
 

Figure 1: Short read mapping aligns reads to a reference 
genome in the presences of errors and genetic variations.  
The highlighted ‘T’ is a sequencing error, whereas the 
highlighted ‘G’ is a genetic variation. 
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Abstract—Bioinformatics is an emerging field with seemingly 
limitless possibilities for advances in numerous areas of 
research and applications. We propose a scalable FPGA-based 
solution to the short read mapping problem in DNA 
sequencing, which greatly accelerates the task of aligning short 
length reads to a known reference genome. We compare the 
runtime, power consumption, and sensitivity of the hardware 
system to the BFAST and Bowtie software tools. The described 
hardware system demonstrates a 250X speedup versus the 
original BFAST software version, and a 31X speedup versus 
Bowtie. Also, the hardware system is more sensitive than 
Bowtie, which aligns approximately 80% of the short reads, as 
compared to the 91% aligned by the hardware. 
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I. INTRODUCTION 

Next-generation sequencing (NGS) machines are 
revolutionizing many aspects of biology and medicine.  
These machines are dramatically lowering the cost and 
increasing the throughput of DNA sequencing.  Their 
performance is on a trend line that has outstripped Moore’s 
law for several years, with no end in sight.  Furthermore, 
just as exponential progress in microelectronic technology 
has opened widespread and unexpected application areas; 
sequencing technology is being applied to a rapidly 
widening array of scientific and medical problems, from 
basic biology to forensics, ecology, evolutionary studies, 
agriculture, drug discovery, and the growing field of 
personalized medicine.   

 In brief, the sequencers determine the nucleotide 
sequence of short DNA fragments, typically a few tens to 
hundreds of bases, called short reads.  This can be done in a 
massively parallel manner, yielding much higher throughput 
than older sequencing technologies – on the order of tens of 
billions of bases per day from one machine.  For 
comparison, the human genome is approximately 3 billion 
bases in length. 

Given the diversity of applications, there is no single 
workflow used for all NGS applications.  However, in a 
dominant one, the short reads are derived from randomly 
fragmenting many copies of the genome of one organism for 
which a reference genome sequence is already known.  In 
these cases, the key first step in the data analysis pipeline is 
the short read mapping problem: determining the location 
in the reference genome to which each read maps best.  The 
problem is technically challenging for two reasons.  First, 
speed is important simply due to the volume of data.  For 

example, in human genetic studies, mapping a billion reads 
from one subject to the human reference genome is routine.  
Second, the achieved sensitivity of the algorithm, which is 
the ability to successfully map sequences that are not 
completely identical to the reference, is an important 
consideration.  These differences exist both because of 
technical errors in the sequencing machines (a frequent and 
uninteresting case) and because of genetic differences 
between the subject and the reference genome.  The latter 
case is rarer and much more interesting – indeed it may be 
the entire purpose of the experiment, as it may reveal the 
cause of some genetic disease.  The cases are distinguish-
able because the sequencer errors are random while the 
genetic differences are not.  Hence many mapped reads that 
consistently exhibit a difference with respect to the 
reference at a particular locus signal a genetic change, 
whereas occasional scattered differences are probably 
errors.  This also drives the desire for more and more reads, 
since more data gives more accurate variant-calling.  Figure 
1 shows an example set of short reads mapped to a section 
of the reference genome and examples of both types of 
differences (sequencing errors and genetic variations).   

Short read mapping has traditionally been performed by 
software tools such as Bowtie [1], BWA [2], MAQ [3], and 
BFAST [4], running on a cluster of processors.  However, 
NGS improvements are moving the bottleneck of the 
genome sequencing workflow from the sequencing phase to 
the short read mapping software. 

We describe using FPGAs to accelerate the short read 
mapping process by exploiting the parallelism of the task. 



The increased performance can be used to speed up genome 
sequencing, or to allow the use of more sensitive short read 
mapping algorithms, which are able to map a greater 
percentage of the reads to the reference genome.  

