

Figure 1: Short read mapping aligns reads to a reference
genome in the presences of errors and genetic variations.
The highlighted ‘T’ is a sequencing error, whereas the
highlighted ‘G’ is a genetic variation.

Hardware Acceleration of Short Read Mapping

Corey B. Olson1,2, Maria Kim1, Cooper Clauson1, Boris Kogon1,2, Carl Ebeling1, Scott Hauck1, Walter L. Ruzzo1,3
1University of Washington, 2Pico Computing Inc., 3Fred Hutchinson Cancer Research Center

Seattle, WA
corey@picocomputing.com, {mbkim, cclauson, boko, ebeling, hauck, ruzzo}@uw.edu

Abstract—Bioinformatics is an emerging field with seemingly
limitless possibilities for advances in numerous areas of
research and applications. We propose a scalable FPGA-based
solution to the short read mapping problem in DNA
sequencing, which greatly accelerates the task of aligning short
length reads to a known reference genome. We compare the
runtime, power consumption, and sensitivity of the hardware
system to the BFAST and Bowtie software tools. The described
hardware system demonstrates a 250X speedup versus the
original BFAST software version, and a 31X speedup versus
Bowtie. Also, the hardware system is more sensitive than
Bowtie, which aligns approximately 80% of the short reads, as
compared to the 91% aligned by the hardware.

Keywords - bioinformatics; short reads; mapping; next-
generation sequencing; reconfigurable hardware; FPGA;

I. INTRODUCTION

Next-generation sequencing (NGS) machines are
revolutionizing many aspects of biology and medicine.
These machines are dramatically lowering the cost and
increasing the throughput of DNA sequencing. Their
performance is on a trend line that has outstripped Moore’s
law for several years, with no end in sight. Furthermore,
just as exponential progress in microelectronic technology
has opened widespread and unexpected application areas;
sequencing technology is being applied to a rapidly
widening array of scientific and medical problems, from
basic biology to forensics, ecology, evolutionary studies,
agriculture, drug discovery, and the growing field of
personalized medicine.

 In brief, the sequencers determine the nucleotide
sequence of short DNA fragments, typically a few tens to
hundreds of bases, called short reads. This can be done in a
massively parallel manner, yielding much higher throughput
than older sequencing technologies – on the order of tens of
billions of bases per day from one machine. For
comparison, the human genome is approximately 3 billion
bases in length.

Given the diversity of applications, there is no single
workflow used for all NGS applications. However, in a
dominant one, the short reads are derived from randomly
fragmenting many copies of the genome of one organism for
which a reference genome sequence is already known. In
these cases, the key first step in the data analysis pipeline is
the short read mapping problem: determining the location
in the reference genome to which each read maps best. The
problem is technically challenging for two reasons. First,
speed is important simply due to the volume of data. For

example, in human genetic studies, mapping a billion reads
from one subject to the human reference genome is routine.
Second, the achieved sensitivity of the algorithm, which is
the ability to successfully map sequences that are not
completely identical to the reference, is an important
consideration. These differences exist both because of
technical errors in the sequencing machines (a frequent and
uninteresting case) and because of genetic differences
between the subject and the reference genome. The latter
case is rarer and much more interesting – indeed it may be
the entire purpose of the experiment, as it may reveal the
cause of some genetic disease. The cases are distinguish-
able because the sequencer errors are random while the
genetic differences are not. Hence many mapped reads that
consistently exhibit a difference with respect to the
reference at a particular locus signal a genetic change,
whereas occasional scattered differences are probably
errors. This also drives the desire for more and more reads,
since more data gives more accurate variant-calling. Figure
1 shows an example set of short reads mapped to a section
of the reference genome and examples of both types of
differences (sequencing errors and genetic variations).

Short read mapping has traditionally been performed by
software tools such as Bowtie [1], BWA [2], MAQ [3], and
BFAST [4], running on a cluster of processors. However,
NGS improvements are moving the bottleneck of the
genome sequencing workflow from the sequencing phase to
the short read mapping software.

We describe using FPGAs to accelerate the short read
mapping process by exploiting the parallelism of the task.

The increased performance can be used to speed up genome
sequencing, or to allow the use of more sensitive short read
mapping algorithms, which are able to map a greater
percentage of the reads to the reference genome.

