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ABSTRACT 
In this paper we present an implementation of the 
image compression routine SPIHT in 
reconfigurable logic. A discussion on why adaptive 
logic is required, as opposed to an ASIC, is 
provided along with background material on the 
image compression algorithm. We analyzed several 
Discrete Wavelet Transform architectures and 
selected the folded DWT design. In addition we 
provide a study on what storage elements are 
required for each wavelet coefficient.  

The paper uses a modification to the original 
SPIHT algorithm needed to parallelize the 
computation. The architecture of the SPIHT engine 
is based upon Fixed-Order SPIHT, developed 
specifically for use within adaptive hardware. For 
an N x N image Fixed-Order SPIHT may be 
calculated in N2/4 cycles. Square images which are 
powers of 2 up to 1024 x 1024 are supported by the 
architecture. Our system was developed on an 
Annapolis Microsystems WildStar board populated 
with Xilinx Virtex-E parts.  

1. Introduction 
Satellites deployed by NASA currently do not make 
use of lossy image compression techniques during 
transmission. There have been a few driving 
reasons behind NASA’s decision to transmit raw 
data. First, the downlink channels have provided 
enough bandwidth to handle all of the data a 
satellite’s sensors collected in real time. Second, 
there has been a lack of viable platforms with 
which a satellite could process data. Lastly, 
transmitting raw data reduces the risk of corrupting 
the data-stream. 

As NASA deploys satellites with more sensors, 
capturing an ever-larger number of spectral bands, 
the volume of data being collected is beginning to 
outstrip a satellite’s ability to transmit it back to 

Earth. NASA’s most recent satellite Terra contains 
five separate sensors each collecting up to 36 
individual spectral bands. The Tracking and Data 
Relay Satellite System (TDRSS) ground terminal in 
White Sands, New Mexico, captures data from all 
of these sensors at a rate of 150Mbps [15]. As the 
number of sensors on a satellite grows and thus the 
transmission rates increase, they are providing a 
driving force for NASA to study methods of 
compressing images prior to down linking. 

Current technologies have been unable to provide 
NASA with a viable platform to process data in 
space. Software solutions suffer from performance 
limitations and power requirements. At the same 
time traditional hardware platforms lack the 
required flexibility needed for post-launch 
modifications. After launch they cannot be 
modified to use newer compression schemes or 
even implement bug fixes. In the past, a 
modification to fixed systems in satellites has 
proven to be very expensive. The correction to the 
Hubble telescope’s flawed 94-inch-wide primary 
mirror approached $50 million [3]. 

By implementing an image compression kernel in a 
reconfigurable system, it is possible to overcome 
these shortcomings. Since such a system may be 
reprogrammed after launch, it does not suffer from 
conventional hardware’s inherit inflexibility. At the 
same time the algorithm is computing in custom 
hardware and can perform at the required rates, 
while consuming less power than a traditional 
software implementation. 

Our work is part of a NASA-sponsored 
investigation into the design and implementation of 
a space-bound FPGA-based Hyperspectral Image 
Compression algorithm. We have selected the Set 
Partitioning in Hierarchical Trees (SPIHT) 
compression routine and optimized the algorithm 
for implementation in hardware. This thesis 



describes our work towards this effort and provides 
a description of our results. 

2 Description of the Algorithm 

SPIHT is a wavelet-based image compression 
coder. It first converts the image into its wavelet 
transform and then transmits information about the 
wavelet coefficients. The decoder uses the received 
signal to reconstruct the wavelet and performs an 
inverse transform to recover the image. We selected 
SPIHT because it displays exceptional 
characteristics over several properties all at once 
[11]. They include: 

• Good image quality with a high PSNR 
• Fast coding and decoding 
• A fully progressive bit-stream 
• Can be used for lossless compression 
• May be combined with error protection 
• Ability to code for exact bit rate or PSNR 

 

 
Figure 1: A Three-level DWT 

The Discrete Wavelet Transform (DWT) runs a 
high and low-pass subband over the signal in one 
dimension. The result is a new image comprising of 
a high and low-pass subband. This procedure is 
then repeated in the other dimension yielding four 
subbands, three high-pass components and one low-
pass component. The next wavelet level is 
calculated by repeating the horizontal and vertical 
transformations on the low-pass subband from the 
previous level. The DWT repeats this procedure for 
however many levels are required. Each procedure 
is fully reversible so that each wavelet level is later 
recovered to obtain the low-pass result used in the 
previous wavelet level. Figure 1 displays a satellite 
image of San Francisco and its corresponding three 
level DWT. 

