
Beauchamp  -  TVLSI-00112-2006 

Architectural Modifications to Enhance the 
Floating-Point Performance of FPGAs 
Michael J. Beauchamp, Scott Hauck, Keith D. Underwood, and K. Scott Hemmert 

 
Abstract—With the density of FPGAs steadily increasing, 

FPGAs have reached the point where they are capable of 
implementing complex floating-point applications.  However, 
their general-purpose nature has limited the use of FPGAs in 
scientific applications that require floating-point arithmetic due 
to the large amount of FPGA resources that floating-point 
operations still require.  This paper considers three architectural 
modifications that make floating-point operations more efficient 
on FPGAs.  The first modification embeds floating-point 
multiply-add units in an island style FPGA.  While offering a 
dramatic reduction in area and improvement in clock rate, these 
embedded units have the potential to waste significant silicon for 
non-floating-point applications. The next two modifications 
target a major component of IEEE compliant floating-point 
computations: variable length shifters.  The first alternative to 
LUTs for implementing the variable length shifters is a coarse-
grained approach: embedded variable length shifters in the 
FPGA fabric.  These shifters offer a significant reduction in area 
with a modest increase in clock rate and a relatively small 
potential for wasted silicon.  The next alternative is a fine-
grained approach: adding a 4:1 multiplexer unit inside the slices, 
in parallel to the 4-LUTs.  While this offers the smallest overall 
area improvement, it does offer a significant improvement in 
clock rate with only a trivial increase in the size of the CLB. 
 

Index Terms—Reconfigurable architecture, Floating-Point 
arithmetic, FPGA 
 

I. INTRODUCTION 
variety of research efforts are searching for alternative 
processor architectures to accelerate scientific 

applications.  While modern supercomputers depend almost 
exclusively on a collection of traditional microprocessors, 
these microprocessors have poor sustained performance on 
many modern scientific applications.  ASICs, which can be 
highly efficient at floating-point computations, do not have 
the programmability needed in a general purpose 

supercomputer.  Even though microprocessors are versatile 
and have fast clock rates, their performance is limited by their 
lack of customizability [1].  One alternative that is being 
widely considered is the use of FPGAs.  However, scientific 
applications depend on complex floating-point computations 
that could not be implemented on FPGAs until recently, due to 
size constraints.  Increases in FPGA density, and 
optimizations of floating-point elements for FPGAs, have 
made it possible to implement a variety of scientific 
algorithms with FPGAs [2]-[7].  In spite of this, the floating-
point performance of FPGAs must increase dramatically to 
offer a compelling advantage for the scientific computing 
application domain.  Fortunately, there are still significant 
opportunities to improve the performance of FPGAs on 
scientific applications by optimizing the device architecture. 

Because fixed-point operations have long since become 
common on FPGAs, FPGA architectures have introduced 
targeted optimizations like fast carry-chains, cascade chains, 
and embedded multipliers.  In fact, Xilinx has created an 
entire family of FPGAs optimized for the signal processing 
domain, which uses this type of operation intensively [12].  
Even though floating-point operations are becoming more 
common, there have not been the same targeted architectures 
for floating-point as there are for fixed-point – there is not a 
scientific-computing family of FPGAs. 

Potential architectural modifications span a spectrum from 
the extremely coarse-grained to the extremely fine-grained.  
This paper explores ideas at three points in that spectrum.  At 
the coarse-grained end, we evaluate the addition of fully 
compliant IEEE 754 standard [8] floating-point multiply-add 
units as an embedded block in the reconfigurable fabric.  
These are feasible because many scientific applications 
require compliance with the IEEE standard from any platform 
they use.  These coarse-grained units provide a dramatic gain 
in area and clock rate at the cost of dedicating significant 
silicon resources to hardware that not all applications will use. 

IEEE floating-point also has other features that lend 
themselves to finer grained approaches.  The primary example 
is that floating-point arithmetic requires variable length and 
direction shifters.  In floating-point addition, the mantissas of 
the operands must be aligned before calculating the result.  In 
floating-point multiplication and division, the mantissa must 
be shifted before the calculation (if denormals are supported) 
and after the calculation to renormalize the mantissa [9].  The 
datapath for shifters involves a series of multiplexers, which 
are currently implemented using LUTs.  In our highly 
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optimized double-precision floating-point cores for FPGAs 
[9], the shifter accounts for almost a third of the logic for the 
adder and a quarter of the logic for the multiplier.  Thus, better 
support for variable length shifters can noticeably improve 
floating-point performance. 

This led us to consider two approaches to optimizing the 
FPGA hardware for variable length shifters. At the fine 
grained end, we consider a minor tweak to the traditional 
CLB: the addition of a 4:1 multiplexer in parallel with the 4-
LUT.  This provides a surprisingly large clock rate 
improvement with a more modest area improvement and 
virtually no wasted silicon area.  In the middle of the 
spectrum, we consider the addition of an embedded block to 
provide variable length shifting.  This uses slightly more area 
than the CLB modification and provides a corresponding 
increase in area savings.  Surprisingly, however, it provides 
only a modest improvement in clock rate. 

To test these concepts, VPR was augmented to support 
embedded functional units and high-performance carry-
chains.  It was then used to place and route benchmarks that 
use double-precision floating-point multiplication and 
addition.  The five benchmarks that were chosen were matrix 
multiply, matrix vector multiply, vector dot product, FFT, and 
LU decomposition.  To determine the feasibility of these 
proposed architectural modifications, five versions of each 
benchmark were used: CLB only, embedded multiplier, 
embedded shifter, multiplexer, and embedded floating-point 
units. 