II. RELATED WORK

A. Software Short Read Mapping

There are many short read mapping software tools that
tackle the problem of processing the enormous amount of
data produced by the next-generation sequencing machines.
These solutions tend to fall into two main algorithmic
categories.

The first category of solution is based upon a block
sorting data compression algorithm called the Burrows-
Wheeler Transform (BWT) [5]. This solution uses the FM-
index [6] to efficiently store information required to traverse
a suffix tree for a reference sequence. These solutions can
quickly find a set of matching locations in a reference
genome for short reads that match the reference genome
with a very limited number of differences. However, the
running time of this class of algorithm is exponential with
respect to the allowed number of differences; therefore
BWT-based algorithms tend to be less sensitive than others.
Bowtie [1] and BWA [2] are examples of programs based
upon this algorithmic approach.

The second category of solution leverages the fact that
individual genomes differ only slightly, meaning it is likely
that some shorter subsequences of a short read will exactly
match the reference genome. These shorter subsequences
are called seeds. An index of the reference genome is
compiled first, which maps every seed that occurs in the
reference genome to the locations where they occur. To
align a short read, all the seeds in the read are looked up in
the index, which yields a set of Candidate Alignment
Locations (CALs). The short read is then scored against the
reference at each of these CALs using the Smith-Waterman
[7] string-matching algorithm. The location with the
highest score is chosen as the alignment location for a short
read. BFAST [4] is an example program based upon this
algorithmic approach.

B. FPGA-based Short Read Mapping

Multiple attempts have been made to accelerate short
read mapping in hardware, but sequencing flows generally
have yet to adopt the use of FPGAs. Previous efforts doing
short read mapping using FPGAs have achieved at most an
order of magnitude improvement compared to software
tools. Also, previous solutions failed to produce a system
that is well-suited to large-scale full-genome mapping.

Two attempts to accelerate short read mapping on
FPGAs tried to use a brute-force approach to compare short
sequences in parallel to an entire reference genome. They
stream the reference genome through a system doing exact
matching of the short reads to the reference [8] [9].
Reference [8] demonstrates a greater sensitivity to genetic
variations in the short reads than Bowtie and MAQ, but the

mapping speed was approximately the same as that of
Bowtie. Also, this system demonstrated mapping short
reads to only chromosome 1 of the human genome.
Reference [9] demonstrates between 1.6x and 4x speedup
versus RMAP [10] and ELAND [11] for reads with between
0 and 3 differences. This implementation was for the full
human genome.

In both implementations, the number of short reads that
can be aligned in a single pass of the reference genome is
limited by the number of block RAMs on the FPGA.
Scaling to a larger number of short reads (the previously
cited works mapped only 100,000 50-base and 1,000,000
36-base reads respectively) would require multiple passes of
the reference genome. This would greatly increase the
runtime of the system.

III. SYSTEM DESIGN

Our system design is based upon the algorithm used by
the BFAST mapping software. Our current implementation
uses seeds with 22 base-pairs, short reads with 76 base-
pairs, and 2 bits per base encoding, but these are parameters
which can be changed easily.

A. Creating the Index

A pre-compiled index is used to map seeds of a short
read to locations in the reference genome where the seed
occurs. The index is implemented as a modified hash table,
composed of a pointer table and a CAL table. The pointer
table is directly indexed using only a portion of the seed.
This means that many seeds map to each entry of the pointer
table. The CALs for these seeds are stored along with the
corresponding seed as a list in a second table called the CAL
Table. Each entry in the pointer table contains a pointer to
this list along with the size of the list. To look up the CALs
for a seed, the pointer table is consulted to find the
beginning and end of the relevant bucket in the CAL table.
This bucket is searched for the CALs associated with the
seed. Thus, looking up the CALs for a seed takes 2 DRAM
reads, one for retrieving information from the pointer table,
and another to bring in the actual CAL table bucket to be
searched.

To compile the index for a reference genome, we walk
along the reference genome and make a list of all the <seed,
location> pairs in the genome. This list is then sorted by
seed, and seeds occurring too frequently in the reference
genome are removed. Removing these abundant seeds
allows us to avoid aligning reads to repetitive regions of the
reference genome without negatively affecting the quality of
the alignments. We mirrored the BFAST default for this by
removing seeds that occur more than 8 times in the
reference genome. This sorted list comprises the CAL table.
To complete the construction of the index, we create the
previously described pointer table. An example of a fully
constructed index for the reference string AGTACTGCGA
can be seen in Figure 3.

