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Abstract—Bioinformatics is an emerging field with seemingly
limitless possibilities for advances in numerous a@as of
research and applications. We propose a scalable BA-based
solution to the short read mapping problem in DNA
sequencing, which greatly accelerates the task olfigning short

length reads to a known reference genome. We commathe
runtime, power consumption, and sensitivity of thehardware

system to the BFAST and Bowtie software tools. Thaescribed
hardware system demonstrates a 250X speedup verstise

original BFAST software version, and a 31X speedupersus
Bowtie. Also, the hardware system is more sensitivéhan

Bowtie, which aligns approximately 80% of the shortreads, as
compared to the 91% aligned by the hardware.

Keywords - bioinformatics, short reads, mapping; next-
generation sequencing; reconfigurable hardware; FPGA;

I. INTRODUCTION
Next-generation sequencing (NGS)

increasing the throughput of DNA sequencing.
performance is on a trend line that has outstripdedre’s
law for several years, with no end in sight. Ferthore,
just as exponential progress in microelectronicinetogy

has opened widespread and unexpected applicateas;ar
sequencing technology is being applied to a rapidI)B

widening array of scientific and medical problenfimm
basic biology to forensics, ecology, evolutionatydses,
agriculture, drug discovery, and the growing fietd
personalized medicine.

machines are
revolutionizing many aspects of biology and medicin

These machines are dramatically lowering the cost a .
Theirl shows an example set of short reads mapped ¢ct@rs

example, in human genetic studies, mapping a hilteads
from one subject to the human reference genomauitne.
Second, the achieved sensitivity of the algorithwhich is
the ability to successfully map sequences that raot
completely identical to the reference, is an imaatt
consideration. These differences exist both beranfs
technical errors in the sequencing machines (auénejand
uninteresting case) and because of genetic diffesen
between the subject and the reference genome. lattiee
case is rarer and much more interesting — indeethit be
the entire purpose of the experiment, as it magakthe
cause of some genetic disease. The cases amgdisti-
able because the sequencer errors are random thile
genetic differences are not. Hence many mappeds riwat
consistently exhibit a difference with respect tbet
reference at a particular locus signal a genetiangh,
whereas occasional scattered differences are pgobab
errors. This also drives the desire for more adenneads,
since more data gives more accurate variant-callifigure

of the reference genome and examples of both tgbes
differences (sequencing errors and genetic vansj}io

Short read mapping has traditionally been perforimed
software tools such as Bowtie [1], BWA [2], MAQ [3nd
FAST [4], running on a cluster of processors. ldwer,
NGS improvements are moving the bottleneck of the
genome sequencing workflow from the sequencing @has
the short read mapping software.

We describe using FPGAs to accelerate the shod rea

In brief, the sequencers determine the nucleotidén‘e1pping process by exploiting the parallelism & thsk.

sequence of short DNA fragments, typically a fewstéo
hundreds of bases, calldabrt reads. This can be done in a

massively parallel manner, yielding much higheotighput EEGTTZ‘EEQECcﬁfigﬁ?ﬁigﬁf
than older sequencing technologies — on the orfiems of GGG TTACCC CTGCGA AGCTAG
bilions of bases per day from one machine. For GGGT TCCTAC GCGACT GCTAGT
comparison, the human genome is approximately [Rbil GGGTTA CCTAC ACTAGC GT
bases in length. EEGT ATEiigccTACTGEGAf‘TiZCTigT
Given the diversity of applications, there is noagse =

workflow used for all NGS applications. Howeven, &

dominant one, the short reads are derived from arahd Reference

fragmenting many copies of the genome of one osgarfor Short

which areference genome sequence is already known. In Reads

these cases, the key first step in the data asgbyseline is
the short read mapping problem: determining the location
in the reference genome to which each read maps bhee
problem is technically challenging for two reasonBirst,
speed is important simply due to the volume of dafer

Figure 1: Short read mapping aligns reads to a refence
genome in the presences of errors and genetic vatians.
The highlighted ‘T’ is a sequencing error, whereasthe
highlighted ‘G’ is a genetic variation



The increased performance can be used to speeenamg
sequencing, or to allow the use of more sensiti@tsead

mapping algorithms, which are able to map a greatereads to only chromosome 1 of the human genome.

percentage of the reads to the reference genome.