The remainder of this paper is organized as follows.  
Section 2 presents background information on the floating-
point numbering system and current FPGA architecture.  A 
description of how VPR was modified and used to test the 
feasibility of the proposed FPGA architectural changes is 
presented in Section 3.  Section 4 presents the testing 
methodology.  The parameters for the embedded units are 
presented in Section 5.  Results and analysis are presented in 
Section 6.  Finally, Section 7 presents related work and 
Section 8 the conclusion. 

II. BACKGROUND 

A. Floating-Point Numbering System 
The IEEE-754 standard specifies a representation for single 

and double precision floating-point numbers and is currently 
the standard that is used for real numbers on most computing 
platforms.  Floating point numbers consist of three parts: sign 
bit, mantissa, and exponent.  They are arranged such that the 
mantissa, f, is multiplied by the base number (two) to an 
exponent, e, as shown in Equations 1 and 2, single and double 
precision respectively [8], [10].  

 

 ( ) 12721.1 −⋅⋅− ES f=X  (1) 
 

 ( ) 102321.1 −⋅⋅− ES f=X  (2) 

 
The IEEE standard specifies a sign bit, an 8-bit exponent, 

and a 23-bit mantissa for a single-precision floating-point 
number, as seen in Fig 1.  Double-precision floating-point has 
a sign bit, an 11-bit exponent and 52-bit mantissa, as seen in 
Fig 2.  Since the mantissa is normalized to the range [1,2) 
there will always be a leading one on the mantissa.  By 
implying the leading one instead of explicitly specifying it, a 
single bit of precision is gained, but it does raise the 
complexity of floating-point implementations. 

 

S Exp Mantissa

0 1 8... 9 31...
 

Fig 1.  Single precision IEEE floating-point number 
 

S Exp Mantissa

0 1 11... 12 63...
 

Fig 2.  Double precision IEEE floating-point number 
 

The exponent is represented in the somewhat unusual biased 
notation. It represents positive and negative numbers by 
having a bias equal to half of the exponent range.  This 
representation somewhat simplifies floating-point 
comparators. 

B. Island-Style FPGA 
The current dominant style of FPGAs is the island-style 

FPGA, consisting of a two dimensional lattice of CLBs 
(Configurable Logic Blocks).  Connecting the CLBs are 
regular horizontal and vertical routing structures that allow 
configurable connections at the intersections.  In recent years 
additional block units have been added that have increased 
FPGAs versatility and efficiency, especially for circuits that 
use fixed-point numbers.  Embedded RAMs, DSP blocks, and 
even microprocessors have been added to island-style FPGAs 
[11], [12].  However, circuits that use floating-point numbers 
still require a large number of CLBs to perform basic 
operations.  Thus, this paper examines hardware changes and 
modifications that will improve the efficiency of floating-
point unit implementations. 

III. VPR 
VPR [13], [14] is the leading public-domain FPGA place 

and route tool.  It uses simulated annealing and a timing based 
semi-perimeter routing estimate for placement and a timing 
driven detailed router.  In this paper, VPR was used to 
determine the feasibility of three changes to the traditional 
island-style FPGAs: embedding floating-point units (FPUs), 
embedded shifters, and modified CLBs to facilitate shifting 
for floating-point calculations. 

In previous versions, VPR supported only three types of 
circuit elements: input pads, output pads, and CLBs.  To test 
the proposed architectural modifications and to incorporate 
the necessary architectural elements, VPR was modified to 
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allow the use of embedded block units of parameterizable 
size.  These embedded blocks have parameterizable heights 
and widths that are quantized by the size of the CLB.  
Horizontal routing is allowed to cross the embedded units, but 

vertical routing only exists at the periphery of the embedded 
blocks.  The regular routing structure that existed in the 
original VPR was maintained as shown in Fig 3.  
Additionally, a fast carry-chain was incorporated into the 
existing CLBs to insure a reasonable comparison with state-
of-the-art devices.  The benchmarks were synthesized using 
Synplify and technology mapped using Xilinx ISE (rather than 
the VPR technology mapping path).  See methodology, 
Section 4, for more details. 

 
Fig 4.  ASMBL 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig 3.  (a) Column based architecture with CLBs, embedded multipliers, and
block RAMs (b) Embedded shifters added to 'a' (c) Embedded floating-point 
units replacing multipliers in 'a' 

The baseline FPGA architecture was modeled after the 
Xilinx Virtex-II Pro FPGA family and includes most of the 
major elements of current FPGAs (IO blocks, CLBs, 18Kb 
block RAMs, and embedded 18-bit x 18-bit multiplier blocks) 
[11].  The CLBs include 4-input function generators, storage 
elements, arithmetic logic gates, and a fast carry-chain.  In 
addition to the standard Xilinx Virtex-II Pro features, 
alternative architectures incorporate embedded FPUs, 
embedded shifters, or a modified CLB with 4:1 multiplexer in 
parallel with the LUT.  The various blocks were arranged in a 
column based architecture similar to Xilinx’s ASMBL 
(Advanced Silicon Modular Block) architecture [15], as seen 
in Fig 4, which is the architectural foundation of the Virtex-4 
FPGA family [16]. 

The embedded units have optional registered inputs and/or 
registered outputs.  Each unit is characterized by three timing 
parameters: sequential setup time, sequential clock-to-q, and 
maximum combinational delay if unregistered.  The fast carry-
chain is a dedicated route that does not use the normal routing 
structure of switch boxes and connection boxes.  The carry-
chain has a dedicated route that goes from the carry-out at the 
top of the CLB to the carry-in at the bottom of the CLB above 
it.  Because it does not make use of the normal routing graph, 
it has its own timing parameters. 