II. RELATED WORK 

A. Software Short Read Mapping 

There are many short read mapping software tools that 
tackle the problem of processing the enormous amount of 
data produced by the next-generation sequencing machines.  
These solutions tend to fall into two main algorithmic 
categories.  

The first category of solution is based upon a block 
sorting data compression algorithm called the Burrows-
Wheeler Transform (BWT) [5]. This solution uses the FM-
index [6] to efficiently store information required to traverse 
a suffix tree for a reference sequence. These solutions can 
quickly find a set of matching locations in a reference 
genome for short reads that match the reference genome 
with a very limited number of differences. However, the 
running time of this class of algorithm is exponential with 
respect to the allowed number of differences; therefore 
BWT-based algorithms tend to be less sensitive than others. 
Bowtie [1] and BWA [2] are examples of programs based 
upon this algorithmic approach. 

The second category of solution leverages the fact that 
individual genomes differ only slightly, meaning it is likely 
that some shorter subsequences of a short read will exactly 
match the reference genome. These shorter subsequences 
are called seeds.  An index of the reference genome is 
compiled first, which maps every seed that occurs in the 
reference genome to the locations where they occur. To 
align a short read, all the seeds in the read are looked up in 
the index, which yields a set of Candidate Alignment 
Locations (CALs). The short read is then scored against the 
reference at each of these CALs using the Smith-Waterman 
[7] string-matching algorithm.  The location with the 
highest score is chosen as the alignment location for a short 
read.  BFAST [4] is an example program based upon this 
algorithmic approach. 

B. FPGA-based Short Read Mapping 

Multiple attempts have been made to accelerate short 
read mapping in hardware, but sequencing flows generally 
have yet to adopt the use of FPGAs. Previous efforts doing 
short read mapping using FPGAs have achieved at most an 
order of magnitude improvement compared to software 
tools.  Also, previous solutions failed to produce a system 
that is well-suited to large-scale full-genome mapping. 

Two attempts to accelerate short read mapping on 
FPGAs tried to use a brute-force approach to compare short 
sequences in parallel to an entire reference genome.  They 
stream the reference genome through a system doing exact 
matching of the short reads to the reference [8] [9].  
Reference [8] demonstrates a greater sensitivity to genetic 
variations in the short reads than Bowtie and MAQ, but the 

mapping speed was approximately the same as that of 
Bowtie.  Also, this system demonstrated mapping short 
reads to only chromosome 1 of the human genome.  
Reference [9] demonstrates between 1.6x and 4x speedup 
versus RMAP [10] and ELAND [11] for reads with between 
0 and 3 differences. This implementation was for the full 
human genome. 

In both implementations, the number of short reads that 
can be aligned in a single pass of the reference genome is 
limited by the number of block RAMs on the FPGA. 
Scaling to a larger number of short reads (the previously 
cited works mapped only 100,000 50-base and 1,000,000 
36-base reads respectively) would require multiple passes of 
the reference genome.  This would greatly increase the 
runtime of the system. 

III.  SYSTEM DESIGN 

Our system design is based upon the algorithm used by 
the BFAST mapping software. Our current implementation 
uses seeds with 22 base-pairs, short reads with 76 base-
pairs, and 2 bits per base encoding, but these are parameters 
which can be changed easily. 

A. Creating the Index 

A pre-compiled index is used to map seeds of a short 
read to locations in the reference genome where the seed 
occurs.  The index is implemented as a modified hash table, 
composed of a pointer table and a CAL table.  The pointer 
table is directly indexed using only a portion of the seed.  
This means that many seeds map to each entry of the pointer 
table. The CALs for these seeds are stored along with the 
corresponding seed as a list in a second table called the CAL 
Table.  Each entry in the pointer table contains a pointer to 
this list along with the size of the list.  To look up the CALs 
for a seed, the pointer table is consulted to find the 
beginning and end of the relevant bucket in the CAL table.  
This bucket is searched for the CALs associated with the 
seed.  Thus, looking up the CALs for a seed takes 2 DRAM 
reads, one for retrieving information from the pointer table, 
and another to bring in the actual CAL table bucket to be 
searched. 