Il. RELATED WORK

A. Software Short Read Mapping

There are many short read mapping software toals th

tackle the problem of processing the enormous amofin
data produced by the next-generation sequencingimes
These solutions tend to fall into two main algarith
categories.

The first category of solution is based upon a lloc

sorting data compression algorithm called tBerrows
Wheeler Transform (BWT) [5]. This solution uses the FM-
index [6] to efficiently store information requir¢d traverse
a suffix tree for a reference sequence. Theseisokican
quickly find a set of matching locations in a refece
genome for short reads that match the referencengen
with a very limited number of differences. Howevéng
running time of this class of algorithm is expon&ntvith
respect to the allowed number of differences; tloeee
BWT-based algorithms tend to be less sensitive tihers.
Bowtie [1] and BWA [2] are examples of programs dzhs
upon this algorithmic approach.

The second category of solution leverages the tfeadt
individual genomes differ only slightly, meaningstlikely
that some shorter subsequences of a short readxaitltly

mapping speed was approximately the same as that of

Bowtie. Also, this system demonstrated mappingrtsho
Reference [9] demonstrates between 1.6x and 4xdspee
versus RMAP [10] and ELAND [11] for reads with betswn

0 and 3 differences. This implementation was fa thll
human genome.

In both implementations, the number of short rehds
can be aligned in a single pass of the referencerge is
limited by the number of block RAMs on the FPGA.
Scaling to a larger number of short reads (the iptesly
cited works mapped only 100,000 50-base and 1,000,0
36-base reads respectively) would require multyasses of
the reference genome. This would greatly increthee
runtime of the system.

IIl. SYSTEM DESIGN

Our system design is based upon the algorithm bged
the BFAST mapping software. Our current implemeoiat
uses seeds with 22 base-pairs, short reads withagé-
pairs, and 2 bits per base encoding, but thespaasmeters
which can be changed easily.

A. Creating the Index

A pre-compiled index is used to map seeds of atshor
read to locations in the reference genome wheresdeel
occurs. The index is implemented as a modifiedh akle,
composed of gointer table and aCAL table. The pointer
table is directly indexed using only a portion b&tseed.

match the reference genome. These shorter subsmm_en-l-his means that many seeds map to each entry giineer
are calledseeds. An index of the reference genome is (;pie. The CALs for these seeds are stored aloily thie

compiled first, which maps every seed that occuarghie
reference genome to the locations where they ocEtar.
align a short read, all the seeds in the readcarked up in
the index, which yields a set dfandidate Alignment

corresponding seed as a list in a second tabledctie CAL
Table. Each entry in the pointer table contaimmmter to
this list along with the size of the list. To loak the CALs
for a seed, the pointer table is consulted to fitheé

Locations (CALs). The short read is then scored against th%eginning and end of the relevant bucket in the Gatle.

reference at each of these CALs using the SmitheVifatn
[7] string-matching algorithm. The location witthet
highest score is chosen as the alignment locatioa hort
read. BFAST [4] is an example program based ubim t
algorithmic approach.

B. FPGA-based Short Read Mapping

Multiple attempts have been made to acceleratet sho

read mapping in hardware, but sequencing flows rgdige
have yet to adopt the use of FPGAs. Previous efidoing

This bucket is searched for the CALs associateth wie
seed. Thus, looking up the CALs for a seed takbRAM
reads, one for retrieving information from the gemtable,
and another to bring in the actual CAL table budkebe
searched.

To compile the index for a reference genome, wekwal
?Iong the reference genome and make a list ohalkseed,
ocation> pairs in the genome. This list is themtesb by
seed, and seeds occurring too frequently in thereate

genome are removed. Removing these abundant seeds
gllows us to avoid aligning reads to repetitiveioag of the
reference genome without negatively affecting thality of

the alignments. We mirrored the BFAST defaulttfos by
F]emoving seeds that occur more than 8 times in the
reference genome. This sorted list comprise<Cietable.

