
MULTI-KERNEL FLOORPLANNING FOR ENHANCED CGRAS

Aaron Wood
*
, Adam Knight

*
, Benjamin Ylvisaker

†
, Scott Hauck

*

*
Dept. of Electrical Engineering and

†
Dept. of Computer Science and Engineering

University of Washington, Seattle, WA 98195
*
{arw82, amknight, hauck}@ee.washington.edu

†
ben8@cs.washington.edu

ABSTRACT

Signal processing applications have been shown to map

well to time multiplexed coarse grained reconfigurable

array (CGRA) devices, and can often be decomposed into a

set of communicating kernels. This decomposition can

facilitate application development and reuse but has

significant consequences for tools targeting these devices in

terms of allocation and arrangement of resources. This

paper presents a CGRA floorplanner to optimize the

division and placement of resources for multi-kernel

applications. The task is divided into two phases aligned

with the respective goals. Resource allocation is

accomplished through incremental assignment to minimize

performance bottlenecks while operating within the bounds

of the maximum available resources. The resulting

allocation of resources is arranged in the device using

simulated annealing and a perimeter-based cost function

which serves to minimize resources needed for both inter-

and intra-kernel communications. The floorplanner is

applied to a set of multi-kernel benchmarks demonstrating

resource allocations providing maximum throughput across

a range of available resources. The algorithms are very

fast, taking only a few seconds while producing high

quality results. Inter-kernel wire lengths are almost always

minimal, and the resource allocation is proven optimal.

1. INTRODUCTION

CGRA devices represent an emerging family of

architectures exploring alternatives to commodity

microprocessor computing. There is a large body of

research converging on these styles of architectures from a

variety of perspectives from FPGAs to VLIWs. These

devices have been shown to be well suited to applications

oriented toward streaming computation. Arguably the most

important driver of architecture development and adoption

is tool support for efficiently mapping applications to these

new architectures. Supporting this notion, we present an

automated floorplanning tool as part of a tool chain to

leverage the advantages of CGRAs for multi-kernel

applications.

 Floorplanning is a challenging problem for traditional

ASIC and FPGA netlists. While the size of the problem for

a CGRA is mitigated somewhat by the coarse granularity of

the functional units, it is further distinguished from

traditional floorplanning in two main ways. First of all,

floorplanning normally deals with a fixed quantity of

resources. Once a netlist is mapped and packed to a target

technology, the quantity and type of resources required in

the physical device is essentially fixed. In the CGRA case,

the number of resources allocated is more flexible by

trading physical resources for time through time

multiplexing. Previous work on the Mosaic project [1]

considered a single kernel of computation targeting the

CGRA device. In this paper we examine multiple

communicating kernels sharing the same physical device,

made possible by enhancements to the Mosaic compiler [2].

 The multi-kernel floorplanning problem for CGRAs is

complicated by the flexibility of mapping each kernel to the

device when multiple kernels are involved. The number of

resources allocated to each kernel can be adjusted with a

corresponding impact on the performance of the kernel.

Thus, we must decide how to divide the available resources

among them. The second issue is related to the shape of

kernel regions. Rectangular regions, while convenient for

ASIC or FPGA floorplans, are not well suited to the CGRA

floorplanning problem. For example, a five cluster kernel

can either be restricted to only 1x5 layouts, which radically

increases wire lengths within a kernel, or allowed to take a

2x3 shape, wasting 17% of the allocated resources. The

allocation of resources in general should make use of as

many resources as available to maximize performance.

However, a given allocation of resources is not guaranteed

to fit on the device in a rectangular region for each kernel.

We provide an alternative solution that allows irregularly

shaped regions in the resulting floorplan.

2. BACKGROUND

The Mosaic project [1] is developing an infrastructure to

explore CGRA architectures and CAD tools. These

CGRAs are built from clusters of functional units and

memories with a configuration plane to enable cycle to

cycle static scheduling of operations on these resources [3].

In order to enable executing multiple independent kernels,

an enhanced CGRA allows configurable subsets of the
This work was supported by NSF grant #CCF-1116248 and

by Department of Energy grant #DE-FG02-08ER64676.

resources to operate as independent CGRA regions within

the architecture to allow kernels with different performance

characteristics to reside on the same device. This means

that within a CGRA region, operations and interconnect are

scheduled and have a fixed execution sequence. However,

different CGRA regions are able to operate independently

in the fabric. This allows individual CGRA regions to be

tailored exclusively to a particular kernel of computation

instead of trying to shoehorn an entire application into a

single monolithic kernel spread across the entire device.

Between CGRA regions, the application uses massively

parallel processor array (MPPA) style flow controlled

buffered interconnect, effectively decoupling the control

domains of individual CGRA regions.

 Mosaic uses pipelined interconnect in a fixed frequency

device. This eliminates adjusting the clock speed as a

technique to address communication rate mismatches

between kernels. The advantage is that in a practical

implementation, only a single clock network and PLL are

required. Additional hardware is also not required to

synchronize at arbitrary clock boundaries between clusters

simplifying the device architecture.