SPIHT is a method of coding and decoding the 
wavelet transform of an image. By coding and 
transmitting information about the wavelet 
coefficients, it is possible for a decoder to perform 
an inverse transformation on the wavelet and 
reconstruct the original image. The entire wavelet 
does not need to be transmitted in order to recover 
the image. Instead, as the decoder receives more 
information about the wavelet, the inverse-
transformation will yield a better quality 
reconstruction of the original image. SPIHT 
generates excellent image quality and performance 
due to several properties of the coding algorithm. 
They are partial ordering by coefficient value, 
taking advantage of the redundancies between 
different wavelet scales and transmitting data in bit 
plane order [10]. 

 
Figure 2: Spatial-orientation trees 

Following a wavelet transformation, SPIHT divides 
the wavelet into Spatial Orientation Trees. Each 
node in the tree corresponds to an individual pixel. 
The offspring of a pixel are the four pixels in the 



same spatial location of the same subband at the 
next finer scale of the wavelet. Pixels at the finest 
scale of the wavelet are the leaves of the tree and 
have no children. Every pixel is part of a 2 x 2 
block with its adjacent pixels. Blocks are a natural 
result of the hierarchical trees because every pixel 
in a block shares the same parent. Also, the upper 
left pixel of each 2 x 2 block at the root of the tree 
has no children since there only 3 subbands at each 
scale and not four. Figure 2 shows how the pyramid 
is defined. Arrows point to the offspring of an 
individual pixel, and the grayed blocks show all of 
the descendents for a specific pixel at every scale. 

SPIHT codes a wavelet by transmitting information 
about the significance of a pixel. By stating whether 
or not a pixel is above some threshold, information 
about that pixel’s value is implied. Furthermore, 
SPIHT transmits information stating whether a 
pixel or any of its descendants are above a 
threshold. If the statement proves false, then all of 
its descendants are known to be below that 
threshold level and they do not need to be 
considered during the rest of the current pass. At 
the end of each pass the threshold is divided by two 
and the algorithm continues. By proceeding in this 
manner, information about the most significant bits 
of the wavelet coefficients will always precede 
information on lower order significant bits, which 
is referred to as bit plane ordering. 

In addition to transmitting wavelet coefficients in a 
bit plane ordering, the SPIHT algorithm develops 
an individual order to transmit information within 
each bit plane. The ordering is implicitly created 
from the threshold information discussed above and 
by a set of rules which both the encoder and 
decoder agree upon. Thus each image will transmit 
wavelet coefficients in an entirely different order. 
Slightly better Peak Signal to Noise Ratios (PSNR) 
are achieved by using this dynamic ordering of the 
wavelet coefficients. The trade-off for the 
improvement are increased run-times for both the 
encoder and decoder since the order must be 
calculated. 

3. Prior Work 

3.1 Wavelet Architectures 

As wavelets have gained popularity over the past 
several years there has been growing interest in 
implementing the discrete wavelet transform in 
hardware. Much of the work on DWTs involves 
parallel platforms to save both memory access and 
computations [4][8][12]. Here we will provide a 

review of four individual DWT architectures and 
their performance where available.  

1-D DWT Memory

Row Data

Column Data
 

Figure 3: Illustration of a folded architecture 

The one-dimensional DWT entails demanding 
computations, which involve significant hardware 
resources. Most two-dimensional DWT 
architectures have implemented folding to reuse 
logic for each dimension, since the horizontal and 
vertical passes use identical FIR filters [5]. Figure 3 
illustrates how a 1-D DWT is used to realize a 2-D 
DWT. 