To complete the construction of the index, we @i
previously described pointer table. An exampleadilly
constructed index for the reference string AGTACT&C

can be seen in Figure 3.

short read mapping using FPGAs have achieved at amos
order of magnitude improvement compared to softwar
tools. Also, previous solutions failed to produceystem
that is well-suited to large-scale full-genome magp

Two attempts to accelerate short read mapping o
FPGAs tried to use a brute-force approach to coenphort
sequences in parallel to an entire reference genohtey
stream the reference genome through a system @oiagt
matching of the short reads to the reference [g] [9
Reference [8] demonstrates a greater sensitivitgetoetic
variations in the short reads than Bowtie and MAQ, the



address | pointer seed | CAL
A 0 — ACTG 3
C 2~ AGTA 0
G 3 \ CTGG | 4
T 5 N GCGA 6
GTAC 1
TACT 2
TGCG 5

Figure 3: The index consists of the pointer tableléft) and the
CAL table (right). The pointer table is an array o pointers
to the start of hash table buckets in the CAL table This
example is constructed for the reference AGTACTGCGA

B. Finding CALs

The first step in mapping reads to the referenceoge
is to extract all seeds from each short read. We lchosen
the seed length to match the BFAST default seedthen
which is 22 bases. To find CALs for a seed, we tme
most-significant bits of the seed, which we caé #aldress
bits, to access the pointer table. The remaining &i the
seed are called thieey bits. This yields a pointer to the
correct CAL table bucket in the CAL table. We dbnrear
scan through the CAL table bucket, and CALs of ieatr
with key bits matching those of the current seedaalded to
the set of CALs for the current short read. Anregke
index access for a seed is shown in Figure 2 \mighvisited
entries of the pointer table and CAL table hightegh

The index must also address the problem that at shor | address | pointer key | CAL
read might come from either the forward or reverse

complement strand of the double-stranded DNA. Tleeee
three options for mapping reads to both the forveard the
reverse complement strands.

The first option is to index only the forward redace
strand, and lookup both the short read and its rseve

complement in the index of the forward genome. sThi
solution doubles the number of reads to be mappetl a

would thus double the runtime.

The second option is to index both the forward el
reverse complement genomes. Looking up the skad in
this index would find the CALs for both the forwaadd the

reverse complement genome. However, this indexldvou

and one for the reverse complement strand, buetbesies
have exactly the same location. Thus, we only rniedaep
one entry if we add a bit that indicates whethés the entry
for the forward or the reverse strand. When ongathe
index, we only add the lexicographically smaller toke
forward and the reverse complement seeds to trexindn
exception is made for seeds that are their ownrseve
complement. In this case both the forward and resve
complement seed must remain in the CAL table.

Now when looking up seeds in the index, we generate
both the forward and reverse complement of eactl. sé¢ée
choose the lexicographically smaller of the two asd it to
access the pointer table and CAL table. If thevéod seed
was used to access the index and it matches a @b the
forward strand, or a reverse seed was used andtdhed a
CAL from the reverse strand, we do Smith-Waterman
comparison on the forward reference. In the otases,
where only one of the seed and CAL were reverse-
complemented, we compare the read to the reverse
complement of the reference.

One problem that arises when deterministically kegp
the lexicographically smaller seed is a non-uniform
distribution of the CALs in the CAL table bucke&nce we
keep the lexicographically smaller version of tleed we
will tend to have more seeds that begin with ‘Aathseeds
that begin with ‘T". This bias would cause the C#dble
buckets towards the beginning of the CAL table datain
many more CALs than buckets at the end of the Gilet

To address this issue, we redistribute the CALs
throughout all CAL table buckets during the constimn of

