
A Model for Programming Large-Scale
Configurable Computing Applications

Carl Ebeling∗, Scott Hauck†, Corey Olson†, Maria Kim†, Cooper Clausen∗†, Boris Kogon∗
∗Dept. of Computer Science and Engineering and †Dept. of Electrical Engineering

University of Washington
Seattle, WA 98195

Abstract—It is clear that Exascale computing will require
alternative computing substrates such as FPGAs as an
adjunct to traditional processors to stay within power
consumption constraints. Executing applications, or parts
of applications, using specialized, fine-grained computing
structures configured into FPGAs can achieve a large
increase in both performance and energy-efficiency for
many important applications. Unfortunately, the process
of designing and implementing these specialized hardware
structures is tedious and requires expertise in hardware
design. This lack of programming models and associated
compilers for configurable computing has impeded progress
in the use of FPGAs in large-scale computing platforms.
This paper presents a parallel programming model and
compilation strategy that programmers can use to describe
large-scale applications using familiar concepts and ab-
stractions, but which can be implemented using large-scale,
fine-grained parallel computing structures. We outline this
model and then use it to develop a scalable parallel solution
to the short-read reassembly problem in genomics.

INTRODUCTION

Our goal is to enable programmers to write parallel ap-
plications for large-scale computing systems that include
a substantial amount of computing power in the form of
FPGA accelerators. What we have in mind as an eventual
target are platforms with 10’s to 100’s of processors and
100’s to 1000’s of FPGAs. Our approach is to adopt
and adapt a set of techniques and concepts that have
been developed for programming parallel and distributed
computers to solving the problem of implementing large
scale algorithms using hardware-accelerated computing
platforms. This includes providing a computation model
that enables algorithms to be described at a relatively
high level of abstraction and then mapped across a large
number of computation nodes that include processors,
FPGAs, and possibly other accelerators like GPUs. This
will allow applications to be partitioned and mapped to
a combination of software and hardware resources using
a single, consistent programming model.

Our model and tools will allow a designer to express
the implementation of an algorithm as a set of communi-
cating objects. Each object comprises data and threads of

computation that operate on that data, and interact with
other objects via a buffered, flow controlled protocol. A
separate system-level description defines how data arrays
are partitioned and replicated to achieve high computa-
tional capacity and data bandwidth, how modules are
duplicated and distributed to achieve parallelism, and
how data and computation are assigned to CPUs, FPGAs
and possibly GPUs. Computations that are co-located are
connected together with efficient, local communication
links, while elements on different chips, or those requir-
ing unpredictable communication patterns, communicate
via intra- and inter-chip communication networks. In this
way, a designer can express the overall computation in
a manner most appropriate to the problem being solved,
and then map the design to the hardware to optimize
the resulting implementation. Our goal is to provide
mechanisms to help automate this mapping, as well
as communication synthesis approaches to optimize the
networks to the actual demands of the computation.

PROGRAMMING MODEL

Our model is based on an object model: A system is
comprised of objects, each containing data and methods
that implement the functionality of the object. Our
research is focused on implementing objects in con-
figurable hardware (FPGAs), and compiling programs
into large circuits. However, the objects in our model
can also be implemented in software and mapped to
a processor in the system. This allows a system to be
built using a combination of hardware and software,
and functionality can be moved between hardware and
software by specifying whether an object is implemented
in a processor or an FPGA.

An object generally has state, that is, data that it
owns and manages, which may be in registers or in
privately owned memories. Objects interact via methods,
which implement the functionality of the object. All
objects have a main method, which is started when
the system starts. Main methods may simply initialize
the object’s data and then exit, or it may continue to

run as an independent thread in the style of a main
program. Objects call each other’s methods, which may
be either asynchronous or synchronous: Asynchronous
methods, which are the default, do not return values,
and the caller can immediately continue execution after
calling an asynchronous method. A synchronous method
call requires the caller to wait for the called method to
complete, generally with a return value.

All hardware objects in a system are static, meaning
they are created and connected together at compile time.
This is done using constructor methods, which use meta-
programming constructs and compile-time information
to construct the system hierarchically. This is essen-
tially identical to many generator-style programming
languages[1], as well as structural descriptions and gen-
erators in Verilog.