Figure 3: The index consists of the pointer table (left) and the
CAL table (right). The pointer table is an array of pointers
to the start of hash table buckets in the CAL table. This
example is constructed for the reference AGTACTGCGA.

Figure 2: An example of the pointer table and CAL table
entries accessed for the seed ACTG. Note that the key CTG
in the CAL table bucket matches that of the seed, so 3 is a
valid CAL for this seed. Note that this example does not
include the reverse complement strand.

B. Finding CALs

The first step in mapping reads to the reference genome
is to extract all seeds from each short read. We have chosen
the seed length to match the BFAST default seed length,
which is 22 bases. To find CALs for a seed, we use the
most-significant bits of the seed, which we call the address
bits, to access the pointer table. The remaining bits of the
seed are called the key bits. This yields a pointer to the
correct CAL table bucket in the CAL table. We do a linear
scan through the CAL table bucket, and CALs of entries
with key bits matching those of the current seed are added to
the set of CALs for the current short read. An example
index access for a seed is shown in Figure 2 with the visited
entries of the pointer table and CAL table highlighted.

The index must also address the problem that a short
read might come from either the forward or reverse
complement strand of the double-stranded DNA. There are
three options for mapping reads to both the forward and the
reverse complement strands.

The first option is to index only the forward reference
strand, and lookup both the short read and its reverse
complement in the index of the forward genome. This
solution doubles the number of reads to be mapped and
would thus double the runtime.

The second option is to index both the forward and the
reverse complement genomes. Looking up the short read in
this index would find the CALs for both the forward and the
reverse complement genome. However, this index would
require approximately double the memory footprint as
compared to an index for just the forward reference.

Instead, we notice that each seed has two entries in an
index constructed for both the forward and reverse
complement genomes; one entry is for the forward strand

and one for the reverse complement strand, but these entries
have exactly the same location. Thus, we only need to keep
one entry if we add a bit that indicates whether it is the entry
for the forward or the reverse strand. When creating the
index, we only add the lexicographically smaller of the
forward and the reverse complement seeds to the index. An
exception is made for seeds that are their own reverse
complement. In this case both the forward and reverse
complement seed must remain in the CAL table.

Now when looking up seeds in the index, we generate
both the forward and reverse complement of each seed. We
choose the lexicographically smaller of the two and use it to
access the pointer table and CAL table. If the forward seed
was used to access the index and it matches a CAL from the
forward strand, or a reverse seed was used and it matched a
CAL from the reverse strand, we do Smith-Waterman
comparison on the forward reference. In the other cases,
where only one of the seed and CAL were reverse-
complemented, we compare the read to the reverse
complement of the reference.

One problem that arises when deterministically keeping
the lexicographically smaller seed is a non-uniform
distribution of the CALs in the CAL table buckets. Since we
keep the lexicographically smaller version of the seed, we
will tend to have more seeds that begin with ‘A’ than seeds
that begin with ‘T’. This bias would cause the CAL table
buckets towards the beginning of the CAL table to contain
many more CALs than buckets at the end of the CAL table.

To address this issue, we redistribute the CALs
throughout all CAL table buckets during the construction of

the index by hashing the lexicographically smaller seed
before adding it to the table. We hash the seeds using a 1-1
hash function on the 44-bit seed. We then use the most
significant 30 bits of the result to address the pointer table.
We store the remaining 14 bits, which are sufficient to
identify the seed, amongst the CALs in the CAL table. This
produces a more uniform distribution of CALs through all
CAL table buckets. During the mapping phase, we use the
same hash on the lexicographically smaller seed before
accessing the pointer table and CAL table.

C. Binning and Filtering

Thus far we have described how to find the candidate
alignments of seeds in a reference genome using an index.
We must convert these locations, which give the location of
the start of the seed, to the candidate location of the read
containing that seed. We do this normalization by
subtracting from the CAL the offset of the start of the seed
with respect to the start of the short read. For example, if the
seed starting at the third base of the short read finds a CAL
of 34, we offset that CAL back to the start of the short read,
location 32. This normalization gives us the exact location
of the read in the reference if we assume that the genome
being sequenced has no insertions or deletions with respect
to the reference genome. To allow for up to N insertions and
deletions, we must compare the short read to a section in the
reference genome starting N bases before start of the short
read’s CAL (given by the index) and ending N bases after
the end of the short read.