Short Read: ACTGAG
Seeds : ACTG

CTGA
TGAG

A 04 |CTG| 343
C 2 GTA | 0
G 3 TGG | 4
T 5 CGA| 6
TAC | 1
ACT | 2
GCG| 5

require approximately double the memory footprirg a Figure 2: An example of the pointer table and CAL &ble

compared to an index for just the forward reference
Instead, we notice that each seed has two entries i

entries accessed for the seed ACTG. Note that thek CTG
in the CAL table bucket matches that of the seed,0s3 is a

index constructed for both the forward and reversevalid CAL for this seed. Note that this example des not

complement genomes; one entry is for the forwardnst

include the reverse complement strand.



the index by hashing the lexicographically smakered
before adding it to the table. We hash the sesitga 1-1
hash function on the 44-bit seed. We then usentbst
significant 30 bits of the result to address thanfeo table.
We store the remaining 14 bits, which are suffitiém
identify the seed, amongst the CALs in the CAL ¢abThis
produces a more uniform distribution of CALs thrbugjl

D. Smith-Waterman

The short read is then aligned to the referencemenat
each CAL. This local alignment uses a combinatibmhe
Smith-Waterman and Needleman-Wunsch [12] string-
matching algorithms. Instead of doing local aligmtnef a
short read against the reference, or global aligriroéthe
short read and reference, we globally align thertstead

CAL table buckets. During the mapping phase, wethse against a local section of the reference. In otherds, we
same hash on the lexicographically smaller seewréef want to score the alignment of the entire short rea a

accessing the pointer table and CAL table.

C. Binning and Filtering

subsequence of the reference genome.
We use the affine gap model [13], which scores long
insertion or deletion chains different from sharsertions

Thus far we have described how to find the candidat

alignments of seeds in a reference genome usirigdsx.
We must convert these locations, which give thatioo of
the start of the seed, to the candidate locatiothefread
containing that seed.
subtracting from the CAL the offset of the starttloé seed
with respect to the start of the short read. Famae, if the
seed starting at the third base of the short ramats fa CAL
of 34, we offset that CAL back to the start of #iert read,
location 32. This normalization gives us the exacttion
of the read in the reference if we assume thatgreome
being sequenced has no insertions or deletions reithect
to the reference genome. To allow for up to N itises and
deletions, we must compare the short read to éosdotthe
reference genome starting N bases before starteo§hort
read’s CAL (given by the index) and ending N baafter
the end of the short read.

To simplify the hardware, we have divided the refee

genome intareference blocks whose size is determined by
the size of a single read from DRAM. All CALs are

converted to the start of the reference block teatains the
CAL, and the short read is aligned to the referestaeting
at the beginning of a block. This increases tize sif the
reference sequence compared against the shorthetthe
increase in time for this comparison is offset bycim
simpler hardware.

Many CALs are collected for a short read when lagki

up its seeds in the index. However, many of tHeaés
will refer to the same place in the reference, tiredshort

We do this normalization b

and deletions. In this model, the cost to begimaartion or
deletion chain is higher than the cost to contirare
insertion or deletion chain. This model allows fonger
insertion and deletion chains to appear in the actu
yalignment, which can be more biologically accurate.
However, this model requires that we store 3 copiethe
2D scoring array. The first copy is the similarigore, and
the other two are the current insertion and defeticores at
each cell respectively.

When using the affine gap model, the score forlhice
computed by solving (3), whereis a positive value that is
the gap-open penalty, is a positive value that is the gap-
extension penaltyg(i,j) is the current read gap score for cell
(i), F(@,j) is the current reference gap score for ¢el),
o(9i],T[j]) is the positive or negative score from the
similarity matrix for read base and reference bage and
V(i,j) is the final similarity score for ce(l,}).

