
Beauchamp - TVLSI-00112-2006

Architectural Modifications to Enhance the
Floating-Point Performance of FPGAs
Michael J. Beauchamp, Scott Hauck, Keith D. Underwood, and K. Scott Hemmert

Abstract—With the density of FPGAs steadily increasing,

FPGAs have reached the point where they are capable of
implementing complex floating-point applications. However,
their general-purpose nature has limited the use of FPGAs in
scientific applications that require floating-point arithmetic due
to the large amount of FPGA resources that floating-point
operations still require. This paper considers three architectural
modifications that make floating-point operations more efficient
on FPGAs. The first modification embeds floating-point
multiply-add units in an island style FPGA. While offering a
dramatic reduction in area and improvement in clock rate, these
embedded units have the potential to waste significant silicon for
non-floating-point applications. The next two modifications
target a major component of IEEE compliant floating-point
computations: variable length shifters. The first alternative to
LUTs for implementing the variable length shifters is a coarse-
grained approach: embedded variable length shifters in the
FPGA fabric. These shifters offer a significant reduction in area
with a modest increase in clock rate and a relatively small
potential for wasted silicon. The next alternative is a fine-
grained approach: adding a 4:1 multiplexer unit inside the slices,
in parallel to the 4-LUTs. While this offers the smallest overall
area improvement, it does offer a significant improvement in
clock rate with only a trivial increase in the size of the CLB.

Index Terms—Reconfigurable architecture, Floating-Point
arithmetic, FPGA

I. INTRODUCTION
variety of research efforts are searching for alternative
processor architectures to accelerate scientific

applications. While modern supercomputers depend almost
exclusively on a collection of traditional microprocessors,
these microprocessors have poor sustained performance on
many modern scientific applications. ASICs, which can be
highly efficient at floating-point computations, do not have
the programmability needed in a general purpose

supercomputer. Even though microprocessors are versatile
and have fast clock rates, their performance is limited by their
lack of customizability [1]. One alternative that is being
widely considered is the use of FPGAs. However, scientific
applications depend on complex floating-point computations
that could not be implemented on FPGAs until recently, due to
size constraints. Increases in FPGA density, and
optimizations of floating-point elements for FPGAs, have
made it possible to implement a variety of scientific
algorithms with FPGAs [2]-[7]. In spite of this, the floating-
point performance of FPGAs must increase dramatically to
offer a compelling advantage for the scientific computing
application domain. Fortunately, there are still significant
opportunities to improve the performance of FPGAs on
scientific applications by optimizing the device architecture.

Because fixed-point operations have long since become
common on FPGAs, FPGA architectures have introduced
targeted optimizations like fast carry-chains, cascade chains,
and embedded multipliers. In fact, Xilinx has created an
entire family of FPGAs optimized for the signal processing
domain, which uses this type of operation intensively [12].
Even though floating-point operations are becoming more
common, there have not been the same targeted architectures
for floating-point as there are for fixed-point – there is not a
scientific-computing family of FPGAs.

Potential architectural modifications span a spectrum from
the extremely coarse-grained to the extremely fine-grained.
This paper explores ideas at three points in that spectrum. At
the coarse-grained end, we evaluate the addition of fully
compliant IEEE 754 standard [8] floating-point multiply-add
units as an embedded block in the reconfigurable fabric.
These are feasible because many scientific applications
require compliance with the IEEE standard from any platform
they use. These coarse-grained units provide a dramatic gain
in area and clock rate at the cost of dedicating significant
silicon resources to hardware that not all applications will use.

IEEE floating-point also has other features that lend
themselves to finer grained approaches. The primary example
is that floating-point arithmetic requires variable length and
direction shifters. In floating-point addition, the mantissas of
the operands must be aligned before calculating the result. In
floating-point multiplication and division, the mantissa must
be shifted before the calculation (if denormals are supported)
and after the calculation to renormalize the mantissa [9]. The
datapath for shifters involves a series of multiplexers, which
are currently implemented using LUTs. In our highly

A

This work was supported in part by Sandia National Laboratories and the
National Science Foundation.

M. J. Beauchamp is with the Electrical Engineering Department, University
of Washington, Seattle, WA 98195 USA (phone: 206-221-6943; fax: 206-
543-3842; e-mail: mjb7@ee.washington.edu).

S. Hauck is with the Electrical Engineering Department, University of
Washington, Seattle, WA 98195 USA (hauck@ee.washington.edu).

K. D. Underwood is with the Scalable Computing Systems, Sandia
National Laboratories, Albuquerque, NM 87185 USA (kdunder@sandia.gov).

K. S. Hemmert is with the Scalable Computing Systems, Sandia National
Laboratories, Albuquerque, NM 87185 USA (kshemme@sandia.gov).

Beauchamp - TVLSI-00112-2006

optimized double-precision floating-point cores for FPGAs
[9], the shifter accounts for almost a third of the logic for the
adder and a quarter of the logic for the multiplier. Thus, better
support for variable length shifters can noticeably improve
floating-point performance.

This led us to consider two approaches to optimizing the
FPGA hardware for variable length shifters. At the fine
grained end, we consider a minor tweak to the traditional
CLB: the addition of a 4:1 multiplexer in parallel with the 4-
LUT. This provides a surprisingly large clock rate
improvement with a more modest area improvement and
virtually no wasted silicon area. In the middle of the
spectrum, we consider the addition of an embedded block to
provide variable length shifting. This uses slightly more area
than the CLB modification and provides a corresponding
increase in area savings. Surprisingly, however, it provides
only a modest improvement in clock rate.