Methods are implemented as independent hardware
threads that wait to be invoked. This means that all
the methods of an object run in parallel, using arbiters
(locks) when necessary to make sure that shared object
resources are used in a consistent way. Method calls can
be implemented in a number of ways depending on the
location and type of the objects that are communicating.
The most general mechanism uses messages over a
network to implement method calls as remote procedure
calls[2], [3]. Remote procedure calls support dynamic
method calls, where the callee object is dynamically
specified. However, RPC incurs substantial unnecessary
overhead for objects that are located close together and
can interact via a direct wired connection. In such cases,
the method call can be implemented using a set of wires
that implement either a synchronous or asynchronous
method call, reserving the general network for non-local
communication and dynamic method calls.

Dynamic Objects

Although hardware objects are static in that they are
constructed before the system begins execution, dynamic
allocation and deallocation of objects is a convenient
abstraction that reflects how objects are often used.
This pattern is quite common where an object is used
temporarily for a specific use, where a dynamic number
of instances of the object are needed at any one time,
and where a large number of instances are used over the
lifetime of the computation. As we will see, dynamic
objects can also finesse the problem of synchronization
in many cases.

Dynamic objects are implemented as a pool of stati-
cally instantiated objects managed by a object manager.
The manager maintains a map that keeps track of free
and allocated objects. Dynamic objects are differentiated
by an object ID that is computed from a parameter, or

set of parameters, that are shared by all the object’s
methods. The programmer provides a map function from
this parameter, or parameters, to the object ID. The first
time that an object method is called with a particular ID,
the corresponding object is automatically allocated by
the manager, and initialization code, if any, is executed.
Thereafter all method calls that map to the same ID are
delivered by the object manager to this object. When the
object has completed, it deallocates itself by informing
the object manager.

Parallelization via Object Duplication and Distribution

In most cases, an application can be described using
a relatively small number of communicating objects.
Generating a parallel implementation involves making
many copies of these objects in order to divide up large
data sets and allow many computations to proceed in
parallel. We borrow the idea of “Distributions” from
parallel programming languages like ZPL[4], Chapel[5]
and X10[6] to describe large parallel implementations.
Distributions allow the partitioning and parallelization
of an implementation across a large number of nodes to
be described concisely and implemented automatically.
Changing the parameters and even the shape of a parallel
implementation is thus straightforward.

An object is duplicated and distributed using a dis-
tribution function that maps a method parameter, or a
set of method parameters, to a “locale”. A locale can
be a specific FPGA or perhaps a part of an FPGA. The
distribution function explicitly partitions the parameter
space among a set of locales, each of which has a copy of
the object. Where arrays are distributed, the distribution
function also describes how the arrays are partitioned
across the locales.

The programmer describes a parallel implementation
simply by defining the distribution map functions and
the compiler then automatically partitions the memory,
duplicates the objects, implements method calls using
the most efficient means, and routes method calls to the
appropriate objects. A parallel implementation can then
be tuned by redefining the distributions and recompiling.

To achieve even greater parallelism, memory objects
can be replicated. For example, in a very large system,
access to memory that is widely distributed may cause
the network to be the bottleneck. This can be avoided
by replicating the memory in addition to distributing
it. Method calls are then routed to the nearest replica,
reducing the network traffic.

In highly concurrent systems, almost all objects are
distributed. Designing a distributed parallel system re-
quires understanding the implications of a particular
distribution on memory and communication bandwidth.

2

Reference sequence

Reads

Reference sequence

Reads

Fig. 1. Reassembly aligns each read to the correct position in the reference sequence. Sufficient redundant reads are generated to cover the
reference sequence up to some read depth D.

Object distributions should be “aligned”, that is, dis-
tributed so that most communication between the dis-
tributed objects is local, ensuring that the only non-local
communication used is that which is essential to the
computation. With our model, the programmer can focus
on describing the functionality of a system in terms of
individual object classes separate from describing how
those objects are partitioned and duplicated to create
a parallel system. A system can be remapped using
a different distribution very quickly since the changes
required are automatically generated along with all the
communication, including the allocation of method call
invocation to local wires or the general network.

