
ARCHITECTURAL MODIFICATIONS TO IMPROVE FLOATING-POINT UNIT
EFFICIENCY IN FPGAS

Michael J. Beauchamp, Scott Hauck

University of Washington

Electrical Engineering
Box 352500

Seattle, Washington 98195
email: {mjb7, hauck}@ee.washington.edu

Keith D. Underwood, K. Scott Hemmert

Sandia National Laboratories*
Scalable Computing Systems

PO Box 5800, MS-1110
Albuquerque, New Mexico 87185

email: {kdunder, kshemme}@sandia.gov

ABSTRACT

FPGAs have reached densities that can implement floating-
point applications, but floating-point operations still require
a large amount of FPGA resources. One major component
of IEEE compliant floating-point computations is variable
length shifters. They account for over 30% of a double-
precision floating-point adder and 25% of a double-
precision multiplier. This paper introduces two alternatives
for implementing these shifters. One alternative is a coarse-
grained approach: embedding variable length shifters in the
FPGA fabric. These units provide significant area savings
with a modest clock rate improvement over existing
architectures. Another alternative is a fine-grained
approach: adding a 4:1 multiplexer inside the slices, in
parallel to the LUTs. While providing a more modest area
savings, these multiplexers provide a significant boost in
clock rate with a small impact on the FPGA fabric.

1. INTRODUCTION

While modern supercomputers depend almost exclusively
on a collection of traditional microprocessors, these
microprocessors have poor sustained performance on many
modern scientific applications [1]. FPGAs may provide an
alternative, but scientific applications depend on IEEE
compliant floating-point computations for numerical
stability and reproducibility of results. Increases in FPGA
density, and optimized floating-point unit designs, have
made it possible to implement a variety of scientific
algorithms with FPGAs [2], [3], [4]. In spite of this, there
are still significant opportunities to improve the
performance of FPGAs on scientific applications by
optimizing the device architecture.

Floating-point units (FPUs) can be embedded in the
FPGA fabric to provide a large area savings and increased
clock rates for floating-point based kernels, but they also

consume 17.6% of the chip [5]. An alternative is to focus
on less area intensive enhancements to the FPGA fabric
that improve floating-point units.

A fundamental component in floating-point arithmetic
is a variable length and direction shifter. In floating-point
addition, the mantissas of the operands must be aligned
before the computation. For full IEEE compliance,
floating-point multiplication and division require
normalization of the mantissa before and after the
calculation [6]. Shifters require a series of multiplexers,
which are currently implemented using LUTs. In our
double-precision floating-point cores, the shifter accounts
for almost a third of the adder and a quarter of the
multiplier. Thus, better support for variable length shifters
can noticeably improve floating-point performance.

We consider two approaches that optimize the FPGA
hardware for variable length shifters. The first approach is
to embed shifters in the FPGA logic. Recent FPGAs have
included embedded units including embedded multipliers,
block RAMs, and even full microprocessors. Embedding
variable length shifters allows configurable logic in the
FPGA to be used for other purposes and yields a large area
savings. The trade-off is an increase in the silicon area that
is used for dedicated functionality that may not be used by
all applications. The second approach is to modify the
general purpose logic of the FPGA by adding a 4:1
multiplexer in parallel with the traditional LUT. This
approach decreases the area required to implement shifters
in the general purpose logic of the FPGA without wasting
a significant amount of silicon area.

To test these concepts, we modified VPR to support
embedded functional units and high-performance carry-
chains. VPR was used to place and route benchmarks that
use double-precision floating-point operations. The
benchmarks included matrix multiply, matrix vector
multiply, vector dot product, FFT, and LU decomposition.
Each benchmark was tested using three versions of the
FPGA. The first is similar to the Xilinx Virtex II Pro [7],
and is representative of current commercial devices. The
second adds embedded shifters, while the third uses
modified CLBs that have the additional 4:1 multiplexer.

* Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United States
Department of Energy under contract DE-AC04-94AL85000.

2. BACKGROUND

The IEEE-754 standard [8] specifies the floating-point
numbers used on most computing platforms. Floating-point
numbers consist of sign, mantissa, and exponent. The
mantissa, f, is multiplied by the base number (two) to an
exponent, e, as shown in Equation 1 (double-precision).

 () 102321.1 −⋅⋅− ES f=X (1)

Compliance with the IEEE double-precision format is
important for cross-platform portability and verifiability;
double-precision also improves numerical stability.

