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Abstract 
Reconfigurable hardware is ideal for use in Systems-on-a-Chip, as it provides both hardware-level performance and 
post-fabrication flexibility. However, any one architecture is rarely equally optimized for all applications. SoCs 
targeting a specific set of applications can greatly benefit from incorporating customized reconfigurable logic 
instead of generic FPGA logic. Unfortunately, manually designing a domain-specific architecture for every SoC 
would require significant design time. Instead, this article discusses our initial efforts towards creating a 
reconfigurable hardware generator capable of automatically creating flexible, yet domain-specific, designs. Our tests 
indicate that our generated architectures are more than 5x smaller than equivalent FPGA implementations, and 
nearly as area-efficient as standard cell designs. We also use a novel technique employing synthetic circuit 
generation to demonstrate the flexibility of our architecture generation techniques. 

1 Introduction 
Reconfigurable hardware shows great potential for systems-on-a-chip (SoCs), as it provides speeds similar to 
hardware execution but maintains a level of flexibility not available with more traditional custom circuitry [1]. This 
flexibility is the key to allowing both hardware reuse and post-fabrication modification. A widely available form of 
reconfigurable hardware is the field-programmable gate array (FPGA), and the structures within an SoC could be 
patterned after these designs. However, because of their highly flexible nature, FPGAs can incur significant area and 
speed penalties. If the SoC itself will be custom-fabricated, this presents the opportunity to customize the 
reconfigurable hardware to the target application domain. Domain-specific reconfigurable hardware provides 
flexibility within a domain, but with the extra unnecessary flexibility optimized away. This leads to reduced area and 
increased performance compared to a generic FPGA-style architecture. Unfortunately, manual design of a new 
reconfigurable architecture for each new domain would be disadvantageous in terms of design time and expertise 
required. In the Totem Project, we instead focus on the automatic creation of customized reconfigurable 
architectures, including high-level design [2][3][4], VLSI layout [5][6][7], and custom place and route tools [8][9]. 

This article focuses on the automatic creation of 1D datapath-style reconfigurable architectures that are flexible 
enough to handle changes in a domain’s circuits, such as upgrades or bug-fixes, and even the introduction of entirely 
new circuits. We present a number of different tactics to generate these hardware designs, then test both the area-
efficiency and flexibility of the generated architectures to verify the benefit of domain-specific hardware. 

2 Background 
The presented architecture generator creates designs in the style of the RaPiD architecture [10][11], shown in Figure 
1. RaPiD is composed of coarse-grained word-sized computation units such as ALUs, Multipliers, and RAMs, 
arranged along a 1D axis. Routing is in the form of word-sized busses arranged in tracks running parallel to the axis. 
Each component contains multiplexers on each of its inputs which choose between the signals of each routing track, 
as well as demultiplexers on each of the outputs that allow the unit to directly output to any of the routing tracks. 
The two primary motivations for choosing the RaPiD system as a starting point, apart from its successes in the 
digital signal processing (DSP) area, are the 1D organization and the existing compiler. As with RaPiD, a 1D design 
is effective for the datapath-style computations that we initially target. More importantly, a 1D structure simplifies 
our task significantly, though in future efforts we will examine 2D designs. The existing compiler is important 
because this allows us to create benchmark applications. 

As previously stated, RaPiD has proven itself to be a very good architecture for DSP applications. However, this 
architecture was manually designed, and does not have enough routing capability for a number of the benchmarks 
we use. Furthermore, RaPiD was designed to be suitable for executing a wide variety of circuits within the DSP 
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domain. On the other hand, our goal is to customize an architecture for a given application set, with some extra 
resources if desired for future flexibility, and to generate this architecture automatically. 
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Figure 1: A single RaPiD cell [10][11]. Multiple cells tile horizontally to make a full architecture. 

3 Architecture Generation 
While RaPiD has a fixed logic mix and set of routing tracks, the Totem architecture generation algorithms can vary 
these particular features to achieve a more customized design. Essentially, RaPiD becomes one architectural 
instance that a flexible architecture generator could create. However, the generators should also be able to create 
architectures both larger and smaller, depending on the specified domain. For example, RaPiD was designed 
specifically for DSP operations. If a user only needs a small set of FIR filters, an architecture generator could 
automatically create an architecture more optimized for FIR filters than RaPiD. Likewise, if the tool is presented 
with a set of netlists which require more resources than the RaPiD architecture provides, the generation tool will still 
be able to create an architecture able to implement those netlists. In this section we briefly describe how we create 
the logic structure, then follow with an in-depth discussion of our routing architecture generation techniques. 

3.1 Logic Generation 
The logic generation step for flexible architecture generation is a slightly modified version of the logic generation 
technique from our previous work on configurable ASIC designs [2][12]. We profile the input circuit set that is the 
specification for the architecture, and determine the minimum number of each type of unit required to implement all 
of the given circuits (one at a time). These values are used to create the physical logic components for the flexible 
architecture. The user can specify if he or she wishes to add more. Simulated annealing [13] is used to 
simultaneously find a physical placement of the units and a mapping of the netlists to those physical components. 
Figure 2 shows two example netlists, and Figure 3 shows a possible logic architecture generated for those netlists. 
At this point, we have not yet created the routing structure. The physical placement and netlist mapping are needed 
to determine the connectivity requirements of the circuits for the later routing generation stage. 
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Figure 2: Two different example netlists, a multiply accumulate (light) and a 2-tap FIR filter (dark) 
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Figure 3: The logic structure created for the example netlists of Figure 1. The shading indicates the logic 
units used by each netlist. Only one netlist is active at any given time. Lines indicate communication needs. 
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3.2 Routing Generation 
After the logic is generated and placed, a routing architecture generation algorithm heuristically creates the 
configurable routing structure based on the signal locations and lengths within the application netlists [3]. We have 
developed several different algorithms to do this. However, before discussing the actual routing generation 
algorithms, we first discuss common features and issues of the architecture generation algorithms. 