EXAMPLE: RESEQUENCING AND SHORT READ
REASSEMBLY

Next generation sequencing technologies have ap-
peared in recent years that are completely changing
the way genome sequencing is done. New platforms
like the Solexa/Illumina and SOLiD can sequence one
billion base pairs in the matter of days. However, the
computational cost of accurately re-assembling the data
produced by these new sequencing machines into a
complete genome is high and threatens to overwhelm the
cost of generating the data[7]. Providing a low-cost, low-
power, high-performance solution to the re-sequencing
problem has the potential to make routine the sequencing
of individual genomes[8].

Next generation sequencing machines “read” the base
pair sequence for short subsequences of the genome, on
the order of 30-70 base-pairs. These are called “short
reads”, and sequencing machines can generate them
in parallel by the hundreds of millions. To simplify
somewhat, a long DNA sequence is sliced at random
into many small subsequences, which are all read in
parallel. By doing this for several copies of the DNA
sequence, many overlapping reads are produced. This
guarantees coverage of the entire reference sequence and
also allows a consensus to be achieved in the presence
of read errors. The goal of reassembly then is to align
each short read to the reference sequence as shown in
Figure 1. Reassembling these short reads into the original
sequence is called the “short read reassembly problem”.

Algorithm Description

Our algorithm operates in two steps. In the first step,
each read is looked up in an index to find the set
of “candidate alignment locations” (CALs). These are
the locations in the full genome where the read may
match. We assume that this index is constructed offline
since only one such index is needed for a reference
genome. In the second step, a full Smith-Waterman[9]
style algorithm is used to compare the read to the
reference at each location in the genome, and the top
scores are reported to the host for further processing.

We assume that each read maps to a specific location
in the genome and our task is to find that location. Since
the genome we are trying to reconstruct is different from
the reference genome, and there are errors in the reads
themselves caused by the readout process, we cannot
use a simple index to look up the reads in the reference.
Instead we use a “seed” approach[10] to construct an
“approximate” index table. This approach assumes that
there is a region in a read, called a seed, that exactly
matches the corresponding region in the reference to
which the read aligns. For example, we might use all
10-character contiguous subsequences of a 50-character
read, hoping that at least one matches exactly to the
correct alignment in the reference. The Reference Index
Table maps each possible seed to all the locations in the
Reference where that seed occurs.

Our algorithm is briefly described in 2. Each block
represents one object, which includes the data and meth-
ods defined for that object. The arrows are used to show
the method call graph. Synchronous method calls are
shown with arrows in both directions.

a) Reads: The Reads object contains the array of
short reads which are assumed to be in large DRAM
attached to the FPGAs. The processReads() method
is called by the Host to initiate the execution of the
algorithm. processReads() reads the short reads from
memory and sends them one at a time to the Seeds object
by calling Seeds:nextRead().

b) Seeds: The nextRead() method takes the short
read passed as a parameter, extracts all the seeds, and
calls the RIT:nextSeed() method with each seed. Before
it does this, it calls Filter.nextRead() with the read and

3

SWCollectSWCollectSWCollect

Reads
processReads()

Seeds

nextRead()

 RIT

nextSeed(readID, seed)

nextSeed()

Filter
numSeeds(readID, read, count)
numCALs(readID, count)
addCAL(readID, CAL)

numSeeds() numCALs()
addCAL()

nextRead(readID, read)

SWDispatch
nextRead(readID, read)
nextCAL(readID, CAL)

nextRead()
nextCAL()

 Reference

nextCAL(readID, CAL)

SWSWSWSW
nextRead(readID, CAL, read)
nextRef(readID, CAL, ref)

nextRef()
nextRead()

nextCAL()

SWCollect
numCALs(readID, count)
SWscore(readID, position, score)

SWscore()

numCALs()

Host
SWresult(readID, position, score)

SWresult()

Host

processReads()