To compile the index for a reference genome, we walk 
along the reference genome and make a list of all the <seed, 
location> pairs in the genome. This list is then sorted by 
seed, and seeds occurring too frequently in the reference 
genome are removed.  Removing these abundant seeds 
allows us to avoid aligning reads to repetitive regions of the 
reference genome without negatively affecting the quality of 
the alignments.  We mirrored the BFAST default for this by 
removing seeds that occur more than 8 times in the 
reference genome.  This sorted list comprises the CAL table.  
To complete the construction of the index, we create the 
previously described pointer table.  An example of a fully 
constructed index for the reference string AGTACTGCGA 
can be seen in Figure 3. 



 

Figure 3: The index consists of the pointer table (left) and the 
CAL table (right).  The pointer table is an array of pointers 
to the start of hash table buckets in the CAL table.  This 
example is constructed for the reference AGTACTGCGA. 

 
Figure 2: An example of the pointer table and CAL table 
entries accessed for the seed ACTG. Note that the key CTG 
in the CAL table bucket matches that of the seed, so 3 is a 
valid CAL for this seed.  Note that this example does not 
include the reverse complement strand. 

B. Finding CALs 

The first step in mapping reads to the reference genome 
is to extract all seeds from each short read. We have chosen 
the seed length to match the BFAST default seed length, 
which is 22 bases. To find CALs for a seed, we use the 
most-significant bits of the seed, which we call the address 
bits, to access the pointer table. The remaining bits of the 
seed are called the key bits.  This yields a pointer to the 
correct CAL table bucket in the CAL table.  We do a linear 
scan through the CAL table bucket, and CALs of entries 
with key bits matching those of the current seed are added to 
the set of CALs for the current short read.  An example 
index access for a seed is shown in Figure 2 with the visited 
entries of the pointer table and CAL table highlighted. 

The index must also address the problem that a short 
read might come from either the forward or reverse 
complement strand of the double-stranded DNA. There are 
three options for mapping reads to both the forward and the 
reverse complement strands. 

The first option is to index only the forward reference 
strand, and lookup both the short read and its reverse 
complement in the index of the forward genome.  This 
solution doubles the number of reads to be mapped and 
would thus double the runtime. 

The second option is to index both the forward and the 
reverse complement genomes.  Looking up the short read in 
this index would find the CALs for both the forward and the 
reverse complement genome.  However, this index would 
require approximately double the memory footprint as 
compared to an index for just the forward reference. 

Instead, we notice that each seed has two entries in an 
index constructed for both the forward and reverse 
complement genomes; one entry is for the forward strand 

and one for the reverse complement strand, but these entries 
have exactly the same location.  Thus, we only need to keep 
one entry if we add a bit that indicates whether it is the entry 
for the forward or the reverse strand.  When creating the 
index, we only add the lexicographically smaller of the 
forward and the reverse complement seeds to the index.  An 
exception is made for seeds that are their own reverse 
complement.  In this case both the forward and reverse 
complement seed must remain in the CAL table.  

Now when looking up seeds in the index, we generate 
both the forward and reverse complement of each seed.  We 
choose the lexicographically smaller of the two and use it to 
access the pointer table and CAL table.  If the forward seed 
was used to access the index and it matches a CAL from the 
forward strand, or a reverse seed was used and it matched a 
CAL from the reverse strand, we do Smith-Waterman 
comparison on the forward reference.  In the other cases, 
where only one of the seed and CAL were reverse-
complemented, we compare the read to the reverse 
complement of the reference.  

One problem that arises when deterministically keeping 
the lexicographically smaller seed is a non-uniform 
distribution of the CALs in the CAL table buckets. Since we 
keep the lexicographically smaller version of the seed, we 
will tend to have more seeds that begin with ‘A’ than seeds 
that begin with ‘T’.  This bias would cause the CAL table 
buckets towards the beginning of the CAL table to contain 
many more CALs than buckets at the end of the CAL table. 