3.2.1 Common Features 
Architectural Style 
The generated architectures are track-based architectures similar in style to RaPiD. Local tracks (the upper routing 
tracks in RaPiD, also shown in Figure 4a), are used for short connections. A special track, the topmost shown in 
Figure 1 and Figure 4a, containing "feedback" wires, as they only route from a unit's outputs to that unit's inputs. 
Distance routing tracks (the bottom tracks in RaPiD, also shown in Figure 4b) have bus connectors that connect or 
disconnect track wire segments, depending on how they are configured. These connectors are programmed 
independently, and provide an optional pipeline delay. Distance tracks allow for a great deal of routing flexibility, 
but bus connectors can add delay as a signal passes through them as well as a not-insignificant area penalty. 

Each track has an associated length and offset. The length is based on the number of units spanned by the wires in 
the track, and can be determined by subtracting the indices of the furthest units a wire can reach. For example, a 
wire that spans from the outputs of unit 1 to the inputs of unit 3 would be considered a length-2 wire. The offset 
indicates the left-right shifting of wires within the track, and corresponds to the index position of the first break or 
bus connector between wires. Since all wires in a track have the same length, the offset of a track is always less than 
the length of the track. Figure 4 shows a variety of tracks labeled with their lengths and offsets. 
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(a)                                                                                       (b) 

Figure 4: Examples of the different types of routing tracks, (a) local tracks, and (b) distance tracks with bus 
connectors (represented by the squares on the tracks). The “wire length” of each track is given to the right 
of the track. 

For this study, we restrict allowable wire lengths based on experience with the RaPiD architecture. Local tracks can 
be no longer than length-8, as they are intended for short, fast connections. Distance wires must have lengths 
between 8 and 16 (inclusive). The minimum length restriction avoids adding too many bus connectors (and their 
associated area/delay penalty). The maximum length is because extremely long wires become the critical path. Our 
experiments indicated extremely few if any tracks were created longer than 16, so we chose 16 as the maximum. 

++XXXX

 
Figure 5: Flexible routing architecture created from the placement of Figure 3. Vertical lines represent the 
multiplexers and demultiplexers on every port of each unit. Black wires are used by both netlists of Figure 
2, while the other colors indicate wires used only by the corresponding netlist. 

The high-level operation of the architecture generation algorithms we present is similar—each iteratively adds 
routing tracks until all signals from all the netlists in the problem can be routed onto the architecture (though not 
necessarily all at the same time). An example routing architecture for the placement of Figure 3 is shown in Figure 
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5. After all the tracks have been added, the user is given the opportunity to increase the number of routing tracks 
beyond the generated architecture for optional additional flexibility. 

Cost Function 
While area and delay are important cost considerations, they are difficult to use as a cost function for routing 
architecture construction. For example, for local tracks, different track lengths or offsets do not have different area 
costs. However, these choices can affect the overall area of the final architecture if one length and offset 
combination is overall more useful for the signals that need to be routed. Therefore, instead of directly measuring the 
area or delay cost of a given track during the iterative routing generation process, we instead consider the cross-
section of signals that are as of yet unroutable on the incomplete routing architecture. This value is calculated by 
finding the maximum unroutable signal cross-section (UCS) at any physical unit index for each individual netlist, 
then for each index, choosing the maximum value across all of the netlists. The maximum of the new values is the 
total UCS value that represents the “cost” during routing generation. Figure 6 illustrates the initial UCS calculation 
for the placement of Figure 3. This value is also the lower bound of the number of tracks that must still be added to 
the architecture at any given point to implement the source netlists. The initial UCS is the lower bound of the total 
number of tracks. This lower bound is, however, a very improbable solution due to the extremely high number of 
bus connectors that would almost certainly be required in order to have that few tracks. 
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Figure 6: Calculation of the unroutable cross-section (UCS) for the placement of Figure 3. The 
cross-section is given for each netlist (light grey netlist / dark grey netlist) at each index. The maximum for 
the netlists appears below, and the overall UCS at the far right. 

Fast Internal Router 
In order to calculate the UCS, the generator must determine which signals are and are not routable. Because this is a 
frequent operation performed within nested loops, a very fast router is needed. Initially, a left-edge algorithm [14] 
was considered. However, this algorithm does not consider the suitability of a given wire segment for a given signal, 
only whether or not the signal fits in a given wire. While the algorithm is appropriate to test routing success or 
failure for complete architectures with uniformly-sized wire segments, it is not indicate how close an incomplete 
routing architecture is to implementing a given netlist. This could result in misguided track choices during iterative 
routing construction. For example, a circuit may have two signals: one relatively short, and the other relatively long. 
The short signal’s leftmost connection may be one position to the left of the long signal’s leftmost connection. With 
a left-edge routing algorithm, the short signal will be routed first. If a long-segmented track is created to implement 
the long signal, but that track is also able to implement the short signal, the short signal would be routed onto the 
track instead of the long one. This may deceive the generation algorithm into adding another long track for the still 
unroutable long signal instead of a more efficient short track for the short signal. 

