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ABSTRACT 

Signal processing applications have been shown to map 

well to time multiplexed coarse grained reconfigurable 

array (CGRA) devices, and can often be decomposed into a 

set of communicating kernels.  This decomposition can 

facilitate application development and reuse but has 

significant consequences for tools targeting these devices in 

terms of allocation and arrangement of resources.  This 

paper presents a CGRA floorplanner to optimize the 

division and placement of resources for multi-kernel 

applications.  The task is divided into two phases aligned 

with the respective goals.  Resource allocation is 

accomplished through incremental assignment to minimize 

performance bottlenecks while operating within the bounds 

of the maximum available resources.  The resulting 

allocation of resources is arranged in the device using 

simulated annealing and a perimeter-based cost function 

which serves to minimize resources needed for both inter- 

and intra-kernel communications.  The floorplanner is 

applied to a set of multi-kernel benchmarks demonstrating 

resource allocations providing maximum throughput across 

a range of available resources.  The algorithms are very 

fast, taking only a few seconds while producing high 

quality results.  Inter-kernel wire lengths are almost always 

minimal, and the resource allocation is proven optimal. 

1. INTRODUCTION 

CGRA devices represent an emerging family of 

architectures exploring alternatives to commodity 

microprocessor computing.  There is a large body of 

research converging on these styles of architectures from a 

variety of perspectives from FPGAs to VLIWs.  These 

devices have been shown to be well suited to applications 

oriented toward streaming computation.  Arguably the most 

important driver of architecture development and adoption 

is tool support for efficiently mapping applications to these 

new architectures.  Supporting this notion, we present an 

automated floorplanning tool as part of a tool chain to 

leverage the advantages of CGRAs for multi-kernel 

applications. 

 Floorplanning is a challenging problem for traditional 

ASIC and FPGA netlists.  While the size of the problem for 

a CGRA is mitigated somewhat by the coarse granularity of 

the functional units, it is further distinguished from 

traditional floorplanning in two main ways.  First of all, 

floorplanning normally deals with a fixed quantity of 

resources.  Once a netlist is mapped and packed to a target 

technology, the quantity and type of resources required in 

the physical device is essentially fixed.  In the CGRA case, 

the number of resources allocated is more flexible by 

trading physical resources for time through time 

multiplexing.  Previous work on the Mosaic project [1] 

considered a single kernel of computation targeting the 

CGRA device.  In this paper we examine multiple 

communicating kernels sharing the same physical device, 

made possible by enhancements to the Mosaic compiler [2]. 

 The multi-kernel floorplanning problem for CGRAs is 

complicated by the flexibility of mapping each kernel to the 

device when multiple kernels are involved.  The number of 

resources allocated to each kernel can be adjusted with a 

corresponding impact on the performance of the kernel.  

Thus, we must decide how to divide the available resources 

among them.  The second issue is related to the shape of 

kernel regions.  Rectangular regions, while convenient for 

ASIC or FPGA floorplans, are not well suited to the CGRA 

floorplanning problem.  For example, a five cluster kernel 

can either be restricted to only 1x5 layouts, which radically 

increases wire lengths within a kernel, or allowed to take a 

2x3 shape, wasting 17% of the allocated resources.  The 

allocation of resources in general should make use of as 

many resources as available to maximize performance.  

However, a given allocation of resources is not guaranteed 

to fit on the device in a rectangular region for each kernel.  

We provide an alternative solution that allows irregularly 

shaped regions in the resulting floorplan. 

2. BACKGROUND 

The Mosaic project [1] is developing an infrastructure to 

explore CGRA architectures and CAD tools.  These 

CGRAs are built from clusters of functional units and 

memories with a configuration plane to enable cycle to 

cycle static scheduling of operations on these resources [3].  

In order to enable executing multiple independent kernels, 

an enhanced CGRA allows configurable subsets of the 
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resources to operate as independent CGRA regions within 

the architecture to allow kernels with different performance 

characteristics to reside on the same device.  This means 

that within a CGRA region, operations and interconnect are 

scheduled and have a fixed execution sequence.  However, 

different CGRA regions are able to operate independently 

in the fabric.  This allows individual CGRA regions to be 

tailored exclusively to a particular kernel of computation 

instead of trying to shoehorn an entire application into a 

single monolithic kernel spread across the entire device.  

Between CGRA regions, the application uses massively 

parallel processor array (MPPA) style flow controlled 

buffered interconnect, effectively decoupling the control 

domains of individual CGRA regions. 

 Mosaic uses pipelined interconnect in a fixed frequency 

device.  This eliminates adjusting the clock speed as a 

technique to address communication rate mismatches 

between kernels.  The advantage is that in a practical 

implementation, only a single clock network and PLL are 

required.  Additional hardware is also not required to 

synchronize at arbitrary clock boundaries between clusters 

simplifying the device architecture. 