To test these concepts, VPR was augmented to support
embedded functional units and high-performance carry-
chains. It was then used to place and route benchmarks that
use double-precision floating-point multiplication and
addition. The five benchmarks that were chosen were matrix
multiply, matrix vector multiply, vector dot product, FFT, and
LU decomposition. To determine the feasibility of these
proposed architectural modifications, five versions of each
benchmark were used: CLB only, embedded multiplier,
embedded shifter, multiplexer, and embedded floating-point
units.

The remainder of this paper is organized as follows.
Section 2 presents background information on the floating-
point numbering system and current FPGA architecture. A
description of how VPR was modified and used to test the
feasibility of the proposed FPGA architectural changes is
presented in Section 3. Section 4 presents the testing
methodology. The parameters for the embedded units are
presented in Section 5. Results and analysis are presented in
Section 6. Finally, Section 7 presents related work and
Section 8 the conclusion.

II. BACKGROUND

A. Floating-Point Numbering System
The IEEE-754 standard specifies a representation for single

and double precision floating-point numbers and is currently
the standard that is used for real numbers on most computing
platforms. Floating point numbers consist of three parts: sign
bit, mantissa, and exponent. They are arranged such that the
mantissa, f, is multiplied by the base number (two) to an
exponent, e, as shown in Equations 1 and 2, single and double
precision respectively [8], [10].

 () 12721.1 −⋅⋅− ES f=X (1)

 () 102321.1 −⋅⋅− ES f=X (2)

The IEEE standard specifies a sign bit, an 8-bit exponent,

and a 23-bit mantissa for a single-precision floating-point
number, as seen in Fig 1. Double-precision floating-point has
a sign bit, an 11-bit exponent and 52-bit mantissa, as seen in
Fig 2. Since the mantissa is normalized to the range [1,2)
there will always be a leading one on the mantissa. By
implying the leading one instead of explicitly specifying it, a
single bit of precision is gained, but it does raise the
complexity of floating-point implementations.

S Exp Mantissa

0 1 8... 9 31...

Fig 1. Single precision IEEE floating-point number

S Exp Mantissa

0 1 11... 12 63...

Fig 2. Double precision IEEE floating-point number

The exponent is represented in the somewhat unusual biased
notation. It represents positive and negative numbers by
having a bias equal to half of the exponent range. This
representation somewhat simplifies floating-point
comparators.

B. Island-Style FPGA
The current dominant style of FPGAs is the island-style

FPGA, consisting of a two dimensional lattice of CLBs
(Configurable Logic Blocks). Connecting the CLBs are
regular horizontal and vertical routing structures that allow
configurable connections at the intersections. In recent years
additional block units have been added that have increased
FPGAs versatility and efficiency, especially for circuits that
use fixed-point numbers. Embedded RAMs, DSP blocks, and
even microprocessors have been added to island-style FPGAs
[11], [12]. However, circuits that use floating-point numbers
still require a large number of CLBs to perform basic
operations. Thus, this paper examines hardware changes and
modifications that will improve the efficiency of floating-
point unit implementations.

III. VPR
VPR [13], [14] is the leading public-domain FPGA place

and route tool. It uses simulated annealing and a timing based
semi-perimeter routing estimate for placement and a timing
driven detailed router. In this paper, VPR was used to
determine the feasibility of three changes to the traditional
island-style FPGAs: embedding floating-point units (FPUs),
embedded shifters, and modified CLBs to facilitate shifting
for floating-point calculations.

In previous versions, VPR supported only three types of
circuit elements: input pads, output pads, and CLBs. To test
the proposed architectural modifications and to incorporate
the necessary architectural elements, VPR was modified to

Beauchamp - TVLSI-00112-2006

allow the use of embedded block units of parameterizable
size. These embedded blocks have parameterizable heights
and widths that are quantized by the size of the CLB.
Horizontal routing is allowed to cross the embedded units, but

vertical routing only exists at the periphery of the embedded
blocks. The regular routing structure that existed in the
original VPR was maintained as shown in Fig 3.
Additionally, a fast carry-chain was incorporated into the
existing CLBs to insure a reasonable comparison with state-
of-the-art devices. The benchmarks were synthesized using
Synplify and technology mapped using Xilinx ISE (rather than
the VPR technology mapping path). See methodology,
Section 4, for more details.

Fig 4. ASMBL

(a)

(b)

(c)

Fig 3. (a) Column based architecture with CLBs, embedded multipliers, and
block RAMs (b) Embedded shifters added to 'a' (c) Embedded floating-point
units replacing multipliers in 'a'

The baseline FPGA architecture was modeled after the
Xilinx Virtex-II Pro FPGA family and includes most of the
major elements of current FPGAs (IO blocks, CLBs, 18Kb
block RAMs, and embedded 18-bit x 18-bit multiplier blocks)
[11]. The CLBs include 4-input function generators, storage
elements, arithmetic logic gates, and a fast carry-chain. In
addition to the standard Xilinx Virtex-II Pro features,
alternative architectures incorporate embedded FPUs,
embedded shifters, or a modified CLB with 4:1 multiplexer in
parallel with the LUT. The various blocks were arranged in a
column based architecture similar to Xilinx’s ASMBL
(Advanced Silicon Modular Block) architecture [15], as seen
in Fig 4, which is the architectural foundation of the Virtex-4
FPGA family [16].