Such an architecture suffers from high memory 
bandwidth. For an N x N image there are at least 
2N2 read and write cycles for the first wavelet level. 
Additional levels require re-reading previously 
computed coefficients.  

 
Figure 4: The Partitioned DWT 

In order to address these superfluous memory 
accesses the Partitioned DWT was designed. The 
Partitioned DWT partitions the image into smaller 
blocks and computes several scales of the DWT at 
once for each block [9]. In addition, the algorithm 
makes use of wavelet lifting to reduce the 
computational complexity of the DWT [14]. By 
partitioning an image into smaller blocks, the 
amount of on-chip memory storage required is 
significantly reduced since only the coefficients in 
the block need to be stored. The approach is similar 
to the Recursive Pyramid Algorithm except that it 
computes over sections of the image at a time 
instead of the entire image at once. Figure 4 from 
Ritter et al. [9] illustrates how the partitioned 
wavelet is constructed. 



Nevertheless the partitioned approach suffers 
blocking artifacts along the partition boundaries if 
the boundaries are treated with reflection1. Thus 
pixels from neighboring partitions are required to 
smooth out these boundaries. The number of 
wavelet levels determines how many pixels beyond 
a sub-image’s boundary are needed. Higher wavelet 
levels represent data from a greater region of the 
image. To compensate for the partition boundaries 
the algorithm processes sub-image rows at a time to 
eliminate multiple reads in the horizontal direction. 
Overall data throughputs of up to 152Mbytes have 
been achieved with the Partitioned DWT. 

Another method to reduce memory accesses is the 
Recursive Pyramid Algorithm (RPA) [16]. RPA 
takes advantage of the fact that the various wavelet 
levels run at different clock rates. Each wavelet 
level requires ¼ the amount of time as the previous 
level. Thus it is possible to store previously 
computed coefficients on-chip and intermix the 
next level’s computations with the current 
calculations. A careful analysis of the runtime 
yields (4*N2)/3 computations for an image. 
However the algorithm has significant on chip 
memory requirements and requires a thorough 
scheduling process to interleave the various wavelet 
levels. 

The last unique architecture to discuss is the 
Generic 2-D Biorthogonal DWT shown in Benkrid 
et al. [2]. Unlike previous design methodologies, 
the Generic 2-D Biorthogonal DWT does not 
require filter folding or large on chip memories as 
the Recursive Pyramid design. Nor does it involve 
partitioning an image into sub-images. Instead, the 
architecture proposed creates separate structures to 
calculate each wavelet level as data is presented to 
it, as shown in Figure 5. The design sequentially 
reads in the image and computes the four DWT 
subbands. As the LL1 subband becomes available, 
the coefficients are passed off to the next stage, 
which will calculate the next coarser level subbands 
and so on.  

For larger images that require several individual 
wavelet scales, the Generic 2-D Biorthogonal DWT 
architecture consumes a tremendous amount of on-

                                                 
1 A FIR filter generally computes over several 
pixels at once and generates a result for the middle 
pixel. In order to calculate pixels close to image’s 
edge, data points are required beyond the edge of 
the image. Reflection is a method which takes 
pixels towards the image’s edge and copies them 
beyond the edge of the actual image for calculation 
purposes. 

chip resources. With SPIHT, a 1024 by 1024 pixel 
image computes seven separate wavelet scales. The 
proposed architecture would employ 21 individual 
high and low pass FIR filters. Since each wavelet 
scale processes data at different rates, a separate 
clock signal is also needed for each scale. The 
advantage of the architecture is much lower on-chip 
memory requirements and full utilization of the 
memory’s bandwidth since each pixel is only read 
and written once.  
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Figure 5: Generic 2-D Biorthogonal DWT 

3.2 SPIHT Architectures 

To date the literature contains very little on 
hardware implementations of SPIHT since the 
algorithm was developed so recently. Singh et al. 
[13] briefly describes a direct implementation of the 
SPIHT software algorithm. The paper is a brief on 
work done and provides a high level overview of 
the architecture.  