 There are two important properties of individual kernels

that the floorplanner uses. The first is the size of the kernel,

measured by the total number of operations that must be

executed. The second is the recurrence initiation interval.

Initiation interval (II) is the number of cycles between

starting subsequent iterations of a loop. The recurrence II is

the length of the shortest loop carried dependence cycle in

the dataflow graph. This represents the minimum II

achievable for the kernel and therefore the maximum

throughput given sufficient resources.

 The hybrid architecture has significant benefits when

compared to existing approaches. In CGRAs, all

computations must operate in lockstep, slowing the entire

system to the rate of the slowest element; the hybrid

architecture allows individual kernels to operate at their

own rate, often achieving significantly higher throughput.

In MPPAs, such as Ambric [10], users have to write code

for each individual processor and must refactor the design

manually to use more resources; the hybrid architecture can

automatically spread a given computation across multiple

compute units, allowing the user to express a computation

in its most natural decomposition while relying on the tools

to automatically harness multiple compute resources for

individual kernels to provide the best overall throughput.

 Supporting the multi-kernel flow in the Mosaic project

requires integration of the new floorplanner into the

existing toolchain. Figure 1 shows where the floorplanner

is inserted into the Mosaic tool chain in order to manage

multiple kernels in the overall application. Design entry

begins with Macah [4] which already supports defining

multiple kernel blocks [2]. The compiler generates a

dataflow graph for each kernel. The compiled dataflow

graphs are consumed by SPR [5]. This tool is inspired by

VLIW compilation for scheduling as well as FPGA tools

for assigning operations to the physical resources as part of

placement and routing. SPR targets an individual kernel for

CGRA style execution.

 In order to support the new multi-kernel model, it is

necessary to find an allocation of resources to maximize

throughput of the overall computation while respecting the

finite amount of total resources available. Once this

division of resources is decided, a global placement works

to minimize resources dedicated to the communication links

between kernels. Once each kernel is assigned a region of

the device, the existing toolset can be applied to map each

kernel onto the subset of resources allocated to it.

Therefore, the floorplanner is situated between Macah and

SPR to provide the resource partitioning and global

placement. Resources in Mosaic CGRA architectures are

grouped into clusters of multiple ALUs, memories, stream

ports and other resource types on a square grid. For the

purposes of this floorplanning task, these clusters are the

granularity at which the resource allocation and placement

are performed.

 The Mosaic hardware supports multiple kernels by

mapping them to different regions of the chip. Each kernel

operates like a CGRA array, with a fixed modulo-scheduled

operation, deep pipelines, and time-multiplexed logic and

routing resources. This provides very cheap and effective

parallelism for streaming computations. Signals between

kernels operate with handshaking, moving data independent

of the IIs or stalls of the intervening kernels [12]. As such,

Application

Macah Compiler

SPR

Dataflow

Graph

Floorplanner

Dataflow

GraphDataflow

Graph

SPR
SPR

Figure 1. Multi-kernel Mosaic tool chain.

the inter-kernel wires are more expensive than the intra-

kernel wires, and thus the length of communication wires

between kernels must be carefully controlled.

3. RELATED WORK

Floorplanning is an important part of ASIC and FPGA

design flows. In the FPGA space, Xilinx PlanAhead [6]

allows the designer a high degree of control over where

specific modules or components are placed in the

architecture, which in many cases can mean the difference

between a hopelessly long placement phase and a design

that meets the required timing. While floorplan regions are

constrained to rectangular regions, they can be composed

together to provide irregularly shaped region. However,

this is entirely performed manually by the designer.

 There is a large body of additional floorplanning work

to consider as well. In [7] the authors target heterogeneous

FPGA architectures using a slicing technique with

compaction. While well suited for FPGAs, this technique

does not map well to the coarse granularity of CGRAs. For

example, Figure 2 shows a five cluster kernel mentioned

previously which suffers from wasted resources or poor

wire length in the top and bottom arrangement respectively.

 In [8], the authors use a hierarchical clustering

approach. This again leaves unused resources in the array

based on the communication pattern of the macro based

netlists targeted. In a coarse grained device like a CGRA,

this leads to poor utilization where it is much more costly

than in an FPGA.

 The StreamIt language and compiler [9] is a related

project that offers a similar model of computation with

actors that communicate through FIFO channels. However,

the approach is quite different because the underlying

hardware is an array of processors which are able to change

tasks to a much higher degree than our enhanced CGRA

model, which is limited to its static schedule of instructions.

With StreamIt, kernel code may be swapped in and out of a

particular core, where in our case each computational

element is a member of a kernel region and has a small

number of operations which must operate in lock step with

other members of the same region for the lifetime of the

application.