To address this issue, we redistribute the CALs 
throughout all CAL table buckets during the construction of 



the index by hashing the lexicographically smaller seed 
before adding it to the table.  We hash the seeds using a 1-1 
hash function on the 44-bit seed.  We then use the most 
significant 30 bits of the result to address the pointer table.  
We store the remaining 14 bits, which are sufficient to 
identify the seed, amongst the CALs in the CAL table.  This 
produces a more uniform distribution of CALs through all 
CAL table buckets. During the mapping phase, we use the 
same hash on the lexicographically smaller seed before 
accessing the pointer table and CAL table. 

C. Binning and Filtering 

Thus far we have described how to find the candidate 
alignments of seeds in a reference genome using an index. 
We must convert these locations, which give the location of 
the start of the seed, to the candidate location of the read 
containing that seed.  We do this normalization by 
subtracting from the CAL the offset of the start of the seed 
with respect to the start of the short read. For example, if the 
seed starting at the third base of the short read finds a CAL 
of 34, we offset that CAL back to the start of the short read, 
location 32.  This normalization gives us the exact location 
of the read in the reference if we assume that the genome 
being sequenced has no insertions or deletions with respect 
to the reference genome. To allow for up to N insertions and 
deletions, we must compare the short read to a section in the 
reference genome starting N bases before start of the short 
read’s CAL (given by the index) and ending N bases after 
the end of the short read. 

To simplify the hardware, we have divided the reference 
genome into reference blocks whose size is determined by 
the size of a single read from DRAM.  All CALs are 
converted to the start of the reference block that contains the 
CAL, and the short read is aligned to the reference starting 
at the beginning of a block.  This increases the size of the 
reference sequence compared against the short read, but the 
increase in time for this comparison is offset by much 
simpler hardware. 

Many CALs are collected for a short read when looking 
up its seeds in the index.  However, many of these CALs 
will refer to the same place in the reference, and the short 
read only needs to be compared once at each of these 
locations.  For example, our system with 22-base seeds in 
76-base short reads does 55 (76-22+1) index lookups, so an 
exact match to the reference will find the same CAL 55 
times.  We remove repeat CALs from the set for a short read 
by saving the CALs, along with their reverse complement 
bit, in a hash table (called the CAL Filter) as they are 
processed. If an entry already appears in the filter table, it is 
ignored.  Each entry also stores a sequence number 
associated with each short read. This is incremented for 
each new short read, which implicitly clears the hash table 
between short reads. 

D. Smith-Waterman 

The short read is then aligned to the reference genome at 
each CAL. This local alignment uses a combination of the 
Smith-Waterman and Needleman-Wunsch [12] string-
matching algorithms. Instead of doing local alignment of a 
short read against the reference, or global alignment of the 
short read and reference, we globally align the short read 
against a local section of the reference. In other words, we 
want to score the alignment of the entire short read to a 
subsequence of the reference genome. 

We use the affine gap model [13], which scores long 
insertion or deletion chains different from short insertions 
and deletions. In this model, the cost to begin an insertion or 
deletion chain is higher than the cost to continue an 
insertion or deletion chain. This model allows for longer 
insertion and deletion chains to appear in the actual 
alignment, which can be more biologically accurate. 
However, this model requires that we store 3 copies of the 
2D scoring array. The first copy is the similarity score, and 
the other two are the current insertion and deletion scores at 
each cell respectively. 

When using the affine gap model, the score for a cell is 
computed by solving (3), where α is a positive value that is 
the gap-open penalty, β is a positive value that is the gap-
extension penalty, E(i,j) is the current read gap score for cell 
(i,j), F(i,j) is the current reference gap score for cell (i,j), 
σ(S[i],T[j]) is the positive or negative score from the 
similarity matrix for read base i and reference base j, and 
V(i,j) is the final similarity score for cell (i,j).  