E@Dznm%ggﬁ:g:g (@)

-l e
E(,))

V(i,j) = max F()) (3)

V(i-1,j—-1)+a(SLELTHD

read only needs to be compared once at each o€ thes The matrix is computed by sweepingrom 1 to the

locations. For example, our system with 22-basisén
76-base short reads does 55 (76-22+1) index loglagan
exact match to the reference will find the same C39.
times. We remove repeat CALs from the set foratstead
by saving the CALs, along with their reverse compat
bit, in a hash table (called th@AL Filter) as they are
processed. If an entry already appears in the filtele, it is
ignored.
associated with each short read. This is increndeftbe
each new short read, which implicitly clears thshhégable
between short reads.

length of the short read (N), and by sweepifrgm 1 to the
length of the reference (M) being compared. Ourisgo
matrix is based upon that of BFAST, withset to +24 to
+1, and the similarity matrix set such that matching bases
are +2 and mismatching bases are -2. To guaranéteve
globally align the short read to the local refeesnave
initialize the scoring matrice¥( E, andF) according to (4).

Each entry also stores a sequence number

i=0,1<j<M

1<i<Nj=0 @

. 0
VOJ):{—a—(i—l)*ﬁ

An example of a fully aligned read and the baclkirag
process can be seen in Figure 4.



Three ports to the DDR3 system, operating on a 200
REFERENCE MHz clock, are required for the mapping. Each asd®
the memory system, whether to the pointer tabld, Gble,

-|A|G|ITIA|C|T|G|C |G A or reference data, is to a random address. Heaeiging
and out-of-order memory accesses are thereforereghto
-/0/0]0/0/0/0]0)0]0]0]0 attain the highest possible memory bandwidth fags¢h
Al212 121212 12(2|21=2|2]2 memory accesses. The M-503 uses x64 DDR3 SODIMMs,
which return at least 256 bits of data per readtour
C|-3/0/01=210(41211101]-110 We efficiently pack the pointer table data intosh@56-
Q bit boundaries. Each CAL table entry requires B4, for a
NT|-4-1]-2[2]0/2]6]4|3]2]1 total of four entries per 256-bit boundary of th&®AM.
§ The reference is packed two bits per base, yieldig§
G|-5|-2/1]0]01|4/8(6]|5 4 reference bases per DRAM boundary. After filteriogt
seeds that appear more than eight times in theerefe
A|-6|-3]-1|-112]013/6]6]4|7 genome, the total CAL table contains 2.44 billiartries,
which requires 19.5 GB of DRAM to store the CAL Iab
C|-7]-4]-2|-2|0]4]2]5]8]6]5 The packed pointer table requires 2 GB of memoxy the
Figure 4: This example shows the similarity score atrix for reference genome is stored in 0.77 GB of memory.
the global alignment of the short read to a localextion of the A CAL filter is implemented using block RAMs on the
reference. The short read matches the reference rbectly FPGA. The filter is implemented as a hash tablh wD24
with the exception of a single base “A”. Only thesimilarity entries. CALs are therefore hashed to 10 bitseterchine

matrix of the affine gap model is shown here, butlte  the target entry of the table. The CAL finding diftéring

insertion and deletion matrices are included in the process all operates on a 250 MHz system clock.

computation. The Smith-Waterman engines are implemented in the
IV. HARDWARE SYSTEM FPGA as a systolic array [15], as shown in FigureEach

The target for this implementation was the full B&se- cell computes the value of one entry in the 2D Bmit
pair human genome. Also, the read length was tedgas Waterman matrix each clock cycle. An array of sell
76 bases, but both of these parameters can be witled computes the anti-diagonal of the Smith-Watermarrima
slight changes to the design. With the exceptibrthe in parallel. In other words, the systolic arrayakles each
memory system and the Smith-Waterman engines, thlease of the short read to be scored against a dfates
system operates on a 250 MHz source clock. reference simultaneously, which changes the runtfrtee

I Smith-Waterman computation from O(MxN) for M length
A System Description reference and N length short read to O(M+N).