Therefore, we modify the left edge algorithm to greedily consider length-appropriateness during routing. Each time 
a signal/wire pair is considered, all other unrouted signals that could use the wire are also considered. The signal 
with the closest “fit” is routed onto the wire. If the original signal from the pair was not chosen, that signal is 
reconsidered on the next iteration. For the routing operation, each netlist is considered a separate problem—signals 
from different netlists can be assigned to the same wire. 

3.2.2 Routing Generation Algorithms 
Each of our three flexible reconfigurable routing generation algorithms represents a different point in the 
area/flexibility design space. The goal is to provide an SoC designer with a wider range of choices for flexible 
reconfigurable cores. If area is the primary consideration, and any additional netlists implemented on the 
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architecture are expected to be very similar to those in the specification set, the designer may choose a more area-
efficient but less flexible design. However, if the future uses of the SoC are not completely known at design time, 
the designer may choose a more flexible reconfigurable core to provide future robustness. This section discusses all 
three generation algorithms, and presents pseudocode describing their operation. 

Greedy Histogram 
The Greedy Histogram (GH) routing generation algorithm attempts to customize a RaPiD-style routing architecture 
as much as possible to the input netlist set. Therefore, this algorithm does not restrict the offsets of the created tracks 
as the next two algorithms do. While this can negatively impact the architecture’s flexibility to implement netlists 
beyond the input netlist set [4][15], the goal of the algorithm is to customize the routing architecture significantly for 
the given applications within the limitations of the previously described architectural style. The pseudocode for this 
algorithm is shown in Figure 7. In this algorithm, tracks are added one at a time within an infinite loop. The loop is 
broken when all of the netlists can be fully routed onto the architecture using the integrated fast router. The 
algorithm chooses the wire length of a "new" track based on a histogram of the lengths of the unroutable signals. 
The actual track creation method depends in part upon the wire length chosen, as indicated by the pseudocode in 
Figure 7. Note that the comparative “benefit” of one track over another is based on the relative reduction in the 
UCS, or the relative reduction in the number of unroutable signals if the UCS values are the same. 

Greedy_Histogram() 
 Let S = the set of all signals 
 Let U = the set of unroutable signals (initially all signals) 
 Let T = the set of tracks (initially empty) 
 
 While U not empty 
  Let H = histogram of U (unroutable signals) by signal length 
  Let length = highest index of H that contains the max value in H 
 
  If (length == 0) 
   Add a feedback track to T 
  Else if (length < MIN_DISTANCE_LENGTH) 
   Try all possible offsets for a local track of the given length 
   Add a local track of the given length to T with the offset providing the greatest benefit 
  Else if (length > MAX_LOCAL_LENGTH) 
   Try all distance routing lengths, and all possible offsets for each length 
   Add a distance track to T with the (length, offset) combination providing the greatest benefit 
  Else 
   Find the best local track and distance track possibilities using the above techniques 
   Add the track to T that provided the greatest benefit, choosing the local track if tied 
  Route signals S onto tracks T, and update U accordingly 
 

Figure 7: Pseudocode for the Greedy Histogram routing generation algorithm. 

The next two algorithms focus on creating regular patterns in the routing architecture. Although we already require 
that all wires in a given track are the same length, the offsets chosen for different tracks may cause bus connectors or 
breaks between local routing wires to be unevenly distributed across the architecture. By contrast, the next two 
algorithms require even distribution of the bus connectors, breaks, and the different logic unit types. The necessary 
track offsets to accomplish this are determined automatically [4]. These algorithms also restrict wire lengths to 
powers of two. This restriction is common in FPGA architectures, and is intended to further generalize the 
architectures. Given the lack of length-8 local routing in the GH algorithm, we also remove this possibility. Thus, 
possible local track lengths are 0, 2, and 4, and possible distance track lengths are 8 and 16. Finally, logic resource 
types are also distributed evenly throughout the architectures. 

Add Max Once 
The Add Max Once (AMO) algorithm attempts to add as many of the “cheapest” tracks as possible to reduce the 
unroutable cross-section. Tracks are added from the shortest local length (fastest tracks) to the longest local length, 
then distance tracks. Tracks of the each type are added until no further reductions are possible with more tracks of 
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that type. One problem with this technique is that only one length of distance track will be considered, since with 
enough distance routing tracks of any length all signals can be routed by using the bus connectors to form longer 
wires when necessary. Length-8 distance routing tracks were chosen as the distance track length for this algorithm 
because experiments indicated that more length-8 tracks were generally created than length-16 using the other 
generation techniques. Also, restricting distance tracks to length-16 could result in the creation of too many tracks. 
The pseudocode for Add Max Once appears in Figure 8. 

Add_Max_Once() 
 Let S = the set of all signals 
 Let U = the set of unroutable signals (initially all signals) 
 Let T = the set of tracks (initially empty) 
 
 For each local track length in increasing order (0,2,4) 
  Add local tracks of the given length until the UCS could not be further reduced no matter how 
    many more tracks of that length were added at this point 
  Route signals S onto tracks T, and update U accordingly 
 Add distance tracks of length 8 until all signals can be routed  
 

Figure 8: Pseudocode for the Add Max Once regular routing architecture generation algorithm. 