 The Ambric [10] flow controlled interconnect channels

are similar to the inter-kernel communication resources of

the enhanced CGRA. However, they do not support a

scheduled execution mode, making it less amenable to

operating in a CGRA mode for individual kernels spread

across a collection of resources. At its debut, Ambric’s

programming model required development of individual

programs to execute on the processors in the array. This

meant that a developer would need to figure out how to

break down an application into components each suitable

for implementation on a single Ambric processor and then

write a small program for each one. Even for applications

where one program might be reused on many processors,

handling distribution of data to and from each processor

would still need to be managed manually. Tool support for

leveraging the array without the need to decompose an

application by hand is a key feature of the Mosaic project.

Table 1. Digital camera pipeline kernel properties

Kernel Recurrence

II

Stateless

Ops

Stateful Ops

DC 8 160 33

INT 19 325 126

LPF 4 209 134

ED 15 177 90

4. FLOORPLANNING ALGORITHM

Floorplanning must both determine the number of resources

assigned to each kernel to achieve the best throughput, and

place those resources onto the device to minimize the

communication costs in the system. These two questions

naturally break the floorplanning problem into two phases:

• Resource Allocation: the goal is to optimally

assign a finite quantity of available resources

amongst the various kernels to maximize the

throughput of the overall application. It is given

per-kernel information (Table 1) including the

DC INT LPF ED

Figure 3. Digital camera pipeline (IPL) kernel

communication.

Figure 2. Five cluster kernel floorplans.

number of operations performed and the

recurrence II (a limit on the maximum

throughput). Each inter-kernel signal is also

annotated by the number of data items per iteration

sent and received by the source and destination of

the signal respectively. From this data it computes

an assignment of resources to each kernel, and

passes this on to the Kernel Placement step.

• Kernel Placement: the goal is to place the

resources assigned in Resource Allocation,

seeking to minimize the resulting routing costs.

Resources dedicated to a given kernel should be

contiguous and as compact as possible to limit the

length of intra-kernel routing. To minimize the

more expensive inter-kernel signal lengths, kernels

that communicate with each other should be

placed close together. An example result is shown

in Figure 3.

4.1. Resource Allocation

Intuitively, each kernel wants as many resources as possible

to reduce the schedule depth and increase its throughput.

However, this must be balanced in the context of the overall

application. With finite resources available in the device,

the topology of connections between kernels and the

performance of neighboring kernels, maximizing

performance of individual kernels will not necessarily

produce an optimal solution. For example, consider the

positron emission tomography (PET) event detector

application (Figure 4 bottom). It has two kernels, and a

simple allocation would give each kernel half of the

available resources. However, the application actually

consists of a line-rate threshold kernel that must quickly

process data, looking for a relatively rare event, and a math

kernel that does complex processing on those events. In the

example, the send and receive rates are 0.04 and 1 tokens

per initiation for the threshold and math kernels

respectively measure in data tokens per II. The best

allocation (Figure 4 top) actually dedicates almost all of the

chip resources to the threshold kernel, since that boosts

overall throughput, while starving the math kernel for

resources ends up not affecting overall throughput at all.

 While the best allocation of resources for the PET

application is relatively obvious, for a more complex

network of kernels it is much more difficult. Each kernel

with its own resource requirements, recurrence II and

stream rates, ultimately interacts with all of the kernels in

the context of the total resource limit of the device itself.

 The resource allocation portion of the algorithm is

outlined in Figure 5. At a high level, the algorithm begins

with a minimal resource allocation to each kernel. The

main loop performs an analysis of the application in the

context of the current resource allocation, adds resources to

kernels that limit throughput, and then iterates until the

device is filled or no further performance gain is possible

due to limits in the kernels themselves.

 The algorithm starts with a graph describing the

communication between the various kernels from the

Macah compiler, as well as information about each kernel

from SPR, the tool that performs scheduling, placement and

routing for an individual kernel in Mosaic. As an example,

we will use the digital camera pipeline (IPL) application in

Figure 3, with kernel parameters shown in Table 1. The

recurrence II is the lower limit on II if the kernel is not

resource limited. The number of operations for a kernel

indicates the size of the dataflow graph representing it. All

of these operations must ultimately have an issue slot

available in the device. For a given number of resources,

the resulting II can be calculated, or for a given II, the

number of resources can be calculated. In one extreme,

provided sufficient instruction memory, all operations could

be executed on one functional unit. The other more

desirable extreme spreads operations out among a

collection of functional units to take advantage of data and

pipeline parallelism in the application. Lastly, a production

or consumption rate for each output or input port is

provided by the developer to indicate how often a value is

produced or consumed on a per iteration basis. This

information allows the algorithm to assess bottlenecks in

the communication between kernels operating at their own

 1 Assign all kernels minimum legal resources

 2 while (true) {

 3 store current solution

 4 for each kernel

 5 calculate resII from ops and resources

 6 for each port

 7 calculate rate with resII and port rate

 8 for each stream

 9 set stream rate to “slower” rate

10 for (total number of ports) {

11 for each port

12 if port rate > stream rate

13 change port rate to stream rate

14 propagate to kernel’s other ports

15 }

16 add resources to all limiting kernels

17 check termination conditions

18 }

Figure 5. Resource Allocation Algorithm

0.04 1

Threshold Math

Figure 4. PET kernels and floorplan.