A. Component Area 
The areas of the CLB, embedded multiplier, and block 

RAM were approximated using a die photo of a Xilinx Virtex-
II 1000 [17] courtesy of Chipworks Inc.  The area estimate of 
each component includes the associated connection blocks, 
which dominate the routing area.  The areas were normalized 
by the process gate length, L.  All areas are referenced to the 
smallest component, which is the CLB, and are shown in  
Table  1. 
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Fig 5.  Embedded shifter block diagram 

 
TABLE  1 

COMPONENT TIMING AND AREA 

 TSETUP 
[ns] 

TCLK→Q 
[ns] 

Area 
[106 L2] 

Area 
[CLBs] 

CLB 0.32 0.38 0.662 1 
Embedded 
Multiplier 2.06 2.92 11.8 18 

Block 
RAM 0.23 1.50 18.5 28 

Shifter 0.30 0.70 0.843 1.27 
FPU 0.50 0.50 107 161 

 

B. Component Latency 
The CLBs that were used are comparable to the Xilinx 

slice.  Each CLB is composed of two 4-input function 
generators, two storage elements (D flip-flops), arithmetic 
logic gates, and a fast carry-chain.  VPR uses subblocks to 
specify the internal contents of the CLB.  Each subblock can 
specify a combinational and sequential logic element and has 
three timing parameters, similar to the embedded units: 
sequential setup time, sequential clock-to-q, and maximum 
combinational delay if the output subblock is unregistered.  
More subblocks results in a more accurate timing 
representation of the CLB. To adequately represent the timing 
of an unmodified CLB, twenty VPR subblocks were used.  
With the 4:1 multiplexer modification to the CLB, twenty-two 
VPR subblocks were used.  The embedded multiplier and 
block RAM were modeled after the Xilinx Virtex-II Pro.  
However, unlike the Xilinx Virtex-II Pro (and more similar to 
the Xilinx Virtex-4), these units are independent of each other.  
These timing parameters are based on the Xilinx Virtex-II Pro 
-6 and were found in Xilinx data sheets or experimentally 
using Xilinx design tools and are shown in Table  1. 

C. Track Length and Delay 
We use four different lengths of routing tracks: single, 

double, quad, and long, where long tracks spanned the entire 

length of the architecture.  The percentages of different 
routing track lengths were based on Xilinx Virtex-II Pro 
family and can be seen in Table  2 [11]. 
 

TABLE  2 
 TRACK LENGTH 

Size Length Fraction 
Single 1 22% 
Double 2 28% 
Quad 4 42% 
Long All 8% 

 
VPR uses a resistive and capacitive model to calculate the 

delay for various length routing tracks.  Based on previously 
determined component area, the resistive and capacitive 
values were estimated by laying out and extracting routing 
tracks using Cadence IC design tools.  Timing results for the 
overall design were found to be reasonable based on previous 
experience with Xilinx parts. 

D. Embedded FPU 
The embedded FPU implements a double-precision 

floating-point multiply-add operation as described by equation 
3.  The FPU can be configured to implement a double-
precision multiply, add, or multiply-add operation. 

 
 ( ) bitbitbitbit CBA=X −−−− + 64646464 *  (3) 
 
The baseline size of the floating-point unit was 

conservatively estimated from commodity microprocessors 
and embedded cores in previous work [18], [19] and the actual 
area used was increased to accommodate one vertical side of 
the FPU being filled with connection blocks (assumed to be as 
large as a "CLB").  This made the true area of the FPU 
dependent on the shape chosen.  We believe this to be an 
extremely conservative estimate. 

The latency of the FPUs was more difficult to estimate 
appropriately.  Given that a processor on a similar process (the 
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Fig 6.  Simplified representation of bottom half of modified CLB showing addition of 4:1 multiplexer 

Pentium 4) can achieve 3 GHz operation with a 4 cycle add 
and a 6 cycle multiply, we assume that an FPU implemented 
for an FPGA could achieve 500 MHz at the same latency.  
Setup and clock-to-q were set conservatively assuming the 
latency included registers front and back. 

E. Embedded Shifter 
For floating-point operations, the mantissa can be shifted 

either left or right, by any distance up to the full length of the 
mantissa.  This means that up to a 24 bit shift can be required 
for IEEE single precision and up to 53 bits of shift can be 
required for IEEE double precision.  However, in hardware, 
shifters tend to be implemented in powers of two.  Therefore, 
shifters of length 32 and 64 bits were implemented for single 
and double precision floating-point operations, respectively, 
as shown in Fig 5. 

Even though floating-point operations only require a logical 
shift, the embedded shifter should be versatile enough to be 
used for other circuits that do not necessarily have floating-
point operations.  Otherwise, the embedded shifters will have 
a higher probability of being wasted in other types of 
computations.  Therefore, the embedded shifter that was used 
has five modes: shift left logical/arithmetic, rotate left, shift 
right logical, shift right arithmetic, and rotate right. 

During the shifting that accompanies the normalization of 
floating-point numbers it is necessary to calculate a sticky bit.  
The sticky bit is the result of the logical OR of all of the bits 
that are lost during a right shift, and it is an integral part of the 
shift operation.  Adding the necessary logic to the shifter to 
compute the sticky bit increases the size of the shifter by less 
than 1%.  Thus, the logic for the sticky bit calculation is 
included in each shifter.  The sticky bit outputs are undefined 
when a shift other than a logical right shift is performed. 