Add Min Loop 
AMO tends to weight towards the use of distance routing tracks because it only considers each wire length and type 
combination once. However, it is possible that once a distance track is added, using additional local tracks will once 
again reduce the UCS. Therefore, the Add Min Loop (AML) algorithm has been created in an effort to promote local 
tracks over distance tracks. Pseudocode for this algorithm is given in Figure 9. AML also examines track types and 
lengths from “cheapest” to most “expensive”, but after each addition the AML algorithm revisits cheaper track types 
and lengths to determine if any would now be useful. This algorithm is able to cope with different distance track 
lengths, and the order of tracks considered is from shortest local to longest local, then longest distance to shortest 
distance. Bus connectors consume area (priority is given to local tracks, followed by distance tracks with fewer 
connectors), and short wires are faster than long ones (priority within local tracks is given to shorter lengths). 

Add_Min_Loop() 
 Let S = the set of all signals 
 Let U = the set of unroutable signals (initially all signals) 
 Let T = the set of tracks (initially empty) 
 
 While U not empty 
  Route signals S onto tracks T, and update U accordingly 
  For each local track length in increasing order (0,2,4) 
   Add local tracks of the given length until the UCS could not be further reduced even with  
    more tracks of that length, capping the number added at the length of the track 
   If any tracks were added 
    Remove all distance tracks and longer local tracks 
    Go to the beginning of outer While loop 
  For each distance track length in decreasing order (16,8) 
   Add one distance track of the given length if it would reduce the UCS 
   If a track was added 
    Remove all longer distance tracks 
    Go to beginning of outer While loop 
  Since none of the attempts reduced the UCS, add one track of the same type and length as the 
   attempt that most reduced the count of unroutable signals 
 

Figure 9: The pseudocode for the Add Min Loop regular routing architecture generation algorithm. 

AML considers a given track types and length to see if it will reduce the UCS. To further emphasize local routing, 
multiple local tracks may be added at the same time—up to as many as the length of the local track (providing the 
full range of possible offsets for that length). The algorithm adds as few tracks as possible up to that length value to 
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get the greatest UCS reduction. If adding the maximum number of local tracks of the given length does not reduce 
the UCS, the next (more expensive) track type/length is considered. Distance routing tracks are considered more 
expensive than local ones, so the algorithm only allows one distance routing track to be created per iteration. If none 
of the possibilities reduces the UCS, the algorithm breaks the stalemate by determining which of the attempts 
reduced the count of unroutable signals the most. A single track of this type and length is created, and a new 
iteration begins. Note that in the case of a tie, cheaper tracks are preferred over more expensive ones. 

At times, the new combination of tracks may reduce the overall benefit of a previously-added expensive track if the 
combination of cheaper tracks in the architecture is able to provide the same UCS reduction. To compensate for this 
possibility, any tracks more expensive than the new tracks are removed whenever tracks are added to the 
architecture, After the track counts are modified accordingly, execution begins again from the top of the loop, and 
all track types are again considered in the same order as before. 

4 Results 
The next few sections present comparative results of flexible routing architecture generation algorithms. First we 
present information on the input netlists used by our algorithms. Then the area results of the algorithms are 
compared to each other as well as to other implementations of the input circuits. Finally, we compare the flexibility 
of the generated algorithms using a novel flexibility measurement technique [15]. 

4.1 Input Netlists 
Eight different applications (each composed of two or more netlists) were used to evaluate the presented architecture 
generation algorithms. These applications, along with their member netlists, are listed in Table 1. Five of these are 
real applications used for radar, OFDM, digital camera, speech recognition, and image processing. The remaining 
three applications are sets of related netlists, such as a collection of different FIR filters. The applications were 
designed for the RaPiD architecture. 

Table 1: Eight applications used to test generated architectures, each with two or more distinct netlists. 
Application Member Netlists

Radar decnsr, fft16_2nd, psd
OFDM sync, fft64

Camera color_interp, img_filt, med_filt
Speech log32, fft32, 1d_dct40

FIR firsm, firsm2, firsm3, firsymeven, firtm_1st, firtm_2nd
Matrix matmult, matmult4, matmult_bit, limited, limited2
Sort sort_g, sort_rb, sort_2d_g, sort_2d_rb

Image med_filt, matmult, firtm_2nd, fft16_2nd, 1d_dct40  

For comparison, we implemented these applications using several different techniques: standard cells, FPGA, 
RaPiD, and cASIC. Details of these implementations follow. For the standard cell flow, Verilog netlists were 
synthesized in Cadence to a TSMC 0.18µm process with 6 metal layers. Application areas are the sum of the areas 
required for each of the member netlists, except for the “collection” applications (FIR, Matrix, and Sort), which are 
given area estimates equal to the largest of the members. Verilog netlists were also synthesized to a Xilinx Virtex-II 
FPGA [16]. The XC2V1000 device has a slices:multipliers:RAMs resource ratio of 128:1:1, which we use as an 
atomic unit (tile) of FPGA area. The area of an individual tile (approximately 25K system “gates”) was computed 
based on the die size and a die photograph [17], and then scaled to a 0.18µm process for a final tile size of 
1.643mm2. The total area required by an application is the maximum of the tile areas of its member netlists. 