The embedded units have optional registered inputs and/or
registered outputs. Each unit is characterized by three timing
parameters: sequential setup time, sequential clock-to-q, and
maximum combinational delay if unregistered. The fast carry-
chain is a dedicated route that does not use the normal routing
structure of switch boxes and connection boxes. The carry-
chain has a dedicated route that goes from the carry-out at the
top of the CLB to the carry-in at the bottom of the CLB above
it. Because it does not make use of the normal routing graph,
it has its own timing parameters.

A. Component Area
The areas of the CLB, embedded multiplier, and block

RAM were approximated using a die photo of a Xilinx Virtex-
II 1000 [17] courtesy of Chipworks Inc. The area estimate of
each component includes the associated connection blocks,
which dominate the routing area. The areas were normalized
by the process gate length, L. All areas are referenced to the
smallest component, which is the CLB, and are shown in
Table 1.

Beauchamp - TVLSI-00112-2006

Fig 5. Embedded shifter block diagram

TABLE 1

COMPONENT TIMING AND AREA

 TSETUP
[ns]

TCLK→Q
[ns]

Area
[106 L2]

Area
[CLBs]

CLB 0.32 0.38 0.662 1
Embedded
Multiplier 2.06 2.92 11.8 18

Block
RAM 0.23 1.50 18.5 28

Shifter 0.30 0.70 0.843 1.27
FPU 0.50 0.50 107 161

B. Component Latency
The CLBs that were used are comparable to the Xilinx

slice. Each CLB is composed of two 4-input function
generators, two storage elements (D flip-flops), arithmetic
logic gates, and a fast carry-chain. VPR uses subblocks to
specify the internal contents of the CLB. Each subblock can
specify a combinational and sequential logic element and has
three timing parameters, similar to the embedded units:
sequential setup time, sequential clock-to-q, and maximum
combinational delay if the output subblock is unregistered.
More subblocks results in a more accurate timing
representation of the CLB. To adequately represent the timing
of an unmodified CLB, twenty VPR subblocks were used.
With the 4:1 multiplexer modification to the CLB, twenty-two
VPR subblocks were used. The embedded multiplier and
block RAM were modeled after the Xilinx Virtex-II Pro.
However, unlike the Xilinx Virtex-II Pro (and more similar to
the Xilinx Virtex-4), these units are independent of each other.
These timing parameters are based on the Xilinx Virtex-II Pro
-6 and were found in Xilinx data sheets or experimentally
using Xilinx design tools and are shown in Table 1.

C. Track Length and Delay
We use four different lengths of routing tracks: single,

double, quad, and long, where long tracks spanned the entire

length of the architecture. The percentages of different
routing track lengths were based on Xilinx Virtex-II Pro
family and can be seen in Table 2 [11].

TABLE 2
 TRACK LENGTH

Size Length Fraction
Single 1 22%
Double 2 28%
Quad 4 42%
Long All 8%

VPR uses a resistive and capacitive model to calculate the

delay for various length routing tracks. Based on previously
determined component area, the resistive and capacitive
values were estimated by laying out and extracting routing
tracks using Cadence IC design tools. Timing results for the
overall design were found to be reasonable based on previous
experience with Xilinx parts.

D. Embedded FPU
The embedded FPU implements a double-precision

floating-point multiply-add operation as described by equation
3. The FPU can be configured to implement a double-
precision multiply, add, or multiply-add operation.

 () bitbitbitbit CBA=X −−−− + 64646464 * (3)

The baseline size of the floating-point unit was

conservatively estimated from commodity microprocessors
and embedded cores in previous work [18], [19] and the actual
area used was increased to accommodate one vertical side of
the FPU being filled with connection blocks (assumed to be as
large as a "CLB"). This made the true area of the FPU
dependent on the shape chosen. We believe this to be an
extremely conservative estimate.

The latency of the FPUs was more difficult to estimate
appropriately. Given that a processor on a similar process (the

Beauchamp - TVLSI-00112-2006

Fig 6. Simplified representation of bottom half of modified CLB showing addition of 4:1 multiplexer

Pentium 4) can achieve 3 GHz operation with a 4 cycle add
and a 6 cycle multiply, we assume that an FPU implemented
for an FPGA could achieve 500 MHz at the same latency.
Setup and clock-to-q were set conservatively assuming the
latency included registers front and back.

E. Embedded Shifter
For floating-point operations, the mantissa can be shifted

either left or right, by any distance up to the full length of the
mantissa. This means that up to a 24 bit shift can be required
for IEEE single precision and up to 53 bits of shift can be
required for IEEE double precision. However, in hardware,
shifters tend to be implemented in powers of two. Therefore,
shifters of length 32 and 64 bits were implemented for single
and double precision floating-point operations, respectively,
as shown in Fig 5.

Even though floating-point operations only require a logical
shift, the embedded shifter should be versatile enough to be
used for other circuits that do not necessarily have floating-
point operations. Otherwise, the embedded shifters will have
a higher probability of being wasted in other types of
computations. Therefore, the embedded shifter that was used
has five modes: shift left logical/arithmetic, rotate left, shift
right logical, shift right arithmetic, and rotate right.