 E(i, j) = max ��(
, � − 1) − ��(
, � − 1) − � (1) 

 F(i, j) = max ��(
 − 1, �) − ��(
 − 1, �) − � (2) 

 V(i, j) = max � �(
, �)�(
, �)�(
 − 1, � − 1) + �(��
�, ����) (3) 

The matrix is computed by sweeping i from 1 to the 
length of the short read (N), and by sweeping j from 1 to the 
length of the reference (M) being compared. Our scoring 
matrix is based upon that of BFAST, with α set to +2, β to 
+1, and the similarity matrix σ set such that matching bases 
are +2 and mismatching bases are -2. To guarantee that we 
globally align the short read to the local reference, we 
initialize the scoring matrices (V, E, and F) according to (4).  

 V(i, j) = � 0																																		
 = 0, 1 ≤ � ≤ !−� − (
 − 1) ∗ �								1 ≤ 
 ≤ #, � = 0 (4) 

An example of a fully aligned read and the backtracking 
process can be seen in Figure 4. 



 
Figure 4: This example shows the similarity score matrix for 
the global alignment of the short read to a local section of the 
reference.  The short read matches the reference perfectly 
with the exception of a single base “A”.  Only the similarity 
matrix of the affine gap model is shown here, but the 
insertion and deletion matrices are included in the 
computation. 

 
Figure 5: Smith-Waterman compute unit is implemented as a 
systolic array.  The short read is parallel-loaded before the 
alignment, and the reference bases are shifted through the 
array.  All bases of a short read are scored against bases of 
the reference each clock cycle. 

IV.  HARDWARE SYSTEM 

The target for this implementation was the full 3B base-
pair human genome.  Also, the read length was targeted as 
76 bases, but both of these parameters can be tuned with 
slight changes to the design.  With the exception of the 
memory system and the Smith-Waterman engines, the 
system operates on a 250 MHz source clock. 

A. System Description 

The short read mapping system consists of multiple M-
503 modules from Pico Computing [14].  Each M-503 
contains a Xilinx Virtex-6 LX240T FPGA.  It uses Gen2 x8 
PCIe for external communication and contains 2x4GB 
DDR3 SODIMMs running at 400 MHz. The M-503 module 
connects to an EX-500 backplane, which plugs into a 
motherboard x16 PCIe slot. Three M-503s can plug into the 
EX-500 backplane, and they are connected together using a 
full-duplex x8 switched PCIe network. Eight EX-500s can 
plug into a motherboard, allowing up to 24 M-503s in a 
chassis. M-503s can send and receive traffic external to the 
EX-500 backplane using full-duplex Gen2 x16 PCIe. 

Before the mapping begins, the index is streamed from 
the host system to the DDR3 of the M-503 via the PCIe, 
which takes roughly 72 seconds.  If aligning multiple sets of 
reads to the same reference genome, which is common in a 
production setting, this step must only be done the first time.  

Once the short read mapping phase begins, packets 
containing the short reads are streamed to the hardware 
system via PCIe. The hardware extracts each short read 
from the stream, and uses a shift register to extract all the 
seeds for the short read.  The short read is then passed to the 
Smith-Waterman unit for use in the comparison step. 

Three ports to the DDR3 system, operating on a 200 
MHz clock, are required for the mapping.  Each access to 
the memory system, whether to the pointer table, CAL table, 
or reference data, is to a random address.  Heavy pipelining 
and out-of-order memory accesses are therefore required to 
attain the highest possible memory bandwidth for these 
memory accesses.  The M-503 uses x64 DDR3 SODIMMs, 
which return at least 256 bits of data per read burst.  

We efficiently pack the pointer table data into these 256-
bit boundaries.  Each CAL table entry requires 64 bits, for a 
total of four entries per 256-bit boundary of the DRAM.  
The reference is packed two bits per base, yielding 128 
reference bases per DRAM boundary. After filtering out 
seeds that appear more than eight times in the reference 
genome, the total CAL table contains 2.44 billion entries, 
which requires 19.5 GB of DRAM to store the CAL table. 
The packed pointer table requires 2 GB of memory and the 
reference genome is stored in 0.77 GB of memory. 