The short read mapping system consists of multiple Due to the many levels of logic in the unit cell thi
503 modules from Pico Computing [14]. Each M-503systolic array, the Smith-Waterman system runs siower
contains a Xilinx Virtex-6 LX240T FPGA. Ituses @x8 125 MHz clock. One benefit of the systolic arraythe
PCle for external communication and contains 2x4GB
DDR3 SODIMMs running at 400 MHz. The M-503 module
connects to an EX-500 backplane, which plugs into a Reference

motherboard x16 PCle slot. Three M-503s can pltuy tine l
EX-500 backplane, and they are connected togetiag &
full-duplex x8 switched PCle network. Eight EX-506an —s| A | T
plug into a motherboard, allowing up to 24 M-508sai v
chassis. M-503s can send and receive traffic eatdéonthe - c | C
H [ v
EX-500 backplane using fulljduplex C_%enz >§16 PCle. ST | A
Before the mapping begins, the index is streamenh fr - v
the host system to the DDR3 of the M-503 via thdePC s—I G| T
which takes roughly 72 seconds. If aligning mugtipets of 7 v
reads to the same reference genome, which is conmman - A | G
production setting, this step must only be donédfitlsetime. —| ¢ A
Once the short read mapping phase begins, packets

containing the short reads are streamed to thewsaed  rigyre 5: Smith-waterman compute unit is implementedas a
system via PCle. The hardware extracts each skead r systolic array. The short read is parallel-loadedbefore the
from the stream, and uses a shift register to etxah the  alignment, and the reference bases are shifted thagh the
seeds for the short read. The short read is thesegl to the  array. All bases of a short read are scored agaih®ases of
Smith-Waterman unit for use in the comparison step. the reference each clock cycle.



ability to pipeline the alignment of a single shoetad to
multiple reference buckets, which reduces the numtto
approximately equal the length of the referencekbtigM),
instead of the reference bucket plus the read hefigtN).
However, as described
partitioned the CAL table eight ways and are usnfgirly
long seed length, so there are approximately ordyCIALS
per read in a given partition. This means we will be able
to pipeline many reference alignments.

Reference data is packed to 256-bit boundaries in

DRAM, which should mean that we can align 76 basals
against 128 bases of reference. However, the gead
alignment often will cross the 256-bit boundary thie
DRAM. Therefore, we align the read to a 256-basr 256
bits) section of the reference. When aligning asfaa 256-
base reference bucket a single

in the next section, we have

Smith-Waterman

Virtex-6 LX240T

ES;TS CAL Finder 4GB DDR3
7 Index
Filter
v
Reference Lookup
& 02—
S-W | °** [S-W
—~—~——
Al; ;iid Score Tracker

computation requires approximately 76+256=332 &cle Fjgyre 6: High level view of the short read mappingsystem

Since each computation takes so many cycles to levenp
we instantiate multiple Smith-Waterman compute eegjiin
the hardware, and round-robin the required comjounsit
among the instantiated compute units. The “rightitmber
of Smith-Waterman engines to instantiate shouldjus
enough to keep up with the pointer table, CAL talsled

reference memory accesses. In our system, the mngemor

interface (which benefits from partitioning andeisplained
later) requires approximately 45 cycles at the 200z
memory clock to complete the memory accesses sangle
short read. This means approximately 18 Smith-Wzder
engines are required to keep up with the memoriesysA
high-level block diagram of the described hardwsystem
for the short read mapping system on a single M-B03
shown in Figure 6.

B. Partitioning

To improve the performance of the system, we pamtit
the index across multiple memories to allow corewirr

hardware on a single M-503 FPGA card. Short readsire
streamed to the FPGA and aligned reads are streamedom
the FPGA via PCle. The index is stored in a 4 GB DR3
memory, which is accessed by the CAL finding modulend
the reference lookup module. Multiple Smith-Waterman
compute engines are instantiated to align reads parallel.

This aggregation is accomplished by creating aydais
chain of the partitions using PCle for communicatié\
partition replaces the best alignment informatiam the
short read stream if it aligns that short read véthigher
score than the current best alignment score. Sbads are
passed along the daisy chain between FPGAs wittiaut
need for host processor control. The processorlgingeds
to send short reads to the first FPGA in the cheinl
receive results from the last FPGA in the chain.