During the shifting that accompanies the normalization of
floating-point numbers it is necessary to calculate a sticky bit.
The sticky bit is the result of the logical OR of all of the bits
that are lost during a right shift, and it is an integral part of the
shift operation. Adding the necessary logic to the shifter to
compute the sticky bit increases the size of the shifter by less
than 1%. Thus, the logic for the sticky bit calculation is
included in each shifter. The sticky bit outputs are undefined
when a shift other than a logical right shift is performed.

The embedded shifter also has optional registers on the
inputs and outputs of the datapath. There are a total of 83
inputs and 66 outputs. The 83 inputs include 16 control bits,
64 data bits, and 3 register control bits (clock, reset, and
enable). The 66 outputs include 64 data bits and 2 sticky bits

(two independent sticky bit outputs are needed when the
shifter is used as two independent 32-bit shifters).

The benchmark circuits use the embedded shifters in the
fully registered mode, so only two timing parameters were
needed: sequential setup time of 300 ps and sequential clock-
to-q of 700 ps. Internally, the combinational delay of the
shifter was 1.52 ns, which is far from the limiting timing path.
The sequential times were derived from similar registered
embedded components of the Xilinx Virtex-II Pro -6, while
the combinational time and area (0.843 106 L2) were derived
by doing a layout in a 130 nm process. The area is 1.27 times
the size of the CLB and its associated routing, but it does not
take into account the area needed for the additional number of
connection of the embedded shifter compared to the CLB, and
the area needed for connections to the routing structure.
Because this area overhead is difficult to estimate, three
different shifter sizes (two, four, and eight equivalent CLBs)
were examined. There were only trivial differences in the area
and clock rate results, so this analysis uses size four, since 4
CLBs have more connections than the shifters in question.

F. Multiplexer
In modifying the CLB to better implement variable length

shifters, two general principles were observed: minimize the
impact on the architecture, and have no impact on general
purpose routing. To accomplish these goals, the only change
that was made to the CLB's architecture was to add a single
4:1 multiplexer in parallel with each 4-LUT, as shown in Fig
6. The multiplexer and LUT share the same four data inputs.
The select lines for the multiplexer are the BX and BY inputs
to the CLB. Since each CLB on the Xilinx Virtex II Pro has
two LUTs, each CLB would have two 4:1 multiplexers. Since
there are only two select lines, both of the 4:1 multiplexers
would have to share their select lines. However, for shifters
and other large datapath elements it is easy to find muxes with
shared select inputs. The BX and BY inputs are normally
used as the independent inputs for the D flip-flops, but are
blocked in the new mux mode. However, the D flip-flops can

Beauchamp - TVLSI-00112-2006

still be driven by the LUTs in the CLB, and can be used as
normal when not using the mux mode. This is a trade-off that
is made to not increase the number of inputs to the CLB.

To test the impact of adding the 4:1 multiplexer, a 4-LUT
and associated logic was laid out and simulated with and
without the capacitive load of the 4:1 multiplexer. It was
determined that adding the 4:1 multiplexer increased the delay
of the 4-LUT by only 1.83%. A 4:1 multiplexer was also laid
out and simulated. The delay of the 4:1 multiplexer was 253
ps, which is less than the 270 ps that was determined for the 4-
LUT from the Xilinx Virtex-II Pro -6 datasheet. The area of
the 4:1 multiplexer was 1.58 103 L2, and adding two 4:1
multiplexers to each CLB increases the size of the CLB by
less than 0.5% (the original area of the CLB takes into account
all logic, routing, and control bits associated with the CLB as
given in Table 1).

IV. METHODOLOGY

A. Benchmarks
Five benchmarks were used to test the feasibility of the

proposed architectural modification. They were matrix
multiply, matrix vector multiply, vector dot product, FFT, and
a LU decomposition datapath. All of the benchmarks use
double-precision floating-point addition and multiplication.
The LU decomposition also includes floating-point division,
which must be implemented in the reconfigurable fabric for all
architectures. Five versions of the benchmarks were used.

• CLB ONLY – All floating-point operations are performed

using the CLBs (Configurable logic Blocks). The only
other units in this version are embedded RAMs and IO.

• EMBEDDED MULTIPLIER – This version adds 18-bit x 18-
bit embedded multipliers to the CLB ONLY version.
Floating-point multiplication uses the CLBs and the
embedded multipliers. Floating-point addition and
division are performed using only the CLBs. This
version is similar to the Xilinx Virtex II Pro family of
FPGAs, and thus is representative of what is currently
available in commercial FPGAs.

• EMBEDDED SHIFTER – This version further extends the
EMBEDDED MULTIPLIER version with embedded variable
length shifters that can be configured as a single 64-bit
variable length shifter or two 32-bit variable length
shifters. Floating-point multiplication uses the CLBs,
embedded multipliers, and embedded shifters. Floating-
point addition and division are performed using the CLBs
and embedded shifters.

• MULTIPLEXER – While the same embedded RAMs,
embedded multipliers, and IO of the EMBEDDED
MULTIPLIER version are used, the CLBs have been
slightly modified to include a 4:1 multiplexer in parallel
with the LUTs. Floating-point multiplication uses the
modified CLBs and the embedded multipliers. Floating-
point addition and division are performed using only the
modified CLBs.

• EMBEDDED FPU – Besides the CLBs, embedded RAMs,
and IO of the CLB ONLY version, this version includes
embedded floating-point units (FPUs). Each FPU
performs a double-precision floating-point multiply-add.
Other floating-point operations are implemented using the
general reconfigurable resources.