 There are two important properties of individual kernels 

that the floorplanner uses.  The first is the size of the kernel, 

measured by the total number of operations that must be 

executed.  The second is the recurrence initiation interval.  

Initiation interval (II) is the number of cycles between 

starting subsequent iterations of a loop.  The recurrence II is 

the length of the shortest loop carried dependence cycle in 

the dataflow graph.  This represents the minimum II 

achievable for the kernel and therefore the maximum 

throughput given sufficient resources. 

 The hybrid architecture has significant benefits when 

compared to existing approaches.  In CGRAs, all 

computations must operate in lockstep, slowing the entire 

system to the rate of the slowest element; the hybrid 

architecture allows individual kernels to operate at their 

own rate, often achieving significantly higher throughput.  

In MPPAs, such as Ambric [10], users have to write code 

for each individual processor and must refactor the design 

manually to use more resources; the hybrid architecture can 

automatically spread a given computation across multiple 

compute units, allowing the user to express a computation 

in its most natural decomposition while relying on the tools 

to automatically harness multiple compute resources for 

individual kernels to provide the best overall throughput. 

 Supporting the multi-kernel flow in the Mosaic project 

requires integration of the new floorplanner into the 

existing toolchain.  Figure 1 shows where the floorplanner 

is inserted into the Mosaic tool chain in order to manage 

multiple kernels in the overall application.  Design entry 

begins with Macah [4] which already supports defining 

multiple kernel blocks [2].  The compiler generates a 

dataflow graph for each kernel.  The compiled dataflow 

graphs are consumed by SPR [5].  This tool is inspired by 

VLIW compilation for scheduling as well as FPGA tools 

for assigning operations to the physical resources as part of 

placement and routing.  SPR targets an individual kernel for 

CGRA style execution. 

 In order to support the new multi-kernel model, it is 

necessary to find an allocation of resources to maximize 

throughput of the overall computation while respecting the 

finite amount of total resources available.  Once this 

division of resources is decided, a global placement works 

to minimize resources dedicated to the communication links 

between kernels.  Once each kernel is assigned a region of 

the device, the existing toolset can be applied to map each 

kernel onto the subset of resources allocated to it.  

Therefore, the floorplanner is situated between Macah and 

SPR to provide the resource partitioning and global 

placement.  Resources in Mosaic CGRA architectures are 

grouped into clusters of multiple ALUs, memories, stream 

ports and other resource types on a square grid.  For the 

purposes of this floorplanning task, these clusters are the 

granularity at which the resource allocation and placement 

are performed. 

 The Mosaic hardware supports multiple kernels by 

mapping them to different regions of the chip.  Each kernel 

operates like a CGRA array, with a fixed modulo-scheduled 

operation, deep pipelines, and time-multiplexed logic and 

routing resources.  This provides very cheap and effective 

parallelism for streaming computations.  Signals between 

kernels operate with handshaking, moving data independent 

of the IIs or stalls of the intervening kernels [12].  As such, 
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Figure 1. Multi-kernel Mosaic tool chain. 



the inter-kernel wires are more expensive than the intra-

kernel wires, and thus the length of communication wires 

between kernels must be carefully controlled. 

3. RELATED WORK 

Floorplanning is an important part of ASIC and FPGA 

design flows.  In the FPGA space, Xilinx PlanAhead [6] 

allows the designer a high degree of control over where 

specific modules or components are placed in the 

architecture, which in many cases can mean the difference 

between a hopelessly long placement phase and a design 

that meets the required timing.  While floorplan regions are 

constrained to rectangular regions, they can be composed 

together to provide irregularly shaped region.  However, 

this is entirely performed manually by the designer. 

 There is a large body of additional floorplanning work 

to consider as well.  In [7] the authors target heterogeneous 

FPGA architectures using a slicing technique with 

compaction.  While well suited for FPGAs, this technique 

does not map well to the coarse granularity of CGRAs.  For 

example, Figure 2 shows a five cluster kernel mentioned 

previously which suffers from wasted resources or poor 

wire length in the top and bottom arrangement respectively. 

 In [8], the authors use a hierarchical clustering 

approach.  This again leaves unused resources in the array 

based on the communication pattern of the macro based 

netlists targeted.  In a coarse grained device like a CGRA, 

this leads to poor utilization where it is much more costly 

than in an FPGA. 

 The StreamIt language and compiler [9] is a related 

project that offers a similar model of computation with 

actors that communicate through FIFO channels.  However, 

the approach is quite different because the underlying 

hardware is an array of processors which are able to change 

tasks to a much higher degree than our enhanced CGRA 

model, which is limited to its static schedule of instructions.  