RaPiD [10][11] represents a partially-customized FPGA solution. The minimum number of RaPiD cells needed to 
implement each netlist was determined, and like the FPGA solution, application areas are the maximum areas across 
the member netlists. For the actual cell areas, we use areas from manual layouts of each of the logic and routing 
structures created in a TSMC 0.18µm process with 5 metal layers. Logic area is the sum of the logic unit areas, and 
routing area is the sum of the multiplexer, demultiplexers, and bus connector areas. Routing tracks are directly over 
the logic units in a higher layer of metal, and thus do not add area. 

Finally, the netlists were also implemented using a “configurable ASIC” (cASIC) technique [2][12], which uses the 
same logic generation techniques presented in section 3.1. The cASIC technique uses clique partitioning to create 
very customized routing structures. In this process, the netlist signals are represented by nodes in a graph. The nodes 
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are then grouped into cliques based on similarities in their locations and terminals, and no more than one signal from 
each netlist can be in a given clique. A physical wire is created for each clique to implement the relevant signals. 
cASICs can then implement any netlist from their specification set, but likely no others. The benefit of cASICs is 
that they represent highly area-efficient design points, capturing the area savings of hardware reuse through run-time 
reconfiguration, while minimizing the overhead of programmability. Area estimates for cASIC implementations are 
based on the same manual layouts used for RaPiD, and are given for comparison. 

4.2 Track Count Analysis 
Table 2 lists the number of routing tracks created by each flexible routing generation algorithm for each application, 
along with lower bounds represented by the UCS values of the original placements before routing generation. These 
bounds are most likely infeasible due to the large number of bus connectors required for the increased wire sharing 
between signals from different netlists. The Add Max Once (AMO) and Add Min Loop (AML) algorithms have the 
same lower bound, as they use the same placement techniques. The Greedy Histogram (GH) method generally has a 
lower cross-section because it achieves a “better” placement by not restricting the locations of logic units. Each 
algorithm results in a track count within a factor of 1.5 to 2 of the lower bound. The more regular algorithms tended 
to come closer to their lower bounds. We expect this is due in part to the sometimes higher lower bound of these 
algorithms, and part due to the unexpected GH behavior discussed in the next section. 

Table 2: The number of routing tracks created for each application by each routing generation algorithm. 
Lower bounds are based on the original unroutable signal cross-sections of the placements. 

Radar OFDM Camera Speech FIR Matrix Sort Image Average 
Factor

Actual 17 34 24 25 18 24 21 21
Bound 11 18 13 13 11 10 11 12
Factor 1.55 1.89 1.85 1.92 1.64 2.40 1.91 1.75
Actual 18 28 25 24 17 21 21 17
Bound 13 21 16 17 11 10 13 12
Factor 1.38 1.33 1.56 1.41 1.55 2.10 1.62 1.42
Actual 18 32 26 27 18 18 21 20
Bound 13 21 16 17 11 10 13 12
Factor 1.38 1.52 1.63 1.59 1.64 1.80 1.62 1.67

AML

AMO

GH 1.86

1.55

1.61

 

4.3 Area Analysis 
The areas of the flexible architectures are computed using the same methods as the cASIC area computations. Wire 
cross-sections of greater than 24 can increase the height of the architecture beyond the logic height, and therefore 
increase the total area of the architecture. Figure 10 graphs the areas of the generated flexible architectures for eight 
different application domains. While the areas of the architectures created by the three different algorithms are close, 
there are some notable differences. GH was intended to create architectures less flexible, but more optimized 
(smaller), than the two regular routing algorithms. In most cases, this is true. However, there are a number of 
applications for which GH produces architectures that are larger than those created by the other algorithms. One 
likely explanation is that GH is too greedy in track creation. For example, if the histogram indicates that the most 
common signal length is 11, and the second-most common signal length is 12, the algorithm will create a length-11 
track even though a length-12 track may be a better choice, as it can also implement length-11 signals. This issue 
could lead to the creation of more tracks than necessary. 

AMO generally results in architectures with fewer tracks but more bus connectors than AML, as demonstrated by 
correlating the results in Table 2 with those in Figure 10. This is logical, as AML places a greater emphasis on local 
track creation, but may create more overall tracks as a result. For the Radar and Sort applications, AMO and AML 
create architectures with the same number of tracks. However, the areas of the AMO architectures are slightly higher 
due to more bus connectors. AML creates smaller architectures for the Speech and Camera applications as well, 
even though it creates more tracks. In other cases where the AML area is greater than the AMO area, the AML 
algorithm created a significantly greater number of tracks, increasing the width of multiplexers and demultiplexers, 
and sometimes the height of the architecture. This indicates that track minimization, while not the only important 
goal, is still relevant. We expect that an updated algorithm balancing the bus connectors and track count could create 
smaller architectures than AMO and AML in most if not all cases. 
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Figure 10: Comparative area results of the flexible routing generation algorithms, Greedy Histogram (GH), 
Add Max Once (AMO), and Add Min Loop (AML). The areas have been normalized to the GH results. 

Table 3 lists the areas of the architectures created using the different flexible routing generation heuristics, with the 
corresponding standard cell, FPGA, RaPiD, and cASIC areas listed for comparison. These results are summarized in 
Table 4. As expected, customized flexible architectures are smaller than FPGA implementations—from a 5.3x to a 
5.5x area improvement. These results highlight the area benefits of optimized reconfigurable computation and 
routing structures. Note that the FPGA architectures are only just over a factor of 7x larger than standard cell 
implementations. This is likely due to advances in FPGA design such as embedded multipliers. 