The floating-point benchmarks were written in a hardware

description language, either VHDL or JHDL [20]. Instead of
using the traditional VPR path of synthesis using SIS [21] and
technology mapping using Flow Map [22], the benchmarks
were synthesized using Synplicity’s Synplify 7.6 into an EDIF
(Electronic Data Interchange Format) file. Technology
mapping was accomplished using Xilinx ISE 6.3. While these
are slightly older versions of the tools, only the Xilinx mapper
was used and only small parts of the benchmarks were
synthesized (the floating-point units were hand mapped in
JHDL). Thus, we do not believe this had a negative impact on
the results. The Xilinx NGDBuild (Native Generic Database)
and the Xilinx map tool were used to reduce the design from
gates to slices (which map one-to-one with our CLBs). The
Xilinx NCD (Native Circuit Description) Read was used to
convert the design to a text format. A custom conversion
program was used to convert the mapping of the NCD file to
the NET format used by VPR.

The benchmarks vary in size and complexity as shown in
Table 3. The number of IO and block RAMs is the same for
all benchmark versions. The number of embedded multipliers
in the EMBEDDED SHIFTER and MULTIPLEXER versions is the
same as the EMBEDDED MULTIPLIER version.

B. Fast Carry-Chains
VPR was also modified to allow the use of fast carry-

chains. The CLBs were modeled after the Xilinx Virtex II Pro
slice. Along with the two 4-input function generators, two
storage elements, and arithmetic logic gates, each CLB has a
fast carry-chain affecting two output bits. The carry-out of the
CLB exits through the top of the CLB and enters the carry-in
of the CLB above as shown in Fig 7. Each column of CLBs
has one carry-chain that starts at the bottom of the column of
CLBs and ends at the top of the column. Since each CLB has
logic for two output bits, there are two opportunities in each
CLB to get on or off of the carry-chain (Fig 7).

The addition of the carry-chain was necessary to make a
reasonable comparison between the different benchmark
versions. The versions of the benchmarks that implemented
the floating-point multiply-add using the embedded
multipliers or only CLBs make extensive use of the fast carry-
chains. For example, the double-precision addition requires a
57 bit adder. If the carry signal was required to go out on
general routing it would significantly decrease the adder
frequency. This would dramatically skew the results in favor
of the embedded FPUs.

To demonstrate the correct operation of the carry-chain
modification, the benchmarks that used the embedded
multipliers to implement the double-precision floating-point

Beauchamp - TVLSI-00112-2006

TABLE 3
NUMBER OF COMPONENTS IN EACH BENCHMARK VERSIONS

CLB ONLY EMBEDDED
MULTIPLIER†

EMBEDDED
SHIFTER†‡ MULTIPLEXER†‡ EMBEDDED

FPU†
Benchmark

IO RAM CLB CLB MULT CLB SHIFT CLB
CLBs
Using

4:1 Mux
CLB FPU

Matrix Mult. 195 192 56,973 41,502 144 36,483 64 39,894 9.9% 17,510 16
Vector Matrix Mult. 2,034 4 53,082 36,926 144 30,207 64 33,604 11.7% 11,250 16

Dot Product 1,492 0 51,924 36,737 144 30,018 64 33,403 11.8% 9,929 16
FFT 590 144 44,094 34,745 72 27,907 56 30,777 11.7% 15,432 28

LU Decomposition 193 96 56,093 37,634 144 30,506 67 34,145 12.2% 11,382 16
Maximum 2,034 192 56,973 41,502 144 36,483 67 39,894 12.2% 17,510 28
Average 901 87 52,433 37,509 130 31,024 63 34,365 11.4% 13,101 19

† Benchmarks include the same number of IOs and block RAMs as CLB ONLY version.
‡ Benchmarks include the same number of embedded multipliers as the EMBEDDED MULTIPLIER version.

multiply-add were placed and routed using VPR with and
without the carry-chain modification. The results are shown
in Table 4. By using the fast carry-chain the benchmarks had
an average speed increase of 49.7%.

Fig 7. Simplified CLB with fast vertical carry-chain

TABLE 4

MAXIMUM CLOCK RATE WITH AND WITHOUT THE USE OF THE FAST CARRY-
CHAIN

Benchmark

Max. Freq.
w/o Fast

Carry-Chain
[MHz]

Max. Freq.
with Fast

Carry-Chain
[MHz]

Matrix Multiply 87 126
Vector Multiply 89 117

Dot Product 87 149
FFT 79 104

LU Decomposition 84 142
Average 85 128

Because the carry-chains only exist in columns of CLBs

and only in the upward direction, we initially place all of the
CLBs of a given carry-chain in proper relative position to each
other and move/swap all of the CLBs that comprise a carry-
chain as one unit. To accomplish this, when a CLB that is
part of a carry-chain is chosen to be moved or swapped the

following algorithm is used:

1. The CLBs that are to be moved or swapped are randomly
determined based on the constraints of the placement
algorithm.

2. If the CLBs are part of a carry-chain the beginning and
end of the carry-chain are determined.

3. Whatever carry-chain is the longer of the two CLBs to be
swapped determines the number of CLBs to be swapped.

4. It is determined if the CLBs could be moved or swapped
without violating the physical constraints of the chip and
breaking any other carry-chain.

5. If the move swap is determined to be illegal, the
move/swap is discarded and a new set of blocks are
chosen for a potential move/swap. Even though this
potential move is discarded, it is not considered a rejected
move.

