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ABSTRACT 
Traditional metrics used to compare hardware designs include 
area, performance, and power.  However, these metrics do not 
form a complete evaluation of reconfigurable hardware.  For these 
designs, flexibility is also a key issue, since it is the flexibility of 
reconfigurable hardware that allows it to implement a variety of 
circuits.  Despite its importance, there is not yet an established 
method to measure flexibility.  This paper explores the flexibility 
testing issue for domain-specific reconfigurable architectures.  We 
discuss the concept of flexibility as it pertains to domain-specific 
architectures, and propose a flexibility testing technique involving 
synthetic circuit generation.  This technique is then used to 
compare three different domain-specific architecture generation 
algorithms, demonstrating that the testing can in fact differentiate 
between architectures of differing levels of flexibility.   

Categories and Subject Descriptors 
B.6 [Logic Design]; B.6.3 [Design Aids]: Automatic synthesis; 
B.8.2 [Performance Analysis and Design Aids]  

General Terms 
Algorithms, Measurement, Design, Experimentation. 

Keywords 
Flexibility, Programmable Hardware, Reconfigurable Hardware 

1. INTRODUCTION 
The design of a reconfigurable architecture differs from the 
design of a conventional ASIC in a key aspect: flexibility.  The 
quality of an ASIC is generally measured in terms of power, 
performance, and area.  However, with reconfigurable hardware, 
flexibility is equally important, as it allows reconfigurable 
architectures to implement various circuits using a single set of 
hardware resources.   In particular, if a reconfigurable subsystem 
is needed in a system-on-a-chip (SoC), the designer must choose 
the best design for the purpose at hand based on all comparison 
metrics, including flexibility. 

Unfortunately, thus far the flexibility metric has been largely 
ignored by the FPGA and reconfigurable computing community.  
FPGA devices are frequently measured by “gate count”, which 
many feel is a nebulous assessment of the abilities of the device.  
The “gate count” metric is even less appropriate for domain-
specific reconfigurable architectures.  For these designs, 
flexibility is not simply a sum of the number of configuration 
points or generic logic structures, but instead the ability of a 
design to implement a particular type of circuit.  Not all resources 
are equally useful.  If a large number of resources are added 
which will not be used by any circuit of the domain, the flexibility 
of the architecture has not actually been increased.  The useless 
resources only contribute to overhead. 

For this reason, flexibility testing for domain-specific 
architectures should be based on the ability to implement circuits 
from the given domain.  If all circuits from the domain are 
available in advance, a reconfigurable architecture can be created 
specifically to implement those circuits, and be completely 
flexible within the domain [1].  However, in many cases, the 
reconfigurable architecture will be created based on a few 
representative circuits, but be expected to implement additional 
circuits as new applications are found for the hardware, or 
changes to the original applications are made.  The challenge is to 
measure the flexibility of the architectures when the complete 
domain is not yet known. 

The process of creating an architecture based on one circuit set, 
and testing flexibility with another circuit set from the same 
domain, can be emulated through the use of a synthetic circuit 
generator.  The known circuits of the domain can be profiled to 
determine a range of characteristics for the domain.  Then, 
synthetic circuits can be created with characteristics selected 
randomly from within the range.  The next section discusses 
issues involved with the use of synthetic circuits for flexibility 
testing, and proposes a flexibility testing technique.  This is 
followed by an example of how the proposed flexibility testing 
technique can be used to test the flexibility of three different 
automatic reconfigurable architecture generation algorithms. 

2. TESTING FLEXIBILITY 
The synthetic circuits are created based on the real circuits of the 
application domain.  The application circuits are profiled in order 
to measure key defining characteristics such as number of logic 
nodes, number of circuit I/Os, and complexity of the 
interconnections.  The characteristics are then used to generate 
new circuits with structures similar to the original “parent” circuit 
or circuits.  Using a set of circuit profiles, a description of an 
application domain can be created.  The minimum, maximum, 
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mean, and standard deviation across the set of profiles are 
computed for each of the circuit characteristics.  This provides a 
range of potential values for each characteristic.  New profile 
information is generated by randomly choosing values within the 
given range according to a Gaussian distribution for each 
characteristic (using the mean and standard deviation to describe 
the function). 