IIs in order to increase throughput as much as possible.

This information may ultimately be obtained from

automated simulation of the application prior to mapping,

but is currently manually annotated.

 From the data provided, the algorithm starts by

allocating each kernel a minimum number of resources.

This is limited by the maximum II supported by the

hardware, as well as providing a sufficient quantity of

resource types such as memories or stream ports. This first

solution not only represents the minimum number of

resources absolutely necessary to execute the application,

but will also be the slowest solution in terms of

performance because operations must each have an issue

slot in the schedule. Note that we assume that memory

operations on different arrays can be packed into the same

physical memory. For simplicity of explanation, we will

assume the target device supports an unlimited maximum II

so for the IPL application, the initial allocation of resources

to each kernel is just one resource each.

 From the initial resource allocation, the resource limited

II is calculated on lines 4-5 of Figure 5. This is calculated

as the number of operations divided by the number of

resources allocated rounded up, and is the minimum

schedule depth needed to provide every operation a

resource and time slot to execute. On the first iteration, this

will be equal to the total number of operations that need to

execute for each kernel, since only one resource is available

to each kernel. With each kernel’s II, the next stage

calculates the absolute rates at which values would be

produced or consumed at each port (lines 6-7) of each

kernel assuming input streams always have data available

and output streams are never full. Thus, if a kernel has an

II of 4, and produces 2 values per iteration on a port, the

port would produce at an absolute rate of 0.5 running

unconstrained. For IPL, all kernels produce and consume

data at the same rate, so their port rates are the reciprocal of

their respective resource constrained IIs.

 Now the algorithm evaluates each stream in the

application and assigns the stream rate to the value of the

“slower” end (lines 8-9). For example, if one end of the

stream is trying to produce results every cycle, and the

other end can only consume once every 5 cycles, the stream

rate will be 0.2 data elements per cycle. While this local

processing puts an upper limit on the rates of each channel

and kernel, we have to also model the more global

behavior. The faster end of the stream will slow down to

match the stream rate through stalling, and transitively this

will slow the other ports of this kernel. Other kernels may

then be slowed, until a steady-state is reached. For the IPL

example on the first iteration, streams connected to the INT

kernel will be set to the INT port rates because it is the

slowest kernel on this iteration.

 With the kernels, ports and streams annotated with local

information, the next phase of the algorithm begins (lines

10-15). For every kernel, the ports are evaluated by

comparing the port rate to the stream rate the port is

connected to. If the port rate does not match the stream

rate, this means that the port wants to operate faster than its

partner on the other end of the stream, but this is not

allowed since the slower port dictates the maximum rate.

When this condition is detected, the port rate is changed to

the stream rate to match the other end. The change in port

rate is then propagated to the kernel II itself (which will no

longer be resource limited) and to all other ports of that

kernel. The process of evaluating all ports of the system

continues until no further changes are made to any port

rates after all kernels have been evaluated. Again on the

first iteration for IPL, the progression will be the port rates

of the INT kernel propagate to the DC and LPF kernels and

the LPF rates propagate to the ED kernel making so that at

the end of the iteration, all four kernels are operating at the

INT kernel rate.

 Once the algorithm has arrived at the rates for all

kernels and ports in the design, the kernels have their slack

calculated. Slack is the difference between the originally

calculated ideal rate and the rate the kernel was assigned

during execution of the algorithm. Zero slack means that

the kernel is operating as fast as possible given the

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

T
o

ta
l

R
es

o
u

rc
es

 A
ll

o
ca

te
d

Iteration

DC INT LPF ED

Figure 6. IPL resource allocation progression

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

R
e

s
o

u
r
c
e

 I
I

Iteration

DC INT LPF ED

Figure 7. IPL II progression over 10 iterations.

resources allocated to the kernel. In the IPL case this will

be the INT kernel. The kernel is therefore limiting

performance of the overall application. There may be more

than one limiting kernel if multiple kernels have zero slack.

The limiting kernel or kernels are then provided with the

minimum increment of resources required to reduce their II

from the present value, and thereby increase throughput

(line 16). With the resource allocation changed, the process

begins again.

 Termination conditions for the algorithm are as follows.

If at least one of the limiting kernels is already operating at

its recurrence II, the performance cannot be improved

because this value is a lower bound on the schedule depth

for the kernel, so additional resources will not improve it

further. At this point the algorithm returns to the last

solution. Alternatively, if the limiting kernel(s) can benefit

from more resources but the sum of all allocated resources

would exceed the device capacity then the algorithm will

also return to the last solution. Figure 6 and Figure 7 show

the incremental solutions for the IPL application in terms of

resources and kernel II respectively as generated by the

Resource Allocation algorithm. Note that we assume the

device supports a maximum II sufficient for every kernel to

execute on a single resource.