Table 3: Areas, in mm2, of the eight applications from Table 1 as implemented using the flexible routing 
generation algorithms and the comparative techniques discussed in section 4.1. 

Radar OFDM Camera Speech FIR Matrix Sort Image
Std. Cell Total 4.101 9.168 7.268 26.523 2.846 1.785 1.541 6.843
FPGA Total 19.719 59.157 23.006 78.877 26.292 19.719 26.292 19.719

Logic 2.838 --- --- 45.401 3.783 1.892 2.838 ---
Routing 2.158 --- --- 34.536 2.878 1.439 2.158 ---

Total 4.996 --- --- 79.937 6.661 3.331 4.996 ---
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 0.082 0.658 0.570 0.486 0.502 0.115 0.265 0.466
Total 1.515 4.776 2.747 13.235 2.243 1.239 1.458 2.083
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 1.271 15.896 5.651 22.202 1.737 2.138 2.110 2.302
Total 2.705 20.014 7.829 34.950 3.478 3.261 3.303 3.919
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 1.443 16.682 6.591 24.886 1.888 1.224 2.283 2.065
Total 2.877 20.800 8.768 37.635 3.630 2.347 3.476 3.681
Logic 1.433 4.118 2.178 12.748 1.742 1.124 1.193 1.617

Routing 1.431 17.470 6.168 23.430 1.870 0.930 2.262 2.208
Total 2.865 21.588 8.346 36.179 3.612 2.053 3.455 3.825

GH

AMO

AML

RaPiD

cASIC

 

For applications where a RaPiD implementation was possible, the flexible architectures ranged from 56%-58% of 
the required RaPiD area. When RaPiD was not able to implement an application, the flexible generation algorithms 
were still able to create an architecture. Again, this is a key feature of automatic architecture generation—the logic 
and routing resource mix can be customized to the needs of the specification, and are not limited by a static design. 
Surprisingly, the flexible architectures were also on average close in area to the corresponding standard cell layouts. 
This highlights the value of reusing expensive hardware resources across netlists. 

The added flexibility of flexible routing structures does significantly increase the areas over those of cASIC designs, 
but the results indicate this area increase does not overwhelm the area savings of hardware reuse. More importantly, 
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the flexible architectures have the ability to implement netlists beyond the implementation set, while the cASIC 
implementations do not. The next section discusses the flexibility of these architectures in further depth. 

Table 4: A summary of the results from Table 3. Area improvements were first calculated for each 
application, then averaged across all applications. 

Method Area Method Area Method Area Method Area
FPGA 0.20 Std Cells 2.34 Std Cells 7.20 Std Cells 1.37
RaPiD 0.48 FPGA 0.38 RaPiD 4.01 FPGA 0.24
cASIC 2.04 cASIC 3.68 cASIC 11.86 cASIC 0.60

GH 0.90 GH 1.72 GH 5.25 Clique Avg 2.49
AMO 0.91 AMO 1.71 AMO 5.37 GH 1.01
AML 0.92 AML 1.77 AML 5.53 AML 1.02

Improvement Over 
Std Cells

Improvement Over 
RaPiD

Improvement Over 
FPGA

Improvement Over 
AMO

 

4.4 Flexibility Analysis 
When designing a reconfigurable architecture with the goal of implementing multiple circuits, flexibility is a key 
concern. Unfortunately, there is not yet an accepted method for measuring flexibility. Commercial FPGA devices 
are frequently measured by “gate count”, but this only measures logic capabilities, not routing flexibility. 
Furthermore, many consider the method used to count the gates as suspect. Gate count is even less appropriate for 
domain-specific reconfigurable architectures, where flexibility is not a simple sum of the number of configuration 
points or generic logic structures, but instead the ability of a design to implement a particular type of circuit. If an 
architecture needs to implement a circuit with three ALUs, but contains twenty multipliers and no ALUs, that 
architecture should not be considered “flexible” enough for its purpose despite having much logic. 

For architectural exploration and analysis of reconfigurable structures, flexibility is a key metric. If the architecture 
cannot implement the circuits currently needed or those predicted as necessary in the future, that architecture is no 
more useful than one that violates area or timing constraints. This section discusses the problem of flexibility 
analysis. First we present a very simplistic and straightforward method to test architectural flexibility, and present 
flexibility results for the generated architectures. We then propose a new, more thorough, flexibility testing 
technique based on synthetic circuit generation, and apply it to the generated architectures as well. 

4.4.1 Simple Flexibility Tests 
A quick (but not completely effective) flexibility test is to attempt to place and route all 26 of our netlists onto each 
generated architecture. The reason this test is inadequate is that in many cases, the circuits attempted on each 
architecture are actually outside the domain the architecture targets. A failure to implement these circuits may not 
indicate a lack of flexibility within a domain. However, the test does provide some insight into the general flexibility 
of the architectures. The results for these tests are shown in Table 5. If a netlist failed placement and/or routing, it 
was attempted on a larger architecture, where the quantity of logic resources was increased by 10 or 20 percent, as 
indicated in the table. An architecture with a greater number of logic resources can sometimes allow for an improved 
placement, which in turn can result in an easier routing operation. 