Their design calls for one processing phase to 
calculate the image’s wavelet transformation and 
another for the SPIHT coding. The SPIHT coding is 
performed using Content Addressable Memories to 
keep track of the order in which information about 
the wavelet is sent for each image.  

The algorithm sequentially steps through the 
wavelet coefficients multiple times in the same 
order as the original software program. No 
optimizations or modifications were made to the 
algorithm to take into account that the design would 
compute on a hardware platform as opposed to a 
software platform. The design was simulated over 8 
by 8 sized images for functional verification. Since 
the design has only been simulated no performance 
numbers were given. 

4 Design Considerations and 
Modifications 

In order to fully take advantage of the high 
performance a custom hardware implementation of 
SPIHT can yield, the software specifications must 
be examined and adjusted where they either 
perform poorly in hardware or do not make the 
most of the resources available. Here we discuss 
both memory storage considerations and 
optimizations to the original SPIHT algorithm for 
use in hardware. 



4.1 Variable Fixed-Point 

The discrete wavelet transform produces real 
numbers as wavelet coefficients. Traditionally 
FPGAs have not employed the use of floating-point 
numbers for several reasons. Some of these reasons 
are that floating-point numbers: 

• Require variable shifts based on the 
exponential description and variable 
shifters in FPGAs perform poorly. 

• Consume enormous hardware resources on 
a limited resource FPGA. 

• Are unnecessary for a known data set. 

At each wavelet level of the DWT, coefficients 
have a fixed range. Therefore we opted for a fixed-
point numerical representation. A fixed-point 
number is one where the decimal point’s position is 
predefined. With the decimal point locked at a 
specific location, each bit contributes a known 
value to the number, which eliminates the need for 
variable shifters. However the DWT’s filter bank is 
unbounded, meaning that the range of possible 
numbers increases with each additional wavelet 
level.  

An analysis of the coefficients of each filter bank 
shows that a 2-D low-pass FIR filter at most 
increases the range of possible numbers by a factor 
of 2.9054. This number is the increase found from 
both the horizontal and the vertical directions. It 
represents how much larger a coefficient at the next 
wavelet level could be if all of the previous level’s 
coefficients were both the maximum found at that 
level and of the correct sign. As a result, the 
coefficients at various wavelet levels require a 
variable number of bits above the decimal point to 
cover their possible ranges, as shown in Table 1. 

Table 1: Fixed-Point Magnitude Calculations 

Wavelet 
Level 

Factor Maximum 
Magnitude 

Maximum 
Bits 

Maximum Bits 
from Data 

Input  1 255 8 8 
0 2.9054 741 11 11 
1 8.4412 2152 13 12 
2 24.525 6254 14 13 
3 71.253 18170 16 14 
4 207.02 52789 17 15 
5 601.46 153373 19 16 
6 1747.5 445605 20 17 

Figure 6 illustrates the various requirements placed 
on a numerical representation for each wavelet 
level. The Factor and Maximum Magnitude 
columns demonstrate how the range of possible 
numbers increases with each level and the final 

result for a 1 byte per pixel image. The next column 
shows the maximum number of bits (with a sign 
bit) that are necessary to represent the numeric 
range at each wavelet level. The maximum number 
of bits we found by evaluating the actual range 
observed over many sample images is displayed in 
the last column. These values determine what 
position the most significant bit must stand for. 

If each wavelet level used the same numerical 
representation, they would all be required to handle 
numbers as large as the highest wavelet level to 
prevent overflow. Yet the lowest wavelet levels 
will never encounter numbers in that range. As a 
result, several bits at these levels would not be 
employed and therefore wasted. 