A CAL filter is implemented using block RAMs on the 
FPGA.  The filter is implemented as a hash table with 1024 
entries.  CALs are therefore hashed to 10 bits to determine 
the target entry of the table.  The CAL finding and filtering 
process all operates on a 250 MHz system clock. 

The Smith-Waterman engines are implemented in the 
FPGA as a systolic array [15], as shown in Figure 5.  Each 
cell computes the value of one entry in the 2D Smith-
Waterman matrix each clock cycle.  An array of cells 
computes the anti-diagonal of the Smith-Waterman matrix 
in parallel.  In other words, the systolic array enables each 
base of the short read to be scored against a base of the 
reference simultaneously, which changes the runtime of the 
Smith-Waterman computation from O(MxN) for M length 
reference and N length short read to O(M+N). 

Due to the many levels of logic in the unit cell of the 
systolic array, the Smith-Waterman system runs at a slower 
125 MHz clock.  One benefit of the systolic array is the 



 
Figure 6: High level view of the short read mapping system 
hardware on a single M-503 FPGA card.  Short reads are 
streamed to the FPGA and aligned reads are streamed from 
the FPGA via PCIe.  The index is stored in a 4 GB DDR3 
memory, which is accessed by the CAL finding module and 
the reference lookup module.  Multiple Smith-Waterman 
compute engines are instantiated to align reads in parallel. 

ability to pipeline the alignment of a single short read to 
multiple reference buckets, which reduces the runtime to 
approximately equal the length of the reference bucket (M), 
instead of the reference bucket plus the read length (M+N).  
However, as described in the next section, we have 
partitioned the CAL table eight ways and are using a fairly 
long seed length, so there are approximately only 1.5 CALs 
per read in a given partition. This means we will not be able 
to pipeline many reference alignments. 

Reference data is packed to 256-bit boundaries in 
DRAM, which should mean that we can align 76 base reads 
against 128 bases of reference. However, the short read 
alignment often will cross the 256-bit boundary of the 
DRAM. Therefore, we align the read to a 256-base (2 x 256 
bits) section of the reference.  When aligning against a 256-
base reference bucket a single Smith-Waterman 
computation requires approximately 76+256=332 cycles. 
Since each computation takes so many cycles to complete, 
we instantiate multiple Smith-Waterman compute engines in 
the hardware, and round-robin the required computations 
among the instantiated compute units. The “right” number 
of Smith-Waterman engines to instantiate should be just 
enough to keep up with the pointer table, CAL table, and 
reference memory accesses. In our system, the memory 
interface (which benefits from partitioning and is explained 
later) requires approximately 45 cycles at the 200 MHz 
memory clock to complete the memory accesses for a single 
short read. This means approximately 18 Smith-Waterman 
engines are required to keep up with the memory system. A 
high-level block diagram of the described hardware system 
for the short read mapping system on a single M-503 is 
shown in Figure 6.  

B. Partitioning 

To improve the performance of the system, we partition 
the index across multiple memories to allow concurrent 
memory operations and reduce the memory footprint 
required per node in the final system. To partition our index 
N ways, we partition both the pointer table and the CAL 
table by the first log2(N) bits of the seed (after the seed has 
been hashed). For example, when partitioning two ways, 
seeds in the index that begin with an A or C go into the 
index for partition 0, and seeds beginning with G or T go 
into the index for partition 1. 

Each short read is streamed through each of the 
partitions.  Each partition looks up only those seeds that 
occur in its partition of the index. Using the example above 
with two partitions, a seed beginning with an A will only be 
looked up by partition 0. Each partition collects the CALs 
for the short read and performs the Smith-Waterman 
comparison to the reference.  When finished, it passes the 
short read along with the best alignment and score to the 
next partition.  Each partition updates the best alignment 
and score in turn, with the last partition producing the final 
best alignment and score. 