Randomness is frequently used during the circuit generation 
process to allow the creation of a wide variety of similar, but not 
identical, circuits.  For the case where only a single circuit is used 
as the “parent” of one or more synthetic circuits, these synthetic 
circuits could be considered “clones” of the parent, as a generator 
generally attempts to achieve nearly the same characteristics.  
However, when a circuit is generated from a domain profile, its 
characteristics may not exactly match those of any one of the 
parents.  In this case, the circuit is more of a “child” to the parent 
circuits.  The domain provides a range of possibilities for each 
characteristic, obtained through the profiling of the parent 
circuits.  The characteristics for the child are chosen randomly 
from that range, and the process is repeated for each characteristic 
used in circuit generation.  
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Figure 1: Two possibilities to test flexibility of an 
architecture generator using synthetic circuits.  In each 
case, the architecture is created based on one set of 
circuits, and tested using a different set of circuits from 
the same domain.  (a) Use the synthetic circuits for the 
final testing.  (b) Use the real circuits for the final 
testing. 

The flexibility of a reconfigurable architecture could be tested by 
determining the percentage of these synthetic circuits that can be 
successfully placed and routed onto the architecture, as per Figure 
1a.  However, this particular technique depends on the validity of 

synthetic circuits for the final test.  While synthetic circuits might 
have similar characteristics to real circuits, they are not 
guaranteed to have “realistic” operation, and subtleties of the 
circuit structure not captured by the circuit profiling may be lost.  
Therefore, it is not guaranteed that an architecture that can 
implement synthetic circuits will be able to implement real 
circuits with similar characteristics. 

However, when testing automatically generated architectures, the 
roles of the real and synthetic circuits can be reversed, as shown 
in Figure 1b.  Architectures can be generated from the synthetic 
circuits, and tested using the real circuits.  In this case, the 
synthetic circuits represent the known domain circuits, while the 
real circuits represent the unknown circuits of the domain that are 
similar, but not identical, to the known circuits.  Using this order 
allows one to determine if an architecture created for one set of 
(synthetic) circuits is able to implement other real circuits from 
the domain. 

3. EXAMPLE FLEXIBILITY TEST 
The flexibility testing method proposed above was used to 
examine the relative flexibility of three different architecture 
generation algorithms [2].  These algorithms create customized 
reconfigurable architectures based on the needs of an input set of 
circuit netlists.  The netlists were originally created for the RaPiD 
architecture [3], shown in Figure 2.  For this testing, a circuit 
generator was developed to create the synthetic circuits used to 
generate the test architectures.  The synthetic circuit generator 
will first be described, then the architecture generation methods 
used in the example flexibility testing will be summarized, and 
finally, the results of the testing will be given. 
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Figure 2: A single cell from the RaPiD architecture [3, 4]. 

3.1 Circuit Generator 
Previous work in synthetic circuit generation for reconfigurable 
architectures generally focuses on the use of LUTs  [5, 6, 7, 8].  
However, the architectures generation algorithms that will be 
tested here are much more coarse-grained in nature, using word-
width ALUs, multipliers, and other large logical units.  Therefore, 
one of the existing circuit generation techniques [6] has been 
significantly modified here to compensate for heterogeneity, 
coarse granularity, and RaPiD circuit structure.  The operation of 
the circuit generator involves first measuring a few key 
characteristics of a “parent” netlist or netlists, then generating 
different circuits (through the use of some degree of randomness) 
from these guidelines.  The next few sections describe the process 
of profiling netlists, followed by the techniques used to generate 
the synthetic circuits. 



3.1.1 Profiling RaPiD Netlists 
Circuits are profiled in order to measure key defining 
characteristics.  These characteristics are then used to generate 
new circuits with structures similar to the original parent circuit.  
RaPiD netlists currently form the source circuit material, and 
these netlists have a distinct high-level structure.  RaPiD netlists 
are split into stages, where each stage operates in parallel, and 
communicates only with adjacent stages.  Inter-stage 
communication is limited, as is the number of primary inputs and 
outputs.  For the synthetic circuits to mimic RaPiD netlists, we 
must account for the stage and communication structures.  Each 
netlist is converted to a directed graph, and measured for several 
characteristics, including: 

• I/O requirements of the netlist 
• Number of netlist stages 
• Minimum/maximum connections between stages 
• Minimum/maximum number of delay levels 

(logic levels) within the stages 
• Number of logic nodes 
• % of nodes of each type (ALU, multiplier, etc) 
• Proportion of signals to nodes 
• Proportion of signals that are back edges 

(source at higher delay level than sink) 

Figure 3 illustrates a sample RaPiD netlist with 28 logic nodes, 
represented as a directed graph.  Note that all multi-terminal 
signals are split into a set of 2-terminal signals for this profiling. 
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Figure 3: A directed graph of a sample RaPiD netlist of three 
stages to be profiled.  The left stage has four delay levels, 
while the others each have three.  Logic is represented as 
squares labeled by type (RAM, ALU, Multiplier, Data 
register).  Signals are represented as arrows.  I/O of the stages 
and overall circuit is represented by dark circles. 
A new synthetic circuit profile can be created from a set of RaPiD 
netlist profiles representing an application domain.  Each 
characteristic in the domain is represented by a Gaussian function 
controlled by the minimum, maximum, mean, and standard 
deviation of that characteristic across the different member 
circuits.  The synthetic profile is created by choosing a random 
point on the Gaussian function for each circuit characteristic.  
This profile can then be used in the circuit creation step below. 