In many cases, netlists can be placed and routed onto architectures that have sufficient physical logic. One 
interesting data point is the one FIR filter netlist that will place and route on the AMO and AML architectures, but 
requires 10% more logic for the GH architecture. The regular design of AMO and AML architectures may 
contribute to their ability to implement that particular FIR filter without an increase in logic. Naturally, larger 
netlists tend to result in architectures capable of implementing the other benchmarks, as they naturally require more 
logic and routing resources. For example, the Camera and Image applications were able to implement far more 
netlists than the Matrix or Sort applications. The Sort application architectures are also crippled in this experiment 
by a complete lack of multiplier units, as they were unnecessary for the member netlists. Therefore even with a large 
% increase in architecture logic, any netlist with a multiplier will fail to place and route. Again, this failure does not 
necessarily reflect domain flexibility, as additional sorting netlists are unlikely to require multipliers. 
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Table 5: Simple flexibility test of the generated architectures. All 26 netlists were tested on all 
architectures, which were increased in size on a % basis if necessary. Table rows indicate: the # of source 
netlists for the architectures (SRC), the # that place and route without additional logic, the # that require a 
10% or 20% logic increase, and the # that fail even with 20% more logic. 

G
H

AM
O

A
M

L

G
H

AM
O

A
M

L

G
H

AM
O

A
M

L

G
H

AM
O

A
M

L

G
H

AM
O

A
M

L

G
H

AM
O

A
M

L

G
H

AM
O

A
M

L

G
H

AM
O

A
M

L

SRC 3 3 3 3 3 3 2 2 2 5 5 5 3 3 3 6 6 6 5 5 5 4 4 4
0 8 8 8 18 18 18 16 16 16 11 11 11 9 9 9 5 5 5 3 4 4 1 1 1

10 0 0 0 2 2 2 1 1 1 4 4 4 0 0 0 7 7 7 1 0 0 0 0 0
20 0 0 0 1 1 1 0 0 0 0 0 0 3 3 3 0 0 0 0 0 0 0 0 0

Fail 15 15 15 2 2 2 7 7 7 6 6 6 11 11 11 8 8 8 17 17 17 21 21 21

DCT/FFT FIR Matrix All SortRadar Camera OFDM Image 

 

4.4.2 Detailed Flexibility Analysis 
As stated earlier, there are no accepted existing techniques to measure flexibility of reconfigurable architectures. 
However, in order to truly evaluate and compare reconfigurable architectures, flexibility must be considered. For 
domain-specific reconfigurable architectures, flexibility can be defined as the ability to implement circuits from that 
domain. The more (and varied) circuits within the domain that can be implemented, the more flexible the 
architecture. Determining “flexible enough” must be done the same way as “small enough” and “fast enough”—
based on the design specification and the anticipated future needs of the hardware.  However, one must still measure 
what the flexibility is before determining if it is sufficient. 

This measurement can be based on creating an architecture from a domain, and testing whether or not other circuits 
from that domain will fit. In reality, any circuits that are known from the domain would be used in the specification 
of the architecture. It is the unknown circuits in the domain that we wish to test on the architecture, but are thwarted 
by the fact that they are, in fact, unknown. We can, however, emulate this process through the use of a synthetic 
circuit generator. The known circuits of the domain can be profiled to determine a range of characteristics for the 
domain. Then, synthetic circuits can be created with characteristics selected randomly from within the range. To this 
end, existing circuit generation techniques [18][19] have been modified for the heterogeneity, coarse granularity, 
and structure of RaPiD netlists. The synthetic RaPiD netlists can then be used to provide a greater sample set of 
netlists from the domain for flexibility testing [15]. This section presents the results of flexibility tests of the 
architecture generation algorithms using this technique. 

Single Circuit Flexibility 
We first tested the flexibility of the architecture generation methods for single circuit generation. Ten synthetic 
netlists were created based on each of our 26 netlists. Each architecture generation algorithm was used to create an 
architecture for each synthetic netlist, for a total of 780 architectures. Generated netlists were forced to have the 
same logic resources as the parent netlist so only routing flexibility is tested. We attempted to place and route the 
original parent netlists on each of their corresponding 30 architectures. The results, presented in Table 6, highlight 
the flexibility differences of the architecture generation methods. 

GH only results in architectures sufficiently flexible to implement the original circuit under 20% of the time. On the 
other hand, a significant percentage of the AMO and AML architectures created from synthetic netlists can 
successfully implement the original parent netlists—AMO has a 94% success rate, while AML has an 89% success 
rate. In a few cases, the original parent circuit could not be placed and routed onto architectures created from itself 
using GH or AML, as shown by the “Orig” column of Table 6. The overall results from this experiment indicate that 
AMO creates architectures inherently more flexible than either of the two other methods, likely from a combination 
of regular structure and the greater use of bus connectors. 
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Table 6: Success rates (%) of routing the original parent netlist on architectures created from synthetic 
circuits. The “Orig” column indicates if the parent netlist can be implemented on an architecture created 
directly from itself using the given technique. 