6. Once a legal move is found, all of the nets that connect to
all of the CLBs that comprise the carry-chain are
considered in the cost of moving the carry-chain.

7. The move is accepted or rejected based on the current
simulated annealing temperature.

8. If a move/swap is accepted all of the CLBs on the carry-
chain are moved together to maintain the physical
constraints of the carry-chain architecture.

9. The accepted or rejected move of a carry-chain consisting
of N CLBs is considered N accepted or rejected moves.

The rest of the details of the simulated annealing algorithm

remain unchanged. This resulted in making VPR significantly
slower, but is important for producing realistic comparisons.

V. PARAMETERS

A. Embedded FPU Aspect Ratio
To determine the appropriate aspect ratio for the FPU, each

benchmark was run using eight different heights and widths.
These FPUs with different aspect ratios were combined in a
column based architecture with CLBs and block RAMs. With
an increase in the height of the FPU (decrease in the aspect
ratio), there will be fewer FPUs on a single column. To

Beauchamp - TVLSI-00112-2006

maintain the same ratio of FPUs, CLBs, and RAMs for all the
different FPU sizes, the number of columns of FPUs was
increased as the FPU height increased.

The area of the FPUs varies with the aspect ratio due to the
overhead of connecting the FPU with the surrounding routing
resources - for each row of CLBs along an FPU’s edge, a
row’s worth of routing resources must be provided. A
conservative estimate was used that for each CLB of height
added to the FPU, an additional full CLB tile’s worth of area
was required for the programmable routing.

Each benchmark was tested with eight different FPU
heights; from 4 CLBs to 160 CLBs in height. These
benchmarks with different FPU sizes were compared on three
criteria: area, maximum frequency, and number of routing
tracks.

There is a significant difference in the maximum frequency
between the benchmarks with different aspect ratio FPUs.
The benchmarks with FPUs of height 32 had the highest
average clock rate. The lower frequencies were found at the

extremes, those with very large and very small aspect ratios.
The benchmarks with large aspect ratios and small FPU
heights were very wide and consequently had large horizontal
routes that increased the overall circuit latency. The
benchmarks with small aspect ratios and large FPU heights
had congestion on the vertical routing tracks that led to high
track counts and slower clock frequencies.

Because there was an area penalty for greater FPU heights
to account for connectivity and routing, the architecture with
the shortest FPUs had the smallest area. However, there was
only a 2.7% difference in the areas of the FPU benchmark
with the highest frequency and the benchmark with the
smallest area.

Modern FPGAs have a large number of routing tracks.
Therefore, apart from its impact on maximum clock
frequency, the required number of routing tracks is unlikely to
be the driving consideration when choosing the best aspect
ratio for the FPU. Even though there was a 12.8% difference
in track count of the FPU benchmark with the lowest track
count (FPU height 16) and the benchmark with the highest
clock rate (FPU height 32), the benchmark with the highest
clock rate only had an average routing track count of 46.

Fig 8. Embedded shifter benchmark clock rate

Fig 9. Embedded shifter benchmark area

Fig 10. Embedded shifter benchmark track count

On average, the benchmarks that used the FPU of height 32
had the highest frequency, did not have a significant area
increase over those with other aspect ratios, and had a
reasonable track count. Therefore, it is the architectures with
FPUs of height 32 that are being compared to the other
architectures. In general, this is approximately the “shape” we
would expect to be “good”. “Tall and narrow” or “short and
wide” configurations seem unnatural for the implementation
of floating-point units or for integration with a reconfigurable
fabric.

B. Embedded Shifter Size
The embedded shifter has an equivalent area of 1.27 CLBs.

However, this size does not take into account the area needed
for the additional number of connections of the embedded
shifter compared to the CLB, and the area needed for
connections to the routing structure. Because an exact area
comparison with existing FPGA architecture is not easy to
make, three different shifter sizes were examined. Shifters of
size two, four, and eight equivalent CLBs were tested and
their results are given in Fig 8 through Fig 10.

There is only an average difference of 3.7% in clock rate
and 1.0% in area between the different shifter sizes. Since
four CLBs have more combined I/O connections than a
shifter, we can use this for an extremely conservative estimate
of the shifter size. Therefore, an embedded shifter size
equivalent to four CLBs is used to compare with other
benchmark versions.

VI. RESULTS

A. Embedded FPUs
The embedded FPU had the highest clock rate, smallest

area, and lowest track count of all the architectures, as seen in

Beauchamp - TVLSI-00112-2006

Fig 11 through Fig 13. By adding embedded FPUs there was
an average clock rate increase of 33.4%, average area
reduction of 54.2%, and average track count reduction of
6.83% from the EMBEDDED MULTIPLIER to the EMBEDDED
FPU versions. To determine the penalty of using an FPGA
with embedded FPUs for non floating-point computations, the
percent of the chip that was used for each component was
calculated. For the chosen FPU configuration, the FPUs
consumed 17.6% of the chip. This is an enormous amount of
“wasted” area for non-floating-point calculations and would
clearly be received poorly by that community; however, this
generally mirrors the introduction of the PowerPC to the
Xilinx architecture. Ultimately, embedded floating-point units
would only likely be added if a “scientific application” series
of FPGAs were added (much like the DSP series currently in
the Xilinx Virtex4 family).