To simplify the hardware, we have divided the reference
genome into reference blocks whose size is determined by
the size of a single read from DRAM. All CALs are
converted to the start of the reference block that contains the
CAL, and the short read is aligned to the reference starting
at the beginning of a block. This increases the size of the
reference sequence compared against the short read, but the
increase in time for this comparison is offset by much
simpler hardware.

Many CALs are collected for a short read when looking
up its seeds in the index. However, many of these CALs
will refer to the same place in the reference, and the short
read only needs to be compared once at each of these
locations. For example, our system with 22-base seeds in
76-base short reads does 55 (76-22+1) index lookups, so an
exact match to the reference will find the same CAL 55
times. We remove repeat CALs from the set for a short read
by saving the CALs, along with their reverse complement
bit, in a hash table (called the CAL Filter) as they are
processed. If an entry already appears in the filter table, it is
ignored. Each entry also stores a sequence number
associated with each short read. This is incremented for
each new short read, which implicitly clears the hash table
between short reads.

D. Smith-Waterman

The short read is then aligned to the reference genome at
each CAL. This local alignment uses a combination of the
Smith-Waterman and Needleman-Wunsch [12] string-
matching algorithms. Instead of doing local alignment of a
short read against the reference, or global alignment of the
short read and reference, we globally align the short read
against a local section of the reference. In other words, we
want to score the alignment of the entire short read to a
subsequence of the reference genome.

We use the affine gap model [13], which scores long
insertion or deletion chains different from short insertions
and deletions. In this model, the cost to begin an insertion or
deletion chain is higher than the cost to continue an
insertion or deletion chain. This model allows for longer
insertion and deletion chains to appear in the actual
alignment, which can be more biologically accurate.
However, this model requires that we store 3 copies of the
2D scoring array. The first copy is the similarity score, and
the other two are the current insertion and deletion scores at
each cell respectively.

When using the affine gap model, the score for a cell is
computed by solving (3), where α is a positive value that is
the gap-open penalty, β is a positive value that is the gap-
extension penalty, E(i,j) is the current read gap score for cell
(i,j), F(i,j) is the current reference gap score for cell (i,j),
σ(S[i],T[j]) is the positive or negative score from the
similarity matrix for read base i and reference base j, and
V(i,j) is the final similarity score for cell (i,j).

 E(i, j) = max ��(
, � − 1) − ��(
, � − 1) − � (1)

 F(i, j) = max ��(
 − 1, �) − ��(
 − 1, �) − � (2)

 V(i, j) = max � �(
, �)�(
, �)�(
 − 1, � − 1) + �(��
�, ����) (3)

The matrix is computed by sweeping i from 1 to the
length of the short read (N), and by sweeping j from 1 to the
length of the reference (M) being compared. Our scoring
matrix is based upon that of BFAST, with α set to +2, β to
+1, and the similarity matrix σ set such that matching bases
are +2 and mismatching bases are -2. To guarantee that we
globally align the short read to the local reference, we
initialize the scoring matrices (V, E, and F) according to (4).

 V(i, j) = � 0																																		
 = 0, 1 ≤ � ≤ !−� − (
 − 1) ∗ �								1 ≤
 ≤ #, � = 0 (4)

An example of a fully aligned read and the backtracking
process can be seen in Figure 4.

Figure 4: This example shows the similarity score matrix for
the global alignment of the short read to a local section of the
reference. The short read matches the reference perfectly
with the exception of a single base “A”. Only the similarity
matrix of the affine gap model is shown here, but the
insertion and deletion matrices are included in the
computation.

Figure 5: Smith-Waterman compute unit is implemented as a
systolic array. The short read is parallel-loaded before the
alignment, and the reference bases are shifted through the
array. All bases of a short read are scored against bases of
the reference each clock cycle.

IV. HARDWARE SYSTEM

The target for this implementation was the full 3B base-
pair human genome. Also, the read length was targeted as
76 bases, but both of these parameters can be tuned with
slight changes to the design. With the exception of the
memory system and the Smith-Waterman engines, the
system operates on a 250 MHz source clock.