PSNR vs. bit-rate
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Figure 6: PSNR vs. bit-rate for various 

coefficient sizes 

To fully utilize all of the bits for each wavelet 
coefficient, we introduce the concept of Variable 
Fixed-Point representation. With Variable Fixed-
Point we assign a fixed-point numerical 
representation for each wavelet level optimized for 
the expected data. In addition, each representation 
differs from one another, meaning we employ a 
different fixed-point scheme for each wavelet level. 
Doing so allows us to optimize both memory 
storage and I/O at each wavelet level to yield 
maximum performance. 

Once the position of the most significant bit is 
found for each wavelet level, the number of 
precision bits to accurately represent the wavelet 
coefficients needs to be determined. Our goal is to 
provide enough bits to fully recover the image and 
at the same time use only as many are necessary to 
do so. Figure 6 displays the average Peak Signal to 
Noise ratios for several recovered images from 
SPIHT using a range of bit widths for each 
coefficient. 
An assignment of 16 bits per coefficient most 
accurately matches the full precision floating-point 



coefficients used in software, up through perfect 
reconstruction. Previous wavelet designs have 
focused on bit rates less than 4 bpp. Their studies 
found that fewer pixels are necessary for SPIHT 
[2]. Instead we elected a numerical representation 
which retains an equivalent amount of information 
as a floating-point number. By doing so, it is 
possible to perfectly reconstruct an image given a 
high enough bit rate. Table 2 provides the number 
of integer and decimal bits2 allocated for each 
wavelet level. The number of integer bits also 
includes one extra bit for the sign value. The 
highest wavelet level’s 16 integer bits represent 
positions 17 to 1 with no bit assigned for the 0 
position. 

Table 2: Variable Fixed-Point Representation 

Wavelet Level Integer Bits Decimal Bits 

image 10 6 
0 11 5 
1 12 4 
2 13 3 
3 14 2 
4 15 1 
5 16 0 
6 17 -1 

4.2 Fixed Order SPIHT 

As discussed within Section 3 the SPIHT algorithm 
computes a dynamic ordering of the wavelet 
coefficients as it progresses. Such an ordering will 
yield better image quality for bit-streams which end 
within the middle of a bit-plane. The drawback of 
this ordering is that every image will have a unique 
list order determined by the image’s wavelet 
coefficient values. 

Yet, the data that a block of coefficients contributes 
to the final SPIHT bit-stream is fully determined by 
the following localized information. 

• The 2x2 block of coefficients 
• Their immediate children 
• The maximum value within the sub-tree. 

Thus, every block of coefficients may be calculated 
independently and in parallel of one another. 
However, the order that a block’s data will be 
inserted into the bit-stream is not known since this 
order is dependent upon the image’s unique 
ordering. Once the order is determined it is possible 

                                                 
2 Integer bits refer to bits above the decimal point. 
Decimal bits refer to bits following the decimal 
point. 

to produce a valid SPIHT bit-stream from the above 
information.  

However the algorithm employed to calculate the 
SPIHT ordering of coefficients is sequential in 
nature. The computation steps over the coefficients 
of the image a couple of times within each bit-plane 
and dynamically inserts and removes coefficients 
from multiple lists. Such an algorithm is not 
parallizable in hardware and significantly limits the 
throughput of any implementation. 

We propose a modification to the original SPIHT 
algorithm called Fixed Order SPIHT. In Fixed 
Order SPIHT the order in which blocks of 
coefficients are transmitted are fixed before hand. 
Doing so removes the need to calculate the ordering 
of coefficients within each bit-plane and allows us 
to create a fully parallel version of the original 
SPIHT algorithm. Such a modification increases the 
through put of a hardware encoder by greater than 
an order of magnitude, at the cost of a slightly 
lower PSNR within each bit-plane (approximately 
0.1 – 0.2 dB).  