With StreamIt, kernel code may be swapped in and out of a 

particular core, where in our case each computational 

element is a member of a kernel region and has a small 

number of operations which must operate in lock step with 

other members of the same region for the lifetime of the 

application. 

 The Ambric [10] flow controlled interconnect channels 

are similar to the inter-kernel communication resources of 

the enhanced CGRA.  However, they do not support a 

scheduled execution mode, making it less amenable to 

operating in a CGRA mode for individual kernels spread 

across a collection of resources.  At its debut, Ambric’s 

programming model required development of individual 

programs to execute on the processors in the array.  This 

meant that a developer would need to figure out how to 

break down an application into components each suitable 

for implementation on a single Ambric processor and then 

write a small program for each one.  Even for applications 

where one program might be reused on many processors, 

handling distribution of data to and from each processor 

would still need to be managed manually.  Tool support for 

leveraging the array without the need to decompose an 

application by hand is a key feature of the Mosaic project. 

Table 1. Digital camera pipeline kernel properties 

Kernel Recurrence 

II 

Stateless 

Ops 

Stateful Ops 

DC 8 160 33 

INT 19 325 126 

LPF 4 209 134 

ED 15 177 90 

4. FLOORPLANNING ALGORITHM 

Floorplanning must both determine the number of resources 

assigned to each kernel to achieve the best throughput, and 

place those resources onto the device to minimize the 

communication costs in the system.  These two questions 

naturally break the floorplanning problem into two phases: 

• Resource Allocation:  the goal is to optimally 

assign a finite quantity of available resources 

amongst the various kernels to maximize the 

throughput of the overall application.  It is given 

per-kernel information (Table 1) including the 
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Figure 3. Digital camera pipeline (IPL) kernel 
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Figure 2. Five cluster kernel floorplans. 



number of operations performed and the 

recurrence II (a limit on the maximum 

throughput).  Each inter-kernel signal is also 

annotated by the number of data items per iteration 

sent and received by the source and destination of 

the signal respectively.  From this data it computes 

an assignment of resources to each kernel, and 

passes this on to the Kernel Placement step. 

• Kernel Placement:  the goal is to place the 

resources assigned in Resource Allocation, 

seeking to minimize the resulting routing costs.  

Resources dedicated to a given kernel should be 

contiguous and as compact as possible to limit the 

length of intra-kernel routing.  To minimize the 

more expensive inter-kernel signal lengths, kernels 

that communicate with each other should be 

placed close together.  An example result is shown 

in Figure 3. 

4.1. Resource Allocation 

Intuitively, each kernel wants as many resources as possible 

to reduce the schedule depth and increase its throughput.  

However, this must be balanced in the context of the overall 

application.  With finite resources available in the device, 

the topology of connections between kernels and the 

performance of neighboring kernels, maximizing 

performance of individual kernels will not necessarily 

produce an optimal solution.  For example, consider the 

positron emission tomography (PET) event detector 

application (Figure 4 bottom).  It has two kernels, and a 

simple allocation would give each kernel half of the 

available resources.  However, the application actually 

consists of a line-rate threshold kernel that must quickly 

process data, looking for a relatively rare event, and a math 

kernel that does complex processing on those events.  In the 

example, the send and receive rates are 0.04 and 1 tokens 

per initiation for the threshold and math kernels 

respectively measure in data tokens per II.  The best 

allocation (Figure 4 top) actually dedicates almost all of the 

chip resources to the threshold kernel, since that boosts 

overall throughput, while starving the math kernel for 

resources ends up not affecting overall throughput at all. 

 While the best allocation of resources for the PET 

application is relatively obvious, for a more complex 

network of kernels it is much more difficult.  Each kernel 

with its own resource requirements, recurrence II and 

stream rates, ultimately interacts with all of the kernels in 

the context of the total resource limit of the device itself. 

 The resource allocation portion of the algorithm is 

outlined in Figure 5.  At a high level, the algorithm begins 

with a minimal resource allocation to each kernel.  The 

main loop performs an analysis of the application in the 

context of the current resource allocation, adds resources to 

kernels that limit throughput, and then iterates until the 

device is filled or no further performance gain is possible 

due to limits in the kernels themselves. 