A. System Description

The short read mapping system consists of multiple M-
503 modules from Pico Computing [14]. Each M-503
contains a Xilinx Virtex-6 LX240T FPGA. It uses Gen2 x8
PCIe for external communication and contains 2x4GB
DDR3 SODIMMs running at 400 MHz. The M-503 module
connects to an EX-500 backplane, which plugs into a
motherboard x16 PCIe slot. Three M-503s can plug into the
EX-500 backplane, and they are connected together using a
full-duplex x8 switched PCIe network. Eight EX-500s can
plug into a motherboard, allowing up to 24 M-503s in a
chassis. M-503s can send and receive traffic external to the
EX-500 backplane using full-duplex Gen2 x16 PCIe.

Before the mapping begins, the index is streamed from
the host system to the DDR3 of the M-503 via the PCIe,
which takes roughly 72 seconds. If aligning multiple sets of
reads to the same reference genome, which is common in a
production setting, this step must only be done the first time.

Once the short read mapping phase begins, packets
containing the short reads are streamed to the hardware
system via PCIe. The hardware extracts each short read
from the stream, and uses a shift register to extract all the
seeds for the short read. The short read is then passed to the
Smith-Waterman unit for use in the comparison step.

Three ports to the DDR3 system, operating on a 200
MHz clock, are required for the mapping. Each access to
the memory system, whether to the pointer table, CAL table,
or reference data, is to a random address. Heavy pipelining
and out-of-order memory accesses are therefore required to
attain the highest possible memory bandwidth for these
memory accesses. The M-503 uses x64 DDR3 SODIMMs,
which return at least 256 bits of data per read burst.

We efficiently pack the pointer table data into these 256-
bit boundaries. Each CAL table entry requires 64 bits, for a
total of four entries per 256-bit boundary of the DRAM.
The reference is packed two bits per base, yielding 128
reference bases per DRAM boundary. After filtering out
seeds that appear more than eight times in the reference
genome, the total CAL table contains 2.44 billion entries,
which requires 19.5 GB of DRAM to store the CAL table.
The packed pointer table requires 2 GB of memory and the
reference genome is stored in 0.77 GB of memory.

A CAL filter is implemented using block RAMs on the
FPGA. The filter is implemented as a hash table with 1024
entries. CALs are therefore hashed to 10 bits to determine
the target entry of the table. The CAL finding and filtering
process all operates on a 250 MHz system clock.

The Smith-Waterman engines are implemented in the
FPGA as a systolic array [15], as shown in Figure 5. Each
cell computes the value of one entry in the 2D Smith-
Waterman matrix each clock cycle. An array of cells
computes the anti-diagonal of the Smith-Waterman matrix
in parallel. In other words, the systolic array enables each
base of the short read to be scored against a base of the
reference simultaneously, which changes the runtime of the
Smith-Waterman computation from O(MxN) for M length
reference and N length short read to O(M+N).

Due to the many levels of logic in the unit cell of the
systolic array, the Smith-Waterman system runs at a slower
125 MHz clock. One benefit of the systolic array is the

Figure 6: High level view of the short read mapping system
hardware on a single M-503 FPGA card. Short reads are
streamed to the FPGA and aligned reads are streamed from
the FPGA via PCIe. The index is stored in a 4 GB DDR3
memory, which is accessed by the CAL finding module and
the reference lookup module. Multiple Smith-Waterman
compute engines are instantiated to align reads in parallel.

ability to pipeline the alignment of a single short read to
multiple reference buckets, which reduces the runtime to
approximately equal the length of the reference bucket (M),
instead of the reference bucket plus the read length (M+N).
However, as described in the next section, we have
partitioned the CAL table eight ways and are using a fairly
long seed length, so there are approximately only 1.5 CALs
per read in a given partition. This means we will not be able
to pipeline many reference alignments.

Reference data is packed to 256-bit boundaries in
DRAM, which should mean that we can align 76 base reads
against 128 bases of reference. However, the short read
alignment often will cross the 256-bit boundary of the
DRAM. Therefore, we align the read to a 256-base (2 x 256
bits) section of the reference. When aligning against a 256-
base reference bucket a single Smith-Waterman
computation requires approximately 76+256=332 cycles.
Since each computation takes so many cycles to complete,
we instantiate multiple Smith-Waterman compute engines in
the hardware, and round-robin the required computations
among the instantiated compute units. The “right” number
of Smith-Waterman engines to instantiate should be just
enough to keep up with the pointer table, CAL table, and
reference memory accesses. In our system, the memory
interface (which benefits from partitioning and is explained
later) requires approximately 45 cycles at the 200 MHz
memory clock to complete the memory accesses for a single
short read. This means approximately 18 Smith-Waterman
engines are required to keep up with the memory system. A
high-level block diagram of the described hardware system
for the short read mapping system on a single M-503 is
shown in Figure 6.