Double-precision floating-point has a sign bit, an 11-bit
exponent and a 52-bit mantissa. Since the mantissa is
normalized to the range [1,2), there will always be a leading
one on the mantissa. The implicit leading one gains a
single bit of precision, but raises the complexity of floating-
point implementations. The exponent is represented in a
biased notation. All stored numbers are “positive”, but have
been “biased” by half the exponent range. This
representation simplifies floating-point comparators.

The dominant style of FPGAs is the island-style FPGA
consisting of a two dimensional lattice of CLBs
(Configurable Logic Blocks). Connecting the CLBs are
regular horizontal and vertical routing structures that allow
configurable connections at the intersections. In recent
years, embedded RAMs, DSP blocks, and even
microprocessors have been added to the island-style
FPGAs. However, floating-point applications still require a
large number of CLBs to perform basic operations.

3. VPR

VPR [9] is the leading public-domain FPGA place and
route tool. It uses simulated annealing, a timing based
semi-perimeter routing estimate for placement, and a timing
driven router. VPR was used to determine the feasibility of
the proposed techniques.

A similar version of VPR was used to test the feasibility
of coarse grained embedded floating-point units [5]. In
addition to previous VPR supported types of input pads,
output pads, and CLBs, the modified version of VPR
supports multiple embedded blocks. These embedded
blocks have parameterizable heights and widths that are
quantized by the size of the CLB. Horizontal routing is
allowed to cross the embedded units, but vertical routing
only exists at the border of the embedded blocks. As in
previous work [5], fast carry-chains were added to insure a
reasonable comparison. The synthesis and technology
mapping approach are covered in the methodology section.

The baseline FPGA architecture was modeled after the
Xilinx Virtex-II Pro family of FPGAs and includes most of
the major elements of current FPGAs (CLBs, 18Kb block

RAMs, and embedded 18-bit x 18-bit multiplier blocks).
The CLBs include 4-input function generators, storage
elements, arithmetic logic gates, and a fast carry-chain. In
addition to the standard Xilinx Virtex-II Pro features, the
architecture incorporates embedded shifters and a modified
CLB with a 4:1 multiplexer in parallel with the LUT. The
various blocks were arranged in a column based
architecture (Fig. 1.) similar to modern FPGAs (e.g. [10]).

The ratio of the number of columns of each component
type was based on the average requirement for the
benchmarks and is shown in Table 1. These ratios are
based on the average resource requirements, so each
benchmark be constrained by a different limiting resource.
The percent of each resource used for each benchmark is
given in Table 2. through Table 4. where the limiting
components for each benchmark are shaded.

The embedded units and fast carry chain are dedicated
resources that use their own timing parameters. Embedded
units can have optional registered inputs and/or registered
outputs, and are characterized by two timing parameters:
sequential setup time and sequential clock-to-q. The
dedicated route of the carry chain also has its own timing.

3.1. Component Latency and Area

The CLBs that were used are comparable to the Xilinx
slice. Each CLB has two 4-input function generators, two
D flip-flops, arithmetic logic gates, and a fast carry-chain.
VPR uses subblocks to specify the internal contents of the
CLB. Representing the timing of an unmodified CLB
required twenty VPR subblocks. The 4:1 multiplexer
modification added two VPR subblocks. Each subblock
can specify a combinational and sequential logic element
and has three timing parameters, similar to the embedded

Table 1. Ratio of resources for different configurations
Configuration CLB RAM MULT SHIFT
CLB & MULT 36 1 1 0

Embedded Shifters 60 1 2 1
CLB w/ 4:1 mux 28 1 1 0

Fig. 1. Column based architecture

units: sequential setup time, sequential clock-to-q, and
maximum combinational delay. These timing parameters
were found in Xilinx data sheets or using Xilinx design
tools and are shown in Table 5. We also used two
embedded units that were modeled after the Xilinx Virtex-II
Pro: an 18x18 bit multiplier and an 18 Kb RAM. However,
like the Xilinx Virtex-4 [11], these units are independent of
each other. The timing parameters of the embedded
multipliers and RAMs are based on the Xilinx Virtex-II Pro
-6 and are shown in Table 5.

The area (including routing) of the CLB, embedded
multiplier, and embedded RAM were approximated using a
die photo of a Xilinx Virtex-II 1000 courtesy of Chipworks,
Inc. The areas were normalized by the process gate length.
All areas are referenced to the smallest component (the
CLB) and are shown in Table 5.

3.2. Track Length & Delay

Four different routing track lengths were used: single,
double, quad, and long, where long tracks spanned the
entire chip. The ratio of routing tracks (11:14:21:4) was
modeled after the Xilinx Virtex-II Pro. The delay of
routing in VPR is calculated based on a resistive and
capacitive model. Appropriate values for the routing track
segments were found experimentally by laying out and
extracting them using Cadence IC design tools.