B. Embedded Shifters
Even with a conservative size estimate, adding embedded

shifters to modern FPGAs significantly reduced circuit size.
As seen in Fig 11 through Fig 13, adding embedded shifters
increased the average clock rate by 3.3% and reduced the
average area by 14.6% from the EMBEDDED MULTIPLIER to
the EMBEDDED SHIFTER versions. Even though there was an
average increase in the track count of 16.5%, a track count of
58 is well within the number of routing tracks on current
FPGAs.

Fig 11. Benchmark clock rate

Fig 12. Benchmark area

Fig 13. Benchmark track count

Only the floating-point operations were optimized for the
embedded shifters – the control and reminder of the data path
remained unchanged. If we consider only the floating-point
units, the embedded shifters reduced the number of CLBs for
each double-precision floating-point addition by 31% while
requiring only two embedded shifters. For the double-
precision floating-point multiplication the number of CLBs
decreased by 22% and required two embedded shifters.

C. Modified CLBs with additional 4:1 Multiplexers
Using the small modification to the CLB architecture

showed surprising improvements. Even though only the
floating-point cores were optimized with the 4:1 multiplexers,
there was an average clock rate increase of 11.6% and average
area reduction of 7.3% from the EMBEDDED MULTIPLIER to
the MULTIPLEXER versions. The addition of the multiplexer
reduced the size of the double-precision floating-point adder
by 17% and reduced the size of the double-precision
multiplier by 10%. Even though there was an average
increase in the track count of 16.1%, a track count of 58 is
well within the number of routing tracks on current FPGAs.

D. Single vs. Double Precision
The computing usage at Sandia National Laboratories is

oriented toward scientific computing which requires double-
precision. It is because of this that the benchmarks were
written using double-precision floating-point numbers. With
some modification, a double-precision FPU could be
configured into two single precision units, and should show
similar benefits.

VII. RELATED WORK
While there has not been a great deal of work dedicated to

increasing the efficiency of floating-point operations on
FPGAs, there has been some work that might be beneficial to
floating-point operations on FPGAs. Ye [23] showed the
benefits for bus-based routing for datapath circuits. Because
IEEE floating-point numbers have 32 or 64 bits (single or
double precision) and these signals will generally follow the
same routing path. This naturally lends itself to bus-based
routing.

Altera Corporation’s Stratix II has a logic architecture that
consists of smaller LUTs that can be combined into two 6-
LUTs if the two 6-LUTs share four inputs [24]. While 6-
LUTs that share no more than two inputs would have been
ideal for implementing a 4:1 multiplexer and possibly

Beauchamp - TVLSI-00112-2006

produced similar results to adding a 4:1 multiplexer, the fact
that the Stratix II 6-LUT requires sharing of four inputs
reduces the efficiency of the Stratix II for implementing
shifters and thus performing floating-point operations. Xilinx
just announced their next generation of FPGAs; the Virtex-5
will have true 6-LUTs [25]. While the details of the Virtex-5
are not know, it is expected that it could be used to implement
a 4:1 multiplexer.

Another alternative to implement shifting is to use the
embedded multipliers that are common in Xilinx architectures.
Unfortunately, this approach is infeasible in modern designs
where the multipliers are completely consumed by the
floating-point units to do multiplication. Extending the
techniques of Xilinx AppNote 195 to 56 bits would be an
inefficient technique with regards to silicon area as 7
multipliers would be needed along with over 100 4-LUTs.
That would not include the sticky bit which needs to be
generated as well.

VIII. CONCLUSION
This paper has demonstrated three architectural

modifications that make floating-point operations more
efficient. Adding complete double-precision floating-point
multiply-add units, adding embedded shifters, and adding a
4:1 multiplexer in parallel to the LUT, each provide an area
and clock rate benefit over traditional approaches with
different trade-offs.

At the most coarse-grained end of the spectrum is a major
architectural change that consumes significant chip area, but
provides a dramatic advantage. Despite a "worst case" area
estimate, the embedded FPUs provided an average reduction
in area of 54.2% compared to an FPGA enhanced with
embedded 18-bit x 18-bit multipliers. This area achievement
is in addition to an average speed improvement of 33.4% over
using the embedded 18-bit x 18-bit multipliers. There is even
an average reduction in the number of routing tracks required
by an average of 6.8%.

The embedded shifter provided an average area savings of
14.3% and an average clock rate increase of 3.3%. At the
finest-grain end of the spectrum, adding a 4:1 multiplexer in
the CLBs provided an average area savings of 7.3% while
achieving an average speed increase of 11.6%. The former
comes at the cost of a slightly larger increase (1.5%) in the
silicon area of the FPGA versus only a 0.35% increase in
FPGA area for the latter change; however, neither of these
changes is a significant amount of wasted spaces. It is
somewhat surprising that the smaller change to the FPGA
architecture amounts to the bigger net “win”.

REFERENCES
[1] K. D. Underwood. FPGAs vs. CPUs: Trends in Peak Floating-Point

Performance. In Proceedings of the ACM International Symposium on
Field Programmable Gate Arrays, Monterey, CA, February 2004.

[2] K. D. Underwood and K. S. Hemmert. Closing the gap: CPU and FPGA
Trends in sustainable floating-point BLAS performance. In Proceedings
of the IEEE Symposium on FPGAs for Custom Computing Machines,
Napa Valley, CA, 2004.

[3] K. S. Hemmert and K. D. Underwood. An Analysis of the Double-
Precision Floating-Point FFT on FPGAs. In Proceedings of the IEEE
Symposium on FPGAs for Custom Computing Machines, Napa Valley,
CA 2005.