ReadArray

IndexTable

HashTable

CALlist

Reference
Array

Fig. 2. This call graph shows the algorithm used to solve the short read
reassembly problem in this example. For each read, a mask is applied
to every possible position along the read to generate a seed. The seed
is used as an address in a reference index to find a set of candidate
alignment locations (CALs). The CALs are used for performing fully
gapped local alignment on the reads at the specified location in the
reference.

the number of seeds to expect. This is a synchronous
call, so the Seeds:nextRead() method will block until the
Filter object is ready for the next read. This is a barrier
synchronization which reduces the amount of parallelism
that is achieved at this point in the pipeline, but we
assume that this does not affect the overall performance
as the bottleneck is in the Smith-Waterman step, which
occurs later in the process.

c) RIT: The RIT object owns the index table. When
the nextSeed() method is invoked, it looks up the seed in

the index table which contains the list of CALs for that
seed. It first calls Filter:numCALs() with the number of
CALs that will be sent for the seed. It then calls the
Filter:addCAL() with each of the CALs.

d) Filter: The purpose of the Filter object is to
collect all the CALs for a short read, and pass along the
unique CALs for comparison. The nextRead() method
is called by Seeds with each new short read. This is a
synchronous method call which waits until the previous
read, if any, has been completely processed. It then
initializes the Filter object for the new read, and returns,
allowing the Seeds:nextRead() method to start generating
the seeds for the read. This synchronization is required
since Filter can only process a single short read at a time.

Each call to addCAL() inserts a CAL into the hash
table and the CAL list, if it is not already there, or
increments the count in the table if it is. When the last
addCAL() has been received, addCAL then processes the
hash table. It first calls SWDispatch:nextRead() to give it
the next read, and then it goes through the list of unique
CALs, each time calling SWDispatch:nextCAL(). It also
clears the hash table entry for each, reinitializing the hash
table. The Filter object knows when the last addCAL()
method call has been received for a read by counting
the number of seeds (numCALs() method calls) and the
number of CALs per seed (total count in the numCALs()
method calls).

e) SWDispatch: The SWDispatch object is essen-
tially a front-end to the SW objects. It generates the
appropriate method calls to initialize and begin execution
of each SW objects. Each call to nextCAL() makes one
call to SW.nextRead(), passing the short read to an SW
object, and one call to Reference.nextCAL(), causing the
corresponding call to SW.nextRef() with the reference
string.

f) Reference: This object contains the reference
genome data. When given a CAL via the nextCAL()
call, it reads the section of the reference at that CAL
and call SW.nextRef() to send it to the SW object.

g) SW: The SW object is a dynamic object, indi-
cated by the multiple boxes in the figure, which means
there are many static instances of the object that are
managed by an object manager. The key for this dynamic
object is the (readID, CAL) pair. The first method
call with a new pair of values causes an SW object
to be allocated and initialized. Two method calls are
made to SW, one with the short read and the other
with the reference data. When both methods have been
invoked, the SW object performs the comparison of the
short read to the reference section at the CAL location,
and when done calls SWCollect:SWScore() with the
result and deallocates itself. SW uses a deeply pipelined

4

dynamic programming algorithm, which means that it
can actually deallocate itself *before* it has completed
the comparison, but when it is ready to start performing
a new comparison, which can be overlapped with the
previous comparison.

h) SWCollect: This object collects the scores re-
ported for all the different CALs for a short read.
This is also a dynamic object which is keyed by the
readID parameter. SWScore keeps track of the best
scores reported, and when all scores have been reported,
it calls Host:SWResult() with the best results. SWCol-
lect also uses reference counting for synchronization:
SWDispatch calls numCALs(), and when this many
scores have been reported, SWScore reports the scores
and deallocates itself.

Synchronization

It is worth noting that there are two types of syn-
chronization used in this example. First, there is an
explicit barrier synchronization used in the first part of
the pipeline, whereby the Seeds object must wait for
the previous read to be completely processed by the
Filter object before it starts processing the next read. This
ensures that the short reads pass through the objects in
order. That is, all method calls associated with one read
are made before method calls for the next read are made.
This of course reduces parallelism. The second type
of synchronization is enabled by dynamic objects and
reference counting. These objects are allocated implicitly
and method calls can be interleaved arbitrarily since
they are automatically directed to the appropriate ob-
ject. Reference counting allows objects to automatically
deallocate when all outstanding method calls have been
received.