3.1.2 Circuit Creation 
The characteristics used to specify a synthetic circuit can be 
obtained through manual input, from the profile of a single netlist, 
or from a synthetic profile created from a domain.  A graph of the 
synthetic circuit is created based on the desired characteristics of 
the profile.  The goal of this generator is to create a circuit that, 
when it is profiled, will have characteristics that approximate the 
circuit characteristics of the specification.  First the general 
structure, or “skeleton”, of the circuit graph is created.  Next the 
logic nodes are created, and then the edges are created to connect 
the logic nodes together to form a directed graph.  Figure 4 
demonstrates these steps for an example synthetic circuit created 

from the profile of Figure 3.  Finally, the completed graph 
describing the circuit is converted into an actual netlist by 
assigning the signals on each node to actual ports of the logic unit 
the node represents, and the inter-stage I/O connections are 
propagated to connect units directly.  Full details of this algorithm 
can be found elsewhere [9]. 
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Figure 4: Steps in the creation of an example synthetic circuit 
graph.  (a) The skeleton, including the number of stages 
(white bubbles) and delay levels within the stages (shaded 
bubbles).  The connectivity between stages is also indicated by 
the arrows.  (b) Logic nodes are then added to the skeleton.  
(c) Finally, the edges are added to connect the logic nodes. 

3.1.3 Validation 
The synthetic circuits are intended to mimic the structure of actual 
RaPiD netlists, without duplicating those circuits exactly.  To test 
that this is the case, ten synthetic circuits were created for each of 
26 actual RaPiD netlists.  The synthetic circuits were then 
profiled with the same techniques used to profile the RaPiD 
netlists.  The profiled values were normalized to the 
characteristics of the original real circuits, and averaged across 
the ten synthetic circuits.  A comparison of the normalized 
characteristics of the generated circuits is given in Table 1.  Here, 
cross-section refers to the signal cross-section when the circuit is 
placed along a 1D axis (the architecture generation algorithms, as 
discussed later, create 1D architectures). 

Some characteristics, such as number of inputs and the number of 
stages, are identical to the parent circuits.  The generated circuits 
are able to be constructed to match these characteristics exactly.  
On the other hand, characteristics such as percent back edges and 
stage I/O, are more difficult to control in the current method of 
circuit generation where the results depend significantly on 
random number generation.  Future versions of the synthetic 
circuit generator could attempt to bring these characteristic values 
closer to those of the parent circuit.  However, the data in this 
chart indicates that in general, the synthetic circuits have very 
similar characteristics to the original circuits.  Additionally, most 



standard deviations listed are above zero, which indicates that 
there is some variety in the characteristic values, as desired. 

Table 1: A comparison of the characteristics of the generated 
synthetic circuits to those of the original circuits.  All 
characteristics were normalized to the original netlists.  The 
average values and standard deviations across ten synthetic 
circuits were computed for each parent circuit, and the 
average values across all 26 parent netlists are given. 

Characteristics Avg Dev
# Inputs 1.00 0.00
# Outputs 1.00 0.00
# Instances 1.04 0.02
# Signals 1.06 0.03
Sig:Inst Ratio 1.02 0.03
# Stages 1.00 0.00
% Backedges 0.57 0.33
Stage I/O 0.72 0.06
# Delay Levels 1.05 0.05
Inst / Stage 1.04 0.02
Inst / Delay Level 0.92 0.06
Avg Node Fanin 0.84 0.02
Avg Node Fanout 0.92 0.02
Cross-section 1.00 0.14
% registers 1.05 0.03
% multipliers 0.98 0.01
% RAMs 0.99 0.01
% ALUs 0.99 0.01  

3.2 Architecture Generation Algorithms 
As stated previously, three different automatic reconfigurable 
architecture generation algorithms [2] from the Totem Project are 
used here in an example flexibility test.  The algorithms all create 
architectures in the style of the RaPiD architecture [3], shown in 
Figure 2.  RaPiD uses a series of coarse-grained logic units, such 
as 16-bit ALUs and 16x16 multipliers, aligned along a 1D axis.  A 
1D configurable routing structure allows the units to be connected 
into different circuits.  The vertical lines of Figure 2 represent 
multiplexers and demultiplexers on every unit which allow it to 
connect to any of the routing tracks.  The topmost routing tracks 
shown in the RaPiD cell diagram are local routing tracks, 
containing short wires.  The bottom set of routing tracks from the 
figure are distance routing tracks, and the small boxes represent 
segmentation points, where two wires can be optionally connected 
together to form a much longer wire. 

