
Automating the Layout of Reconfigurable Subsystems 
Via Template Reduction 

Shawn Phillips, Akshay Sharma, Scott Hauck 

Department of Electrical Engineering 
University of Washington, Seattle, WA 

{phillips, akshay, hauck}@ee.washington.edu 

Abstract. When designing SoCs, a unique opportunity exists to generate 
custom FPGA architectures that are specific to the application domain in which 
the device will be used.  The inclusion of such devices provides an efficient 
compromise between the flexibility of software and the performance of 
hardware, while at the same time allowing for post -fabrication modification of 
circuits.  To automate the layout of reconfigurable subsystems for systems-on-
a-chip, we present template reduction.  Template reduction enables a designer 
to eliminate resources from a template that are unnecessary to support the 
specified applic ation domain.  To facilitate this, we have created a feature rich 
template, from which we automatically generate application specific 
reconfigurable circuits.  Compared to the full template, we achieve designs that 
are 53.4% smaller and 13.9% faster, while continuing to support the algorithms 
in a particular application domain. 

1   Introduction 

In the traditional FPGA design space there is a limit to the number and variety of 
FPGAs that can be supported – large NREs due to custom fabrication costs and 
design complexity means that only the most widely applicable devices are 
commercially viable.  However, a unique opportunity exists in the system-on-a-chip 
(SoC) design space.  FPGAs have a role in this design space as well, providing a 
region of programmability in the SoC that can be used for run-time reconfigurability, 
functionality improvements, multi-function SoCs, and other situations that require 
post-fabrication customization of a hardware subsystem.  This gives rise to an 
interesting opportunity: since the reconfigurable logic will need to be custom 
fabricated along with the overall SoC, that reconfigurable logic can be optimized to 
the specific demands of the design. 

The goal of the Totem project [1, 2, 3, 4] is to reduce the design time and effort in 
the creation of a custom reconfigurable architecture.  The architectures that are 
created by Totem are based upon the applications and constraints specified by the 
designer.  Since the custom architecture is optimized for a particular set of 
applications and constraints, the designs are smaller in area and perform better than a 
standard FPGA while retaining enough flexibility to support the specified application 
set, with the possibility to support applications not foreseen by the designer. 



2   Background 

2.1   RaPiD 

The reconfigurable-pipelined datapath (RaPiD) [5] has been chosen as a starting point 
for the architectures that we will be generating.  The goal of the RaPiD-I architecture 
is to provide performance at or above the level of a dedicated ASIC, while also 
retaining the flexibility that reconfigurability provides.  RaPiD-I is able to achieve 
these goals through the use of course-grain components, such as memories, ALUs, 
multipliers, and pipelined data registers. 

Along with coarse-grain components, the initial RaPiD -I architecture consists of a 
one-dimensional routing structure, instead of a standard FPGA’s two-dimensional 
interconnect.  The RaPiD -I architecture is able to take advantage of the reduction in 
complexity that a one-dimensional routing structure provides because all of its 
computational units are word-width devices.  This structure has proven effective in 
supporting high -performance signal processing applications [5]. 

2.1   Totem 

The goal of the Totem project is to create tools to generate domain-specific 
reconfigurable architectures based on designers' needs.  One way the Totem project 
can achieve its goal is to remove as much flexibility as possible from a reconfigurable 
device, while still supporting the particular algorithms or domain that concerns a 
designer.  While the gains of removing unneeded overhead are apparent, creating a 
custom reconfigurable architecture is a time consuming and costly endeavor; thus, 
another goal of the Totem project is to automate the creation of these custom 
architectures.  The overall Totem design flow can be broken into three parts: high-
level architecture generation, VLSI layout generation, and place-and-route tool 
generation. 

The focus of this work is the automatic generation of mask layouts, which is 
performed by the VLSI layout generator.  The layout generator will receive, as input 
from the high-level architecture generator, the Verilog representation of the custom 
circuit.  We are currently investigating three possible methods of automating the 
layout process: standard-cell generation [1], circuit generators, and template 
reduction.  Here we present the template reduction method. 