Parallel Implementation

There is already substantial parallelism in the im-
plementation as described, particularly with the many
concurrent, pipelined Smith-Waterman units which are
enabled by dynamic objects. To increase the performance
of the implementation, we need to consider where the
bottlenecks occur. If we assume that we can always make
the pool of SW objects larger, then the bottleneck occurs
at the RIT and Filter objects. For each read, Seeds makes
a large number of calls to RIT:nextSeed(), each of which
is a random access into the index table. If this table is
stored in DRAM, there will be substantial overhead in
performing this access. We can increase the performance
of the RIT by partitioning it so that multiple accesses can
proceed in parallel. This is done simply by describing a
distribution function for the RIT that partitions the table.

This now moves the bottleneck to the Filter object,
which will get multiple simultaneous addCAL() method
calls from the RIT objects. We can remove this bottle-
neck by duplicating the Seeds, Filter and SWDispatch
objects using an “aligned” distribution. That is, we
duplicate these objects so that each Seeds object commu-
nicates with one Filter object, which communicates with
one SWDispatch object, all of which are handling the
same read. Assuming that reads are processed in order
by readID, using the low-order bits of the readID to do
the distribution uses these objects in round-robin order.

At this point, the Reference object becomes the
bottleneck as several SWDispatch objects call Refer-
ence:nextCAL() concurrently. This can be solved by
distributing the Reference object and partitioning the
Reference memory into blocks. Assuming that the CALs
are spread out more-or-less uniformly, this enables mul-
tiple concurrent accesses to proceed concurrently. We
finally reach the point where the Reads object becomes
the bottleneck. That is, we can now process short reads
as fast as we can read them from memory.

Of course, we have described this implementation
using an idealized view of the hardware platform. For
example, there will be only a small number of large
memories connected to an FPGA, and thus partitioning
the RIT and the Reference into many memories for
concurrent access can only be done by spreading the
implementation across a large number of FPGA nodes.
One option is to distribute the “main” objects (all except
for RIT and Reference) across the FPGA nodes using
an aligned distribution based on readID. This keeps the
method calls between them local to an FPGA. However,
the method calls to the RIT and Reference are non-local
because neither of them can be partitioned by readID.
Beyond some degree of parallelism, the communication
implied by these calls will become the bottleneck since
it is all-to-all communication.

An alternative way to distribute the objects is to use
a distribution based on CALs. This partitions the Refer-
ence and the RIT, but it means that the remaining “main”
objects are replicated instead of distributed. That is, each
short read is processed by all of the replicated objects,
so that the Seeds:nextRead() method call is broadcast to
all the replicated copies of Seeds and remaining method
calls are made on the local object copy.

Distributing/replicating by CAL means that each RIT
object only has the CALs assigned to its partition and so
the objects only handle a subset of all the CALs. This
means that all of the communication between objects
is local and so there is no inter-FPGA communication
except for the initial broadcast. However, this partition-

5

ing has some consequence both on the algorithm and
the performance. First, since each Filter object sees only
a subset of the CALs, it cannot filter CALs based on
information about all the CALs for a read, and so we
may have to process more CALs than necessary. Second,
if we partition the objects too finely, then many partitions
may have no CALs at all for a read, and the objects will
spend a lot of time doing nothing. So, for example, if
there are an average of 32 CALs per read, we will start
to lose efficiency if we partition much beyond a factor
of 8.

We can, however, easily combine both types of parti-
tioning. For example, we could partition and replicate by
8 first, and then within each partition distribute objects
by another factor of 8. This partitions each RIT and
Reference (by readID) by only a factor of 8, and the
resulting communication bandwidth does not overwhelm
the network.