 The algorithm starts with a graph describing the 

communication between the various kernels from the 

Macah compiler, as well as information about each kernel 

from SPR, the tool that performs scheduling, placement and 

routing for an individual kernel in Mosaic.  As an example, 

we will use the digital camera pipeline (IPL) application in 

Figure 3, with kernel parameters shown in Table 1.  The 

recurrence II is the lower limit on II if the kernel is not 

resource limited.  The number of operations for a kernel 

indicates the size of the dataflow graph representing it.  All 

of these operations must ultimately have an issue slot 

available in the device.  For a given number of resources, 

the resulting II can be calculated, or for a given II, the 

number of resources can be calculated.  In one extreme, 

provided sufficient instruction memory, all operations could 

be executed on one functional unit.  The other more 

desirable extreme spreads operations out among a 

collection of functional units to take advantage of data and 

pipeline parallelism in the application.  Lastly, a production 

or consumption rate for each output or input port is 

provided by the developer to indicate how often a value is 

produced or consumed on a per iteration basis.  This 

information allows the algorithm to assess bottlenecks in 

the communication between kernels operating at their own 

 1 Assign all kernels minimum legal resources 

 2 while (true) { 

 3    store current solution 

 4    for each kernel 

 5       calculate resII from ops and resources 

 6    for each port 

 7       calculate rate with resII and port rate 

 8    for each stream 

 9       set stream rate to “slower” rate 

10    for (total number of ports) { 

11       for each port 

12          if port rate > stream rate 

13             change port rate to stream rate 

14             propagate to kernel’s other ports 

15    } 

16    add resources to all limiting kernels 

17    check termination conditions 

18 } 

Figure 5. Resource Allocation Algorithm 
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Figure 4. PET kernels and floorplan. 



IIs in order to increase throughput as much as possible.  

This information may ultimately be obtained from 

automated simulation of the application prior to mapping, 

but is currently manually annotated. 

 From the data provided, the algorithm starts by 

allocating each kernel a minimum number of resources.  

This is limited by the maximum II supported by the 

hardware, as well as providing a sufficient quantity of 

resource types such as memories or stream ports.  This first 

solution not only represents the minimum number of 

resources absolutely necessary to execute the application, 

but will also be the slowest solution in terms of 

performance because operations must each have an issue 

slot in the schedule.  Note that we assume that memory 

operations on different arrays can be packed into the same 

physical memory.  For simplicity of explanation, we will 

assume the target device supports an unlimited maximum II 

so for the IPL application, the initial allocation of resources 

to each kernel is just one resource each. 

 From the initial resource allocation, the resource limited 

II is calculated on lines 4-5 of Figure 5.  This is calculated 

as the number of operations divided by the number of 

resources allocated rounded up, and is the minimum 

schedule depth needed to provide every operation a 

resource and time slot to execute.  On the first iteration, this 

will be equal to the total number of operations that need to 

execute for each kernel, since only one resource is available 

to each kernel.  With each kernel’s II, the next stage 

calculates the absolute rates at which values would be 

produced or consumed at each port (lines 6-7) of each 

kernel assuming input streams always have data available 

and output streams are never full.  Thus, if a kernel has an 

II of 4, and produces 2 values per iteration on a port, the 

port would produce at an absolute rate of 0.5 running 

unconstrained.  For IPL, all kernels produce and consume 

data at the same rate, so their port rates are the reciprocal of 

their respective resource constrained IIs. 

 Now the algorithm evaluates each stream in the 

application and assigns the stream rate to the value of the 

“slower” end (lines 8-9).  For example, if one end of the 

stream is trying to produce results every cycle, and the 

other end can only consume once every 5 cycles, the stream 

rate will be 0.2 data elements per cycle.  While this local 

processing puts an upper limit on the rates of each channel 

and kernel, we have to also model the more global 

behavior.  The faster end of the stream will slow down to 

match the stream rate through stalling, and transitively this 

will slow the other ports of this kernel.  Other kernels may 

then be slowed, until a steady-state is reached.  For the IPL 

example on the first iteration, streams connected to the INT 

kernel will be set to the INT port rates because it is the 

slowest kernel on this iteration. 

 With the kernels, ports and streams annotated with local 

information, the next phase of the algorithm begins (lines 

10-15).  For every kernel, the ports are evaluated by 

comparing the port rate to the stream rate the port is 

connected to.  If the port rate does not match the stream 

rate, this means that the port wants to operate faster than its 

partner on the other end of the stream, but this is not 

allowed since the slower port dictates the maximum rate.  

When this condition is detected, the port rate is changed to 

the stream rate to match the other end.  The change in port 

rate is then propagated to the kernel II itself (which will no 

longer be resource limited) and to all other ports of that 

kernel.  The process of evaluating all ports of the system 

continues until no further changes are made to any port 

rates after all kernels have been evaluated.  Again on the 

first iteration for IPL, the progression will be the port rates 

of the INT kernel propagate to the DC and LPF kernels and 

the LPF rates propagate to the ED kernel making so that at 

the end of the iteration, all four kernels are operating at the 

INT kernel rate. 