 It is also possible that the system has no legal solution.

Our model of computation for floorplanning currently only

allows blocking reads. If the production and consumption

rates around a loop or where the flow of data diverges and

then re-converges are unbalanced, then somewhere in the

system a buffer associated with a stream will either become

full or empty such that the execution will deadlock. Figure

8 shows an example of each condition with the port rates

labeled. We detect this condition by limiting the number of

iterations of the inner loop of the resource division phase to

the number of ports in the design. Intuitively, if the

algorithm is propagating a change due to a particular port

more than once, then there is an unbalanced loop and the

algorithm terminates. These conditions ultimately mean

there is no steady state behavior of the system with bounded

buffers between kernels.

 Our algorithm provides the best possible application

throughput for a given device capacity and the supported

production and consumption model. A proof of optimality

is presented in appendix at the end of the paper. To

summarize the proof, this algorithm progresses through the

set of Pareto optimal solutions from the smallest and

slowest to the fastest and largest terminating when no

further improvement is possible or the available resources

are exhausted.

 The resource allocation phase is very fast even for the

most complex multi-kernel benchmarks such as the 18

kernel discrete wavelet transform (Wavelet) application

which completes this phase in no more than 2 seconds.

Even if the approach scales poorly with the number of

kernels, its execution time is dwarfed by the Macah

compiler and SPR.

4.2. Global Placement

The global placement phase takes the quantity of resources

assigned to each kernel in the resource allocation phase and

uses simulated annealing to place these resources in the

device. The cost function works to keep the resources for

each kernel together while also placing communicating

kernels close together to reduce resource utilization and

maintain routability.

 After the division of resources has been established, the

algorithm moves on to the coarse placement of kernels on

the device in order to minimize routing resources dedicated

to communication between kernels. The global placement

is a simulated annealing based placement algorithm with a

specialized cost function geared toward the foorplanning

problem. Each resource assigned to a kernel is a separate

moveable object. Moves are made by selecting two

locations at random and swapping the resources assigned to

these locations. Swaps of resources in two locations from

the same kernel are useless and are not allowed. The

objective of the placement is to minimize the distance

between resources that will communicate, and can be

broken down into minimizing intra-kernel communication,

and minimizing inter-kernel communication.

 There are two cost measurements used, which are

applied to both internal and external kernel communication.

The first is perimeter. Perimeter is evaluated by visiting

each resource associated with a kernel and checking its

neighbors. An adjacent position that is not another member

of the same kernel counts as one unit of perimeter.

Placements with a lower perimeter translates to a tightly

packed cohesive block, while a large perimeter cost means

B

A

1/2

1/4

1/2

1/5

C

B

1/2

A D

1/2

1 1/4

1 1/3

1/2

1/2

Figure 8. Unbalanced loop and re-convergence.

Small: 4

Large: 14

Combination: 12

Total: 30

Small: 4

Large: 12

Combination: 12

Total: 28

Figure 9. Perimeter calculation examples.

the elements are spread out more, or even separated. The

second measure used is the bounding box perimeter. This

is simply the perimeter of the smallest rectangle

encompassing all members of the kernel. The overall cost

assigned to the kernel is the larger of the actual perimeter

and bounding box perimeter. The bounding box helps

guide separated elements back together. For example, a

two element kernel where the resources are not adjacent

will have the same perimeter cost regardless of their

separation, so the bounding box dominates in this case to

help drive them back together.

 The same basic approach is applied to inter-kernel

communication as well. The difference in this case is that

each pair of communicating kernels is treated as a single

super kernel for the purposes of calculating the

aforementioned cost. Thus, in this case the perimeter is

only counted if an element is not adjacent to another

element from the same kernel or the kernel on the other end

of the stream currently being evaluated. All of the same

goals apply here as well: minimizing the perimeter will

minimize the area so it should be tightly packed, and the

bounding box will help drive together separated regions.

The total cost function for the system is then the sum of the

individual kernel costs and each super kernel representing

each inter-kernel stream in the application. The VPR [11]

cooling schedule is used to control temperature adjustments

for the annealing.

Table 2. Global Placement Results.
App Min

Cost

Generated

Cost

Cost

Ratio

Avg

WL

Max

WL

Kernels

DWT 100 108 1.08 1.0 1.0 3

PET 44 44 1.00 1.0 1.0 2

Bayer 176 182 1.03 1.0 1.0 5

IPL 156 164 1.05 1.0 1.0 4

Wavelet 476 522 1.10 1.2 5.0 18

 Figure 9 shows a simple two kernel example similar to

the PET event detection benchmark with two different

placements to illustrate the different components of the

overall cost metric. The small kernel itself has a perimeter

of 4 in either case, while the large kernel cost changes

depending on whether it has a concave shape. Since the

two kernels communicate, their resources are pooled

together to calculate the perimeter once again, which is the

same in either case here. In these two cases, the bounding

box option is not used because it is never greater than the

perimeter calculation for this example.