Each read requires 32 B of data to be streamedghro
the system. Therefore, the total amount of datarthest be
streamed through the chain for 50 million read$.& GB.
Gen2 x8 PCle, which has a maximum sustained bartidwid

memory operations and reduce the memory footpringf 3.2 GB/s, requires about 0.5 seconds to strelarthe

required per node in the final system. To partitbom index
N ways, we partition both the pointer table and @l

data for 50 million reads. Since the network id fdplex,

reads can be streamed to the first FPGA and results

table by the firstog,(N) bits of the seed (after the seed hasstreamed from the last FPGA concurrently.

been hashed). For example, when patrtitioning twgswa
seeds in the index that begin with an A or C go itite
index for partition 0, and seeds beginning with GTogo
into the index for partition 1.

The human genome requires an index of approximately
22 GB plus the reference data for each partitioy. B
partitioning the index across 8 M-503s, each of clvhi
having 4 GB of DDR3 DRAM, we easily store the emtir

Each short read is streamed through each of thgdex and reference data. Each partition contai2s GB of

partitions. Each partition looks up only those dse¢hat
occur in its partition of the index. Using the exdenabove
with two partitions, a seed beginning with an Alwihly be
looked up by partition 0. Each partition colledie tCALs

the pointer table, 0.77 GB of the reference datad a
approximately 2.5 GB of the CAL table.

Two small problems exist with this partitioning red.
First, the entire reference must now be stored wilh

for the short read and performs the Smith-Watermamartition. This is not a problem for the human geep

comparison to the reference. When finished, ispaghe
short read along with the best alignment and storthe
next partition. Each partition updates the beginahent
and score in turn, with the last partition prodgcthe final
best alignment and score.

which can be stored in about 750 MB, but could bee@
problem for much larger genomes. Second, since the
partitioning is not done by section of the genomeshort
read may be aligned against the same referencesbitk
multiple partitions. This inefficiency can be aged by
seeding the CAL filter at the beginning of eachrsmead



with all of the CALs that have previously been aég for
that short read. This increases the data passeddre
partitions, but greatly reduces the number Smititéiaan 100000
comparisons. However, this has yet to be implentente

More details regarding our full human genome short
read mapping implementation can be found in [1@] [&7]. 10000 \'\'\.———

\

Mapping 50M 76 base Short Reads

V. RESULTS

Runtime (s)
S
8

We compare the performance of this eight FPGA ~BFAST
system, contained in a 4U Tyan chassis, to Bowtid a =-Bowtie
BFAST running on the two quad-core Intel Xeon E®52 100
CPUs. To test the runtime and sensitivity of aligmts, 8 FPGAS = 34s
these software and hardware mappers were tested d6i
base short reads. Our benchmarks consisted of intgapp 10

1 2 4 8 16
Software Threads

subsets of 54 million short reads from one end paiaed-
end lllumina GA lIx run on human exome data. ; - -

The tested system cqnsumed 29% of the availalde sli er?dur%oz;/tig |rrr]112pregglr<;]o|”"f§rr] tg% 8b§SZG§h§¥tSt$£’dSB th-r&]
registers, 62% of the slice LUTs, and 45% of theckl  genome. Note the linear improvement in runtime urit the
RAMs on an LX240T-2 Virtex-6 FPGA. Due to routing memory system saturates at approximately 8 threadsNote
congestion at the inputs and outputs of the Smidiéfnan the FPGA system here always uses 2 software threads
modules, each FPGA was limited to eight Smith-Whmater
compute engines. results show a 31x speedup over Bowtie, which m@yxte