3   Template Reduction Method 

The idea behind template reduction is to start with a full-custom layout that provides a 
superset of the required resources, and remove those resources that are not needed by 
a given domain.  One example of a similar approach to template reduction in industry 



is eASIC’s FlexASIC  [6].  Their approach enables designers to remove unneeded 
routing resources by the elimination of vias, creating a reconfigurable device that is 
similar to an anti-fuse based design.  The goal of the Template Reduction Method is 
to not only remove unneeded routing resource, but to also remove unneeded 
functional units. 

During template reduction, the removal of resources is done by automatically 
editing the layout to eliminate the transistors and wires that form the unused 
resources, as well as automatically replacing programmable connections with fixed 
connections or breaks for flexibility that is not needed.  In this way we can get most 
of the advantage of a full custom layout, while still optimizing towards the actual 
intended usage of the array. 

Template reduction has been broken into three tasks.  The first is the creation of a 
feature rich macro cell, which is used as an initial template that will be reduced and 
compacted to form the final circuit.  The second is the creation of the reduction list 
that identifies the resources that should be removed.  The final task is the 
implementation of the reductions on the template, followed by the compaction of the 
resultant circuit. 

3.1   Template Cell 

Extensive profiling has been performed to create the feature rich template.  This led 
us to the cell, called RaPiD -II, which is a more feature rich version than the original 
RaPiD-I cell.  The increase in resources is required, since we have found that the 
original full-custom RaPiD -I cell does not have enough interconnect resources to 
handle some of the benchmarks intended for the architecture [4].  RaPiD -II addresses 
this issue because it has 24 -buses and three bus-connectors per functional unit, 
compared to RaPiD -I, which has 14 -buses and one bus-connector per functional unit.  
In addition to the increase in routing resources, the RaPiD -II cell that was chosen had 
to have a rich enough resource mix of functional units to support a large set of 
applications.  Note that RaPiD-II isn’t an architecture chosen just for template 
reduction, but instead is the RaPiD tile we believe is the best for implementation in 
any methodology, including full custom tiles.  Template reduction will work on 
RaPiD-II, the original RaPiD-I, or any other premade tile that has at least enough 
resources to support the desired circuits. 

3.2   Reduction List Generation 

The next task in template reduction is the creation of the reduction list.  Towards this 
end we have implemented a subtractive scheme that eliminates as many functional 
units and routing resources, collectively called “resources”, as possible while placing 
and routing a set of netlists onto the template architecture.  Individual netlists are 
placed using a simulated annealing approach [2], and routed using the Pat hfinder 
algorithm [7]. Initially, all netlists in the set are individually placed and routed on the 
template architecture.  At the end of this first run, the fraction of netlists that used 
each resource in the template is recorded, and a cost (referred to as usage_cost) is 



assigned to each resource based on the fraction of netlists that used the resource 
during the previous run.  

After completion of the first run on all netlists, a second run is commenced during 
which the netlists in the set are individually placed and routed again on the template 
architecture.  However, for any given netlist, the cost of using a resource during the 
second run is influenced by the usage_cost of that resource.  At the end of the second 
run, the usage_cost of each resource is again adjusted in a manner identical to that at 
the end of the first run, and a third run is begun.  Once the three runs are completed, 
we have a list of the resources that can be eliminated from the template architecture.  

3.3   Reduction and Compaction 

Onc e the reduction list is generated, the final task is to automatically edit the 
template, followed by a compaction step to reduce the template size.  To reduce the 
template, the layouts were automatically edited within the Cadence CAD tools.  To 
achieve the required automation Cadence SKILL [8] routines were written for each 
reduction that the subtractive method performs. 

First among the reductions is the elimination of any unused cells (that is, complete 
RaPiD-II tiles).  The next reduction is the elimination of any functional units in any 
cell that are not needed.  Next, we remove any of the bidirectional bus-connectors that 
are not needed in the interconnect.  The final reduction is the removal of any unused 
wires.  When an unused wire is removed, the corresponding transistors and 
programming bits in any muxes and drivers on the wire are also removed.  Once all of 
the reductions have been preformed the final design is compacted. 