3.3. Embedded Shifter

For floating-point operations, the mantissa can be
shifted by any distance up to the full length of the mantissa.
Thus, up to 53 bits of shift can be required for IEEE
double-precision, but shifters tend to be implemented in
powers of two. Therefore, shifters of length 32 (for single
precision) and 64 bits were implemented as shown in Fig.
6.

The embedded shifter was designed with five modes
(shift left, rotate left, shift right logical, shift right
arithmetic, and rotate right) to increase versatility. In
addition, the normalization shifting in floating-point units
requires calculating a sticky bit. The sticky bit is the logical
OR of all of the bits that are lost during a logical right shift.
The logic to calculate the sticky bit is included in each
shifter as it adds less than 1% to the shifter size.

The embedded shifter has a total of 83 inputs and 66
outputs. The 83 inputs include 16 control bits, 64 data bits,
and 3 register control bits (clock, reset, and enable). The 66
outputs include 64 data bits and 2 sticky bits (two
independent sticky bit outputs are need when the shifter is
used as two independent 32-bit shifters). The I/O
connections are evenly distributed around the periphery of
the shifter and connect to CLB-like connection blocks.

The benchmark circuits use the embedded shifters in the
fully registered mode, so only sequential setup time (300
ps) and sequential clock-to-q (700 ps) were needed:.
Internally, the combinational delay of the shifter was only
1.52 ns. The sequential times were derived from similar
registered embedded components of the Xilinx Virtex-II
Pro -6, while the combinational time and the area (0.843
106 L2) were derived by doing a layout in a 130 nm process.
The area is 1.27 times the size of the CLB and its associated
routing, but it does not take into account the area needed for
additional connections (relative to a CLB) or the area
needed for connections to the routing structure. Because
this area overhead is difficult to estimate, three different
shifter sizes (two, four, and eight equivalent CLBs) were
considered. There were only trivial differences in the area
and clock rate results (data not shown), so this analysis uses
size four, which have more connections than one shifter.

Table 2. FPGA resource usage (in percent) for baseline
Benchmark CLB RAM MULT

Matrix Mult. 75 100 75
Vector Mult. 89 3 100
Dot Product 89 0 100

FFT 84 100 50
LU 91 67 100

Table 3. FPGA resource usage (in percent) with shifter

Benchmark CLB RAM MULT SHIFT
Matrix Mult. 40 100 38 33
Vector Mult. 87 6 100 89
Dot Product 87 0 100 89

FFT 40 100 25 39
LU 66 100 75 70

Table 4. FPGA resource usage (in percent) with 4:1 mux

Benchmark CLB RAM MULT
Matrix Mult. 93 100 75
Vector Mult. 100 3 96
Dot Product 100 0 97

FFT 95 100 50
LU 100 63 94

Table 5. Embedded component timing and area

 TSETUP
[ns]

TCLK→Q
[ns]

Area
[106 L2]

Area
[CLBs]

CLB 0.32 0.38 0.662 1
Embedded
Multiplier 2.06 2.92 11.8 18

RAM 0.23 1.50 18.5 28
Shifter 0.3 0.7 0.843 1.27

3.4. Multiplexer

The fine-grained optimization attempts to enhance
shifting without impacting the general routing. To
accomplish this, the only change that was made to the CLB
was to add a single 4:1 multiplexer in parallel with each 4-
LUT as shown in Fig. 2. The multiplexer and LUT share
the same four data inputs. The select lines for the
multiplexer are the BX and BY inputs to the CLB. Since
each logic block using the unmodified Xilinx Virtex II Pro
slice has two LUTs, each CLB would have two 4:1
multiplexers that share their select lines. For shifters and
other large datapath elements it is easy to find muxes with
shared select inputs. The BX and BY inputs are normally
used as the independent inputs for the D flip-flops. This
new usage prohibits that and requires that the input to the D
flip-flops be from the logic within the CLB. This trade-off
prevents increasing the number of inputs to the CLB.

To test the impact of adding the 4:1 multiplexer, a 4-
LUT and associated logic was laid out and simulated with
and without the capacitive load of the 4:1 multiplexer.
Adding the 4:1 multiplexer increased the delay of the 4-
LUT by only 1.83%. The delay of the 4:1 multiplexer was
253 ps, which is less than the 270 ps for the 4-LUT from
the Xilinx Virtex-II Pro -6 datasheet. The area of the 4:1
multiplexer was 1.58 109 L2, and adding two of them to
each CLB increases the size of the CLB by less than 0.5%.