Flow Control

In a system where data flows through a pipeline, work
will pile up behind any bottlenecks. While in a simple
pipeline where method calls are implemented using
point-to-point wires and FIFOs, objects in the early part
of the pipeline will be stalled and the pipeline will simply
operate at the speed of the slowest object. In a more
complex system comprising many distributed objects
and network communication, the work that piles up can
clog network buffers, which can affect other flows. The
question is how best to throttle the rate at which work is
created so this does not happen. In our example, work
is created by the Reads objects and simple credit-based
flow control can be used to throttle the rate at which
it calls Seeds:nextRead(). Reads flow into the system
at the top, and out of the system at the bottom when
SWCollect reports the scores for a read. If we add a
method Reads:done() which is called by SWCollect each
time it complete reporting the scores for a read, then the
Reads object can keep track of the number of reads in
the pipeline. We can compute how many reads can be in
the pipeline before the network might be affected, and
allow Reads to only have this many reads outstanding
in the pipeline. In complex systems, this number may
be difficult to ascertain, although a safe number is the
size of the smallest call FIFO. The best scenario would
be for the system compiler to analyze the data flow
and insert the flow control methods and work metering
automatically.

CONCLUSION

This new object model allows programmers to quickly
design new applications targeting large-scale computing

systems by abstracting the physical design and by mov-
ing the decision for physical location of objects from
design time to compile time. This removes the burden of
much of the physical design from the designer, including
non-critical objects and communication infrastructure,
but still allows the designer to use hand-tuned HDL in
the system. The object model allows hardware objects
to first be developed and easily debugged as software
objects before implementing them in the target system.
This enables the designer to rapidly develop and debug a
system, thereby greatly reducing design cycle time. This
model also has no need to declare the location of an
object at design time, so objects can be partitioned and
distributed across a large system without any required
changes to the object description. With these benefits, a
designer will more rapidly be able to design, develop,
and debug an application for a large-scale computing
system.

Acknowledgements

We would like to acknowledge Pico Computing and
the Washington Technology Center for their support of
our research.

REFERENCES

[1] P. Bellows and B. Hutchings, “JHDL-An HDL for Reconfigurable
Systems,” April 1998, pp. 175 –184.

[2] A. D. Birrell and B. J. Nelson, “Implementing Remote Procedure
Calls,” ACM Trans. Comput. Syst., vol. 2, no. 1, pp. 39–59, 1984.

[3] J. Maasen, R. van Nieuwpoort, R. Veldema, H. Bal, T. Kielmann,
C. Jacobs, and R. Hofman, “Efficient Java RMI for Parallel
Programming,” ACM Transactions on Programming Language
Systems, vol. 23, no. 6, pp. 747–775, 2001.

[4] B. Chamberlain, S.-E. Choi, C. Lewis, C. Lin, L. Snyder, and
W. Weathersby, “ZPL: A Machine-Independent Programming
Language For Parallel Computers,” IEEE Transactions on Soft-
ware Engineering, vol. 26, no. 3, pp. 197 –211, March 2000.

[5] B. Chamberlain, D. Callahan, and H. Zima, “Parallel Programma-
bility and the Chapel Language,” Int. J. High Perform. Comput.
Appl., vol. 21, no. 3, pp. 291–312, 2007.

[6] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An Object-
oriented Approach to Non-uniform Cluster Computing,” in OOP-
SLA ’05: Proceedings of the 20th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and
Applications. New York, NY, USA: ACM, 2005, pp. 519–538.

[7] J. D. McPherson, “Next-Generation Gap,” Nature, vol. 6, no. 11s,
2009.

[8] E. R. Mardis, “The Impact of Next-generation Sequencing
Technology on Genetics,” Trends in Genetics, vol. 24, no. 3, pp.
133 – 141, 2008.

[9] M. S. Waterman and T. F. Smith, “Rapid Dynamic Programming
Algorithms for RNA Secondary Structure,” Advances in Applied
Mathematics, vol. 7, no. 4, pp. 455 – 464, 1986.

[10] D. S. Horner, G. Pavesi, T. Castrignan, P. D. D. Meo, S. Liuni,
M. Sammeth, E. Picardi, and G. Pesole, “Bioinformatics Ap-
proaches for Genomics and Post Genomics Applications of Next-
generation Sequencing,” Briefings on Bioinformatics, vol. 11,
no. 2, 2010.

6