The embedded shifter also has optional registers on the 
inputs and outputs of the datapath.  There are a total of 83 
inputs and 66 outputs.  The 83 inputs include 16 control bits, 
64 data bits, and 3 register control bits (clock, reset, and 
enable).  The 66 outputs include 64 data bits and 2 sticky bits 

(two independent sticky bit outputs are needed when the 
shifter is used as two independent 32-bit shifters). 

The benchmark circuits use the embedded shifters in the 
fully registered mode, so only two timing parameters were 
needed: sequential setup time of 300 ps and sequential clock-
to-q of 700 ps.  Internally, the combinational delay of the 
shifter was 1.52 ns, which is far from the limiting timing path.  
The sequential times were derived from similar registered 
embedded components of the Xilinx Virtex-II Pro -6, while 
the combinational time and area (0.843 106 L2) were derived 
by doing a layout in a 130 nm process.  The area is 1.27 times 
the size of the CLB and its associated routing, but it does not 
take into account the area needed for the additional number of 
connection of the embedded shifter compared to the CLB, and 
the area needed for connections to the routing structure.  
Because this area overhead is difficult to estimate, three 
different shifter sizes (two, four, and eight equivalent CLBs) 
were examined.  There were only trivial differences in the area 
and clock rate results, so this analysis uses size four, since 4 
CLBs have more connections than the shifters in question. 

F. Multiplexer 
In modifying the CLB to better implement variable length 

shifters, two general principles were observed: minimize the 
impact on the architecture, and have no impact on general 
purpose routing. To accomplish these goals, the only change 
that was made to the CLB's architecture was to add a single 
4:1 multiplexer in parallel with each 4-LUT, as shown in Fig 
6.  The multiplexer and LUT share the same four data inputs.  
The select lines for the multiplexer are the BX and BY inputs 
to the CLB.  Since each CLB on the Xilinx Virtex II Pro has 
two LUTs, each CLB would have two 4:1 multiplexers.  Since 
there are only two select lines, both of the 4:1 multiplexers 
would have to share their select lines.  However, for shifters 
and other large datapath elements it is easy to find muxes with 
shared select inputs.  The BX and BY inputs are normally 
used as the independent inputs for the D flip-flops, but are 
blocked in the new mux mode.  However, the D flip-flops can 
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still be driven by the LUTs in the CLB, and can be used as 
normal when not using the mux mode.  This is a trade-off that 
is made to not increase the number of inputs to the CLB. 

To test the impact of adding the 4:1 multiplexer, a 4-LUT 
and associated logic was laid out and simulated with and 
without the capacitive load of the 4:1 multiplexer.  It was 
determined that adding the 4:1 multiplexer increased the delay 
of the 4-LUT by only 1.83%.  A 4:1 multiplexer was also laid 
out and simulated.  The delay of the 4:1 multiplexer was 253 
ps, which is less than the 270 ps that was determined for the 4-
LUT from the Xilinx Virtex-II Pro -6 datasheet.  The area of 
the 4:1 multiplexer was 1.58 103 L2, and adding two 4:1 
multiplexers to each CLB increases the size of the CLB by 
less than 0.5% (the original area of the CLB takes into account 
all logic, routing, and control bits associated with the CLB as 
given in Table  1). 

IV. METHODOLOGY 

A. Benchmarks 
Five benchmarks were used to test the feasibility of the 

proposed architectural modification.  They were matrix 
multiply, matrix vector multiply, vector dot product, FFT, and 
a LU decomposition datapath.  All of the benchmarks use 
double-precision floating-point addition and multiplication.   
The LU decomposition also includes floating-point division, 
which must be implemented in the reconfigurable fabric for all 
architectures.  Five versions of the benchmarks were used. 

 
• CLB ONLY – All floating-point operations are performed 

using the CLBs (Configurable logic Blocks).  The only 
other units in this version are embedded RAMs and IO. 

• EMBEDDED MULTIPLIER – This version adds 18-bit x 18-
bit embedded multipliers to the CLB ONLY version.  
Floating-point multiplication uses the CLBs and the 
embedded multipliers.  Floating-point addition and 
division are performed using only the CLBs.  This 
version is similar to the Xilinx Virtex II Pro family of 
FPGAs, and thus is representative of what is currently 
available in commercial FPGAs. 

• EMBEDDED SHIFTER – This version further extends the 
EMBEDDED MULTIPLIER version with embedded variable 
length shifters that can be configured as a single 64-bit 
variable length shifter or two 32-bit variable length 
shifters.  Floating-point multiplication uses the CLBs, 
embedded multipliers, and embedded shifters.  Floating-
point addition and division are performed using the CLBs 
and embedded shifters. 

• MULTIPLEXER – While the same embedded RAMs, 
embedded multipliers, and IO of the EMBEDDED 
MULTIPLIER version are used, the CLBs have been 
slightly modified to include a 4:1 multiplexer in parallel 
with the LUTs.  Floating-point multiplication uses the 
modified CLBs and the embedded multipliers.  Floating-
point addition and division are performed using only the 
modified CLBs. 

• EMBEDDED FPU – Besides the CLBs, embedded RAMs, 
and IO of the CLB ONLY version, this version includes 
embedded floating-point units (FPUs).  Each FPU 
performs a double-precision floating-point multiply-add.  
Other floating-point operations are implemented using the 
general reconfigurable resources. 