 Even without any optimizations for calculating an

incremental cost function per move, the placement phase of

the floorplanning executes for no more than 40 seconds on

a modest desktop for the most complex benchmark, again a

runtime dwarfed by other tools in the Mosaic flow.

5. RESULTS

We present results for multi-kernel benchmarks written in

Macah to demonstrate the floorplanning flow. For the

global placements, the best of ten runs is shown to

demonstrate the effectiveness of the approach. The

Resource Allocation progression for the PET application is

shown Figure 10 and Figure 11 which demonstrates

optimizing the application with different port rates.

 While the Resource Allocation process is optimal as

shown in the appendix, Global Placement is based on a

heuristic. Five multi-kernel benchmarks were run through

the floorplanner with the results summarized in Table 2.

The Min Cost field is the theoretical minimum placement

cost achievable for the given resource allocation. This is

calculated as the sum of the minimum rectangular regions

for each kernel and pair of communicating kernels, similar

to the cost function used in the actual placement. This

minimum is generally unachievable in practice, since the

placement of different kernels interact. The generated cost

is for the best of ten runs of the benchmark through the

Global Placement phase with the Cost Ratio indicating the

increase over the theoretical minimum. Avg WL (wire

length) is the average minimum distance between pairs of

communicating kernels as defined in the application while

the Max WL is the largest distance.

 As can be seen, the placer achieves layouts within 10%

of the lower bound in all cases, with a geometric mean of

1.05. Inter-kernel signals are almost always of length 1,

meaning communicating kernels are adjacent for all but 1

signal in Wavelet.

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13

R
e

s
o

u
rc

e
 I

I

Iteration

threshold math

Figure 10. PET kernel II progression.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
o

ta
l

R
e

s
o

u
r
c
e

s
 A

ll
o

c
a

te
d

Iteration

math threshold

Figure 11. PET resource assignment progression.

 Detailed floorplans for several interesting cases are

shown in Figure 3, Figure 4, and Figure 12. As you can see

the results are well packed, communications are short, and

individual kernels have reasonable shapes.

6. CONCLUSION

We have presented an algorithm for floorplanning multi-

kernel applications on CGRAs. From a description of the

inter-kernel communication pattern and basic parameters of

the kernels, the algorithm divides the available resources

among the kernels in order to maximize throughput. It then

provides a high level placement of the kernel resources in

order to facilitate global routing. This in turns enables

detailed scheduling, placement and routing of each kernel

to efficiently map multi-kernel applications onto the

reconfigurable fabric.

7. ACKNOWLEDGEMENTS

The authors would also like to thank Nathaniel McVicar for

his support in benchmark development.

8. REFERENCES

[1] Mosaic Research Group.

http://www.cs.washington.edu/research/lis/mosaic/.

[2] Knight, A., Multi-Kernel Macah Support and Applications,

M.S. Thesis, University of Washington, Dept. of EE, 2010.

https://www.ee.washington.edu/people/faculty/hauck/public

ations/KnightMS.pdf.

[3] Brian Van Essen, Improving the Energy Efficiency of

Coarse-Grained Reconfigurable Arrays, Ph.D. Thesis,

University of Washington, Dept. of CSE, 2010.

http://www.ee.washington.edu/faculty/hauck/publications/di

ssertation-vanessen.pdf

[4] Ylvisaker, B., "C-Level" Programming of Parallel

Coprocessor Accelerators, Ph.D. Thesis,

University of Washington, Dept. of CSE, 2010.

http://www.ee.washington.edu/faculty/hauck/publications/m

acahThesis.pdf

[5] Friedman, S., Carroll, A., Van Essen, B., Ylvisaker, B.,

Ebeling, C., and Hauck, S. 2009. SPR: an architecture-

adaptive CGRA mapping tool. In Proceeding of the

ACM/SIGDA international Symposium on Field

Programmable Gate Arrays (FPGA '09). ACM, New York,

NY, 191-200.

[6] Xilinx, PlanAhead 13.2 User Guide.

http://www.xilinx.com/support/documentation/sw_manuals/

xilinx13_2/PlanAhead_UserGuide.pdf

[7] Lei Cheng; Wong, M.D.F.; , "Floorplan design for multi-

million gate FPGAs," Computer Aided Design, 2004.

ICCAD-2004. IEEE/ACM International Conference on ,

vol., no., pp. 292- 299, 7-11 Nov. 2004

[8] John M. Emmert and Dinesh Bhatia. 1999. A methodology

for fast FPGA floorplanning. In Proceedings of the 1999

ACM/SIGDA seventh international symposium on Field

programmable gate arrays (FPGA '99).

[9] Gordon, M. I., Thies, W., and Amarasinghe, S. 2006.

Exploiting coarse-grained task, data, and pipeline

parallelism in stream programs. In Proceedings of the 12th

international Conference on Architectural Support For

Programming Languages and Operating Systems. San Jose,

California, USA, October 21 - 25, 2006. ASPLOS-XII.