Although our goal was to develop a high-performancenillion reads in 1,051 seconds (17 minutes, 31 13¢€p
implementation of the high-quality BFAST algorithwe B. Sensitivity
also compared the runtime of the FPGA system tb daha - ) )
the Bowtie software, which is a heuristic algoritittat ~ In addition to runtime, a key aspect to take intoaant
trades quality for improved performance. BFAST andS the sensitivity of each system. The FPGA systeable
Bowtie were each tested using 8 threads, whichakasen 10 map 91.5% of the 50 million reads, whereas Bewtily
because that number of threads saturated the memoM@apPs 80.2% of the short reads. Bowtie is unableatedie
bandwidth on the system and produced the fastesime  €ads that differ from the reference genome by ntbam
for mapping 50 million reads, as shown in FigureWhen three bases. Even when using the “best” option ewhil
measuring the runtime of the FPGA system, we do ndiunning Bowtie (which slows down the runtime), only
include the time required to populate the inder imemory ~ 85.8% of the reads were mapped. The differenceseee
and to configure the FPGAs, since this only needpe (he reference genome and reads are often the fatosi
done once per reference genome. However, when miegisu INterest in a next-generation sequencing experinpanhaps
the runtime of the BFAST and Bowtie software, we doidentifying the location of a genetic variant respible for a
include the time to load the index into memory,csirit ~ heritable disease. Thus, the increase in sengitforded
must be done for every set of short reads to bepethp by the FPGA system is of considerable importance.

The following are the commands that were used to ru 1he FPGA system can be tuned to be more sensijive b
the matching local alignment phases of the BFASTweoe ~ 'educing the seed length. This finds more CALs need,
along with the command use to run the Bowtie saféwa enabling more reads to be aligned to the refergeceme,

(after compilation of an index for both softwarels): but it slows down the runtime of the system slighthen
« bfast match -f hgl9.fasta -r readsl.fastq -A 0 -¢©Sting species with high rates of genetic vargtir using
50000000 -w O -n 8 —t > reads1.bmf the reference genome as a template for the asseofibly
+  bfast localalign -f hg19.fasta -m reads1.bmf -Ae0 - reads from the genome of a closely related spetigs,
50000000 -n 8 -t > reads1.baf option may be more important. Conversely, the Bewti
«  bowtie hg19 -q reads1.fastq -u 50000000 -v 3 & -p software cannot be tuned to compete with the deitgiof
> reads1.bowtie_out the FPGA system.
A. Mapping Time C. Energy

To demonstrate the speed of the FPGA system, we The previous sections stated the speed and sefysitiv
compared the time to map 50 million short readsgishe ~ comparisons between the hardware and the software.
FPGA system versus BFAST and Bowtie, as shown iffowever, power is another factor that must be a@rsid.
Figure 7. The results show the FPGA system wifts@x We measured the power drawn by the system whilgimgn
speedup over BFAST, which mapped 50 million reads ithe FPGA system, as well as the Bowtie and BFAST
8,480 seconds (2 hours, 21 minutes, 20 secondsp the  software, which is shown in the first row of Talile



(2]
TABLE 1: ENERGY REQUIRED TOMAP 50M READS

BFAST | Bowtie | FPGA (3]
System Power (W 249 336 496
50M Reads (kW-hr)  0.587|  0.098 0.004 [4]
Normalized Energy  100% 16.7% 0.8%

[5]

The FPGA system consumes more instantaneous power
than the software, but it also maps reads muclerfabin
the software. Therefore the FPGA system consumesh mu [6]
less energy when mapping 50 million short reads as
compared to either software tools, as shown in&d &bl The
normalized energy in the table is the energy reguior the 7]
specified system (BFAST, Bowtie, or FPGA) normalize
the energy required for the BFAST system. The tahtmwvs
that the FPGA system requires only about 0.8% ef th[8]
energy required for the BFAST system and 4.7% ef th
energy required for the Bowtie system.

VI. CONCLUSIONS

These results demonstrate the power of this FP@#t sh
read mapping system. This system is able to magsrea
the full genome faster, while using significanths$ energy
than both of the two tested software tools. We destrated
a two order of magnitude speedup (250X) versus the
BFAST software, and a one order of magnitude speedu
(31X) versus the lower-quality Bowtie software ringhon
two quad-core Intel Xeon processors.

These improvements in system runtime help to enable
research that was not possible before. For example,
researchers can use this to study sequencing tedies
with higher read error rates, which require a Jarge read
depth during mapping. Similarly, this technologyables
researchers to study larger genomes that may et theen
possible before, such as barley (5.3 Gbases). Alss,
FPGA hardware system can be tuned for the speediver
sensitivity trade-off, which enables researchersstody
genomes with large genetic variation among theiepec

(9]
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