B. Partitioning

To improve the performance of the system, we partition
the index across multiple memories to allow concurrent
memory operations and reduce the memory footprint
required per node in the final system. To partition our index
N ways, we partition both the pointer table and the CAL
table by the first log2(N) bits of the seed (after the seed has
been hashed). For example, when partitioning two ways,
seeds in the index that begin with an A or C go into the
index for partition 0, and seeds beginning with G or T go
into the index for partition 1.

Each short read is streamed through each of the
partitions. Each partition looks up only those seeds that
occur in its partition of the index. Using the example above
with two partitions, a seed beginning with an A will only be
looked up by partition 0. Each partition collects the CALs
for the short read and performs the Smith-Waterman
comparison to the reference. When finished, it passes the
short read along with the best alignment and score to the
next partition. Each partition updates the best alignment
and score in turn, with the last partition producing the final
best alignment and score.

This aggregation is accomplished by creating a daisy-
chain of the partitions using PCIe for communication. A
partition replaces the best alignment information on the
short read stream if it aligns that short read with a higher
score than the current best alignment score. Short reads are
passed along the daisy chain between FPGAs without the
need for host processor control. The processor simply needs
to send short reads to the first FPGA in the chain and
receive results from the last FPGA in the chain.

Each read requires 32 B of data to be streamed through
the system. Therefore, the total amount of data that must be
streamed through the chain for 50 million reads is 1.5 GB.
Gen2 x8 PCIe, which has a maximum sustained bandwidth
of 3.2 GB/s, requires about 0.5 seconds to stream all the
data for 50 million reads. Since the network is full duplex,
reads can be streamed to the first FPGA and results
streamed from the last FPGA concurrently.

The human genome requires an index of approximately
22 GB plus the reference data for each partition. By
partitioning the index across 8 M-503s, each of which
having 4 GB of DDR3 DRAM, we easily store the entire
index and reference data. Each partition contains 0.25 GB of
the pointer table, 0.77 GB of the reference data, and
approximately 2.5 GB of the CAL table.

Two small problems exist with this partitioning method.
First, the entire reference must now be stored with each
partition. This is not a problem for the human genome,
which can be stored in about 750 MB, but could become a
problem for much larger genomes. Second, since the
partitioning is not done by section of the genome, a short
read may be aligned against the same reference bucket in
multiple partitions. This inefficiency can be avoided by
seeding the CAL filter at the beginning of each short read

Figure 7: Time required for the 8 FPGA system, BFAST,
and Bowtie map 50 million 76 base short reads to the
genome. Note the linear improvement in runtime until the
memory system saturates at approximately 8 threads. Note
the FPGA system here always uses 2 software threads.

with all of the CALs that have previously been aligned for
that short read. This increases the data passed between
partitions, but greatly reduces the number Smith-Waterman
comparisons. However, this has yet to be implemented.

More details regarding our full human genome short
read mapping implementation can be found in [16] and [17].

V. RESULTS

We compare the performance of this eight FPGA
system, contained in a 4U Tyan chassis, to Bowtie and
BFAST running on the two quad-core Intel Xeon E-5520
CPUs. To test the runtime and sensitivity of alignments,
these software and hardware mappers were tested using 76
base short reads. Our benchmarks consisted of mapping
subsets of 54 million short reads from one end of a paired-
end Illumina GA IIx run on human exome data.

The tested system consumed 29% of the available slice
registers, 62% of the slice LUTs, and 45% of the block
RAMs on an LX240T-2 Virtex-6 FPGA. Due to routing
congestion at the inputs and outputs of the Smith-Waterman
modules, each FPGA was limited to eight Smith-Waterman
compute engines.