ACM, New York, NY, 151-162.

[10] Butts M., Jones A., Wasson P., A Structural Object

Programming Model, Architecture, Chip and Tools for

Reconfigurable Computing. In Proceedings of the IEEE

Symposium on FPGAs for Custom Computing Machines

(FCCM ’08), pages 55–64, April 2008.

[11] Betz, V. and Rose, J. 1997. “VPR: A new packing,

placement and routing tool for FPGA research”. 7th

international Workshop on Field-Programmable Logic and

Applications (September 01 - 03, 1997).

[12] Panda, R.; Hauck, S.; "Dynamic Communication in a Coarse

Grained Reconfigurable Array," Field-Programmable

Custom Computing Machines (FCCM), 2011 IEEE 19th

Annual International Symposium on , vol., no., pp.25-28, 1-

3 May 2011.

9. APPENDIX – OPTIMALITY PROOF

An application is modeled as a directed graph. Nodes

correspond to Macah kernels and edges represent streams

between kernels. Each edge terminal represents a port

connecting a kernel to a stream. The application has the

following properties that are inputs to the resource

allocation algorithm.

• RecIIk is the kernel’s intrinsic minimum

recurrence initiation interval. The kernel cannot

Figure 12. Wavelet kernel placement.

execute faster than this rate of a fixed number of

cycles per iteration. This entails loop-carried

dependencies or other sequencing constraints in

that kernel.

• Opsk is the number of operations necessary to

execute kernel k. If the kernel has Opsk

operations, and is assigned Rk resources, then it

cannot execute faster than ceiling(Opsk/Rk) cycles

per iteration due to the limits of time-multiplexing

those Rk resources.

• Mink: The minimum size of a kernel is the

number of stateholding elements or other

resources that cannot be time-multiplexed. Also,

if the device has a maximum supported II, Mink

must be at least ceiling(Opsk/MaxII).

• Ratek,i: The rate at which data is produced or

consumed by kernel k at port i will need to be

reconciled to match the port-rate at the other end

of the stream . Thus, a value of 1 means the port

transfers a value once each iteration of the kernel.

• TotRes is the total number of resources available

in the device. We must ensure that the total

number of resources assigned across the kernels is

no larger than this value.

 The system has bounded-sized buffers, and the kernels

communicate on the streams via handshaking. That means

that if a kernel reads from an empty stream, or writes to a

full stream (a stream whose buffer is already filled with

data) that kernel stalls until the precipitating condition is

resolved.

 We assume the system is connected, which means any

kernel is linked to another kernel in the design.

 The system computes the following derived properties

as it performs the resource allocation:

• Rk: The number of resources assigned to kernel

K. To be legal, we know that RK >= Mink. Also,

TotRes ≥ ∑kRk. If TotRes < ∑kMink then no legal

solution exists.

• IIk: This is the achieved II of kernel k. Achieved

II is the average II of that kernel, once stalls are

taken into account, of the system operating at

steady-state. To be legal, we know IIk ≥ RecIIk

and IIk ≥ ceiling(Opsk/Rk).

9.1. Goal

The goal is to assign resources to kernels to maximize

steady-state performance. We can define performance as

the rate data is sent on some designated stream, but as we

will show later, under our model, maximizing the rate of

data sent on any specific stream maximizes the rate of data

sent on all streams in the system.

9.2. Implications of steady-state

We define steady-state in the device as the point where the

production and consumption rates on the streams in the

system stabilize. When the program begins operating,

some kernels will stall because they do not have any data

to start operating, and other kernels may produce data at a

higher than sustainable rate because some stream buffers

have not yet filled. However, over time the system will

reach an equilibrium, where the average production and

consumption rates on each of the streams in the system

will stabilize. We define these average rates as the steady-

state performance.

 Consider some kernel k1 in the system, with at least two

ports p1 and p2. Given our assumptions, at steady-state we

know that each of these ports has a fixed data transaction

rate relative to IIk1, and thus they have a fixed data

transaction rate relative to each other. That is, for every

data transaction on p1, there are Ratek1,p2/Ratek1,p1 data

transactions on p2.

 A similar relationship holds between ports of a given

stream. At steady-state, we know that the rate of data

written to the stream and data read from the stream must be

the same. Otherwise the stream will either empty causing

stalls on the consumer, or fill causing stalls on the

producer.

 At steady-state there is a fixed relationship between the

port rates of both ends of a stream, between the ports on a

given kernel, and between a kernel’s II and its port’s rates.

There is also at steady-state a fixed relationship between

the II of kernels connected directly by a stream. Via

transitivity, any two kernels that are connected by streams,

either directly or indirectly, must have a fixed relative II at

steady-state. Since we only consider connected designs,

this means that at steady-state the IIs of all kernels, and the

communication rates of all streams, have a fixed relative

relationship.

 The major implication of this discussion is that a

resource allocation with a higher throughput on any stream

has a higher throughput on all streams, and has a lower

achieved II on all kernels.