 Once the algorithm has arrived at the rates for all 

kernels and ports in the design, the kernels have their slack 

calculated.  Slack is the difference between the originally 

calculated ideal rate and the rate the kernel was assigned 

during execution of the algorithm.  Zero slack means that 

the kernel is operating as fast as possible given the 
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Figure 6. IPL resource allocation progression 
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Figure 7. IPL II progression over 10 iterations. 



resources allocated to the kernel.  In the IPL case this will 

be the INT kernel.  The kernel is therefore limiting 

performance of the overall application.  There may be more 

than one limiting kernel if multiple kernels have zero slack.  

The limiting kernel or kernels are then provided with the 

minimum increment of resources required to reduce their II 

from the present value, and thereby increase throughput 

(line 16).  With the resource allocation changed, the process 

begins again. 

 Termination conditions for the algorithm are as follows.  

If at least one of the limiting kernels is already operating at 

its recurrence II, the performance cannot be improved 

because this value is a lower bound on the schedule depth 

for the kernel, so additional resources will not improve it 

further.  At this point the algorithm returns to the last 

solution.  Alternatively, if the limiting kernel(s) can benefit 

from more resources but the sum of all allocated resources 

would exceed the device capacity then the algorithm will 

also return to the last solution.  Figure 6 and Figure 7 show 

the incremental solutions for the IPL application in terms of 

resources and kernel II respectively as generated by the 

Resource Allocation algorithm.  Note that we assume the 

device supports a maximum II sufficient for every kernel to 

execute on a single resource. 

 It is also possible that the system has no legal solution.  

Our model of computation for floorplanning currently only 

allows blocking reads.  If the production and consumption 

rates around a loop or where the flow of data diverges and 

then re-converges are unbalanced, then somewhere in the 

system a buffer associated with a stream will either become 

full or empty such that the execution will deadlock.  Figure 

8 shows an example of each condition with the port rates 

labeled.  We detect this condition by limiting the number of 

iterations of the inner loop of the resource division phase to 

the number of ports in the design.  Intuitively, if the 

algorithm is propagating a change due to a particular port 

more than once, then there is an unbalanced loop and the 

algorithm terminates.  These conditions ultimately mean 

there is no steady state behavior of the system with bounded 

buffers between kernels. 

 Our algorithm provides the best possible application 

throughput for a given device capacity and the supported 

production and consumption model.  A proof of optimality 

is presented in appendix at the end of the paper.  To 

summarize the proof, this algorithm progresses through the 

set of Pareto optimal solutions from the smallest and 

slowest to the fastest and largest terminating when no 

further improvement is possible or the available resources 

are exhausted. 

 The resource allocation phase is very fast even for the 

most complex multi-kernel benchmarks such as the 18 

kernel discrete wavelet transform (Wavelet) application 

which completes this phase in no more than 2 seconds.  

Even if the approach scales poorly with the number of 

kernels, its execution time is dwarfed by the Macah 

compiler and SPR. 

4.2. Global Placement 

The global placement phase takes the quantity of resources 

assigned to each kernel in the resource allocation phase and 

uses simulated annealing to place these resources in the 

device.  The cost function works to keep the resources for 

each kernel together while also placing communicating 

kernels close together to reduce resource utilization and 

maintain routability. 

 After the division of resources has been established, the 

algorithm moves on to the coarse placement of kernels on 

the device in order to minimize routing resources dedicated 

to communication between kernels.  The global placement 

is a simulated annealing based placement algorithm with a 

specialized cost function geared toward the foorplanning 

problem.  Each resource assigned to a kernel is a separate 

moveable object.  Moves are made by selecting two 

locations at random and swapping the resources assigned to 

these locations.  Swaps of resources in two locations from 

the same kernel are useless and are not allowed.  The 

objective of the placement is to minimize the distance 

between resources that will communicate, and can be 

broken down into minimizing intra-kernel communication, 

and minimizing inter-kernel communication. 

 There are two cost measurements used, which are 

applied to both internal and external kernel communication.  

The first is perimeter.  Perimeter is evaluated by visiting 

each resource associated with a kernel and checking its 

neighbors.  An adjacent position that is not another member 

of the same kernel counts as one unit of perimeter.  

Placements with a lower perimeter translates to a tightly 

packed cohesive block, while a large perimeter cost means 
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Figure 8. Unbalanced loop and re-convergence. 
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Figure 9. Perimeter calculation examples. 



the elements are spread out more, or even separated.  The 

second measure used is the bounding box perimeter.  This 

is simply the perimeter of the smallest rectangle 

encompassing all members of the kernel.  The overall cost 

assigned to the kernel is the larger of the actual perimeter 

and bounding box perimeter.  The bounding box helps 

guide separated elements back together.  For example, a 

two element kernel where the resources are not adjacent 

will have the same perimeter cost regardless of their 

separation, so the bounding box dominates in this case to 

help drive them back together. 