4   Results on Benchmarks 

We are using five sets of netlist to evaluate the template reduction method.  All of the 
netlist sets have been compiled using the RaPiD compiler [9].  The five benchmark 
sets are: 
• Radar – used to observe the atmosphere using FM signals  
• Image Processing  – a minimal image processing library 
• FIR –six different FIR filters, two of which time-multiplex use of multipliers 
• Matrix Multiply – five different matrix multipliers 
• Sorters – two 1D sorting netlists and two 2D sorting netlists 

The template reduction method is able to reduce the number of functional units by 
an average of 45%, and the routing resources by an average of 75%.  Through these 
reductions, we have found that the template reduction method produces circuits that 
are on average 53.4% smaller and 13.9% faster than the unreduced template. 



5   Conclusio ns 

With the advent of SoCs, it is now possible to reduce the NRE cost of creating custom 
reconfigurable devices.  This presents some interesting possibilities for high 
performance reconfigurable circuits that are targeted at specific application domains, 
instead of random logic.  Automation of the design flow is required, if these new 
custom architectures are to be designed in a timely fashion. 

The template reduction method is able to leverage full custom designs, while still 
removing unneeded resources.  This enables it to create circuits that perform at or 
better than that of the initial full custom template.  In this work we have shown that 
the automation of the layout portion of the design flow is possible using a template 
reduction methodology.  We have created the RaPiD -II cell, since the RaPiD-I cell 
was not able to implement all of the circuits from the benchmark suite, circuits that it 
was targeted to support.  We have found that the template reduction method produces 
circuits that are 53.4% smaller and 13.9% faster than RaPiD-II. 

6   Acknowledgements 

The authors would like to thank the RaPiD group, especially Carl Ebeling and Chris 
Fisher, for the RaPiD -I layout used in this research.  We also are indebted to Larry 
McMurchie for support on the Cadence tool-suite.  This work was funded in part by 
grants from NSF and NASA.  Scott Hauck was supported in part by an NSF 
CAREER award and an Alfred P. Sloan Research Fellowship. 

References 

1. S. Phillips, Automatic Layout of Domain-Specific Reconfigurable Subsystems for System -
on-a-Chip, M.S. Thesis, Northwestern University, Dept. of ECE, July 2001. 

2. A. Sharma, Development of a Place and Route Tool for the RaPiD Architecture, M.S. 
Thesis, University of Washington, 2001. 

3. K. Compton, S. Hauck, "Totem: Custom Reconfigurable Array Generation", IEEE 
Symposium on FPGAs for Custom Computing Machines Conference, 2001. 

4. K. Compton, A. Sharma, S. Phillips, S. Hauck, "Flexible Routing Architecture Generation 
for Domain-Specific Reconfigurable Subsystems", International Conference on Field 
Programmable Logic and Applications, pp. 59-68, 2002. 

5. C. Ebeling, D. C. Cronquist, P. Franklin, “RaPiD –  Reconfigurable Pipelined Datapath”, 6th 
Annual Workshop on Field Programmable Logic and Applications, 1996. 

6. Application Specific Programmable Platform using eASICore® Whitepaper Version 1.0, 
http://www.easic.com/technolgy/whitepapers.html, March 2004. 

7. L. E. McMurchie and C. Ebeling “PathFinder: A Negotiation-Based Performance-Driven 
Router for FPGAs”, Symposium on Field-Programmable Gate Arrays, pp.111-117, 1995. 

8. Cadence Design Systems, Inc., “Openbook”, version 4.1, release IC 4.4.5, 1999. 
9. D. C. Cronquist, P. Franklin, S.G. Berg, C. Ebeling, "Specifying and Compiling Applications 

for RaPiD", IEEE Symposium on FPGAs for Custom Computing Machines 1998. 