4. METHODOLOGY

Five benchmarks were used to test the feasibility of the
proposed modifications. They were matrix multiply, matrix
vector multiply, vector dot product, FFT, and an LU
decomposition datapath. All of the benchmarks use double-
precision floating-point addition and multiplication, and LU
decomposition includes floating-point division. Each
benchmark was tested in three FPGA versions. The first
version is representative of a modern FPGA and includes a
combination of CLBs and the embedded 18-bit x 18-bit

embedded multipliers The second version adds an
embedded variable length shifter to the baseline, and the
third version augments the baseline with a 4:1 multiplexer
in parallel with the LUT.

The floating-point benchmarks were written in a
hardware description language, either VHDL or JHDL [12].
The benchmarks were synthesized using Synplicity’s
Synplify 7.6 into an EDIF file. Technology mapping was
performed with Xilinx ISE 6.3. While these are slightly
older tools, the floating-point units were already hand
mapped and so only small parts of the design were
synthesized and/or mapped. The Xilinx NGDBuild and the
Xilinx map tool were used to reduce the design from gates
to slices (which map one-to-one with our CLBs). The
Xilinx NCDRead was used to convert the design to a text
format. A custom program converted the mapping of the
NCD file to the NET format used by VPR.

The benchmarks vary in size and complexity. Table 6.
gives the number of components for the benchmarks in the
baseline architecture. The number of IO, block RAMs, and
embedded multipliers remain constant for all three versions
of the benchmarks. Table 7. gives the number of CLBs and
embedded shifters for the benchmark versions that use the
embedded shifters. Table 7. also shows the number of
CLBs for each benchmark version that uses the modified
CLBs and the percentage of the CLBs that make use of the
4:1 multiplexer modification. Using embedded shifter
reduces the average number of CLBs by 17.3%. Similarly,
the 4:1 multiplexor provides an 8.4% reduction.

5. TESTING & ANALYSIS

Even with an extremely conservative estimate of the
embedded shifter size, adding embedded shifters to modern
FPGAs significantly reduced circuit size. As seen in Fig. 3.
and Fig. 4. , adding embedded shifters reduces average area

Fig. 2. Bottom half of the CLB with 4:1 mux

Table 6. Components for baseline architecture
Benchmark CLB I/O MULT RAM

Matrix Mult. 41,502 195 144 192
Vector Mult. 36,926 2,034 144 4
Dot Product 36,737 1,492 144 0

FFT 34,745 590 72 144
LU 37,634 193 144 96

Table 7. Components for enhanced architectures

Embedded Shift Modified CLBs
 CLB SHIFT CLB CLBs w/

4:1 Mux
Matrix Mult. 36,483 64 39,894 9.9%
Vector Mult. 30,207 64 33,604 11.7%
Dot Product 30,018 64 33,403 11.8%

FFT 27,907 56 30,777 11.7%
LU 30,506 67 34,145 12.2%

by 14.6% and increases average clock rate by 3.3%
compared to the baseline benchmarks that only used CLBs
and embedded multipliers to perform floating-point
computations. There was an average increase of 16.5%
(not shown) in the number of routing tracks used, but this is
still well within the limits of modern FPGAs (less than 70).

Only the floating-point units were optimized with the
embedded shifters – the control and the reminder of the data
path remained unchanged. If we consider only the units,
the embedded shifters reduced the number of CLBs for
each double-precision floating-point addition by 31% and
required two embedded shifters. For the double-precision
floating-point multiplication, the number of CLBs
decreased by 22% and two embedded shifters were used as
shown in Fig. 5.

Use of the 4:1 multiplexer modification to the CLB also
showed significant improvements. Even though only the
floating-point cores were optimized, there was an area
savings of 7.3% over the reference benchmarks. In addition
to the area savings, there was a speed increase of 11.6%, as
seen in Fig. 3. and Fig. 4. Numerous multiplexers are
known to exist in VHDL datapaths outside of the floating-
point units, and so the size of this advantage should grow if
this modification was exposed to the synthesis flow. If we
consider only the floating point units, the addition of the

multiplexer reduced the size of the double-precision
floating-point adder by 17% and reduced the size of the
double-precision multiplier by 10% as shown in Fig. 5.

6. RELATED WORK

While there has not been a great deal of work dedicated to
increasing the efficiency of floating-point operations on
FPGAs, there has been some work that might be beneficial
to floating-point operations on FPGAs. Ye showed the
benefits for bus-based routing for datapath circuits [13].
Because IEEE floating-point numbers have 32 or 64 bits
(single or double-precision) and these signals will generally
follow the same routing path. This naturally lends itself to
bus-based routing.

