𝑡𝑒 = 𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 then

𝑒𝑛𝑎𝑏𝑙𝑒_𝑎𝑝𝑢_𝑜𝑢𝑡 ← 1;
for 𝑖 ← 0 to 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 − 1 do

𝑑𝑎𝑡𝑎 ← 𝑟𝑒𝑎𝑑_𝐷𝑒𝑛𝑠𝑒_𝑜𝑢𝑡𝑝𝑢𝑡;
𝑠𝑒𝑛𝑑_𝑑𝑎𝑡𝑎_𝑜𝑢𝑡 (𝑑𝑎𝑡𝑎);

end for
𝑤𝑟𝑖𝑡𝑒_𝑠𝑡𝑎𝑡𝑒 ← 𝐸𝑁𝐷;

else if 𝑤𝑟𝑖𝑡𝑒_𝑠𝑡𝑎𝑡𝑒 = 𝐸𝑁𝐷 then
𝑠𝑒𝑛𝑑_𝑑𝑎𝑡𝑎_𝑜𝑢𝑡 (𝑙𝑎𝑠𝑡_𝑑𝑎𝑡𝑎_𝑖𝑛𝑑𝑒𝑥);
𝑒𝑣𝑒𝑛𝑡_𝑑𝑜𝑛𝑒 ← 1;

end if
end while

BRAM. Fanout in the dataflow graph is supported by parallel copies of the downstream memory148

buffers.149

To address the significant challenge of data synchronization, given the arrival skew of raw data150

inputs and unsynchronizied clock speeds from the detectors, the Algorithm Processing Platform151

(APP) was developed. The APP serves as a wrapper for each APU and facilitates Clock Domain152

Crossing (CDC) through its sub-modules.153

The APP comprises Synchronization Registers (SR), BRAMs, a Sync controller, and the APU154

itself. The BRAMs in the APP operate under two clocks: one that writes data from upstream155
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Figure 1. The dataflow of the APUs within the GEP

Figure 2. The communication between two APPs in a detailed view

and another that reads data for the APU within the APP. This dual-clock operation enables the156

transfer of data between different clock speeds. The SR, tasked with determining when data from157

a particular input source is ready, controls a stack of BRAMs in the APP and governs data storage158

and retrieval. The Sync controller, which contains a Finite State Machine (FSM), regulates the SRs159

for the selection of BRAMs, with the chosen BRAM sending or receiving data to or from the APU.160

The APP provides the solution to data synchronization through the BRAM banks. By managing the161

synchronization registers and the Sync controller, it ensures data consistency from different clock162

domains and guarantees that the APU processes data from the correct event, even with the presence163

of raw data input skew.164

All trigger processing for a given Bunch Crossing (BC - an event in the detector) is handled in165

a single GEP. To process multiple events under significant throughput and latency constraints, the166

48 GEP units operate in a round-robin fashion, where GEP1 processes data from BC1, followed167

by data from BC49, and so forth. Data processing within the APUs of GEP is pipelined, such168

that upstream APUs may be processing data for BC49, while while downstream APUs may still169

be processing data for BC1; in fact, we expect a plurality of BC’s to be processed simultaneously170

within each GEP.171

2.3 Hls4ml172

The trigger upgrade project aims to develop a low latency data processing system for high-energy173

physics. To help achieve this, the project is utilizing a high-level synthesis tool [6] to convert ma-174
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chine learning models into FPGA firmware. High-Level Synthesis for Machine Learning (hls4ml)175

is an open-source software package that provides a user-friendly interface for converting high-level176

machine learning models into hardware implementations. The tool generates hardware designs in177

hardware description languages (HDLs) such as VHDL or Verilog, which can then be synthesized178

and implemented on FPGAs. The workflow of hls4ml is: 1) automatically converting a machine179

learning model from TensorFlow [7], Pytorch [8], or Keras [9] into an hls4ml project that is output180

in a hardware-oriented subset of C++; 2) using Vivado HLS to synthesize the C++ code into HDL;181

3) Using Vivado to synthesize the HDL into an FPGA bitstream. Figure 3 shows the workflow of182

hls4ml. Hls4ml has been used in various high-energy physics experiments, including the Fermilab183

booster [10].184

Figure 3. The workflow of hls4ml, hls4ml will first read the model from Pytorch, Tensorflow, or Keras, then
convert to the hardware descriptive language using Vivado HLS, and eventually to the FPGA

Hls4ml is a promising tool for APU designs for several reasons. First, hls4ml is a convenient185

way to automatically convert a machine learning model into RTL, allowing for quick generation of186

different machine learning architectures. The user only needs to create the model using standard187

approaches in TensorFlow or Pytorch, and hls4ml can do the conversion to hardware. This saves188

designers significant amounts of time in implementing complex machine learning algorithms.189