 
The floating-point benchmarks were written in a hardware 

description language, either VHDL or JHDL [20].  Instead of 
using the traditional VPR path of synthesis using SIS [21] and 
technology mapping using Flow Map [22], the benchmarks 
were synthesized using Synplicity’s Synplify 7.6 into an EDIF 
(Electronic Data Interchange Format) file.  Technology 
mapping was accomplished using Xilinx ISE 6.3.  While these 
are slightly older versions of the tools, only the Xilinx mapper 
was used and only small parts of the benchmarks were 
synthesized (the floating-point units were hand mapped in 
JHDL).  Thus, we do not believe this had a negative impact on 
the results.  The Xilinx NGDBuild (Native Generic Database) 
and the Xilinx map tool were used to reduce the design from 
gates to slices (which map one-to-one with our CLBs).  The 
Xilinx NCD (Native Circuit Description) Read was used to 
convert the design to a text format.  A custom conversion 
program was used to convert the mapping of the NCD file to 
the NET format used by VPR. 

The benchmarks vary in size and complexity as shown in 
Table  3.  The number of IO and block RAMs is the same for 
all benchmark versions.  The number of embedded multipliers 
in the EMBEDDED SHIFTER and MULTIPLEXER versions is the 
same as the EMBEDDED MULTIPLIER version. 

B. Fast Carry-Chains 
VPR was also modified to allow the use of fast carry-

chains.  The CLBs were modeled after the Xilinx Virtex II Pro 
slice.  Along with the two 4-input function generators, two 
storage elements, and arithmetic logic gates, each CLB has a 
fast carry-chain affecting two output bits.  The carry-out of the 
CLB exits through the top of the CLB and enters the carry-in 
of the CLB above as shown in Fig 7.  Each column of CLBs 
has one carry-chain that starts at the bottom of the column of 
CLBs and ends at the top of the column.  Since each CLB has 
logic for two output bits, there are two opportunities in each 
CLB to get on or off of the carry-chain (Fig 7). 

The addition of the carry-chain was necessary to make a 
reasonable comparison between the different benchmark 
versions.  The versions of the benchmarks that implemented 
the floating-point multiply-add using the embedded 
multipliers or only CLBs make extensive use of the fast carry-
chains.  For example, the double-precision addition requires a 
57 bit adder.  If the carry signal was required to go out on 
general routing it would significantly decrease the adder 
frequency.  This would dramatically skew the results in favor 
of the embedded FPUs. 

To demonstrate the correct operation of the carry-chain 
modification, the benchmarks that used the embedded 
multipliers to implement the double-precision floating-point 
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TABLE  3 
NUMBER OF COMPONENTS IN EACH BENCHMARK VERSIONS 

CLB ONLY EMBEDDED 
MULTIPLIER† 

EMBEDDED 
SHIFTER†‡ MULTIPLEXER†‡ EMBEDDED 

FPU† 
Benchmark 

IO RAM CLB CLB MULT CLB SHIFT CLB 
CLBs 
Using 

4:1 Mux 
CLB FPU 

Matrix Mult. 195 192 56,973 41,502 144 36,483 64 39,894 9.9% 17,510 16 
Vector Matrix Mult. 2,034 4 53,082 36,926 144 30,207 64 33,604 11.7% 11,250 16 

Dot Product 1,492 0 51,924 36,737 144 30,018 64 33,403 11.8% 9,929 16 
FFT 590 144 44,094 34,745 72 27,907 56 30,777 11.7% 15,432 28 

LU Decomposition 193 96 56,093 37,634 144 30,506 67 34,145 12.2% 11,382 16 
Maximum 2,034 192 56,973 41,502 144 36,483 67 39,894 12.2% 17,510 28 
Average 901 87 52,433 37,509 130 31,024 63 34,365 11.4% 13,101 19 

† Benchmarks include the same number of IOs and block RAMs as CLB ONLY version. 
‡ Benchmarks include the same number of embedded multipliers as the EMBEDDED MULTIPLIER version. 

multiply-add were placed and routed using VPR with and 
without the carry-chain modification.  The results are shown 
in Table  4.  By using the fast carry-chain the benchmarks had 
an average speed increase of 49.7%. 
 

 
Fig 7.  Simplified CLB with fast vertical carry-chain 

 
TABLE  4 

MAXIMUM CLOCK RATE WITH AND WITHOUT THE USE OF THE FAST CARRY-
CHAIN 

Benchmark 

Max. Freq. 
w/o Fast 

Carry-Chain 
[MHz] 

Max. Freq. 
with Fast 

Carry-Chain 
[MHz] 

Matrix Multiply 87 126 
Vector Multiply 89 117 

Dot Product 87 149 
FFT 79 104 

LU Decomposition 84 142 
Average 85 128 

 
Because the carry-chains only exist in columns of CLBs 

and only in the upward direction, we initially place all of the 
CLBs of a given carry-chain in proper relative position to each 
other and move/swap all of the CLBs that comprise a carry-
chain as one unit.  To accomplish this, when a CLB that is 
part of a carry-chain is chosen to be moved or swapped the 

following algorithm is used: 
 

1. The CLBs that are to be moved or swapped are randomly 
determined based on the constraints of the placement 
algorithm. 

2. If the CLBs are part of a carry-chain the beginning and 
end of the carry-chain are determined. 

3. Whatever carry-chain is the longer of the two CLBs to be 
swapped determines the number of CLBs to be swapped. 

4. It is determined if the CLBs could be moved or swapped 
without violating the physical constraints of the chip and 
breaking any other carry-chain. 

5. If the move swap is determined to be illegal, the 
move/swap is discarded and a new set of blocks are 
chosen for a potential move/swap.  Even though this 
potential move is discarded, it is not considered a rejected 
move. 

6. Once a legal move is found, all of the nets that connect to 
all of the CLBs that comprise the carry-chain are 
considered in the cost of moving the carry-chain. 