This aggregation is accomplished by creating a daisy-
chain of the partitions using PCIe for communication. A 
partition replaces the best alignment information on the 
short read stream if it aligns that short read with a higher 
score than the current best alignment score. Short reads are 
passed along the daisy chain between FPGAs without the 
need for host processor control. The processor simply needs 
to send short reads to the first FPGA in the chain and 
receive results from the last FPGA in the chain. 

Each read requires 32 B of data to be streamed through 
the system. Therefore, the total amount of data that must be 
streamed through the chain for 50 million reads is 1.5 GB. 
Gen2 x8 PCIe, which has a maximum sustained bandwidth 
of 3.2 GB/s, requires about 0.5 seconds to stream all the 
data for 50 million reads. Since the network is full duplex, 
reads can be streamed to the first FPGA and results 
streamed from the last FPGA concurrently. 

The human genome requires an index of approximately 
22 GB plus the reference data for each partition. By 
partitioning the index across 8 M-503s, each of which 
having 4 GB of DDR3 DRAM, we easily store the entire 
index and reference data. Each partition contains 0.25 GB of 
the pointer table, 0.77 GB of the reference data, and 
approximately 2.5 GB of the CAL table. 

Two small problems exist with this partitioning method. 
First, the entire reference must now be stored with each 
partition. This is not a problem for the human genome, 
which can be stored in about 750 MB, but could become a 
problem for much larger genomes.  Second, since the 
partitioning is not done by section of the genome, a short 
read may be aligned against the same reference bucket in 
multiple partitions.  This inefficiency can be avoided by 
seeding the CAL filter at the beginning of each short read 



 
Figure 7:  Time required for the 8 FPGA system, BFAST, 
and Bowtie map 50 million 76 base short reads to the 
genome.  Note the linear improvement in runtime until the 
memory system saturates at approximately 8 threads.  Note 
the FPGA system here always uses 2 software threads. 

with all of the CALs that have previously been aligned for 
that short read.  This increases the data passed between 
partitions, but greatly reduces the number Smith-Waterman 
comparisons. However, this has yet to be implemented. 

More details regarding our full human genome short 
read mapping implementation can be found in [16] and [17]. 

V. RESULTS 

We compare the performance of this eight FPGA 
system, contained in a 4U Tyan chassis, to Bowtie and 
BFAST running on the two quad-core Intel Xeon E-5520 
CPUs. To test the runtime and sensitivity of alignments, 
these software and hardware mappers were tested using 76 
base short reads.  Our benchmarks consisted of mapping 
subsets of 54 million short reads from one end of a paired-
end Illumina GA IIx run on human exome data. 

The tested system consumed 29% of the available slice 
registers, 62% of the slice LUTs, and 45% of the block 
RAMs on an LX240T-2 Virtex-6 FPGA.  Due to routing 
congestion at the inputs and outputs of the Smith-Waterman 
modules, each FPGA was limited to eight Smith-Waterman 
compute engines. 

Although our goal was to develop a high-performance 
implementation of the high-quality BFAST algorithm, we 
also compared the runtime of the FPGA system to that of 
the Bowtie software, which is a heuristic algorithm that 
trades quality for improved performance.  BFAST and 
Bowtie were each tested using 8 threads, which was chosen 
because that number of threads saturated the memory 
bandwidth on the system and produced the fastest runtime 
for mapping 50 million reads, as shown in Figure 7.  When 
measuring the runtime of the FPGA system, we do not 
include the time required to populate the index into memory 
and to configure the FPGAs, since this only needs to be 
done once per reference genome. However, when measuring 
the runtime of the BFAST and Bowtie software, we do 
include the time to load the index into memory, since it 
must be done for every set of short reads to be mapped.   