Like RaPiD, the Totem architectures use coarse-grained units 
along a 1D axis.  Again, multiplexers and demultiplexers are used 
to connect the units to every track in the routing architecture.  
Totem architectures can vary in logic composition, as the 
resources are chosen based on the actual needs of an input circuit 
set.  Likewise, the routing structure, in terms of track quantity and 
track types, is also dependent on the needs of the specification. 

The first algorithm, Greedy Histogram (GH), focuses on 
customization and area savings over flexibility.  Logic units are 
placed and wire lengths are chosen according to the needs of the 
input circuit set.  However, due to this customization, these 
architectures may not be able to implement circuits differing 
significantly from the specification. 
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Figure 5: (a) An extreme example of a non-distributed routing 
architecture, and (b) a distributed routing architecture. 
The second algorithm, Add Max Once (AMO), creates more 
generic structures able to implement a wider variety of circuits.  
Logic units are evenly spread throughout the array.  Whereas GH 
may cluster all multipliers at the left edge of an architecture, 
AMO will spread them evenly.  Routing resources are also 
distributed, as demonstrated by Figure 5b. The wire lengths (in 
terms of number of logic units spanned) are powers-of-2, such as 
length-4 wires, length-8 wires, etc.  Also, segmented routing is 
used extensively, which can provide many options for a place and 
route tool implementing a new circuit.  These architectures are, 
however, up to 12% larger than those created by GH for the real 
circuits from the domains examined in section 3.3.2. 

The Add Min Loop (AML) attempts to use a more sophisticated 
algorithm than AMO to provide comparable flexibility within a 
slightly smaller area.  This algorithm also uses the more generic 
style of AMO.  However, AML chooses non-segmented local 
tracks whenever possible, as the segmentation points contribute to 
the total area of the architecture.  The AML architectures are up 
to 8% larger than those created by GH for the real circuits in the 
domains of section 3.3.2.  Each of these algorithms creates 
architectures at different points of the solution space.  The relative 
goals of the three generation algorithms are depicted in Figure 6. 
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Figure 6: The relative goals, in terms of area and flexibility, of 
the three different architecture generation algorithms tested. 

3.3 Results 
The flexibility testing techniques described earlier were used here 
to test the flexibility of the three different routing architecture 
generation algorithms.  First, flexibility measurement using 
circuits generated from single profiles will be discussed, and the 
generation algorithms will be compared using architectures 
generated from these circuits.  Next, the results of domain 
flexibility testing, using circuits generated from a domain profile, 
are given. 

3.3.1 Single Circuit Flexibility 
First the flexibility of the different architecture generation 
methods was tested for single circuit generation.  Ten circuits 
were created for each RaPiD netlist, and architectures were 
created using the three different architecture generation 
algorithms [2] given a single generated circuit as input.  The 
generated circuits were forced to have the exact same logic 
resources as the parent circuit so that only the flexibility of the 
routing structures is tested.  An attempt was then made to place 
and route the parent circuit onto each of the corresponding 
architectures generated from the synthetic circuits.  This is 



repeated for each parent circuit, for a total of 780 test cases—
three methods used for each of ten circuits generated for each of 
twenty-six parent netlists. 

The results, presented in Figure 7, highlight the flexibility 
differences of the architecture generation methods:  Greedy 
Histogram (GH), Add Max Once (AMO), and Add Min Loop 
(AML).  GH with synthetic circuits generally does not result in an 
architecture that is sufficiently flexible to implement the original 
circuit.  This algorithm has only an 18% success rate.  On the 
other hand, both the AMO and AML generation algorithms allow 
a significant percentage of the original circuits to be implemented.  
AMO has a 94% success rate, while AML results in an 89% 
success rate.  These results reflect the intended flexibilities of the 
three algorithms as described earlier. 