7. The move is accepted or rejected based on the current 
simulated annealing temperature. 

8. If a move/swap is accepted all of the CLBs on the carry-
chain are moved together to maintain the physical 
constraints of the carry-chain architecture. 

9. The accepted or rejected move of a carry-chain consisting 
of N CLBs is considered N accepted or rejected moves. 

 
The rest of the details of the simulated annealing algorithm 

remain unchanged.  This resulted in making VPR significantly 
slower, but is important for producing realistic comparisons. 

V. PARAMETERS 

A. Embedded FPU Aspect Ratio 
To determine the appropriate aspect ratio for the FPU, each 

benchmark was run using eight different heights and widths.  
These FPUs with different aspect ratios were combined in a 
column based architecture with CLBs and block RAMs.  With 
an increase in the height of the FPU (decrease in the aspect 
ratio), there will be fewer FPUs on a single column.  To 
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maintain the same ratio of FPUs, CLBs, and RAMs for all the 
different FPU sizes, the number of columns of FPUs was 
increased as the FPU height increased. 

The area of the FPUs varies with the aspect ratio due to the 
overhead of connecting the FPU with the surrounding routing 
resources - for each row of CLBs along an FPU’s edge, a 
row’s worth of routing resources must be provided.  A 
conservative estimate was used that for each CLB of height 
added to the FPU, an additional full CLB tile’s worth of area 
was required for the programmable routing. 

Each benchmark was tested with eight different FPU 
heights; from 4 CLBs to 160 CLBs in height.  These 
benchmarks with different FPU sizes were compared on three 
criteria: area, maximum frequency, and number of routing 
tracks. 

There is a significant difference in the maximum frequency 
between the benchmarks with different aspect ratio FPUs.  
The benchmarks with FPUs of height 32 had the highest 
average clock rate.  The lower frequencies were found at the 

extremes, those with very large and very small aspect ratios.  
The benchmarks with large aspect ratios and small FPU 
heights were very wide and consequently had large horizontal 
routes that increased the overall circuit latency.  The 
benchmarks with small aspect ratios and large FPU heights 
had congestion on the vertical routing tracks that led to high 
track counts and slower clock frequencies. 

Because there was an area penalty for greater FPU heights 
to account for connectivity and routing, the architecture with 
the shortest FPUs had the smallest area.  However, there was 
only a 2.7% difference in the areas of the FPU benchmark 
with the highest frequency and the benchmark with the 
smallest area. 

Modern FPGAs have a large number of routing tracks.  
Therefore, apart from its impact on maximum clock 
frequency, the required number of routing tracks is unlikely to 
be the driving consideration when choosing the best aspect 
ratio for the FPU.  Even though there was a 12.8% difference 
in track count of the FPU benchmark with the lowest track 
count (FPU height 16) and the benchmark with the highest 
clock rate (FPU height 32), the benchmark with the highest 
clock rate only had an average routing track count of 46. 

 
Fig 8.  Embedded shifter benchmark clock rate 

 

 
Fig 9.  Embedded shifter benchmark area 

 

 
Fig 10.  Embedded shifter benchmark track count 

On average, the benchmarks that used the FPU of height 32 
had the highest frequency, did not have a significant area 
increase over those with other aspect ratios, and had a 
reasonable track count.  Therefore, it is the architectures with 
FPUs of height 32 that are being compared to the other 
architectures.  In general, this is approximately the “shape” we 
would expect to be “good”.  “Tall and narrow” or “short and 
wide” configurations seem unnatural for the implementation 
of floating-point units or for integration with a reconfigurable 
fabric. 

B. Embedded Shifter Size 
The embedded shifter has an equivalent area of 1.27 CLBs.  

However, this size does not take into account the area needed 
for the additional number of connections of the embedded 
shifter compared to the CLB, and the area needed for 
connections to the routing structure.  Because an exact area 
comparison with existing FPGA architecture is not easy to 
make, three different shifter sizes were examined.  Shifters of 
size two, four, and eight equivalent CLBs were tested and 
their results are given in Fig 8 through Fig 10. 

There is only an average difference of 3.7% in clock rate 
and 1.0% in area between the different shifter sizes.  Since 
four CLBs have more combined I/O connections than a 
shifter, we can use this for an extremely conservative estimate 
of the shifter size.  Therefore, an embedded shifter size 
equivalent to four CLBs is used to compare with other 
benchmark versions. 

VI. RESULTS 

A. Embedded FPUs 
The embedded FPU had the highest clock rate, smallest 

area, and lowest track count of all the architectures, as seen in 
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Fig 11 through Fig 13.  By adding embedded FPUs there was 
an average clock rate increase of 33.4%, average area 
reduction of 54.2%, and average track count reduction of 
6.83% from the EMBEDDED MULTIPLIER to the EMBEDDED 
FPU versions. To determine the penalty of using an FPGA 
with embedded FPUs for non floating-point computations, the 
percent of the chip that was used for each component was 
calculated.   For the chosen FPU configuration, the FPUs 
consumed 17.6% of the chip.  This is an enormous amount of 
“wasted” area for non-floating-point calculations and would 
clearly be received poorly by that community; however, this 
generally mirrors the introduction of the PowerPC to the 
Xilinx architecture.  Ultimately, embedded floating-point units 
would only likely be added if a “scientific application” series 
of FPGAs were added (much like the DSP series currently in 
the Xilinx Virtex4 family). 

B. Embedded Shifters 
Even with a conservative size estimate, adding embedded 

shifters to modern FPGAs significantly reduced circuit size.  
As seen in Fig 11 through Fig 13, adding embedded shifters 
increased the average clock rate by 3.3% and reduced the 
average area by 14.6% from the EMBEDDED MULTIPLIER to 
the EMBEDDED SHIFTER versions.  Even though there was an 
average increase in the track count of 16.5%, a track count of 
58 is well within the number of routing tracks on current 
FPGAs. 