The advantage of such a method is at the end of 
each bit-plane the exact same data will have been 
transmitted, just in a different order. Thus at the end 
of each bit-plane the PSNR of Fixed Order SPIHT 
will match that of the regular SPIHT algorithm. 
Since the length of each bit-stream is fairly short 
within the transmitted data stream, the PSNR curve 
of Fixed Order SPIHT very closely matches that of 
the original algorithm. For a more complete 
discussion on Fixed Order SPIHT refer to Fry et al. 
[7]. 
5 Architecture 
5.1 Target Platform 

Our target platform is the WildStar FPGA 
processor board developed by Annapolis Micro 
Systems [1]. The board, shown in Figure 7, consists 
of three Xilinx Virtex 2000E FPGAs: PE0, PE1 and 
PE2. It operates at rates up to 133MHz. 48 MBytes 
of memory is available through 12 individual 
memory ports between 32 and 64 bits wide, 
yielding a throughput of up to 8.5 GBytes/Sec. Four 
shared memory blocks connect the Virtex chips 
through a crossbar. By switching a crossbar, several 
MBytes of data is passed between the chips in just a 
few clock cycles. 

5.2 Design Overview 

Our architecture consists of three phases: Wavelet 
Transform, Maximum Magnitude Calculation and 



Fixed Order SPIHT Coding. Each phase is 
implemented in one of the three Virtex chips. By 
instantiating each phase on a separate chip, separate 
images can be operated upon in parallel. Data are 
transferred from one phase to the next through the 
shared memories.  

 
Figure 7: Annapolis Micro Systems WildStar 

board block diagram 

Once processing in a phase is complete, the 
crossbar mode is switched and the data calculated is 
accessible to the next chip. By coding a different 
image in each phase simultaneously, the throughput 
of the system is determined by the slowest phase, 
while the latency of the architecture is the sum of 
the three phases. Figure 8 illustrates the architecture 
of the system. 
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Magnitude
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SPIHT
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Coefficients

Wavelet
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Magnitude
Information  

Figure 8: Overview of the architecture 

5.3 DWT Phase 

We selected a form of the folding architecture to 
calculate the DWT. Previous parallel versions of 
the DWT saved some memory bandwidth. 
However, additional resources and a more complex 
scheduling algorithm become necessary. In addition 
the savings becomes minimal since each higher 
wavelet level is ¼ the size of the previous wavelet 
level. In a seven level DWT, the highest 4 levels 
compute in just 2% of the time it takes to compute 
the first level.  

For this reason we designed a folded architecture 
which processes one dimension of a single wavelet 
level. Pixels are read in horizontally from one 
memory port and written directly to a second 
memory port. In addition pixels are written to 
memory in columns, inverting the image along the 

45-degree line. By utilizing the same addressing 
logic, pixels are again read in horizontally and 
written vertically. However, since the image was 
inverted along its diagonal, the second pass will 
calculate the vertical dimension of the wavelet and 
restore the image to its original form.  

Each dimension of the image is reduced by half and 
the process iteratively continues for each wavelet 
level. Finally, the mean of the LL subband is 
calculated and subtracted from itself. To speed up 
the DWT, the design reads and writes four rows at a 
time. Given 16 bit coefficients and a 64-bit wide 
memory port, four rows is the maximum that can be 
transferred in a clock cycles. Figure 9 illustrates the 
architecture of the discrete wavelet transform 
phase. 

Since every pixel is read and written once and the 
design processes four rows at a time, for an N x N 
size image both dimensions in the lowest wavelet 
level will compute in N/4 clock cycles. Similarly, 
the next wavelet level will process the image in ¼ 
the number of clock cycles as the previous level. 
With an infinite number of wavelet levels the image 
will process in: 

2
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Thus the runtime of the DWT engine is bounded by 
¾th a clock cycle per pixel in the image. Many of 
the parallel architectures designed to process 
multiple wavelet levels simultaneously run in more 
than one clock cycle per image. Because of the 
additional resources required by a parallel 
implementation, computing multiple rows at once 
becomes impractical. Given more resources, the 
parallel architectures discussed above could process 
multiple rows at once and yield runtimes lower than 
¾th a clock cycle per pixel. However, our FPGAs 
do not have such extensive resources.  