9.3. Proof of optimality

The algorithm starts with a minimum allocation of

resources to each kernel. Based on this allocation, the II of

each kernel can be calculated as well as the rates of data

produced and consumed at the boundaries of each kernel.

With this information and the constant relationships

between kernels connected by streams, the kernel or

kernels limiting the overall throughput of the application is

determined. Since these kernels are limiting throughput,

the algorithm works to improve performance of these

kernels by allocating more resources, specifically the

minimum number of resources necessary to reduce the II

of the kernels in question. No intermediate allocation of

resources is needed since these kernels cannot improve in

performance until the II can be reduced. The analysis of

which kernels impact throughput is performed again and

the process continues until the limiting kernel has reached

its recurrence II or the device is full, meaning that no

further improvement is possible.

 It is also important to note that allocating more

resources to a kernel will never increase the II nor reduce

the throughput of the kernel. The relationship between

resource allocation and II of the kernel is a monotone

decreasing function.

 With this information about the system the proof is

framed as a contradiction. Assume that there is a division

of resources S with a total number of resources T that is

the solution generated by the resource allocation algorithm.

 Run the resource allocation algorithm assuming

unlimited resources with the understanding that the

recurrence minimum II will be reached before the

resource-constrained minimum II. Our algorithm produces

a series of solutions Smin, … Smax, with corresponding total

resource usages Tmin, … Tmax. Smin is the first solution

produced by our algorithm, which assigns the minimum

legal number of resources to each kernel.

 For the solution found by the algorithm we have T ≥

Tmin, since if T < Tmin there is some kernel given fewer

resources than is legal, and if T = Tmin then S = Smin since

there is only one legal solution with Tmin. We also know

that T ≤ Tmax, because at Tmax at least one kernel is running

as fast as its recIIk allows (otherwise the algorithm would

produce another solution), which means the highest

possible performance of any solution is Smax. Therefore

Tmin ≤ T ≤ Tmax.

 By way of contradiction, let us assume there exist two

solutions from our algorithm that have similar total

resource allocations close but not equal to the optimal

solution found by the algorithm. Specifically, we have Sless

which is the solution with the largest total resource usage

such that Tless < T. Similarly, let Smore be the solution with

the fewest total resources such that T < Tmore.

 We now consider two cases: (1) a kernel is assigned

fewer resources in S than in Sless; (2) no kernel in S is

assigned fewer resources than the assignments given in

Sless.

(1) a kernel is assigned fewer resources in S than in Sless

Let us call this kernel kreduced. There are two possibilities

for kreduced in Sless. It is either at its minimum resource

allocation as in Smin, or it had been allocated additional

resources sometime during the execution of the algorithm.

If kreduced was at its minimum resource allocation, S cannot

legally assign fewer resources to it. On the other hand, if

kreduced was allocated more resources during the run, then it

was allocated n more resources for a total of Rprevious + n =

Rimprove resources, where Rprevious was the number of

resources allocated before being increased. Rimprove is the

number of resources allocated incorporating the increment

n to increase throughput. Also, kernel kreduced would only

have had its resources increased if at Sprevious it was never

stalling. In other words, there was a solution Sprevious

whose performance was limited by setting kreduced to have

Rprevious resources, and it could only be sped up by adding

at least n more resources. Thus, S must have a throughput

of at most Sprevious, which has a worse throughput than Sless.

This is a contradiction.

(2) no kernel in S is assigned fewer resources than in Sless

Let ksqueezed be a kernel in S that is assigned fewer

resources than in Smore. This kernel must exist since T <

Tmore. Note that in our algorithm the only kernels that have

their resource assignments changed are those that never

stall. Any kernel that stalls will have the same resources

assigned in both Sless and Smore. We have assumed “no

kernel in S is assigned fewer resources than in Sless”, and

any kernels that stall have the same size in Sless and Smore,

ksqueezed must not have stalled, and thus is a member of the

set of kernels limiting performance.

 Since ksqueezed was assumed to limit performance in Sless,

this means that (a) if it is given the number of resources it

was given in Sless, it would limit the performance of the

design to that of Sless, and (b) the minimum number of

resources needed to speed up kernel ksqueezed is exactly the

number of resources assigned to it in Smore. Therefore, if

ksqueezed is given fewer resources than in Smore, it cannot be

faster than Sless. Thus, since the throughput of S is greater

than Sless, ksqueezed cannot be given fewer resources than in

Smore. Therefore S cannot have any kernels given fewer

resources than Smore, which is a contradiction.

9.4. Conclusion

Via proof by contradiction, we have demonstrated that for

any given resource constraint, there are no solutions that

provide a better throughput than the ones given by our

algorithm. Thus, the resource allocation algorithm

generates the Pareto-optimal set of solutions for this

problem, and selects the highest throughput design that

meets the resource constraints of the target chip.

Therefore, given the problem definition and assumptions

specified, our resource allocation algorithm is optimal.