 
Fig 11.  Benchmark clock rate 

 

 
Fig 12.  Benchmark area 

 

 
Fig 13.  Benchmark track count 

Only the floating-point operations were optimized for the 
embedded shifters – the control and reminder of the data path 
remained unchanged.  If we consider only the floating-point 
units, the embedded shifters reduced the number of CLBs for 
each double-precision floating-point addition by 31% while 
requiring only two embedded shifters.  For the double-
precision floating-point multiplication the number of CLBs 
decreased by 22% and required two embedded shifters. 

C. Modified CLBs with additional 4:1 Multiplexers 
Using the small modification to the CLB architecture 

showed surprising improvements.  Even though only the 
floating-point cores were optimized with the 4:1 multiplexers, 
there was an average clock rate increase of 11.6% and average 
area reduction of 7.3% from the EMBEDDED MULTIPLIER to 
the MULTIPLEXER versions.  The addition of the multiplexer 
reduced the size of the double-precision floating-point adder 
by 17% and reduced the size of the double-precision 
multiplier by 10%.  Even though there was an average 
increase in the track count of 16.1%, a track count of 58 is 
well within the number of routing tracks on current FPGAs. 

D. Single vs. Double Precision 
The computing usage at Sandia National Laboratories is 

oriented toward scientific computing which requires double-
precision.  It is because of this that the benchmarks were 
written using double-precision floating-point numbers.  With 
some modification, a double-precision FPU could be 
configured into two single precision units, and should show 
similar benefits. 

VII. RELATED WORK 
While there has not been a great deal of work dedicated to 

increasing the efficiency of floating-point operations on 
FPGAs, there has been some work that might be beneficial to 
floating-point operations on FPGAs.  Ye [23] showed the 
benefits for bus-based routing for datapath circuits.  Because 
IEEE floating-point numbers have 32 or 64 bits (single or 
double precision) and these signals will generally follow the 
same routing path.  This naturally lends itself to bus-based 
routing. 

Altera Corporation’s Stratix II has a logic architecture that 
consists of smaller LUTs that can be combined into two 6-
LUTs if the two 6-LUTs share four inputs [24].  While 6-
LUTs that share no more than two inputs would have been 
ideal for implementing a 4:1 multiplexer and possibly 
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produced similar results to adding a 4:1 multiplexer, the fact 
that the Stratix II 6-LUT requires sharing of four inputs 
reduces the efficiency of the Stratix II for implementing 
shifters and thus performing floating-point operations.  Xilinx 
just announced their next generation of FPGAs; the Virtex-5 
will have true 6-LUTs [25].  While the details of the Virtex-5 
are not know, it is expected that it could be used to implement 
a 4:1 multiplexer. 

Another alternative to implement shifting is to use the 
embedded multipliers that are common in Xilinx architectures.  
Unfortunately, this approach is infeasible in modern designs 
where the multipliers are completely consumed by the 
floating-point units to do multiplication. Extending the 
techniques of Xilinx AppNote 195 to 56 bits would be an 
inefficient technique with regards to silicon area as 7 
multipliers would be needed along with over 100 4-LUTs.  
That would not include the sticky bit which needs to be 
generated as well. 

VIII. CONCLUSION 
This paper has demonstrated three architectural 

modifications that make floating-point operations more 
efficient.  Adding complete double-precision floating-point 
multiply-add units, adding embedded shifters, and adding a 
4:1 multiplexer in parallel to the LUT, each provide an area 
and clock rate benefit over traditional approaches with 
different trade-offs.   

At the most coarse-grained end of the spectrum is a major 
architectural change that consumes significant chip area, but 
provides a dramatic advantage.  Despite a "worst case" area 
estimate, the embedded FPUs provided an average reduction 
in area of 54.2% compared to an FPGA enhanced with 
embedded 18-bit x 18-bit multipliers.  This area achievement 
is in addition to an average speed improvement of 33.4% over 
using the embedded 18-bit x 18-bit multipliers.  There is even 
an average reduction in the number of routing tracks required 
by an average of 6.8%. 

The embedded shifter provided an average area savings of 
14.3% and an average clock rate increase of 3.3%.  At the 
finest-grain end of the spectrum, adding a 4:1 multiplexer in 
the CLBs provided an average area savings of 7.3% while 
achieving an average speed increase of 11.6%.  The former 
comes at the cost of a slightly larger increase (1.5%) in the 
silicon area of the FPGA versus only a 0.35% increase in 
FPGA area for the latter change; however, neither of these 
changes is a significant amount of wasted spaces.  It is 
somewhat surprising that the smaller change to the FPGA 
architecture amounts to the bigger net “win”. 

REFERENCES 
[1] K. D. Underwood.  FPGAs vs. CPUs: Trends in Peak Floating-Point 

Performance.  In Proceedings of the ACM International Symposium on 
Field Programmable Gate Arrays, Monterey, CA, February 2004. 

[2] K. D. Underwood and K. S. Hemmert.  Closing the gap: CPU and FPGA 
Trends in sustainable floating-point BLAS performance.  In Proceedings 
of the IEEE Symposium on FPGAs for Custom Computing Machines, 
Napa Valley, CA, 2004. 

[3] K. S. Hemmert and K. D. Underwood.  An Analysis of the Double-
Precision Floating-Point FFT on FPGAs.  In Proceedings of the IEEE 
Symposium on FPGAs for Custom Computing Machines, Napa Valley, 
CA 2005. 

