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BACKGROUND
• ATLAS HL-LHC undergoing trigger system upgrade

• The upgrading Global trigger subsystem is FPGA 

based

• Two tools, HLS4ML and fwX are being used to 

generate new algorithm with super low latency

Deployment of ML models into the framework

BDT model using fwX
A Boost Decision Tree model to discriminate between 
VBF Higgs and multi-jet events

• Model Hyperparameter:

• Model resource / latency:
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Architecture of the Framework

Framework of LHC upgrade: 
• Trigger algorithms deployed in Global Event 

Processors (GEP)

• Data sent to GEP at each Bunch Crossing

• GEP processes data using ML algorithm in pipelining

• Hard requirement for latency < 1.5 us

                      Fig3. The framework architecture

Frame Testing:
• Build a test vehicle for testing

• Similar structure as the Framework but smaller

• Deployed on the physical board for testing

• The Design has been tested on the FPGA VCU118

                  Fig4. The architecture of the test Vehicle

• HLS4ML and fwX are tools for generating ultra-low-latency 

models 

• HLS4ML and fwX use high-level synthesis (HLS) to convert 

the model

• HLS4ML support CNN, DNN, RNN, Transformer, GNN; 

• fwX support BDT

                         Fig1. The workflow of hls4ml

                          Fig2. The workflow of fwX

HLS4ML & fwX

Summary

In this research, we proofed using the machine learning model 
generated by hls4ml to design the algorithm in APU would be 
practical and suitable. We proofed it by:

1. Discover the structure of the APU
2. Discover the structure of the hls4ml & FwX model
3. Deploy the model into APU
4. Testing the result of the ML APU.

Latency 8 cycles 25 ns
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Configuration Optimized

Bin Engine LUBE

# of input variables 5

Input bit width 8

Cut threshold bit width 8

Output score bit width 16

Max. depth 4

# of training trees 100

# of final trees 100

Cut eraser, threshold Yes, 5%

# of bins 40k

Resource Utilization Utilization %

DSP 2 0.03

FF 567 0.02

LUT 2071 0.18

BRAM 48 2.22

• Model structure:
 

Dense model using HLS4ML
A Dense Layer model used for solving the Jet-tagging 
classification problem

Input: R16            hidden: R64           hidden: R32             hidden: R32            output: R5 

Resource Utilization Utilization %

DSP 2784 22

FF 13375 ~0

LUT 109060 6

BRAM 8 ~0

Latency 12 cycles 60.00 ns

• Model resource / latency:
 

Fig6: A heat map showing the 
resource of the FPGA

Fig5: The FPGA for testing design 
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