Second, hls4ml can optimize hardware architectures for specific performance metrics, such as190

latency, throughput, or power consumption. This makes it a powerful tool for implementing191

real-time applications, such as those required by high-energy physics experiments. Third, hls4ml192

supports many different machine learning models, including dense neural network (DNN) [6],193

convolution neural network (CNN) [11], recurrent neural networks (RNN) [12], and graph neural194

networks (GNNs) [13, 14].195

2.4 FwXmachina196

The software package fwXmachina is used for implementing boosted decision tree-based machine197

learning algorithms onto FPGAs for high-energy physics applications [15–17]. Similar to hls4ml,198

it uses Vivado HLS to convert the model into RTL. It operates via a three-stage process: machine199

learning training with external software packages, optimization to fine-tune BDT structures and200
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parameters for physics performance and FPGA cost, and conversion to the firmware design through201

vendor tools.202

The fwX software package has been used to implement nanosecond machine learning with deep203

decision trees that have been used for problems that include event classification, regression, and204

anomaly detection. These implementations have achieved high accuracy and low latency, making205

them suitable for real-time applications. The parallel decision paths architecture of fwX allows206

for efficient use of FPGA resources, resulting in high-performance implementations. Its ability to207

efficiently implement decision trees with large numbers of branches and leaves makes it a valuable208

tool for applications.209

BDTs have been extensively utilized in high-energy physics applications, for instance in the210

discovery of the Higgs boson by the ATLAS and CMS collaborations [18, 19]. In this context,211

fwXmachina proves invaluable by efficiently implementing complex BDT models on FPGA, which212

has low latency (in nano second scale) and small resource usage.213

The potential of fwXmachina is underscored by its remarkable performance metrics. In one214

study [15], for a complex BDT model with 100 training trees, a maximum depth of 4, and four215

input variables, it boasts a latency of only around 10 ns, or 3 clock ticks at 320 MHz. Notably,216

this level of performance is achieved with minimal resource utilization - less than 0.2% of look-up217

tables and block RAM usage, less than 0.01% of flip-flop usage, and no ultra RAM or digital signal218

processor (DSP) usage. This efficiency demonstrates fwXmachina’s capacity to provide high-speed,219

low-resource implementations without compromising on the complexity or accuracy of the machine220

learning models.221

3 Experimental Result222

3.1 Deep Neural Network for B-tagging223

In the pursuit of refining particle identification within the ATLAS GEP, a Deep Neural Network224

(DNN) has been integrated into the APU, specifically focusing on a Jet tagging task. This task plays225

a crucial role in identifying the types of particles, particularly in distinguishing between different226

jet types, including those originating from b-quarks (B-tagging).227

The employed DNN model for B-tagging is structured with four dense layers consisting of 16,228

32, 32, and 5 neurons, respectively. The final layer employs softmax activation for classifying input229

data into five distinct categories, tailored to differentiate various particle types accurately. Figure 4230

illustrates the DNN architecture, showcasing its layered structure and neuron configuration, which231

is pivotal for the B-tagging application.232

The resource utilization of this DNN model is depicted in Table 1. The model demonstrates a233

balance between low latency and minimal resource usage, which is essential for real-time processing234

in the APU. With a latency of just 10 cycles, or 50ns at a 200MHz clock rate, this model exemplifies235

the feasibility of using hls4ml-generated machine learning models in APUs for high-energy physics236

experiments.237

This B-tagging DNN model not only fulfills the real-time processing requirements but also238

highlights the effectiveness of implementing advanced machine learning techniques in the field of239

high-energy physics. The efficient use of FPGA resources, combined with the high-speed processing240
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Figure 4. The architecture of the dense neural network

Table 1. The resource usage of the B-tagging DNN model
Resource Utilization Utilization %
DSP 625 9.1
FF 9646 0.41
LUT 54441 4.6
BRAM 18 0.83

capabilities, positions this approach as a valuable asset for current and future experiments in the241

ATLAS GEP.242

3.2 VBF Classification in BDTs243

Machine learning algorithms in the form of neural networks and boosted decision trees (BDT) are244

commonly used to separate signals and backgrounds in high-energy physics experiments. Examples245

include hadronic 𝜏 lepton identification [20] and identification of jets that contain a 𝑏-hadron [21].246