Read
Address Logic

Row Boundary
Reflection

Row 1
Low Pass

High Pass

Variable Fixed
Point Scaling

Row Boundary
Reflection

Row 2
Low Pass

High Pass

Variable Fixed
Point Scaling

Row Boundary
Reflection

Row 3
Low Pass

High Pass

Variable Fixed
Point Scaling

Row Boundary
Reflection

Row 4
Low Pass

High Pass

Variable Fixed
Point Scaling

Data Selection
and Write

Address Logic

LL Subband Mean 
Calculation and Subtraction

Write 
Memory Port

Read 
Memory Port

DWT Level
Calculation

and 
Control Logic

Read-Write Crossbar

 
Figure 9: DWT Architecture 



5.4 Maximum Magnitude Phase 

The maximum magnitude phase calculates and 
rearranges the following information for the SPIHT 
phase. 

• The maximum magnitude of each of the 4 
child trees. 

• The maximum magnitude of the current 
tree. 

• Threshold and Sign data of each of the 16 
child coefficients. 

• Re-order the wavelet coefficients into a 
Morton Scan ordering. 

To calculate the maximum magnitude of all 
coefficients below a node in the spatial orientation 
trees, the image must be scanned in a depth-first 
search order [6]. By scanning the trees of the image 
in a depth-first search order, whenever a new 
coefficient is read and being considered, all of its 
children will have already been read and the 
maximum coefficient so far is known. On every 
clock cycle the new coefficient is compared to and 
updates the current maximum. Since PE0 (the 
Magnitude phase) uses 32-bit wide memory ports, 
it can read half a block at a time. 

The state machine, which controls how the spatial 
orientation trees are traversed, reads one half of a 
block as it descends the tree and the other half as it 
ascends the tree. By doing so all of the data needed 

to compute the maximum magnitude for the current 
block is available as the state machine ascends back 
up the spatial orientation tree. In addition the four 
most recent blocks of each level are saved onto a 
stack so that all 16-child coefficients are available 
to the parent block.  

5.5 SPIHT Phase 

The final SPIHT Coding phase essentially 
computes the parallel algorithm. Coefficient blocks 
are read from the highest wavelet level to the 
lowest. As information is loaded from memory it is 
shifted from the Variable Fixed Point 
representation to a common fixed point 
representation for every wavelet level. Once each 
block has been adjusted to the same numerical 
representation, the parallel version of SPIHT is 
used to calculate what information each block will 
contribute to each bit plane.  

The information is grouped and counted before 
being added to three separate variable FIFOs for 
each bit plane. The data which the variable FIFO 
components receive varies in size, ranging from 
zero bits to thirty-seven bits. The variable FIFOs 
are used to arrange the block data into regular sized 
32-bit sized words for memory accesses. Care is 
also taken to stall the algorithm if anyone of the 
variable FIFOs becomes too full. The block 
diagram for the SPIHT coding phase is given in 
Figure 10. 
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Figure 10: SPIHT Coding Phase Block Diagram 

6 Design Results 
Our system was designed using VHDL with models 
provided from Annapolis Micro Systems to access 

the PCI bus and memory ports. Simulations for 
debugging purposes were done with ModelSim EE 
5.4e from Mentor Graphics. Synplify 6.2 from 
Synplicity was used to compile the VHDL code and 



generate a net list. The Xilinx Foundation Series 
3.1i tool set was used to both place and route the 
design. Lastly the peutil.exe utility from Annapolis 
Micro Systems generated the FPGA configuration 
streams. 

Table 3 shows the speed and runtime specifications 
of our architecture. All performance numbers are 
measured results from the actual hardware 
implementations. Each phase computes on separate 
memory blocks, which can operate at different 
clock rates. The design can process any square 
image where the dimensions are a power of 2: 16 
by 16, 32 by 32 up to 1024 by 1024. Since the 
WildStar board is connected to the host computer 

by a relatively slow PCI bus, the throughput of the 
entire system we built is constrained by the 
throughput of the PCI bus.  