 The same basic approach is applied to inter-kernel 

communication as well.  The difference in this case is that 

each pair of communicating kernels is treated as a single 

super kernel for the purposes of calculating the 

aforementioned cost.  Thus, in this case the perimeter is 

only counted if an element is not adjacent to another 

element from the same kernel or the kernel on the other end 

of the stream currently being evaluated.  All of the same 

goals apply here as well: minimizing the perimeter will 

minimize the area so it should be tightly packed, and the 

bounding box will help drive together separated regions.  

The total cost function for the system is then the sum of the 

individual kernel costs and each super kernel representing 

each inter-kernel stream in the application.  The VPR [11] 

cooling schedule is used to control temperature adjustments 

for the annealing. 

Table 2. Global Placement Results. 
App Min 

Cost 

Generated 

Cost 

Cost 

Ratio 

Avg 

WL 

Max 

WL 

Kernels 

DWT 100 108 1.08 1.0 1.0 3 

PET 44 44 1.00 1.0 1.0 2 

Bayer 176 182 1.03 1.0 1.0 5 

IPL 156 164 1.05 1.0 1.0 4 

Wavelet 476 522 1.10 1.2 5.0 18 

 Figure 9 shows a simple two kernel example similar to 

the PET event detection benchmark with two different 

placements to illustrate the different components of the 

overall cost metric.  The small kernel itself has a perimeter 

of 4 in either case, while the large kernel cost changes 

depending on whether it has a concave shape.  Since the 

two kernels communicate, their resources are pooled 

together to calculate the perimeter once again, which is the 

same in either case here.  In these two cases, the bounding 

box option is not used because it is never greater than the 

perimeter calculation for this example. 

 Even without any optimizations for calculating an 

incremental cost function per move, the placement phase of 

the floorplanning executes for no more than 40 seconds on 

a modest desktop for the most complex benchmark, again a 

runtime dwarfed by other tools in the Mosaic flow. 

5. RESULTS 

We present results for multi-kernel benchmarks written in 

Macah to demonstrate the floorplanning flow.  For the 

global placements, the best of ten runs is shown to 

demonstrate the effectiveness of the approach.  The 

Resource Allocation progression for the PET application is 

shown Figure 10 and Figure 11 which demonstrates 

optimizing the application with different port rates. 

 While the Resource Allocation process is optimal as 

shown in the appendix, Global Placement is based on a 

heuristic.  Five multi-kernel benchmarks were run through 

the floorplanner with the results summarized in Table 2.  

The Min Cost field is the theoretical minimum placement 

cost achievable for the given resource allocation.  This is 

calculated as the sum of the minimum rectangular regions 

for each kernel and pair of communicating kernels, similar 

to the cost function used in the actual placement.  This 

minimum is generally unachievable in practice, since the 

placement of different kernels interact.  The generated cost 

is for the best of ten runs of the benchmark through the 

Global Placement phase with the Cost Ratio indicating the 

increase over the theoretical minimum.  Avg WL (wire 

length) is the average minimum distance between pairs of 

communicating kernels as defined in the application while 

the Max WL is the largest distance. 

 As can be seen, the placer achieves layouts within 10% 

of the lower bound in all cases, with a geometric mean of 

1.05.  Inter-kernel signals are almost always of length 1, 

meaning communicating kernels are adjacent for all but 1 

signal in Wavelet. 
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Figure 10. PET kernel II progression. 
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Figure 11. PET resource assignment progression. 



 Detailed floorplans for several interesting cases are 

shown in Figure 3, Figure 4, and Figure 12.  As you can see 

the results are well packed, communications are short, and 

individual kernels have reasonable shapes. 

6. CONCLUSION 

We have presented an algorithm for floorplanning multi-

kernel applications on CGRAs.  From a description of the 

inter-kernel communication pattern and basic parameters of 

the kernels, the algorithm divides the available resources 

among the kernels in order to maximize throughput.  It then 

provides a high level placement of the kernel resources in 

order to facilitate global routing.  This in turns enables 

detailed scheduling, placement and routing of each kernel 

to efficiently map multi-kernel applications onto the 

reconfigurable fabric. 
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9. APPENDIX – OPTIMALITY PROOF 

An application is modeled as a directed graph.  Nodes 

correspond to Macah kernels and edges represent streams 

between kernels.  Each edge terminal represents a port 

connecting a kernel to a stream.  The application has the 

following properties that are inputs to the resource 

allocation algorithm. 