The following are the commands that were used to run 
the matching local alignment phases of the BFAST software 
along with the command use to run the Bowtie software 
(after compilation of an index for both software tools): 

• bfast match -f hg19.fasta -r reads1.fastq -A 0 -e 
50000000 -w 0 -n 8 –t > reads1.bmf 

• bfast localalign -f hg19.fasta -m reads1.bmf -A 0 -e 
50000000 -n 8 -t > reads1.baf 

• bowtie hg19 -q reads1.fastq -u 50000000 -v 3 -t -p 8 
> reads1.bowtie_out 

A. Mapping Time 

To demonstrate the speed of the FPGA system, we 
compared the time to map 50 million short reads using the 
FPGA system versus BFAST and Bowtie, as shown in 
Figure 7.  The results show the FPGA system with a 250x 
speedup over BFAST, which mapped 50 million reads in 
8,480 seconds (2 hours, 21 minutes, 20 seconds).  Also the 

results show a 31x speedup over Bowtie, which mapped 50 
million reads in 1,051 seconds (17 minutes, 31 seconds). 

B. Sensitivity 

In addition to runtime, a key aspect to take into account 
is the sensitivity of each system.  The FPGA system is able 
to map 91.5% of the 50 million reads, whereas Bowtie only 
maps 80.2% of the short reads. Bowtie is unable to handle 
reads that differ from the reference genome by more than 
three bases. Even when using the “best” option while 
running Bowtie (which slows down the runtime), only 
85.8% of the reads were mapped.  The differences between 
the reference genome and reads are often the data of most 
interest in a next-generation sequencing experiment, perhaps 
identifying the location of a genetic variant responsible for a 
heritable disease.  Thus, the increase in sensitivity afforded 
by the FPGA system is of considerable importance. 

The FPGA system can be tuned to be more sensitive by 
reducing the seed length.  This finds more CALs per read, 
enabling more reads to be aligned to the reference genome, 
but it slows down the runtime of the system slightly.  When 
testing species with high rates of genetic variation, or using 
the reference genome as a template for the assembly of 
reads from the genome of a closely related species, this 
option may be more important. Conversely, the Bowtie 
software cannot be tuned to compete with the sensitivity of 
the FPGA system. 

C. Energy 

The previous sections stated the speed and sensitivity 
comparisons between the hardware and the software. 
However, power is another factor that must be considered.  
We measured the power drawn by the system while running 
the FPGA system, as well as the Bowtie and BFAST 
software, which is shown in the first row of Table 1. 



TABLE 1: ENERGY REQUIRED TO MAP 50M READS 

  BFAST Bowtie FPGA 

System Power (W) 249 336 496 

50M Reads (kW-hr) 0.587 0.098 0.005 

Normalized Energy 100% 16.7% 0.8% 

The FPGA system consumes more instantaneous power 
than the software, but it also maps reads much faster than 
the software. Therefore the FPGA system consumes much 
less energy when mapping 50 million short reads as 
compared to either software tools, as shown in Table 1.  The 
normalized energy in the table is the energy required for the 
specified system (BFAST, Bowtie, or FPGA) normalized to 
the energy required for the BFAST system. The table shows 
that the FPGA system requires only about 0.8% of the 
energy required for the BFAST system and 4.7% of the 
energy required for the Bowtie system. 

VI. CONCLUSIONS 

These results demonstrate the power of this FPGA short 
read mapping system. This system is able to map reads to 
the full genome faster, while using significantly less energy 
than both of the two tested software tools. We demonstrated 
a two order of magnitude speedup (250X) versus the 
BFAST software, and a one order of magnitude speedup 
(31X) versus the lower-quality Bowtie software running on 
two quad-core Intel Xeon processors.  

These improvements in system runtime help to enable 
research that was not possible before. For example, 
researchers can use this to study sequencing technologies 
with higher read error rates, which require a very large read 
depth during mapping. Similarly, this technology enables 
researchers to study larger genomes that may not have been 
possible before, such as barley (5.3 Gbases). Also, this 
FPGA hardware system can be tuned for the speed versus 
sensitivity trade-off, which enables researchers to study 
genomes with large genetic variation among the species. 
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