[4] M. de Lorimier and A. DeHon. Floating point sparse matrix-vector
multiply for FPGAs. In Proceedings of the ACM International
Symposium on Field Programmable Gate Arrays, Monterey, CA,
February 2005.

[5] G. Govindu, S. Choi, V. K. Prasanna, V. Daga, S. Gangadharpalli, and
V. Sridhar. A high-performance and energy efficient architecture for
floating-point based lu decomposition on fpgas. In Proceedings of the
11th Reconfigurable Architectures Workshop (RAW), Santa Fe, NM,
April 2004.

[6] L. Zhuo and V. K. Prasanna. Scalable and modular algorithms for
floating-point matrix multiplication on fpgs. In 18th International
Parallel and Distributed Processing Symposium (IPDPS’04), Santa Fe,
NM, April 2004.

[7] L. Zhuo and V. K. Prasanna. Sparse matrix-vector multiplication on
FPGAs. In Proceedings of the ACM International Symposium on Field
Programmable Gate Arrays, Monterey, CA, February 2005.

[8] IEEE Standards Board. IEEE standard for binary floating-point
arithmetic. Technical Report ANSI/IEEE Std. 754-1985, The Institute
of Electrical and Electronic Engineers, New York, 1985.

[9] K. S. Hemmert and K. D. Underwood. Open Source High Performance
Floating-Point Modules. In Proceedings of the IEEE Symposium on
FPGAs for Custom Computing Machines, Napa Valley, CA, 2006.

[10] I. Koren, Computer Arithmetic Algorithms, 2nd Edition, A.K. Peters, Ltd.
Natick, MA 2002.

[11] Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data
Sheet. June 2005 (Rev 4.3), [cited Aug 2005], http://direct.xilinx.com/
bvdocs/ publications/ ds083.pdf.

[12] Virtex-4 Family Overview. June 2005 (Rev 1.4), [cited Sept 2005],
http:// direct.xilinx.com/ bvdocs/ publications/ ds112.pdf.

[13] V. Betz and J. Rose. VPR: A new packing, placement and routing tool
for FPGA research. In Proceedings of the 7th International Workshop on
Field-Programmable Logic and Applications, pp 213-222, 1997.

[14] V. Betz and J. Rose. Architecture and CAD for Deep-Submicron
FPGAs. Kluwer Academic Publishers, Boston, MA 1999.

[15] Xilinx: ASMBL Architecture. 2005 [cited Sept 2005],
http://www.xilinx.com/products/silicon_solutions/
fpgas/virtex/virtex4/overview/

[16] Virtex-4 Data Sheet: DC and Switching Characteristics. Aug 2005 (Rev
1.9), [cited Sept 2005], http://direct.xilinx.com/bvdocs/publications/
ds302.pdf

[17] Virtex-II Platform FPGAs: Complete Data Sheet. Mar 2005 (Rev 3.4),
[cited Aug 2005], http://direct.xilinx.com/bvdocs/publications/ds031.
pdf

[18] MIPS Technologies, Inc. 64-Bit Cores, MIPS64 Family Features. 2005,
[cited Jan 2005], http://www.mips.com /content/Products/Cores/64-
BitCores.

[19] J. B. Brockman, S. Thoziyoor, S. Kuntz, and P. Kogge. A Low Cost,
Multithreaded Processing-in-Memory System. In Proceedings of the 3rd
workshop on Memory performance issues, Munich, Germany, 2004.

[20] B. Hutchings, P. Bellows, J. Hawkins, K. S. Hemmert, B. Nelson, and
M. Rytting. A CAD Suite for High-Performance FPGA Design. In
Proceedings of the IEEE Workshop on FPGAs for Custom Computing
Machines, Napa, CA, April 1999.

[21] E. Sentovich et al, “SIS: A System for Sequential Circuit Analysis,”
Tech Report No. UCB/ERL M92/41, University of California, Berkley,
1992.

[22] J. Cong and Y. Ding, “FlowMap: An Optimal Technology Mapping
Algorithm for Delay Optimization in Lookup-Table Based FPGA
Designs,” IEEE Trans. CAD, Jan 1994, pp 1-12.

[23] A. Ye, J. Rose, “Using Bus-Based Connections to Improve Field-
Programmable Gate Array Density for Implementing Datapath Circuits,”
In Proceeding of the ACM International Symposium on Field-
Programmable Gate Arrays, Monterey, CA, February 2005.

[24] D. Lewis, et al, “The Stratix II Logic and Routing Architecture,” In
Proceeding of the ACM International Symposium on Field-
Programmable Gate Arrays, Monterey, CA, February 2005.

[25] Virtex-5 LX Platform Overview. May 12, 2006 (Rev 1.1), [cited May
2006], http://direct.xilinx.com/bvdocs/publications/ds100.pdf

	INTRODUCTION
	Background
	Floating-Point Numbering System
	Island-Style FPGA

	VPR
	Component Area
	Component Latency
	Track Length and Delay
	Embedded FPU
	Embedded Shifter
	Multiplexer

	Methodology
	Benchmarks
	Fast Carry-Chains

	Parameters
	Embedded FPU Aspect Ratio
	Embedded Shifter Size

	Results
	Embedded FPUs
	Embedded Shifters
	Modified CLBs with additional 4:1 Multiplexers
	Single vs. Double Precision

	Related Work
	Conclusion