• RecIIk is the kernel’s intrinsic minimum 

recurrence initiation interval.  The kernel cannot 

 
Figure 12. Wavelet kernel placement. 



execute faster than this rate of a fixed number of 

cycles per iteration.  This entails loop-carried 

dependencies or other sequencing constraints in 

that kernel. 

• Opsk is the number of operations necessary to 

execute kernel k.  If the kernel has Opsk 

operations, and is assigned Rk resources, then it 

cannot execute faster than ceiling(Opsk/Rk) cycles 

per iteration due to the limits of time-multiplexing 

those Rk resources. 

• Mink: The minimum size of a kernel is the 

number of stateholding elements or other 

resources that cannot be time-multiplexed.  Also, 

if the device has a maximum supported II, Mink 

must be at least ceiling(Opsk/MaxII).  

• Ratek,i: The rate at which data is produced or 

consumed by kernel k at port i will need to be 

reconciled to match the port-rate at the other end 

of the stream .  Thus, a value of 1 means the port 

transfers a value once each iteration of the kernel. 

• TotRes is the total number of resources available 

in the device.  We must ensure that the total 

number of resources assigned across the kernels is 

no larger than this value. 

 

 The system has bounded-sized buffers, and the kernels 

communicate on the streams via handshaking.  That means 

that if a kernel reads from an empty stream, or writes to a 

full stream (a stream whose buffer is already filled with 

data) that kernel stalls until the precipitating condition is 

resolved. 

 We assume the system is connected, which means any 

kernel is linked to another kernel in the design. 

 The system computes the following derived properties 

as it performs the resource allocation: 

• Rk:  The number of resources assigned to kernel 

K.  To be legal, we know that RK >= Mink.  Also, 

TotRes ≥ ∑kRk.  If TotRes < ∑kMink then no legal 

solution exists. 

• IIk: This is the achieved II of kernel k.  Achieved 

II is the average II of that kernel, once stalls are 

taken into account, of the system operating at 

steady-state.  To be legal, we know IIk ≥ RecIIk 

and IIk ≥ ceiling(Opsk/Rk). 

9.1. Goal 

The goal is to assign resources to kernels to maximize 

steady-state performance.  We can define performance as 

the rate data is sent on some designated stream, but as we 

will show later, under our model, maximizing the rate of 

data sent on any specific stream maximizes the rate of data 

sent on all streams in the system. 

9.2. Implications of steady-state 

We define steady-state in the device as the point where the 

production and consumption rates on the streams in the 

system stabilize.  When the program begins operating, 

some kernels will stall because they do not have any data 

to start operating, and other kernels may produce data at a 

higher than sustainable rate because some stream buffers 

have not yet filled.  However, over time the system will 

reach an equilibrium, where the average production and 

consumption rates on each of the streams in the system 

will stabilize.  We define these average rates as the steady-

state performance. 

 Consider some kernel k1 in the system, with at least two 

ports p1 and p2.  Given our assumptions, at steady-state we 

know that each of these ports has a fixed data transaction 

rate relative to IIk1, and thus they have a fixed data 

transaction rate relative to each other.  That is, for every 

data transaction on p1, there are Ratek1,p2/Ratek1,p1 data 

transactions on p2. 

 A similar relationship holds between ports of a given 

stream.  At steady-state, we know that the rate of data 

written to the stream and data read from the stream must be 

the same.  Otherwise the stream will either empty causing 

stalls on the consumer, or fill causing stalls on the 

producer. 

 At steady-state there is a fixed relationship between the 

port rates of both ends of a stream, between the ports on a 

given kernel, and between a kernel’s II and its port’s rates.  

There is also at steady-state a fixed relationship between 

the II of kernels connected directly by a stream.  Via 

transitivity, any two kernels that are connected by streams, 

either directly or indirectly, must have a fixed relative II at 

steady-state.  Since we only consider connected designs, 

this means that at steady-state the IIs of all kernels, and the 

communication rates of all streams, have a fixed relative 

relationship. 

 The major implication of this discussion is that a 

resource allocation with a higher throughput on any stream 

has a higher throughput on all streams, and has a lower 

achieved II on all kernels. 

9.3. Proof of optimality 

The algorithm starts with a minimum allocation of 

resources to each kernel.  Based on this allocation, the II of 

each kernel can be calculated as well as the rates of data 

produced and consumed at the boundaries of each kernel.  

With this information and the constant relationships 

between kernels connected by streams, the kernel or 

kernels limiting the overall throughput of the application is 



determined.  Since these kernels are limiting throughput, 

the algorithm works to improve performance of these 

kernels by allocating more resources, specifically the 

minimum number of resources necessary to reduce the II 

of the kernels in question.  No intermediate allocation of 

resources is needed since these kernels cannot improve in 

performance until the II can be reduced.  The analysis of 

which kernels impact throughput is performed again and 

the process continues until the limiting kernel has reached 

its recurrence II or the device is full, meaning that no 

further improvement is possible. 