As an example for BDT classification in the ATLAS GEP, we use the problem of separating247

vector boson fusion Higgs production from multĳet background. We utilize the samples produced248

for the fwX classification paper [15]. Further details, as well as input distributions, are available249

in the fwX paper [15] and the corresponding public dataset [22]. As the VBF trigger is dominated250

by high transverse momentum (𝑝𝑇 ) jets, we assume that the hardware studies performed will be a251

reasonable representation of the GEP performance.252

The classifier is trained using kinematic variables corresponding to the two VBF jets. These253

include the transverse momentum of the sub-leading jet 𝑝𝑇2, and calculated quantities on the two254

VBF jets. These calculated quantities include the vector sum 𝑝𝑇 ( 𝑗 𝑗), the scalar sum, 𝐻𝑇 (jj), and255

the invariant mass of the two jets 𝑚 𝑗 𝑗 . To account for jets in opposite hemispheres of the detector,256

the product of the two jet pseudo-rapidity values are computed: 𝜂1 · 𝜂2. The range and number of257

bits assigned to each input variable is summarized in Table 2.258

The BDT model is trained using the TMVA [23] package, which implements the AdaBoost [24]259

method with 100 trees and a max depth of 4. During the simplification step performed by fwX, the260

number of trees was reduced to 10.261

The performance of the model implemented in the APU is evaluated by examining the latency,262

as well as the FPGA resource costs using the Xilinx FPGA VU9P chip. The latency was evaluated to263
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Table 2. Input variables, range of each variable and number of bit assigned to each variable.
Variable Range bits
𝜂1 · 𝜂2 -20–20 12
𝑝𝑇2 0 – 1000 GeV 12
𝑝𝑇 (jj) 0 – 1500 GeV 12
𝐻𝑇 (jj) 0 – 1500 GeV 12
𝑚 𝑗 𝑗 0 – 4500 GeV 7

Table 3. The resource usage of the classification BDT model
Resource Utilization Utilization %
DSP 2 0.029
FF 597 0.025
LUT 2756 0.23
BRAM 48 2.2

Table 4. The resource usage of the regression BDT model, post-synthesis. The utilization is given in the
total number of available units utilized as well as the fraction available on the FPGA in %.

Resource Utilization Utilization (%)
DSP 0 0.0
FF 1987 0.084
LUT 3493 0.30
BRAM 12 0.56

be 7 clock cycles with the clock running at a rate of 320MHz, which means the latency is 21.875ns.264

The resource usage is shown in Table 3. These results underscore the extremely low resource265

consumption on the FPGA, showcasing its practicality and effectiveness.266

3.3 Missing Transverse Momentum Regression BDT267

Regression models are useful for a wide variety of physics applications, including reconstruction268

of missing transverse momentum, 𝐸miss
𝑇

[25] and hadronic 𝜏 leptons [26]. To evaluate the hardware269

performance of a regression model in the APU, a regression model to evaluate 𝐸miss
𝑇

is studied.270

The implementation in the fwX regression studies was originally performed using public Delphes271

samples [27] described in Ref [16].272

In particular, this model is trained to identify the true 𝐸miss
𝑇

based on a simulated sample of273

Higgs boson events that decay to neutrinos that do not interact with the detector. The eight input274

variables are described in Ref. [16]. The regression model is configured with 40 trees, a tree depth275

of 6.276

The performance of the model implemented in the APU is evaluated by examining the latency,277

as well as the FPGA resource costs using the Xilinx FPGA VU9P chip. The latency was evaluated278

to be 11 clock cycles with the clock running at a rate of 320MHz, which makes the latency 34279

nanoseconds. The resource usage is shown in the Table 4.280

– 9 –



3.4 Quark-Gluon Jet Tagging Algorithm281

The capacity to distinguish between quark-originated and gluon-originated jets is widely applicable282

to numerous physics investigations at the LHC[28–30]. This section introduces a technique for283

differentiating quark-based and gluon-based jets by employing a deep neural network classifier284

that analyzes the complete radiation pattern within a jet as an image. The energy deposits in the285

calorimeters serve as inputs for the jet reconstruction and classification algorithm. The energy286

deposit organization scheme makes use of topological calorimeter-cell clusters (topo-clusters)[31].287

Topo-clusters are used as input for jet reconstruction with the anti-𝑘𝑡 jet algorithm[32] with distance288

parameter 𝑅 = 0.4. Jets labeled as gluon or quark (excluding top quark) are considered. Jets with289

transverse momentum (𝑝𝑇 ) between 50 and 75 GeV and |𝜂 | < 2.5 are selected where 𝜂 is the290

pseudorapidity. Jets are required to satisfy generator-level matching criteria: the jet must be291

matched to a parton-level quark or gluon and all of its decay products within Δ𝑅 = 0.4 where292

Δ𝑅 =
√︁
(Δ𝜂)2 + (Δ𝜙)2 and 𝜙 is the azimuthal angle.293

As a first step in constructing a jet image, the constituents inside a jet are translated in 𝜂 and294