Orig % Orig % Orig %
1d_dct40 Y 40 Y 80 N 60
color_interp Y 30 Y 100 Y 100
decnsr N 10 Y 90 N 30
fft16_2nd Y 10 Y 100 Y 100
fft32 Y 10 Y 100 Y 100
fft64 Y 10 Y 100 Y 100
firsm Y 10 Y 100 Y 100
firsm2 Y 10 Y 100 Y 100
firsm3 Y 0 Y 100 Y 100
firsymeven Y 0 Y 100 Y 100
firtm_1st Y 0 Y 100 Y 90
firtm_2nd Y 0 Y 80 Y 90
img_filt Y 20 Y 100 Y 100
limited Y 0 Y 100 Y 100
limited2 Y 30 Y 60 Y 60
log32 Y 90 Y 100 Y 100
matmult Y 0 Y 90 Y 100
matmult4 N 0 Y 100 Y 100
matmult_bit Y 0 Y 100 Y 100
med_filt Y 40 Y 100 Y 90
psd Y 100 Y 100 Y 100
sort_g Y 10 Y 100 Y 100
sort_rb Y 40 Y 100 Y 100
sort_2d_g Y 10 Y 100 Y 90
sort_2d_rb Y 10 Y 100 Y 100
sync Y 0 Y 40 Y 10
AVERAGE

GH AMO AML

18.5 93.8 89.2  

Domain Flexibility 
Next we expanded the flexibility testing to look at architectures generated from multiple synthetic circuits, which 
were in turn generated from profiling our different application domains from Table 1. In this case, the characteristics 
for each generated circuit fall within the ranges for that characteristic observed during profiling. Again, to ensure 
sufficient logic is available and test only routing flexibility, the minimum logic requirements of each real netlist in 
the domain was also profiled, and these quantities also provided to the architecture generation algorithms. When a 
specification set of synthetic circuits did not meet a minimum logic requirement, the architecture generation 
algorithms added sufficient logic of the correct type to guarantee sufficient logic for the original netlists. Those 
original domain netlists were then placed and routed onto the architectures. This process was repeated ten times for 
each domain, and the results are given in Table 7. 

This set of domain tests also demonstrates the flexibility differences of the flexible architecture generation 
algorithms. GH has the lowest flexibility, successfully routing 91.6% of netlists onto the architecture created for 
their domain. AML had a mid-level flexibility, with a success rate of 99.4%. AMO has the highest flexibility, with 
99.7% of the netlists successfully routed. These results mirror the expected flexibility of the three algorithms. GH is 
inherently less flexible, as it attempts to customize the routing architecture as much as possible to the specified 
netlists. AMO has the highest flexibility, as it emphasizes the use of distance (segmented) routing tracks, which 
inherently permit a wider variety of choices for a routing signals. AML creates a regular routing architecture, but 
attempts to use less area than AMO by focusing on local (non-segmented) routing whenever possible, and thus is 
somewhat less flexible. 
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Table 7: Success rates of routing original domain netlists on architectures created by the routing 
architecture generation algorithms from a set of synthetic benchmarks created by profiling that domain. 

Application Netlists GH AMO AML
decnsr 100.0 100.0 100.0
fft16_2nd 10.0 100.0 100.0
psd 100.0 100.0 100.0
sync 100.0 100.0 100.0
fft64 60.0 100.0 90.0
color_interp 100.0 100.0 100.0
img_filt 100.0 100.0 100.0
med_filt 100.0 100.0 100.0
log32 80.0 100.0 100.0
fft32 100.0 100.0 100.0
1d_dct40 100.0 100.0 100.0
firsm 100.0 100.0 100.0
firsm2 100.0 100.0 100.0
firsm3 100.0 100.0 100.0
firsymeven 50.0 100.0 100.0
firtm_1st 100.0 100.0 100.0
firtm_2nd 100.0 100.0 100.0
matmult 90.0 100.0 100.0
matmult4 90.0 100.0 100.0
matmult_bit 90.0 100.0 100.0
limited 100.0 100.0 100.0
limited2 100.0 100.0 100.0
sort_g 100.0 100.0 100.0
sort_rb 100.0 100.0 100.0
sort_2d_g 100.0 100.0 100.0
sort_2d_rb 100.0 100.0 100.0
med_filt 70.0 90.0 90.0
matmult 100.0 100.0 100.0
firtm_2nd 100.0 100.0 100.0
fft16_2nd 100.0 100.0 100.0
1d_dct40 100.0 100.0 100.0

91.6 99.7 99.4

Radar

OFDM

Camera

Speech

FIR

Matrix

Sort

Image

AVERAGE  

5 Conclusions 
We have presented three different algorithms to generate domain-specific reconfigurable architectures for SoCs, 
ranging in optimization and flexibility. The area comparisons presented here demonstrate the area benefits of 
customization. The flexible domain-specific architectures were on average 5.3-5.5x smaller than the equivalent 
FPGA implementations. While FPGAs are important for situations in which one cannot reliably predict how the 
hardware will be used, they are comparatively inefficient for circumstances when some or all characteristics of the 
target applications are known. The RaPiD project addresses this issue to some degree by employing coarse-grained 
computational units, but this architecture has only limited customization through varying cell count. Our algorithms 
were able to create architectures nearly half the area required by RaPiD. Furthermore, these algorithms are able to 
create architectures large enough to implement applications that do not fit in the current RaPiD design. 

We have also demonstrated a new technique to measure the flexibility of domain-specific reconfigurable 
architectures and architecture generation algorithms. Our flexibility results confirmed our expectations that the 
higher the specialization, the lower the flexibility. Furthermore, the comparative differences in flexibility between 
AMO and AML architectures highlighted the value of bus connectors, a value not truly measurable using existing 
architecture comparison techniques. Therefore, flexibility testing is essential if SoC designers are to choose 
reconfigurable cores not only on an area, power, and performance basis, but also with an eye for possible future 
changes or additions to the netlists implemented on the architecture. 
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