 It is also important to note that allocating more 

resources to a kernel will never increase the II nor reduce 

the throughput of the kernel.  The relationship between 

resource allocation and II of the kernel is a monotone 

decreasing function. 

 With this information about the system the proof is 

framed as a contradiction.  Assume that there is a division 

of resources S with a total number of resources T that is  

the solution generated by the resource allocation algorithm. 

 Run the resource allocation algorithm assuming 

unlimited resources with the understanding that the 

recurrence minimum II will be reached before the 

resource-constrained minimum II.  Our algorithm produces 

a series of solutions Smin, … Smax, with corresponding total 

resource usages Tmin, … Tmax.  Smin is the first solution 

produced by our algorithm, which assigns the minimum 

legal number of resources to each kernel. 

 For the solution found by the algorithm we have T ≥ 

Tmin, since if T < Tmin there is some kernel given fewer 

resources than is legal, and if T = Tmin then S = Smin since 

there is only one legal solution with Tmin.  We also know 

that T ≤ Tmax, because at Tmax at least one kernel is running 

as fast as its recIIk allows (otherwise the algorithm would 

produce another solution), which means the highest 

possible performance of any solution is Smax.  Therefore 

Tmin ≤ T ≤ Tmax. 

 By way of contradiction, let us assume there exist two 

solutions from our algorithm that have similar total 

resource allocations close but not equal to the optimal 

solution found by the algorithm.  Specifically, we have Sless 

which is the solution with the largest total resource usage 

such that Tless < T.  Similarly, let Smore be the solution with 

the fewest total resources such that T < Tmore. 

 We now consider two cases: (1) a kernel is assigned 

fewer resources in S than in Sless; (2) no kernel in S is 

assigned fewer resources than the assignments given in 

Sless. 

(1) a kernel is assigned fewer resources in S than in Sless 

Let us call this kernel kreduced.  There are two possibilities 

for kreduced in Sless.  It is either at its minimum resource 

allocation as in Smin, or it had been allocated additional 

resources sometime during the execution of the algorithm.  

If kreduced was at its minimum resource allocation, S cannot 

legally assign fewer resources to it.  On the other hand, if 

kreduced was allocated more resources during the run, then it 

was allocated n more resources for a total of Rprevious + n = 

Rimprove resources, where Rprevious was the number of 

resources allocated before being increased.  Rimprove is the 

number of resources allocated incorporating the increment 

n to increase throughput.  Also, kernel kreduced would only 

have had its resources increased if at Sprevious it was never 

stalling.  In other words, there was a solution Sprevious 

whose performance was limited by setting kreduced to have 

Rprevious resources, and it could only be sped up by adding 

at least n more resources.  Thus, S must have a throughput 

of at most Sprevious, which has a worse throughput than Sless.  

This is a contradiction. 

(2) no kernel in S is assigned fewer resources than in Sless 

Let ksqueezed be a kernel in S that is assigned fewer 

resources than in Smore.  This kernel must exist since T < 

Tmore.  Note that in our algorithm the only kernels that have 

their resource assignments changed are those that never 

stall. Any kernel that stalls will have the same resources 

assigned in both Sless and Smore.  We have assumed “no 

kernel in S is assigned fewer resources than in Sless”, and 

any kernels that stall have the same size in Sless and Smore, 

ksqueezed must  not have stalled, and thus is a member of  the 

set of kernels limiting performance. 

 Since ksqueezed was assumed to limit performance in Sless, 

this means that (a) if it is given the number of resources it 

was given in Sless, it would limit the performance of the 

design to that of Sless, and (b) the minimum number of 

resources needed to speed up kernel ksqueezed is exactly the 

number of resources assigned to it in Smore.  Therefore, if 

ksqueezed is given fewer resources than in Smore, it cannot be 

faster than Sless.  Thus, since the throughput of S is greater 

than Sless, ksqueezed cannot be given fewer resources than in 

Smore.  Therefore S cannot have any kernels given fewer 

resources than Smore, which is a contradiction. 

9.4. Conclusion 

Via proof by contradiction, we have demonstrated that for 

any given resource constraint, there are no solutions that 

provide a better throughput than the ones given by our 

algorithm.  Thus, the resource allocation algorithm 

generates the Pareto-optimal set of solutions for this 

problem, and selects the highest throughput design that 

meets the resource constraints of the target chip.  

Therefore, given the problem definition and assumptions 

specified, our resource allocation algorithm is optimal. 

 

 

 