𝜙 so that the jet’s center is located at the center in 𝜂-𝜙 space. Then, a fixed grid of size 15 × 15295

in 𝜂 and 𝜙 with pixel sizes 0.055 × 0.055 is centered on the origin. The intensity of each pixel is296

the total 𝐸𝑇 within the pixel, using topocluster input. Pixel values are then normalized by dividing297

them by the value of the hottest (maximum) pixel in the image. This scaling ensures that the pixel298

values of the entire image are between 0 and 1. Then, the pixel values are scaled to a range between299

0 and 255, this is done by multiplying each pixel value by 255.300

In this study, we utilize images of jets as input for a deep neural network classifier, specifically301

a deep convolutional neural network (CNN). The CNN[33] architecture we employ involves a302

convolutional layer with ReLU activation, paired with a Max-pooling layer. The network outputs303

a softmax function that predicts the probability of a quark or gluon jet. The convolutional layer304

includes 4 filters with filter sizes of 2x2, while the Max-pooling layers perform a 2x2 down sampling.305

To avoid overfitting, we employ dropout on the convolutional and final fully connected layers at306

a rate of 0.1. Training is performed by minimizing the binary cross-entropy, using the Adam307

optimizer[34] implemented in Keras with a learning rate of 0.0001 over 100 iterations and a batch308

size of 256. The training dataset contains approximately 105K events, while the test dataset consists309

of around 26K events.310

For this CNN algorithm, we convert it into an FPGA implementation via the hls4ml toolchain.311

The performance of the model implemented in the APU is evaluated by examining the latency, as312

well as the FPGA resource costs using the Xilinx FPGA VU9P chip. The latency was evaluated313

to be 233 clock cycles with the clock running at a rate of 200MHz, which makes the latency 1.2314

microseconds. The resource usage is shown in the table 5.315

4 Conclusion316

In this paper, we developed mechanisms to easily implement machine learning based algorithms317

into the Algorithm Processing Unit for the ATLAS Global Event Processor. We tested Boosted318

Decision Tree and Neural Network models prepared using the fwX and hls4ml tools respectively.319

Our study underscores the efficacy of machine learning tools when integrated into the APU320

framework, as demonstrated by the performance evaluation presented in Table 6. The various321
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Table 5. The resource usage of the qg tagger CNN model
Resource Utilization Utilization %
DSP 305 4.5
FF 4812 0.20
LUT 7504 0.63
BRAM 9 0.42

machine learning models, ranging from the VBF classifier to the more complex q/g CNN, are322

implemented with impressive efficiency, maintaining latency values from as low as 22ns up to323

1.2𝜇𝑠. Notably, the resource utilization for these models remains commendably low, with less than324

10% of the total resources of the FPGA VCU118 being employed, even for the more resource-325

intensive B-tagging DNN. This data indicates not only the high efficiency of our integrated ML326

models but also showcases the scalable complexity of the models that the APU can support. The327

proportional increase in resource usage, such as the LUT and DSP consumption, aligns with the328

enhanced capabilities and complexities of the respective algorithms, thereby validating the APU’s329

capability to execute advanced computational tasks within the stringent requirements set by the330

GEP.331

As we look to the future, this work lays the groundwork for the integration of increasingly332

complex machine learning models, which could further enhance the performance of APU. The333

methodologies presented in this paper have potential applications in various experimental setups,334

thereby contributing to the continuous improvement and evolution of real-time data processing335

systems. With ongoing advancements in machine learning and FPGA technologies, the application336

of tools such as hls4ml and fwX may become even more critical at the nexus of high-energy physics337

and real-time data processing. For instance, the deployment of recurrent neural network (RNN)338

implementations on FPGAs, as discussed in [12], or the advancements in real-time data processing339

illustrated in [35, 36], exemplify the expanding scope of these technologies.340

Overall, this work emphasizes the ability to easily deploy the hls4ml and fwX tools, demonstrat-341

ing their successful application in meeting the needs of the next generation of the LHC’s high-speed342

data processing systems.343

Table 6. Comparison of Model Complexities
VBF classifier MET regression B-tagging DNN q/g CNN

Tool fwX (Depth = 4) fwX (Depth = 6) HLS4ML HLS4ML
Clock 320 MHz 320 MHz 200 MHz 200 MHz
Latency 22 ns 34 ns 50 ns 1.2 us
LUT 0.23% 0.30% 4.6% 0.63%
DSP 0.029% 0.0% 9.1% 4.5%
FF 0.025% 0.084% 0.41% 0.20%
BRAM 2.2% 0.56% 0.83% 0.42%
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