Although our goal was to develop a high-performance
implementation of the high-quality BFAST algorithm, we
also compared the runtime of the FPGA system to that of
the Bowtie software, which is a heuristic algorithm that
trades quality for improved performance. BFAST and
Bowtie were each tested using 8 threads, which was chosen
because that number of threads saturated the memory
bandwidth on the system and produced the fastest runtime
for mapping 50 million reads, as shown in Figure 7. When
measuring the runtime of the FPGA system, we do not
include the time required to populate the index into memory
and to configure the FPGAs, since this only needs to be
done once per reference genome. However, when measuring
the runtime of the BFAST and Bowtie software, we do
include the time to load the index into memory, since it
must be done for every set of short reads to be mapped.

The following are the commands that were used to run
the matching local alignment phases of the BFAST software
along with the command use to run the Bowtie software
(after compilation of an index for both software tools):

• bfast match -f hg19.fasta -r reads1.fastq -A 0 -e
50000000 -w 0 -n 8 –t > reads1.bmf

• bfast localalign -f hg19.fasta -m reads1.bmf -A 0 -e
50000000 -n 8 -t > reads1.baf

• bowtie hg19 -q reads1.fastq -u 50000000 -v 3 -t -p 8
> reads1.bowtie_out

A. Mapping Time

To demonstrate the speed of the FPGA system, we
compared the time to map 50 million short reads using the
FPGA system versus BFAST and Bowtie, as shown in
Figure 7. The results show the FPGA system with a 250x
speedup over BFAST, which mapped 50 million reads in
8,480 seconds (2 hours, 21 minutes, 20 seconds). Also the

results show a 31x speedup over Bowtie, which mapped 50
million reads in 1,051 seconds (17 minutes, 31 seconds).

B. Sensitivity

In addition to runtime, a key aspect to take into account
is the sensitivity of each system. The FPGA system is able
to map 91.5% of the 50 million reads, whereas Bowtie only
maps 80.2% of the short reads. Bowtie is unable to handle
reads that differ from the reference genome by more than
three bases. Even when using the “best” option while
running Bowtie (which slows down the runtime), only
85.8% of the reads were mapped. The differences between
the reference genome and reads are often the data of most
interest in a next-generation sequencing experiment, perhaps
identifying the location of a genetic variant responsible for a
heritable disease. Thus, the increase in sensitivity afforded
by the FPGA system is of considerable importance.

The FPGA system can be tuned to be more sensitive by
reducing the seed length. This finds more CALs per read,
enabling more reads to be aligned to the reference genome,
but it slows down the runtime of the system slightly. When
testing species with high rates of genetic variation, or using
the reference genome as a template for the assembly of
reads from the genome of a closely related species, this
option may be more important. Conversely, the Bowtie
software cannot be tuned to compete with the sensitivity of
the FPGA system.

C. Energy

The previous sections stated the speed and sensitivity
comparisons between the hardware and the software.
However, power is another factor that must be considered.
We measured the power drawn by the system while running
the FPGA system, as well as the Bowtie and BFAST
software, which is shown in the first row of Table 1.

TABLE 1: ENERGY REQUIRED TO MAP 50M READS

 BFAST Bowtie FPGA

System Power (W) 249 336 496

50M Reads (kW-hr) 0.587 0.098 0.005

Normalized Energy 100% 16.7% 0.8%

The FPGA system consumes more instantaneous power
than the software, but it also maps reads much faster than
the software. Therefore the FPGA system consumes much
less energy when mapping 50 million short reads as
compared to either software tools, as shown in Table 1. The
normalized energy in the table is the energy required for the
specified system (BFAST, Bowtie, or FPGA) normalized to
the energy required for the BFAST system. The table shows
that the FPGA system requires only about 0.8% of the
energy required for the BFAST system and 4.7% of the
energy required for the Bowtie system.

VI. CONCLUSIONS

These results demonstrate the power of this FPGA short
read mapping system. This system is able to map reads to
the full genome faster, while using significantly less energy
than both of the two tested software tools. We demonstrated
a two order of magnitude speedup (250X) versus the
BFAST software, and a one order of magnitude speedup
(31X) versus the lower-quality Bowtie software running on
two quad-core Intel Xeon processors.

These improvements in system runtime help to enable
research that was not possible before. For example,
researchers can use this to study sequencing technologies
with higher read error rates, which require a very large read
depth during mapping. Similarly, this technology enables
researchers to study larger genomes that may not have been
possible before, such as barley (5.3 Gbases). Also, this
FPGA hardware system can be tuned for the speed versus
sensitivity trade-off, which enables researchers to study
genomes with large genetic variation among the species.