3.3.2 Domain Flexibility 
In order to test the flexibility of the different routing generation 
algorithms for a given domain, first that domain must be profiled, 
as described earlier.  The different original netlists whose profiles 
define the domain may vary considerably in their structure or 
resource requirements, and the synthetic circuits are generated 
randomly (with a Gaussian distribution) from the ranges of 
characteristic values.  Generating an architecture from a range of 
profiles creates architectures less like any particular original 
netlist than if the architecture was created from a single profile, in 
an attempt to model possible unknown circuits of the domain. 

However, it is then difficult to guarantee that the exact logic mix 
required by the original netlists will be represented by a set of 

synthetic netlists using domain circuit generation.  For example, a 
domain may be specified by two netlists, netlist A and netlist B.  
Netlist A has 100 units, where 90% are ALUs and 10% are 
multipliers.  Netlist B has 100 units, where 90% are multipliers 
and 10% are ALUs.  A circuit is generated from the range 
specified by the profiles of the two netlists.  This circuit contains 
100 units, 50% of which are ALUs and 50% of which are 
multipliers.  If a domain architecture is created from this one 
netlist alone, neither of the two original netlists could be 
implemented due to logic constraints using this particular method. 

Instead, the domain tests allow for the specification of the 
minimum logic requirements of the real parent circuits.  In this 
flow, the domains are profiled as before, but this time the 
minimum logic requirements are also profiled.  Five synthetic 
circuits are generated for each domain.  Architectures are created 
using the synthetic circuits for each of the domains.  If the 
synthetic circuits do not provide sufficient logic resources of the 
necessary types (based on the domain minimums), the needed 
logic units are added to the architecture.  The architectures are 
therefore guaranteed to have sufficient logic for the original 
netlists of their domain.  The original netlists of the domain are 
then placed and routed onto the architectures.  This process was 
repeated ten times for each domain, and the results are given in 
Figure 8. 

The domain tests, like the single circuit tests, differentiate 
between the flexibility of the three different architecture 
generation methods.  GH has the lowest flexibility, successfully 
routing 91.6% of netlists onto the architecture created for their 
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Figure 7: The success rate of implementing the original real parent circuit onto architectures created from a clone 
synthetic circuit.  Results are given for each architecture generation method. 



domain.  AML had a mid-level flexibility, with a success rate of 
99.4%.  AMO has the highest flexibility, with 99.7% of the 
netlists successfully routed.  These results again mirror the 
predicted flexibilities of the three algorithms. 

4. Expanding Flexibility Work 
The flexibility testing techniques presented here are able to test 
the relative flexibilities of architectures created using automatic 
architecture generators.  However, flexibility testing is also 
important for non-generated (predefined) reconfigurable 
architectures.  Here a designer would generate a large number of 
synthetic circuits for the targeted domain.  The relative flexibility 
of different architectures within that domain would be determined 
by the percentage of synthetic circuits that can be successfully 
placed and routed onto each architecture.  The architecture with 
the higher percentage would be considered more flexible within 
that domain.  However, further effort should be made to verify 
that the synthetic circuit generator creates realistic circuits if this 
testing technique is to be credible. 

The techniques presented here for flexibility measurement can 
also aid significantly in automatic reconfigurable architecture 
generation.  In many cases, the reconfigurable logic will be 
generated before the target netlists have been finalized.  Synthetic 
circuit generation can be used to fill this gap.  As shown above, 
there are relatively few parameters that must be determined in 
order to specify a domain.  These parameters can be estimated by 
the SoC designer, typically conservatively, to define the domain 

of applications to be supported.  Then, synthetic circuits can be 
generated from these parameters, and fed to the architecture 
generator.  The flexibility testing presented here indicates that 
architecture generation techniques such as AMO and AML have a 
very high probability of supporting new circuit designs, assuming 
the parameters can be accurately estimated.  In future work, we 
will determine how accurately these parameters must be 
estimated, or conversely how conservative the estimates must be, 
to achieve a high likelihood of mapping success. 

5. Summary 
While area, performance, and power comparisons may be 
sufficient to compare traditional ASIC designs, these metrics fail 
to capture the complete merits of reconfigurable architectures.  
These architectures can also be compared on the basis of 
flexibility.  However, no procedure to perform flexibility 
comparisons for reconfigurable hardware has yet been widely 
accepted.  This paper proposed a technique to measure the relative 
flexibilities of domain-specific reconfigurable architecture 
generation algorithms.  An example flexibility comparison was 
performed on three different architecture generation algorithms.  
The results reflected the intuitive flexibility expectations based on 
the different goals of the algorithms, demonstrating that the 
flexibility testing technique is able to determine relative 
flexibilities of generated architectures. 
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