[4] M. de Lorimier and A. DeHon.  Floating point sparse matrix-vector 
multiply for FPGAs.  In Proceedings of the ACM International 
Symposium on Field Programmable Gate Arrays, Monterey, CA, 
February 2005. 

[5] G. Govindu, S. Choi, V. K. Prasanna, V. Daga, S. Gangadharpalli, and 
V. Sridhar.  A high-performance and energy efficient architecture for 
floating-point based lu decomposition on fpgas.  In Proceedings of the 
11th Reconfigurable Architectures Workshop (RAW), Santa Fe, NM, 
April 2004. 

[6] L. Zhuo and V. K. Prasanna.  Scalable and modular algorithms for 
floating-point matrix multiplication on fpgs.  In 18th International 
Parallel and Distributed Processing Symposium (IPDPS’04), Santa Fe, 
NM, April 2004. 

[7] L. Zhuo and V. K. Prasanna.  Sparse matrix-vector multiplication on 
FPGAs.  In Proceedings of the ACM International Symposium on Field 
Programmable Gate Arrays, Monterey, CA, February 2005. 

[8] IEEE Standards Board.  IEEE standard for binary floating-point 
arithmetic.  Technical Report ANSI/IEEE Std. 754-1985, The Institute 
of Electrical and Electronic Engineers, New York, 1985. 

[9] K. S. Hemmert and K. D. Underwood.  Open Source High Performance 
Floating-Point Modules.  In Proceedings of the IEEE Symposium on 
FPGAs for Custom Computing Machines, Napa Valley, CA, 2006. 

[10] I. Koren, Computer Arithmetic Algorithms, 2nd Edition, A.K. Peters, Ltd. 
Natick, MA 2002. 

[11] Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data 
Sheet.  June 2005 (Rev 4.3), [cited Aug 2005], http://direct.xilinx.com/ 
bvdocs/ publications/ ds083.pdf. 

[12] Virtex-4 Family Overview.  June 2005 (Rev 1.4), [cited Sept 2005], 
http:// direct.xilinx.com/ bvdocs/ publications/ ds112.pdf. 

[13] V. Betz and J. Rose.  VPR: A new packing, placement and routing tool 
for FPGA research.  In Proceedings of the 7th International Workshop on 
Field-Programmable Logic and Applications, pp 213-222, 1997. 

[14] V. Betz and J. Rose.  Architecture and CAD for Deep-Submicron 
FPGAs.  Kluwer Academic Publishers, Boston, MA 1999. 

[15] Xilinx: ASMBL Architecture. 2005 [cited Sept 2005], 
http://www.xilinx.com/products/silicon_solutions/ 
fpgas/virtex/virtex4/overview/ 

[16] Virtex-4 Data Sheet: DC and Switching Characteristics.  Aug 2005 (Rev 
1.9), [cited Sept 2005], http://direct.xilinx.com/bvdocs/publications/ 
ds302.pdf 

[17] Virtex-II Platform FPGAs: Complete Data Sheet.  Mar 2005 (Rev 3.4), 
[cited Aug 2005], http://direct.xilinx.com/bvdocs/publications/ds031. 
pdf 

[18] MIPS Technologies, Inc. 64-Bit Cores, MIPS64 Family Features. 2005, 
[cited Jan 2005], http://www.mips.com /content/Products/Cores/64-
BitCores. 

[19] J. B. Brockman, S. Thoziyoor, S. Kuntz, and P. Kogge.  A Low Cost, 
Multithreaded Processing-in-Memory System.  In Proceedings of the 3rd 
workshop on Memory performance issues, Munich, Germany, 2004. 

[20] B. Hutchings, P. Bellows, J. Hawkins, K. S. Hemmert, B. Nelson, and 
M. Rytting.  A CAD Suite for High-Performance FPGA Design.  In 
Proceedings of the IEEE Workshop on FPGAs for Custom Computing 
Machines, Napa, CA, April 1999. 

[21] E. Sentovich et al, “SIS: A System for Sequential Circuit Analysis,” 
Tech Report No. UCB/ERL M92/41, University of California, Berkley, 
1992. 

[22] J. Cong and Y. Ding, “FlowMap: An Optimal Technology Mapping 
Algorithm for Delay Optimization in Lookup-Table Based FPGA 
Designs,” IEEE Trans. CAD, Jan 1994, pp 1-12. 

[23] A. Ye, J. Rose, “Using Bus-Based Connections to Improve Field-
Programmable Gate Array Density for Implementing Datapath Circuits,” 
In Proceeding of the ACM International Symposium on Field-
Programmable Gate Arrays, Monterey, CA, February 2005. 

[24] D. Lewis, et al, “The Stratix II Logic and Routing Architecture,” In 
Proceeding of the ACM International Symposium on Field-
Programmable Gate Arrays, Monterey, CA, February 2005. 

[25] Virtex-5 LX Platform Overview.  May 12, 2006 (Rev 1.1), [cited May 
2006], http://direct.xilinx.com/bvdocs/publications/ds100.pdf 


	INTRODUCTION
	Background
	Floating-Point Numbering System
	Island-Style FPGA

	VPR
	Component Area
	Component Latency
	Track Length and Delay
	Embedded FPU
	Embedded Shifter
	Multiplexer

	Methodology
	Benchmarks
	Fast Carry-Chains

	Parameters
	Embedded FPU Aspect Ratio
	Embedded Shifter Size

	Results
	Embedded FPUs
	Embedded Shifters
	Modified CLBs with additional 4:1 Multiplexers
	Single vs. Double Precision

	Related Work
	Conclusion