ACKNOWLEDGMENT

We would like to thank the Washington Technology
Center (WTC) and Pico Computing for sponsoring this
research. We would also like to thank Professor Deborah
Nickerson for providing the sample short read data used in
our analysis.

REFERENCES
[1] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L.

Salzberg, "Ultrafast and memory-efficient alignment of short
DNA sequences to the human genome," Genome Biology, vol.
10, no. 3, p. R25, March 2009.

[2] Heng Li and Richard Durbin, "Fast and accurate short read
alingment with Burrows-Wheeler transform," Bioinformatics,
vol. 25, no. 14, pp. 1754-1760, July 2009.

[3] Heng Li, Jue Ruan, and Richard Durbin, "Mapping short
DNA sequencing reads and calling variants using mapping
quality scores, " Genome Research, vol. 18, no. 11, pp. 1851-
1858, November 2008.

[4] N. Homer, B. Merriman, and S. F. Nelson, "BFAST: An
Alignment Tool for Large Scale Genome Resequencing,"
PLoS ONE, vol. 4, no. 11, p. e7767, November 2009.

[5] M. Burrows and D. J. Wheeler, "A block-sorting lossless data
compression algorithm," Digital Equipment Corporation, Palo
Alto, CA, Technical report 124, 1994.

[6] Paolo Ferragina and Giovanni Manzini, "Opportunistic Data
Structures with Applications," in Proceedings of the 41st
Annual Symposium on Foundations of Computer Science,
Washington, DC, 2000, p. 390.

[7] T. F. Smith and M. S. Waterman, "Identification of Common
Molecular Subsequences," Journal of Molecular Biology, vol.
147, no. 1, pp. 195-197, March 1981.

[8] O. Knodel, T. B. Preusser, and R. G. Spallek, "Next-
generation massively parallel short-read mapping on FPGAs,"
in 2011 IEEE International Conference on Application-
Specific Systems, Architectures and Processors, 2011, pp.
195-201.

[9] Edward Fernandez, Walid Najjar, Elena Harris, and Stefano
Lonardi, "Exploration of Short Reads Genome Mapping in
Hardware," in 2010 International Conference on Field
Programmable Logic and Applications, Milano, 2010, pp.
360-363.

[10] A. D. Smith, Z. Xuan, and M. Q. Zhang, "Using quality
scores and longer reads improves accuracy of Solexa Read
Mapping," BMC Bioinformatics, vol. 9, no. 128, pp. 1471-
2105, February 2008.

[11] O. Cret, Z. Mathe, P. Ciobanu, S. Marginean, and A.
Darabant, "A hardware algorithm for the exact subsequence
matching problem in DNA strings," Romanian Journal of
Information Scient and Technology, vol. 12, no. 1, pp. 51-67,
2009.

[12] Saul B. Needleman and Christian D. Wunsch, "General
Method Applicable to the Search for Similarities in the
Amino Acid Sequence of Two Proteins," Journal of
Molecular Biology, vol. 48, no. 3, pp. 443-453, March 1970.

[13] Peiheng Zhang, Guangming Tan, and Guang R. Gao,
"Implementation of the Smith-Waterman algorithm on a
reconfigurable supercomputing platform," in Proceedings of
the 1st international workshop on High-performance
reconfigurable computing technology and applications, New
York, 2007, pp. 39-48.

[14] Pico Computing. (2010) Pico Computing - the FPGA
Computing Experts. [Online].
http://www.picocomputing.com/m_series.html.

[15] C. Yu, K. Kwong, K. Lee, and P. Leong, "A Smith-Waterman
Systolic Cell," in New Algorithms, Architectures and
Applications for Reconfigurable Computing, Patrick Lysaght
and Wolfgang Rosenstiel, Eds. United States: Springer, 2005,
ch. 23, pp. 291-300.

[16] Corey Olson, An FPGA Acceleration of Short Read Human
Genome Mapping, University of Washington, Dept. of EE,
MS Thesis, 2011.

[17] Maria Kim, Accelerating Next Generation Genome
Reassembly: Alignment Using Dynamic Programming
Algorithms in FPGAs, University of Washington, Dept. of
EE, MS Thesis, 2011.