Xilinx recently announced their next generation of
FPGAs; the Virtex-5 replaces the 4-LUTs with 6-LUTs
[15]. These 6-LUTs would clearly offer the same
advantage as using a dedicated 4:1 mux, but would also
consume somewhat more area. It is likely that the 6-LUTs
would be more flexible than the dedicated 4:1 mux.

The embedded multipliers in the Xilinx architectures
can also implement shifters, but this approach is infeasible
in modern designs where the multipliers are consumed by
the floating-point units to do multiplication. Xilinx
AppNote 195 also implies that a 56 bit shift would be an
inefficient technique with regards to silicon area.

7. CONCLUSION

The results indicated that adding shifters to the fabric or
4:1 multiplexers to the CLBs will significantly reduce
circuit size for floating-point applications with an increase
in circuit frequency. The embedded shifter provided an
average area savings of 14.6% and a clock rate increase of
3.3%. The 4:1 multiplexer provided an average area
savings of 7.3% while achieving an average speed increase
of 11.6%. Neither modification significantly increased
track count. The embedded shifters are only 1.5% of the

Fig. 3. Benchmark clock rates

Fig. 4. Benchmark areas

Fig. 5. Double-precision floating-point unit area

total chip area and the 4:1 multiplexer composed 0.48% of
the CLB and 0.35% of the total chip area.

8. REFERENCES

[1] K. D. Underwood. FPGAs vs. CPUs: Trends in Peak
Floating-Point Performance. In Proceedings of the ACM
International Symposium on Field Programmable Gate
Arrays, Monterey, CA, February 2004.

[2] K. S. Hemmert and K. D. Underwood. An Analysis of the
Double-Precision Floating-Point FFT on FPGAs. In
Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines, Napa Valley, CA 2005.

[3] M. de Lorimier and A. DeHon. Floating point sparse
matrix-vector multiply for FPGAs. In Proceedings of the
ACM International Symposium on Field Programmable
Gate Arrays, Monterey, CA, February 2005.

[4] L. Zhuo and V. K. Prasanna. Sparse matrix-vector
multiplication on FPGAs. In Proceedings of the ACM
International Symposium on Field Programmable Gate
Arrays, Monterey, CA, February 2005.

[5] M. J. Beauchamp, S. Hauck, K. D. Underwood, K. S.
Hemmert. Embedded Floating-Point Units in FPGAs. In
Proceedings of the ACM International Symposium on Field
Programmable Gate Arrays, Monterey, CA, February 2006.

[6] K. S. Hemmert and K. D. Underwood. Open Source High
Performance Floating-Point Modules. In Proceedings of the
IEEE Symposium on FPGAs for Custom Computing
Machines, Napa Valley, CA, 2006.

[7] Virtex-II Pro and Virtex-II Pro X Platform FPGAs:
Complete Data Sheet. June 2005 (Rev 4.3), [cited Aug
2005], http://direct.xilinx.com/ bvdocs/ publications/
ds083.pdf.

[8] IEEE Standards Board. IEEE standard for binary floating-
point arithmetic. Technical Report ANSI/IEEE Std. 754-
1985, The Institute of Electrical and Electronic Engineers,
New York, 1985.

[9] V. Betz and J. Rose. VPR: A new packing, placement and
routing tool for FPGA research. In Proceedings of the 7th
International Workshop on Field-Programmable Logic and
Applications, pp 213-222, 1997.

[10] Xilinx: ASMBL Architecture. 2005 [cited Sept 2005],
http://www.xilinx.com/products/silicon_solutions/fpgas/
virtex/virtex4/overview/

[11] Virtex-4 Data Sheet: DC and Switching Characteristics.
Aug 2005 (Rev 1.9), [cited Sept 2005], http://direct.xilinx.
com/bvdocs/publications/ds302.pdf

[12] B. Hutchings, P. Bellows, J. Hawkins, K. S. Hemmert, B.
Nelson, and M. Rytting. A CAD Suite for High-
Performance FPGA Design. In Proceedings of the IEEE
Workshop on FPGAs for Custom Computing Machines,
Napa, CA, April 1999.

[13] A. Ye, J. Rose, “Using Bus-Based Connections to Improve
Field-Programmable Gate Array Density for Implementing
Datapath Circuits,” In Proceeding of the ACM International
Symposium on Field-Programmable Gate Arrays, Monterey,
CA, February 2005.

[14] Virtex-5 LX Platform Overview. May 12, 2006 (Rev 1.1),
[cited May 2006], http://direct.xilinx.com/bvdocs/
publications/ ds100..pdf

Fig. 6. Embedded shifter block diagram