However, our study is on how image compression 
routines could be implemented on a satellite. Such a 
system would be designed differently and would 
not contain a reconfigurable board connected to 
some host platform though a PCI bus. Rather the 
image compression routines would be inserted 
directly into the data path and the data transfer 
times would not be the bottleneck of the system. 
For this reason we analyzed the throughput of just 
the SPIHT compression engine and analyzed how 
quickly the FPGAs can process the images.  

Table 3: Performance Numbers  

Phase Clock Cycles per 
512x512 image 

Clock Cycles 
per Pixel 

Clock Rate Throughput FPGA Area

Wavelet 182465 3/4 75 MHz 100 MBytes/sec 62% 
Magnitude 131132 1/2 73 MHz 146 MBytes/sec 34% 

SPIHT 65793 1/4 56 MHz 224 MBytes/sec 98% 
 
The throughput of the system is constrained by the 
discrete wavelet transform at 100 MBytes/second. 
One method to increase its rate is to compute more 
rows in parallel. If the available memory ports 
accessed 128-bits of data instead of the 64-bits with 
our WildStar board, the number of clock cycles per 
pixel could be reduced by half and the throughput 
could double. Assuming the original image consists 
of 8 bpp, images are processed at a rate of 
800Mbits/sec.  

In addition the entire throughput of the architecture 
is less than one clock cycle for every pixel, which is 
lower than parallel versions of the DWT. Parallel 
versions of the DWT used complex scheduling to 
compute multiple wavelet levels simultaneously, 
which left limited resources to process multiple 
rows at a time. Given more resources though, they 
would obtain higher data rates by processing 
multiple rows simultaneously than our architecture 
could. In the future another DWT architecture than 
the one we implemented could be selected for 
further speed improvements. 

We compared our results to the original software 
version of SPIHT provided on the SPIHT website 
[11]. The comparison was made without arithmetic 
coding since our hardware implementation 
currently does not perform any arithmetic coding 
on the final bit-stream. An Ultra 5 SPARC  
workstation was used for the comparison and we 
used a combination of satellite images from 
NASA’s website and standard image compression 

benchmark images. The software version of SPIHT 
compressed a 512 x 512 image in 1.14 seconds on 
average. The wavelet phase, which constrains the 
hardware implementation, computes in 2.48 
milliseconds, yielding a speedup of 457 times for 
the SPIHT engine. In addition, by creating a 
parallel implementation of the wavelet phase, 
further improvements to the runtimes of the SPIHT 
engine are possible. 

While this is the speedup we will obtain if the data 
transfer times are not a factor, the design may be 
used to speed up SPIHT on a general-purpose 
processor. On such a system the time to read and 
write data must be included as well. Our WildStar 
board is connected to the host processor over a PCI 
bus, which writes images in 13 milliseconds and 
reads the final data stream in 20.75 milliseconds. 
With the data transfer delay, the total speedup still 
yields an improvement of 31.4 times. 

7 Conclusions 
In this paper we have demonstrated a viable image 
compression routine on a reconfigurable platform. 
We showed how by analyzing the range of data 
processed by each section of the algorithm, it is 
advantageous to create optimized memory 
structures as with our Variable Fixed Point work. 
Doing so minimizes memory usage and yields the 
utmost usefulness of transferred data. (i.e. each bit 
transferred between memory and the processor 
board directly impacts the final result.) In addition 



our Fixed Order SPIHT work illustrates how by 
making slight adjustments to an existing algorithm, 
it is possible to dramatically increase the 
performance of a custom hardware implementation 
and simultaneously yield essentially identical 
results. With Fixed Order SPIHT the throughput of 
the system increases by roughly an order of 
magnitude while still matching the original 
algorithm’s PSNR curve. 

Our SPIHT work is part of an ongoing development 
effort funded by NASA. Future work will to 
address how lossy image compression will affect 
downstream processing. The level of lossy image 
compression that is tolerable before later processing 
begins to yield false results needs to be analyzed 
and dealt with. Lastly improvements to SPIHT and 
the consequences to a hardware implementation 
will be studied. Modifications to Fixed Order 
SPIHT including adding error protection to the bit-
stream and region of interest coding will be 
considered.  
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